SlideShare a Scribd company logo
1 of 27
Download to read offline
Polynomial Results
Polynomial Results
1. If P(x) has k distinct real zeros, a1 , a2 , a3 ,, ak , then;
    x  a1  x  a2  x  a3  x  ak  is a factor of P(x).
Polynomial Results
     1. If P(x) has k distinct real zeros, a1 , a2 , a3 ,, ak , then;
         x  a1  x  a2  x  a3  x  ak  is a factor of P(x).

e.g. Show that 1 and –2 are zeros of P( x)  x 4  x 3  3 x 2  5 x  10 and
     hence factorise P(x).
Polynomial Results
     1. If P(x) has k distinct real zeros, a1 , a2 , a3 ,, ak , then;
         x  a1  x  a2  x  a3  x  ak  is a factor of P(x).

e.g. Show that 1 and –2 are zeros of P( x)  x 4  x 3  3 x 2  5 x  10 and
     hence factorise P(x).
P 1  1  1  3 1  5 1  10
          4      3       2


     0
Polynomial Results
        1. If P(x) has k distinct real zeros, a1 , a2 , a3 ,, ak , then;
            x  a1  x  a2  x  a3  x  ak  is a factor of P(x).

  e.g. Show that 1 and –2 are zeros of P( x)  x 4  x 3  3 x 2  5 x  10 and
       hence factorise P(x).
  P 1  1  1  3 1  5 1  10
              4      3        2


         0
P  2    2    2   3  2   5  2   10
                 4       3          2


        0
Polynomial Results
        1. If P(x) has k distinct real zeros, a1 , a2 , a3 ,, ak , then;
            x  a1  x  a2  x  a3  x  ak  is a factor of P(x).

  e.g. Show that 1 and –2 are zeros of P( x)  x 4  x 3  3 x 2  5 x  10 and
       hence factorise P(x).
  P 1  1  1  3 1  5 1  10
              4      3          2


         0
P  2    2    2   3  2   5  2   10
                 4       3          2


        0               1, 2 are zeros of P ( x) and  x  1 x  2  is a factor
Polynomial Results
        1. If P(x) has k distinct real zeros, a1 , a2 , a3 ,, ak , then;
            x  a1  x  a2  x  a3  x  ak  is a factor of P(x).

  e.g. Show that 1 and –2 are zeros of P( x)  x 4  x 3  3 x 2  5 x  10 and
       hence factorise P(x).
  P 1  1  1  3 1  5 1  10
              4      3          2


         0
P  2    2    2   3  2   5  2   10
                 4       3          2


        0               1, 2 are zeros of P ( x) and  x  1 x  2  is a factor
    P( x)  x 4  x 3  3 x 2  5 x  10
Polynomial Results
        1. If P(x) has k distinct real zeros, a1 , a2 , a3 ,, ak , then;
            x  a1  x  a2  x  a3  x  ak  is a factor of P(x).

  e.g. Show that 1 and –2 are zeros of P( x)  x 4  x 3  3 x 2  5 x  10 and
       hence factorise P(x).
  P 1  1  1  3 1  5 1  10
              4      3          2


         0
P  2    2    2   3  2   5  2   10
                 4       3          2


        0               1, 2 are zeros of P ( x) and  x  1 x  2  is a factor
    P( x)  x 4  x 3  3 x 2  5 x  10
            x2  x  2                  
Polynomial Results
        1. If P(x) has k distinct real zeros, a1 , a2 , a3 ,, ak , then;
            x  a1  x  a2  x  a3  x  ak  is a factor of P(x).

  e.g. Show that 1 and –2 are zeros of P( x)  x 4  x 3  3 x 2  5 x  10 and
       hence factorise P(x).
  P 1  1  1  3 1  5 1  10
              4      3          2


         0
P  2    2    2   3  2   5  2   10
                 4       3          2


        0               1, 2 are zeros of P ( x) and  x  1 x  2  is a factor
    P( x)  x 4  x 3  3 x 2  5 x  10
            x2  x  2  x2              
Polynomial Results
        1. If P(x) has k distinct real zeros, a1 , a2 , a3 ,, ak , then;
            x  a1  x  a2  x  a3  x  ak  is a factor of P(x).

