SlideShare a Scribd company logo
Greatest Coefficients and
    Greatest Terms
Greatest Coefficients and
    Greatest Terms
     If Tk 1  Tk then Tk 1 is the greatest term
Greatest Coefficients and
       Greatest Terms
                  If Tk 1  Tk then Tk 1 is the greatest term

e.g . For the expansion 2  3 x  find the greatest coefficient
                                 20
Greatest Coefficients and
       Greatest Terms
                  If Tk 1  Tk then Tk 1 is the greatest term

e.g . For the expansion 2  3 x  find the greatest coefficient
                                 20


                         Tk 1  20Ck 2  3 x 
                                          20 k  k
Greatest Coefficients and
       Greatest Terms
                  If Tk 1  Tk then Tk 1 is the greatest term

e.g . For the expansion 2  3 x  find the greatest coefficient
                                  20


                         Tk 1  20Ck 2  3 x 
                                          20 k  k



                           Tk  20Ck 1 2        3x k 1
                                           21 k
Greatest Coefficients and
       Greatest Terms
                  If Tk 1  Tk then Tk 1 is the greatest term

e.g . For the expansion 2  3 x  find the greatest coefficient
                                  20


                         Tk 1  20Ck 2  3 x 
                                          20 k  k



                           Tk  20Ck 1 2        3x k 1
                                           21 k


    If Tk 1  Tk then Tk 1 is the greatest term
Greatest Coefficients and
       Greatest Terms
                  If Tk 1  Tk then Tk 1 is the greatest term

e.g . For the expansion 2  3 x  find the greatest coefficient
                                  20


                         Tk 1  20Ck 2  3 x 
                                          20 k  k



                           Tk  20Ck 1 2        3x k 1
                                           21 k


    If Tk 1  Tk then Tk 1 is the greatest term
                        Ck 2  3  20Ck 1 2  3
                     20        20 k  k           21k k 1
Greatest Coefficients and
       Greatest Terms
                  If Tk 1  Tk then Tk 1 is the greatest term

e.g . For the expansion 2  3 x  find the greatest coefficient
                                  20


                         Tk 1  20Ck 2  3 x 
                                          20 k  k



                           Tk  20Ck 1 2          3x k 1
                                             21 k


    If Tk 1  Tk then Tk 1 is the greatest term
                        Ck 2  3  20Ck 1 2  3
                     20        20 k  k           21k k 1


                     Ck 2  3
                  20       20k    k
                                        1
                    Ck 1 2  3
                 20           21k k 1
Ck 2  3
 20       20k   k
                       1
   Ck 1 2  3
20           21k k 1
Ck 2  3
      20       20k   k
                           1
       Ck 1 2  3
    20           21k k 1


    20!        k  1!21  k !  3 
                                       1
k!20  k !          20!           2
Ck 2  3
      20       20k   k
                           1
       Ck 1 2  3
    20           21k k 1


    20!        k  1!21  k !  3 
                                       1
k!20  k !          20!           2
                         21  k 3
                                  1
                           k        2
Ck 2  3
     20       20k   k
                           1
       Ck 1 2  3
    20           21k k 1


    20!        k  1!21  k !  3 
                                       1
k!20  k !          20!           2
                         21  k 3
                                  1
                           k        2
                            63  3k  2k
Ck 2  3
     20       20k   k
                           1
       Ck 1 2  3
    20           21k k 1


    20!        k  1!21  k !  3 
                                       1
k!20  k !          20!           2
                         21  k 3
                                  1
                           k        2
                            63  3k  2k
                                 5k  63
                                      63
                                 k
                                      5
Ck 2  3
     20       20k   k
                           1
       Ck 1 2  3
    20           21k k 1


    20!        k  1!21  k ! 3
                                 1
k!20  k !          20!          2
                         21  k 3
                                  1
                           k       2
                            63  3k  2k
                                 5k  63
                                       63
                                   k
                                       5
                                 k  12
Ck 2  3
     20       20k   k
                           1
       Ck 1 2  3
    20           21k k 1


    20!        k  1!21  k ! 3
                                 1
k!20  k !          20!          2
                         21  k 3
                                  1
                           k       2
                            63  3k  2k
                                 5k  63
                                       63
                                   k
                                       5
                                 k  12
               T13  20C12 28312 is the greatest coefficient
1
ii  Find the greatest term of 3x  4
                                       15
                                            when x 
                                                     2
1
ii  Find the greatest term of 3x  4 when x 
                                     15
                                         15k     2
                                      3
                          Tk 1  Ck   4 
                                 15           k

