Upcoming SlideShare
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Standard text messaging rates apply

# X2 T02 02 complex factors

311

Published on

0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total Views
311
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
9
0
Likes
0
Embeds 0
No embeds

No notes for slide

### Transcript

• 1. Factorising Into Complex Factors e.g. Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field.
• 2. Factorising Into Complex Factors e.g. Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field. 1  1  1  1 1 P   4   8   5    3   2   16   8   4  2 0
• 3. Factorising Into Complex Factors e.g. Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field. 1  1  1  1 1 P   4   8   5    3   2   16   8   4  2 0  2 x  1 is a factor
• 4. Factorising Into Complex Factors e.g. Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field. 1  1  1  1 1 P   4   8   5    3   2   16   8   4  2 0  2 x  1 is a factor P x   2 x  12 x 3  3
• 5. Factorising Into Complex Factors e.g. Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field. 1  1  1  1 1 P   4   8   5    3   2   16   8   4  2 0  2 x  1 is a factor P x   2 x  12 x 3  5 x  3
• 6. Factorising Into Complex Factors e.g. Given that P x   4 x 4  8 x 3  5 x 2  x  3 has two rational zeros, find these zeros and factorise P(x) over the complex field. 1  1  1  1 1 P   4   8   5    3   2   16   8   4  2 0  2 x  1 is a factor P x   2 x  12 x 3 5x 2  5 x  3
• 7.   3   2  27   5 9   5  3   3 P         2  8   4  2 0
• 8.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor
• 9.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor 1 3  rational zeros are and - 2 2
• 10.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor 1 3  rational zeros are and - 2 2 P x   2 x  12 x  3x 2  1
• 11.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor 1 3 1 3  2 x  6 x  rational zeros are and - 2 2 1 2 x  1  2 x P x   2 x  12 x  3x 2  1
• 12.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor 1 3 1 3  2 x  6 x  rational zeros are and - 2 2 1 2 x  1  2 x P x   2 x  12 x  3x 2  1 4x  1 3  ? x  3 x
• 13.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor 1 3 1 3  2 x  6 x  rational zeros are and - 2 2 1 2 x  1  2 x P x   2 x  12 x  3x 2  x  1 4x  1 3  ? x  3 x
• 14.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor 1 3 1 3  2 x  6 x  rational zeros are and - 2 2 1 2 x  1  2 x P x   2 x  12 x  3x 2  x  1 4x  1  3 2  1 3  ? x  3 x  2 x  12 x  3 x      2  4
• 15.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor 1 3 1 3  2 x  6 x  rational zeros are and - 2 2 1 2 x  1  2 x P x   2 x  12 x  3x 2  x  1 4x  1  3 2  1 3  ? x  3 x  2 x  12 x  3 x      2  4  1 3  1 3   2 x  12 x  3 x   i  x   i  2 2  2 2 
• 16.   3   2  27   5 9   5  3   3 P         2  8   4  2 0  2 x  3 is a factor 1 3 1 3  2 x  6 x  rational zeros are and - 2 2 1 2 x  1  2 x P x   2 x  12 x  3x 2  x  1 4x  1  3 2  1 3  ? x  3 x  2 x  12 x  3 x      2  4  1 3  1 3   2 x  12 x  3 x   i  x   i  2 2  2 2  Exercise 5C; 1 to 15 odds, 16 to 20 all