  e.g. Show that 1 and –2 are zeros of P( x)  x 4  x 3  3 x 2  5 x  10 and
       hence factorise P(x).
  P 1  1  1  3 1  5 1  10
              4      3          2


         0
P  2    2    2   3  2   5  2   10
                 4       3          2


        0               1, 2 are zeros of P ( x) and  x  1 x  2  is a factor
    P( x)  x 4  x 3  3 x 2  5 x  10
            x2  x  2  x2             5 
Polynomial Results
        1. If P(x) has k distinct real zeros, a1 , a2 , a3 ,, ak , then;
            x  a1  x  a2  x  a3  x  ak  is a factor of P(x).

  e.g. Show that 1 and –2 are zeros of P( x)  x 4  x 3  3 x 2  5 x  10 and
       hence factorise P(x).
  P 1  1  1  3 1  5 1  10
              4      3          2


         0
P  2    2    2   3  2   5  2   10
                 4       3          2


        0               1, 2 are zeros of P ( x) and  x  1 x  2  is a factor
    P( x)  x 4  x 3  3 x 2  5 x  10
            x2  x  2  x2              5 
            x  1 x  2   x 2  5 
2. If P(x) has degree n and has n distinct real zeros, a1 , a2 , a3 ,, an ,
   then P x    x  a1  x  a2  x  a3  x  an 
2. If P(x) has degree n and has n distinct real zeros, a1 , a2 , a3 ,, an ,
   then P x    x  a1  x  a2  x  a3  x  an 

3. A polynomial of degree n cannot have more than n distinct real
   zeros
2. If P(x) has degree n and has n distinct real zeros, a1 , a2 , a3 ,, an ,
   then P x    x  a1  x  a2  x  a3  x  an 

 3. A polynomial of degree n cannot have more than n distinct real
    zeros
e.g. The polynomial P(x) has a double zero at –7 and a single zero at 2.
     Write down;
 a) a possible polynomial
2. If P(x) has degree n and has n distinct real zeros, a1 , a2 , a3 ,, an ,
   then P x    x  a1  x  a2  x  a3  x  an 

 3. A polynomial of degree n cannot have more than n distinct real
    zeros
e.g. The polynomial P(x) has a double zero at –7 and a single zero at 2.
     Write down;
 a) a possible polynomial
                   P( x)     x  2  x  7 
                                                  2
2. If P(x) has degree n and has n distinct real zeros, a1 , a2 , a3 ,, an ,
   then P x    x  a1  x  a2  x  a3  x  an 

 3. A polynomial of degree n cannot have more than n distinct real
    zeros
e.g. The polynomial P(x) has a double zero at –7 and a single zero at 2.
     Write down;
 a) a possible polynomial
                  P( x)   x  2  x  7  Q( x)
                                            2


    where - Q(x) is a polynomial and does not have a zero at 2 or –7
2. If P(x) has degree n and has n distinct real zeros, a1 , a2 , a3 ,, an ,
   then P x    x  a1  x  a2  x  a3  x  an 

 3. A polynomial of degree n cannot have more than n distinct real
    zeros
e.g. The polynomial P(x) has a double zero at –7 and a single zero at 2.
     Write down;
 a) a possible polynomial
                    P( x)  k  x  2  x  7  Q( x)
                                            2


    where - Q(x) is a polynomial and does not have a zero at 2 or –7
          - k is a real number
2. If P(x) has degree n and has n distinct real zeros, a1 , a2 , a3 ,, an ,
   then P x    x  a1  x  a2  x  a3  x  an 

 3. A polynomial of degree n cannot have more than n distinct real
    zeros
e.g. The polynomial P(x) has a double zero at –7 and a single zero at 2.
     Write down;
 a) a possible polynomial
                    P( x)  k  x  2  x  7  Q( x)
                                            2


    where - Q(x) is a polynomial and does not have a zero at 2 or –7
          - k is a real number

 b) a monic polynomial of degree 3.
2. If P(x) has degree n and has n distinct real zeros, a1 , a2 , a3 ,, an ,
   then P x    x  a1  x  a2  x  a3  x  an 