                                     2
1
ii  Find the greatest term of 3x  4 when x 
                                    15
                                         15k      2
                                      3
                          Tk 1  Ck   4  (Ignore the negative as only
                                 15           k

                                     2        concerned with magnitude)
1
ii  Find the greatest term of 3x  4 when x 
                                       15
                                           15k           2
                                      3
                          Tk 1  Ck   4  (Ignore the negative as only
                                 15               k

                                     2               concerned with magnitude)
                                             16k

                            Tk 15Ck 1   4 
                                          3         k 1
                                         
                                         2
1
ii  Find the greatest term of 3x  4 when x 
                                        15
                                           15k           2
                                      3
                          Tk 1  Ck   4  (Ignore the negative as only
                                 15               k

                                     2               concerned with magnitude)
                                             16k

                            Tk 15Ck 1   4 
                                          3         k 1
                                         
                                         2
   If Tk 1  Tk then Tk 1 is the greatest term
1
ii  Find the greatest term of 3x  4 when x 
                                        15
                                           15k           2
                                      3
                          Tk 1  Ck   4  (Ignore the negative as only
                                 15               k

                                     2               concerned with magnitude)
                                             16k

                            Tk 15Ck 1   4 
                                          3         k 1
                                         
                                         2
   If Tk 1  Tk then Tk 1 is the greatest term
                              15 k              16k

                      Ck   4  15Ck 1   4 
                           3        k         3      k 1
                                              
                   15

                         2                  2
1
ii  Find the greatest term of 3x  4 when x 
                                            15
                                           15k           2
                                      3
                          Tk 1  Ck   4  (Ignore the negative as only
                                 15               k

                                     2               concerned with magnitude)
                                             16k

                            Tk 15Ck 1   4 
                                          3         k 1
                                         
                                         2
   If Tk 1  Tk then Tk 1 is the greatest term
                              15 k              16k

                      Ck   4  15Ck 1   4 
                           3        k         3      k 1
                                              
                   15

                         2                  2
                          15 k

                   C k   4 
                          3       k
                         
                15

                         2           1
                             16k
               15        3  4 k 1
                  Ck 1  
                         2
1
ii  Find the greatest term of 3x  4 when x 
                                         15
                                           15k           2
                                      3
                          Tk 1  Ck   4  (Ignore the negative as only
                                 15               k

                                     2               concerned with magnitude)
                                             16k

                            Tk 15Ck 1   4 
                                          3         k 1
                                         
                                         2
   If Tk 1  Tk then Tk 1 is the greatest term
                              15 k              16k

                      Ck   4  15Ck 1   4 
                           3        k         3      k 1
                                              
                   15

                         2                  2
                          15 k

                   C k   4 
                          3          k
                         
                15

                         2            1
                             16k
               15        3  4 k 1
                  Ck 1  
                         2
                15!          k  1!16  k ! 4
                                               1
            k!15  k !            15!         3
                                                2
15!        k  1!16  k ! 4
                                 1
k!15  k !          15!         3
                                  2
15!        k  1!16  k ! 4
                                 1
k!15  k !          15!          3
                                   2
                          16  k 8
                                   1
                            k      3
15!        k  1!16  k ! 4
                                 1
k!15  k !          15!          3
                                   2
                          16  k 8
                                   1
                            k      3
                        128  8k  3k
15!        k  1!16  k ! 4
                                 1
k!15  k !          15!          3
                                   2
                          16  k 8
                                   1
                            k      3
                        128  8k  3k
                           11k  128
                                   128
                               k
                                    11
15!        k  1!16  k ! 4
                                 1
k!15  k !          15!          3
                                   2
                          16  k 8
                                   1
                            k      3
                        128  8k  3k
                           11k  128
                                   128
                               k
                                    11
                             k  11
15!        k  1!16  k ! 4
                                 1
k!15  k !          15!          3
                                   2
                          16  k 8
                                   1
                            k      3
                        128  8k  3k
                           11k  128
                                    128
                               k
                                     11
                             k  11
                                        4

