X2 T02 02 complex factors
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
536
On Slideshare
497
From Embeds
39
Number of Embeds
1

Actions

Shares
Downloads
9
Comments
0
Likes
0

Embeds 39

http://virtualb15.edublogs.org 39

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Factorising Into Complex Factors e.g. Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field.
  • 2. Factorising Into Complex Factors e.g. Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field. 1  1  1  1 1 P   4   8   5    3   2   16   8   4  2 0
  • 3. Factorising Into Complex Factors e.g. Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field. 1  1  1  1 1 P   4   8   5    3   2   16   8   4  2 0  2 x  1 is a factor
  • 4. Factorising Into Complex Factors e.g. Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field. 1  1  1  1 1 P   4   8   5    3   2   16   8   4  2 0  2 x  1 is a factor P x   2 x  12 x 3  3
  • 5. Factorising Into Complex Factors e.g. Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field. 1  1  1  1 1 P   4   8   5    3   2   16   8   4  2 0  2 x  1 is a factor P x   2 x  12 x 3  5 x  3
  • 6. Factorising Into Complex Factors e.g. Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field. 1  1  1  1 1 P   4   8   5    3   2   16   8   4  2 0  2 x  1 is a factor P x   2 x  12 x 3 5x 2  5 x  3
  • 7.   3   2  27   5 9   5  3   3 P         2  8   4  2 0
  • 8.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor
  • 9.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor 1 3  rational zeros are and - 2 2
  • 10.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor 1 3  rational zeros are and - 2 2 P x   2 x  12 x  3x 2  1
  • 11.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor 1 3 1 3  2 x  6 x  rational zeros are and - 2 2 1 2 x  1  2 x P x   2 x  12 x  3x 2  1
  • 12.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor 1 3 1 3  2 x  6 x  rational zeros are and - 2 2 1 2 x  1  2 x P x   2 x  12 x  3x 2  1 4x  1 3  ? x  3 x
  • 13.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor 1 3 1 3  2 x  6 x  rational zeros are and - 2 2 1 2 x  1  2 x P x   2 x  12 x  3x 2  x  1 4x  1 3  ? x  3 x
  • 14.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor 1 3 1 3  2 x  6 x  rational zeros are and - 2 2 1 2 x  1  2 x P x   2 x  12 x  3x 2  x  1 4x  1  3 2  1 3  ? x  3 x  2 x  12 x  3 x      2  4
  • 15.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor 1 3 1 3  2 x  6 x  rational zeros are and - 2 2 1 2 x  1  2 x P x   2 x  12 x  3x 2  x  1 4x  1  3 2  1 3  ? x  3 x  2 x  12 x  3 x      2  4  1 3  1 3   2 x  12 x  3 x   i  x   i  2 2  2 2 
  • 16.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor 1 3 1 3  2 x  6 x  rational zeros are and - 2 2 1 2 x  1  2 x P x   2 x  12 x  3x 2  x  1 4x  1  3 2  1 3  ? x  3 x  2 x  12 x  3 x      2  4  1 3  1 3   2 x  12 x  3 x   i  x   i  2 2  2 2  Exercise 5C; 1 to 15 odds, 16 to 20 all