 3. A polynomial of degree n cannot have more than n distinct real
    zeros
e.g. The polynomial P(x) has a double zero at –7 and a single zero at 2.
     Write down;
 a) a possible polynomial
                    P( x)  k  x  2  x  7  Q( x)
                                                  2


    where - Q(x) is a polynomial and does not have a zero at 2 or –7
          - k is a real number

 b) a monic polynomial of degree 3.
                   P( x)     x  2  x  7 
                                                  2
c) A monic polynomial of degree 4
c) A monic polynomial of degree 4

           P( x)     x  2  x  7 
                                          2
c) A monic polynomial of degree 4

           P( x)     x  2  x  7   x  a 
                                      2



           where a  2 or  7

d) a polynomial of degree 5.
c) A monic polynomial of degree 4

           P( x)     x  2  x  7   x  a 
                                          2



           where a  2 or  7

d) a polynomial of degree 5.
          P( x)      x  2  x  7 
                                          2
c) A monic polynomial of degree 4

           P( x)     x  2  x  7   x  a 
                                      2



           where a  2 or  7

d) a polynomial of degree 5.
          P( x)      x  2  x  7  Q( x)
                                     2


 where - Q(x) is a polynomial of degree 2,
         and does not have a zero at 2 or –7
c) A monic polynomial of degree 4

           P( x)     x  2  x  7   x  a 
                                      2



           where a  2 or  7

d) a polynomial of degree 5.
          P( x)  k  x  2  x  7  Q( x)
                                     2


 where - Q(x) is a polynomial of degree 2,
         and does not have a zero at 2 or –7
       - k is a real number
c) A monic polynomial of degree 4

           P( x)     x  2  x  7   x  a 
                                      2



           where a  2 or  7

d) a polynomial of degree 5.
          P( x)  k  x  2  x  7  Q( x)
                                     2


 where - Q(x) is a polynomial of degree 2,
         and does not have a zero at 2 or –7
       - k is a real number


4. If P(x) has degree n and has more than n real zeros, then P(x) is
   the zero polynomial. i.e. P(x) = 0 for all values of x
Exercise 4E; 1, 3bd, 4a, 5b, 6a, 8, 12ad

More Related Content

What's hot

Appendex b
Appendex bAppendex b
Appendex bswavicky
 
Module 1 polynomial functions
Module 1   polynomial functionsModule 1   polynomial functions
Module 1 polynomial functionsdionesioable
 
Appendex c
Appendex cAppendex c
Appendex cswavicky
 
1.6 sign charts and inequalities i
1.6 sign charts and inequalities i1.6 sign charts and inequalities i
1.6 sign charts and inequalities imath260
 
2.8 graphs of factorable polynomials t
2.8 graphs of factorable polynomials t2.8 graphs of factorable polynomials t
2.8 graphs of factorable polynomials tmath260
 
Module 2 polynomial functions
Module 2   polynomial functionsModule 2   polynomial functions
Module 2 polynomial functionsdionesioable
 
1.5 algebraic and elementary functions
1.5 algebraic and elementary functions1.5 algebraic and elementary functions
1.5 algebraic and elementary functionsmath265
 
57 graphing lines from linear equations
57 graphing lines from linear equations57 graphing lines from linear equations
57 graphing lines from linear equationsalg1testreview
 
Appendex d
Appendex dAppendex d
Appendex dswavicky
 
1.3 sign charts and inequalities
1.3 sign charts and inequalities1.3 sign charts and inequalities
1.3 sign charts and inequalitiesmath123c
 
49 factoring trinomials the ac method and making lists
49 factoring trinomials  the ac method and making lists49 factoring trinomials  the ac method and making lists
49 factoring trinomials the ac method and making listsalg1testreview
 
13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials xmath260
 
Polynomials Grade 10
Polynomials Grade 10Polynomials Grade 10
Polynomials Grade 10ingroy
 
2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functionsmath260
 

What's hot (17)

Appendex b
Appendex bAppendex b
Appendex b
 
Module 1 polynomial functions
Module 1   polynomial functionsModule 1   polynomial functions
Module 1 polynomial functions
 