                       T12 15C11   4
                                     3  11
                                   
                                    2
15!        k  1!16  k ! 4
                                 1
k!15  k !          15!          3
                                   2
                          16  k 8
                                   1
                            k      3
                        128  8k  3k
                           11k  128
                                    128
                               k
                                     11
                             k  11
                                        4

                       T12 15C11   4
                                     3  11
                                   
                                    2
               T12 15C11 34 218 is the greatest term
15!        k  1!16  k !  4 
                                       1
k!15  k !          15!           3
                                    2
                          16  k 8
                                    1
                            k       3
                          128  8k  3k          Exercise 5E; 1 to 5,
                             11k  128          6ac, 7bd, 8b, 10
                                      128
                                 k
                                       11
                               k  11
                                          4

                         T12 15C11   4
                                       3  11
                                     
                                      2
                 T12 15C11 34 218 is the greatest term

More Related Content

Viewers also liked

11X1 T01 02 binomial products (2011)
11X1 T01 02 binomial products (2011)11X1 T01 02 binomial products (2011)
11X1 T01 02 binomial products (2011)Nigel Simmons
 
12 x1 t04 07 approximations to roots (2013)
12 x1 t04 07 approximations to roots (2013)12 x1 t04 07 approximations to roots (2013)
12 x1 t04 07 approximations to roots (2013)Nigel Simmons
 
11X1 T13 06 tangent theorems 2 (2011)
11X1 T13 06 tangent theorems 2 (2011)11X1 T13 06 tangent theorems 2 (2011)
11X1 T13 06 tangent theorems 2 (2011)Nigel Simmons
 
11X1 T11 05 the discriminant (2011)
11X1 T11 05 the discriminant (2011)11X1 T11 05 the discriminant (2011)
11X1 T11 05 the discriminant (2011)Nigel Simmons
 
X2 t03 05 rectangular hyperbola (2012)
X2 t03 05 rectangular hyperbola (2012)X2 t03 05 rectangular hyperbola (2012)
X2 t03 05 rectangular hyperbola (2012)Nigel Simmons
 
11 x1 t11 06 tangents & normals ii (2013)
11 x1 t11 06 tangents & normals ii (2013)11 x1 t11 06 tangents & normals ii (2013)
11 x1 t11 06 tangents & normals ii (2013)Nigel Simmons
 
Expanded duty dental assisting steps session
Expanded duty dental assisting steps sessionExpanded duty dental assisting steps session
Expanded duty dental assisting steps session
Jennifer Williams
 
11X1 T10 05 curve sketching (2011)
11X1 T10 05 curve sketching (2011)11X1 T10 05 curve sketching (2011)
11X1 T10 05 curve sketching (2011)Nigel Simmons
 
X2 T06 04 uniform circular motion (2011)
X2 T06 04 uniform circular motion (2011)X2 T06 04 uniform circular motion (2011)
X2 T06 04 uniform circular motion (2011)Nigel Simmons
 
11X1 T02 02 rational & irrational (2011)
11X1 T02 02 rational & irrational (2011)11X1 T02 02 rational & irrational (2011)
11X1 T02 02 rational & irrational (2011)Nigel Simmons
 
11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)Nigel Simmons
 
X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)Nigel Simmons
 
12X1 T04 03 further growth & decay (2011)
12X1 T04 03 further growth & decay (2011)12X1 T04 03 further growth & decay (2011)
12X1 T04 03 further growth & decay (2011)Nigel Simmons
 
X2 T01 03 argand diagram (2011)
X2 T01 03 argand diagram (2011)X2 T01 03 argand diagram (2011)
X2 T01 03 argand diagram (2011)Nigel Simmons
 
12 x1 t08 05 binomial coefficients (2013)
12 x1 t08 05 binomial coefficients (2013)12 x1 t08 05 binomial coefficients (2013)
12 x1 t08 05 binomial coefficients (2013)Nigel Simmons
 
11 x1 t07 04 quadrilateral family (2013)
11 x1 t07 04 quadrilateral family (2013)11 x1 t07 04 quadrilateral family (2013)
11 x1 t07 04 quadrilateral family (2013)Nigel Simmons
 
Practical Nursing STEPS Session
Practical Nursing STEPS SessionPractical Nursing STEPS Session
Practical Nursing STEPS Session
Jennifer Williams
 
X2 t03 03 parameters, ellipse (2013)
X2 t03 03 parameters, ellipse (2013)X2 t03 03 parameters, ellipse (2013)
X2 t03 03 parameters, ellipse (2013)Nigel Simmons
 