Aieee aieee-maths-2009
Aieee aieee-maths-2009Aieee aieee-maths-2009
Aieee aieee-maths-2009
 
Appendex c
Appendex cAppendex c
Appendex c
 
1.6 sign charts and inequalities i
1.6 sign charts and inequalities i1.6 sign charts and inequalities i
1.6 sign charts and inequalities i
 
2.8 graphs of factorable polynomials t
2.8 graphs of factorable polynomials t2.8 graphs of factorable polynomials t
2.8 graphs of factorable polynomials t
 
Zeros of p(x)
Zeros of p(x)Zeros of p(x)
Zeros of p(x)
 
Module 2 polynomial functions
Module 2   polynomial functionsModule 2   polynomial functions
Module 2 polynomial functions
 
1.5 algebraic and elementary functions
1.5 algebraic and elementary functions1.5 algebraic and elementary functions
1.5 algebraic and elementary functions
 
57 graphing lines from linear equations
57 graphing lines from linear equations57 graphing lines from linear equations
57 graphing lines from linear equations
 
Appendex d
Appendex dAppendex d
Appendex d
 
2 5 zeros of poly fn
2 5 zeros of poly fn2 5 zeros of poly fn
2 5 zeros of poly fn
 
1.3 sign charts and inequalities
1.3 sign charts and inequalities1.3 sign charts and inequalities
1.3 sign charts and inequalities
 
49 factoring trinomials the ac method and making lists
49 factoring trinomials  the ac method and making lists49 factoring trinomials  the ac method and making lists
49 factoring trinomials the ac method and making lists
 
13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials x
 
Polynomials Grade 10
Polynomials Grade 10Polynomials Grade 10
Polynomials Grade 10
 
2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions
 

Similar to 11X1 T13 05 polynomial results

11 x1 t15 05 polynomial results (2013)
11 x1 t15 05 polynomial results (2013)11 x1 t15 05 polynomial results (2013)
11 x1 t15 05 polynomial results (2013)Nigel Simmons
 
16 partial fraction decompositions x
16 partial fraction decompositions x16 partial fraction decompositions x
16 partial fraction decompositions xmath266
 
Zero Theorem and Rational Roots Presentation
Zero Theorem and Rational Roots PresentationZero Theorem and Rational Roots Presentation
Zero Theorem and Rational Roots PresentationDanellaFernandez
 
polynomials of class 10th
polynomials of class 10thpolynomials of class 10th
polynomials of class 10thAshish Pradhan
 
3.2 properties of division and roots t
3.2 properties of division and roots t3.2 properties of division and roots t
3.2 properties of division and roots tmath260
 
Polynomials by nikund
Polynomials by nikundPolynomials by nikund
Polynomials by nikundsheshank jain
 
8 sign charts of factorable formulas y
8 sign charts of factorable formulas y8 sign charts of factorable formulas y
8 sign charts of factorable formulas ymath260
 
Intro to Polynomials
Intro to PolynomialsIntro to Polynomials
Intro to Polynomialstoni dimella
 
X2 t02 01 multiple roots (2102)
X2 t02 01 multiple roots (2102)X2 t02 01 multiple roots (2102)
X2 t02 01 multiple roots (2102)Nigel Simmons
 
X2 T02 01 multiple roots (2011)
X2 T02 01 multiple roots (2011)X2 T02 01 multiple roots (2011)
X2 T02 01 multiple roots (2011)Nigel Simmons
 
X2 T02 01 multiple roots
X2 T02 01 multiple rootsX2 T02 01 multiple roots
X2 T02 01 multiple rootsNigel Simmons
 
X2 T02 01 multiple roots (2010)
X2 T02 01 multiple roots (2010)X2 T02 01 multiple roots (2010)
X2 T02 01 multiple roots (2010)Nigel Simmons
 

Similar to 11X1 T13 05 polynomial results (20)

11 x1 t15 05 polynomial results (2013)
11 x1 t15 05 polynomial results (2013)11 x1 t15 05 polynomial results (2013)
11 x1 t15 05 polynomial results (2013)
 
Polynomials
PolynomialsPolynomials
Polynomials
 
16 partial fraction decompositions x
16 partial fraction decompositions x16 partial fraction decompositions x
16 partial fraction decompositions x
 
Zero Theorem and Rational Roots Presentation
Zero Theorem and Rational Roots PresentationZero Theorem and Rational Roots Presentation
Zero Theorem and Rational Roots Presentation
 
Factor theorem
Factor theoremFactor theorem
Factor theorem
 
polynomials of class 10th
polynomials of class 10thpolynomials of class 10th
polynomials of class 10th
 
3.2 properties of division and roots t
3.2 properties of division and roots t3.2 properties of division and roots t
3.2 properties of division and roots t
 
Polyomials x
Polyomials xPolyomials x
Polyomials x
 
Polynomials by nikund
Polynomials by nikundPolynomials by nikund
Polynomials by nikund
 
Polynomials
PolynomialsPolynomials
Polynomials
 
polynomials_.pdf
polynomials_.pdfpolynomials_.pdf
polynomials_.pdf
 
8 sign charts of factorable formulas y
8 sign charts of factorable formulas y8 sign charts of factorable formulas y
8 sign charts of factorable formulas y
 
Intro to Polynomials
Intro to PolynomialsIntro to Polynomials
Intro to Polynomials
 
X2 t02 01 multiple roots (2102)
X2 t02 01 multiple roots (2102)X2 t02 01 multiple roots (2102)
X2 t02 01 multiple roots (2102)
 
Maths9Polynomial.pptx
Maths9Polynomial.pptxMaths9Polynomial.pptx
Maths9Polynomial.pptx
 
Polynomials
PolynomialsPolynomials
Polynomials
 
Alg2 lesson 7-6
Alg2 lesson 7-6Alg2 lesson 7-6
Alg2 lesson 7-6
 
X2 T02 01 multiple roots (2011)
X2 T02 01 multiple roots (2011)X2 T02 01 multiple roots (2011)
X2 T02 01 multiple roots (2011)
 
X2 T02 01 multiple roots
X2 T02 01 multiple rootsX2 T02 01 multiple roots
X2 T02 01 multiple roots
 
X2 T02 01 multiple roots (2010)
X2 T02 01 multiple roots (2010)X2 T02 01 multiple roots (2010)
X2 T02 01 multiple roots (2010)
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 

Recently uploaded (20)

URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 

11X1 T13 05 polynomial results

  • 2. Polynomial Results 1. If P(x) has k distinct real zeros, a1 , a2 , a3 ,, ak , then;  x  a1  x  a2  x  a3  x  ak  is a factor of P(x).
  • 3. Polynomial Results 1. If P(x) has k distinct real zeros, a1 , a2 , a3 ,, ak , then;  x  a1  x  a2  x  a3  x  ak  is a factor of P(x). e.g. Show that 1 and –2 are zeros of P( x)  x 4  x 3  3 x 2  5 x  10 and hence factorise P(x).
  • 4. Polynomial Results 1. If P(x) has k distinct real zeros, a1 , a2 , a3 ,, ak , then;  x  a1  x  a2  x  a3  x  ak  is a factor of P(x). e.g. Show that 1 and –2 are zeros of P( x)  x 4  x 3  3 x 2  5 x  10 and hence factorise P(x). P 1  1  1  3 1  5 1  10 4 3 2 0
  • 5. Polynomial Results 1. If P(x) has k distinct real zeros, a1 , a2 , a3 ,, ak , then;  x  a1  x  a2  x  a3  x  ak  is a factor of P(x). e.g. Show that 1 and –2 are zeros of P( x)  x 4  x 3  3 x 2  5 x  10 and hence factorise P(x). P 1  1  1  3 1  5 1  10 4 3 2 0 P  2    2    2   3  2   5  2   10 4 3 2 0
  • 6. Polynomial Results 1. If P(x) has k distinct real zeros, a1 , a2 , a3 ,, ak , then;  x  a1  x  a2  x  a3  x  ak  is a factor of P(x). e.g. Show that 1 and –2 are zeros of P( x)  x 4  x 3  3 x 2  5 x  10 and hence factorise P(x). P 1  1  1  3 1  5 1  10 4 3 2 0 P  2    2    2   3  2   5  2   10 4 3 2 0 1, 2 are zeros of P ( x) and  x  1 x  2  is a factor
  • 7. Polynomial Results 1. If P(x) has k distinct real zeros, a1 , a2 , a3 ,, ak , then;  x  a1  x  a2  x  a3  x  ak  is a factor of P(x). e.g. Show that 1 and –2 are zeros of P( x)  x 4  x 3  3 x 2  5 x  10 and hence factorise P(x). P 1  1  1  3 1  5 1  10 4 3 2 0 P  2    2    2   3  2   5  2   10 4 3 2 0 1, 2 are zeros of P ( x) and  x  1 x  2  is a factor P( x)  x 4  x 3  3 x 2  5 x  10
  • 8. Polynomial Results 1. If P(x) has k distinct real zeros, a1 , a2 , a3 ,, ak , then;  x  a1  x  a2  x  a3  x  ak  is a factor of P(x). e.g. Show that 1 and –2 are zeros of P( x)  x 4  x 3  3 x 2  5 x  10 and hence factorise P(x). P 1  1  1  3 1  5 1  10 4 3 2 0 P  2    2    2   3  2   5  2   10 4 3 2 0 1, 2 are zeros of P ( x) and  x  1 x  2  is a factor P( x)  x 4  x 3  3 x 2  5 x  10   x2  x  2  
  • 9. Polynomial Results 1. If P(x) has k distinct real zeros, a1 , a2 , a3 ,, ak , then;  x  a1  x  a2  x  a3  x  ak  is a factor of P(x). e.g. Show that 1 and –2 are zeros of P( x)  x 4  x 3  3 x 2  5 x  10 and hence factorise P(x). P 1  1  1  3 1  5 1  10 4 3 2 0 P  2    2    2   3  2   5  2   10 4 3 2 0 1, 2 are zeros of P ( x) and  x  1 x  2  is a factor P( x)  x 4  x 3  3 x 2  5 x  10   x2  x  2  x2 
  • 10. Polynomial Results 1. If P(x) has k distinct real zeros, a1 , a2 , a3 ,, ak , then;  x  a1  x  a2  x  a3  x  ak  is a factor of P(x). e.g. Show that 1 and –2 are zeros of P( x)  x 4  x 3  3 x 2  5 x  10 and hence factorise P(x). P 1  1  1  3 1  5 1  10 4 3 2 0 P  2    2    2   3  2   5  2   10 4 3 2 0 1, 2 are zeros of P ( x) and  x  1 x  2  is a factor P( x)  x 4  x 3  3 x 2  5 x  10   x2  x  2  x2 5 
  • 11. Polynomial Results 1. If P(x) has k distinct real zeros, a1 , a2 , a3 ,, ak , then;  x  a1  x  a2  x  a3  x  ak  is a factor of P(x). e.g. Show that 1 and –2 are zeros of P( x)  x 4  x 3  3 x 2  5 x  10 and hence factorise P(x). P 1  1  1  3 1  5 1  10 4 3 2 0 P  2    2    2   3  2   5  2   10 4 3 2 0 1, 2 are zeros of P ( x) and  x  1 x  2  is a factor P( x)  x 4  x 3  3 x 2  5 x  10   x2  x  2  x2 5    x  1 x  2   x 2  5 
  • 12. 2. If P(x) has degree n and has n distinct real zeros, a1 , a2 , a3 ,, an , then P x    x  a1  x  a2  x  a3  x  an 
  • 13. 2. If P(x) has degree n and has n distinct real zeros, a1 , a2 , a3 ,, an , then P x    x  a1  x  a2  x  a3  x  an  3. A polynomial of degree n cannot have more than n distinct real zeros