11 x1 t04 06 cosine rule (2013)
11 x1 t04 06 cosine rule (2013)11 x1 t04 06 cosine rule (2013)
11 x1 t04 06 cosine rule (2013)Nigel Simmons
 
11 x1 t05 02 permutations ii (2013)
11 x1 t05 02 permutations ii (2013)11 x1 t05 02 permutations ii (2013)
11 x1 t05 02 permutations ii (2013)Nigel Simmons
 

Viewers also liked (20)

11X1 T01 02 binomial products (2011)
11X1 T01 02 binomial products (2011)11X1 T01 02 binomial products (2011)
11X1 T01 02 binomial products (2011)
 
12 x1 t04 07 approximations to roots (2013)
12 x1 t04 07 approximations to roots (2013)12 x1 t04 07 approximations to roots (2013)
12 x1 t04 07 approximations to roots (2013)
 
11X1 T13 06 tangent theorems 2 (2011)
11X1 T13 06 tangent theorems 2 (2011)11X1 T13 06 tangent theorems 2 (2011)
11X1 T13 06 tangent theorems 2 (2011)
 
11X1 T11 05 the discriminant (2011)
11X1 T11 05 the discriminant (2011)11X1 T11 05 the discriminant (2011)
11X1 T11 05 the discriminant (2011)
 
X2 t03 05 rectangular hyperbola (2012)
X2 t03 05 rectangular hyperbola (2012)X2 t03 05 rectangular hyperbola (2012)
X2 t03 05 rectangular hyperbola (2012)
 
11 x1 t11 06 tangents & normals ii (2013)
11 x1 t11 06 tangents & normals ii (2013)11 x1 t11 06 tangents & normals ii (2013)
11 x1 t11 06 tangents & normals ii (2013)
 
Expanded duty dental assisting steps session
Expanded duty dental assisting steps sessionExpanded duty dental assisting steps session
Expanded duty dental assisting steps session
 
11X1 T10 05 curve sketching (2011)
11X1 T10 05 curve sketching (2011)11X1 T10 05 curve sketching (2011)
11X1 T10 05 curve sketching (2011)
 
X2 T06 04 uniform circular motion (2011)
X2 T06 04 uniform circular motion (2011)X2 T06 04 uniform circular motion (2011)
X2 T06 04 uniform circular motion (2011)
 
11X1 T02 02 rational & irrational (2011)
11X1 T02 02 rational & irrational (2011)11X1 T02 02 rational & irrational (2011)
11X1 T02 02 rational & irrational (2011)
 
11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)11X1 T04 06 cosine rule (2011)
11X1 T04 06 cosine rule (2011)
 
X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)X2 T01 02 complex equations (2011)
X2 T01 02 complex equations (2011)
 
12X1 T04 03 further growth & decay (2011)
12X1 T04 03 further growth & decay (2011)12X1 T04 03 further growth & decay (2011)
12X1 T04 03 further growth & decay (2011)
 
X2 T01 03 argand diagram (2011)
X2 T01 03 argand diagram (2011)X2 T01 03 argand diagram (2011)
X2 T01 03 argand diagram (2011)
 
12 x1 t08 05 binomial coefficients (2013)
12 x1 t08 05 binomial coefficients (2013)12 x1 t08 05 binomial coefficients (2013)
12 x1 t08 05 binomial coefficients (2013)
 
11 x1 t07 04 quadrilateral family (2013)
11 x1 t07 04 quadrilateral family (2013)11 x1 t07 04 quadrilateral family (2013)
11 x1 t07 04 quadrilateral family (2013)
 
Practical Nursing STEPS Session
Practical Nursing STEPS SessionPractical Nursing STEPS Session
Practical Nursing STEPS Session
 
X2 t03 03 parameters, ellipse (2013)
X2 t03 03 parameters, ellipse (2013)X2 t03 03 parameters, ellipse (2013)
X2 t03 03 parameters, ellipse (2013)
 
11 x1 t04 06 cosine rule (2013)
11 x1 t04 06 cosine rule (2013)11 x1 t04 06 cosine rule (2013)
11 x1 t04 06 cosine rule (2013)
 
11 x1 t05 02 permutations ii (2013)
11 x1 t05 02 permutations ii (2013)11 x1 t05 02 permutations ii (2013)
11 x1 t05 02 permutations ii (2013)
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
Nigel Simmons
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
Nigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
Academy of Science of South Africa
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
Jean Carlos Nunes Paixão
 