  • 14. 2. If P(x) has degree n and has n distinct real zeros, a1 , a2 , a3 ,, an , then P x    x  a1  x  a2  x  a3  x  an  3. A polynomial of degree n cannot have more than n distinct real zeros e.g. The polynomial P(x) has a double zero at –7 and a single zero at 2. Write down; a) a possible polynomial
  • 15. 2. If P(x) has degree n and has n distinct real zeros, a1 , a2 , a3 ,, an , then P x    x  a1  x  a2  x  a3  x  an  3. A polynomial of degree n cannot have more than n distinct real zeros e.g. The polynomial P(x) has a double zero at –7 and a single zero at 2. Write down; a) a possible polynomial P( x)   x  2  x  7  2
  • 16. 2. If P(x) has degree n and has n distinct real zeros, a1 , a2 , a3 ,, an , then P x    x  a1  x  a2  x  a3  x  an  3. A polynomial of degree n cannot have more than n distinct real zeros e.g. The polynomial P(x) has a double zero at –7 and a single zero at 2. Write down; a) a possible polynomial P( x)   x  2  x  7  Q( x) 2 where - Q(x) is a polynomial and does not have a zero at 2 or –7
  • 17. 2. If P(x) has degree n and has n distinct real zeros, a1 , a2 , a3 ,, an , then P x    x  a1  x  a2  x  a3  x  an  3. A polynomial of degree n cannot have more than n distinct real zeros e.g. The polynomial P(x) has a double zero at –7 and a single zero at 2. Write down; a) a possible polynomial P( x)  k  x  2  x  7  Q( x) 2 where - Q(x) is a polynomial and does not have a zero at 2 or –7 - k is a real number
  • 18. 2. If P(x) has degree n and has n distinct real zeros, a1 , a2 , a3 ,, an , then P x    x  a1  x  a2  x  a3  x  an  3. A polynomial of degree n cannot have more than n distinct real zeros e.g. The polynomial P(x) has a double zero at –7 and a single zero at 2. Write down; a) a possible polynomial P( x)  k  x  2  x  7  Q( x) 2 where - Q(x) is a polynomial and does not have a zero at 2 or –7 - k is a real number b) a monic polynomial of degree 3.
  • 19. 2. If P(x) has degree n and has n distinct real zeros, a1 , a2 , a3 ,, an , then P x    x  a1  x  a2  x  a3  x  an  3. A polynomial of degree n cannot have more than n distinct real zeros e.g. The polynomial P(x) has a double zero at –7 and a single zero at 2. Write down; a) a possible polynomial P( x)  k  x  2  x  7  Q( x) 2 where - Q(x) is a polynomial and does not have a zero at 2 or –7 - k is a real number b) a monic polynomial of degree 3. P( x)   x  2  x  7  2
  • 20. c) A monic polynomial of degree 4
  • 21. c) A monic polynomial of degree 4 P( x)   x  2  x  7  2
  • 22. c) A monic polynomial of degree 4 P( x)   x  2  x  7   x  a  2 where a  2 or  7 d) a polynomial of degree 5.
  • 23. c) A monic polynomial of degree 4 P( x)   x  2  x  7   x  a  2 where a  2 or  7 d) a polynomial of degree 5. P( x)   x  2  x  7  2
  • 24. c) A monic polynomial of degree 4 P( x)   x  2  x  7   x  a  2 where a  2 or  7 d) a polynomial of degree 5. P( x)   x  2  x  7  Q( x) 2 where - Q(x) is a polynomial of degree 2, and does not have a zero at 2 or –7
  • 25. c) A monic polynomial of degree 4 P( x)   x  2  x  7   x  a  2 where a  2 or  7 d) a polynomial of degree 5. P( x)  k  x  2  x  7  Q( x) 2 where - Q(x) is a polynomial of degree 2, and does not have a zero at 2 or –7 - k is a real number
  • 26. c) A monic polynomial of degree 4 P( x)   x  2  x  7   x  a  2 where a  2 or  7 d) a polynomial of degree 5. P( x)  k  x  2  x  7  Q( x) 2 where - Q(x) is a polynomial of degree 2, and does not have a zero at 2 or –7 - k is a real number 4. If P(x) has degree n and has more than n real zeros, then P(x) is the zero polynomial. i.e. P(x) = 0 for all values of x
  • 27. Exercise 4E; 1, 3bd, 4a, 5b, 6a, 8, 12ad