Advantages and Disadvantages of CMS from an SEO Perspective
Advantages and Disadvantages of CMS from an SEO PerspectiveAdvantages and Disadvantages of CMS from an SEO Perspective
Advantages and Disadvantages of CMS from an SEO Perspective
Krisztián Száraz
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
DhatriParmar
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
Peter Windle
 
The Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptxThe Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptx
DhatriParmar
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
EduSkills OECD
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
thanhdowork
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
Israel Genealogy Research Association
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
tarandeep35
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
Best Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDABest Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDA
deeptiverma2406
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
EugeneSaldivar
 

Recently uploaded (20)

Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
Lapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdfLapbook sobre os Regimes Totalitários.pdf
Lapbook sobre os Regimes Totalitários.pdf
 
Advantages and Disadvantages of CMS from an SEO Perspective
Advantages and Disadvantages of CMS from an SEO PerspectiveAdvantages and Disadvantages of CMS from an SEO Perspective
Advantages and Disadvantages of CMS from an SEO Perspective
 
The Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptxThe Accursed House by Émile Gaboriau.pptx
The Accursed House by Émile Gaboriau.pptx
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
A Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in EducationA Strategic Approach: GenAI in Education
A Strategic Approach: GenAI in Education
 
The Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptxThe Diamond Necklace by Guy De Maupassant.pptx
The Diamond Necklace by Guy De Maupassant.pptx
 
Francesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptxFrancesca Gottschalk - How can education support child empowerment.pptx
Francesca Gottschalk - How can education support child empowerment.pptx
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
Best Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDABest Digital Marketing Institute In NOIDA
Best Digital Marketing Institute In NOIDA
 
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...TESDA TM1 REVIEWER  FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
TESDA TM1 REVIEWER FOR NATIONAL ASSESSMENT WRITTEN AND ORAL QUESTIONS WITH A...
 

12Ext1 T08 04 greatest coefficients & terms

  • 1. Greatest Coefficients and Greatest Terms
  • 2. Greatest Coefficients and Greatest Terms If Tk 1  Tk then Tk 1 is the greatest term
  • 3. Greatest Coefficients and Greatest Terms If Tk 1  Tk then Tk 1 is the greatest term e.g . For the expansion 2  3 x  find the greatest coefficient 20
  • 4. Greatest Coefficients and Greatest Terms If Tk 1  Tk then Tk 1 is the greatest term e.g . For the expansion 2  3 x  find the greatest coefficient 20 Tk 1  20Ck 2  3 x  20 k k
  • 5. Greatest Coefficients and Greatest Terms If Tk 1  Tk then Tk 1 is the greatest term e.g . For the expansion 2  3 x  find the greatest coefficient 20 Tk 1  20Ck 2  3 x  20 k k Tk  20Ck 1 2  3x k 1 21 k
  • 6. Greatest Coefficients and Greatest Terms If Tk 1  Tk then Tk 1 is the greatest term e.g . For the expansion 2  3 x  find the greatest coefficient 20 Tk 1  20Ck 2  3 x  20 k k Tk  20Ck 1 2  3x k 1 21 k If Tk 1  Tk then Tk 1 is the greatest term
  • 7. Greatest Coefficients and Greatest Terms If Tk 1  Tk then Tk 1 is the greatest term e.g . For the expansion 2  3 x  find the greatest coefficient 20 Tk 1  20Ck 2  3 x  20 k k Tk  20Ck 1 2  3x k 1 21 k If Tk 1  Tk then Tk 1 is the greatest term Ck 2  3  20Ck 1 2  3 20 20 k k 21k k 1
  • 8. Greatest Coefficients and Greatest Terms If Tk 1  Tk then Tk 1 is the greatest term e.g . For the expansion 2  3 x  find the greatest coefficient 20 Tk 1  20Ck 2  3 x  20 k k Tk  20Ck 1 2  3x k 1 21 k If Tk 1  Tk then Tk 1 is the greatest term Ck 2  3  20Ck 1 2  3 20 20 k k 21k k 1 Ck 2  3 20 20k k 1 Ck 1 2  3 20 21k k 1
  • 9. Ck 2  3 20 20k k 1 Ck 1 2  3 20 21k k 1
  • 10. Ck 2  3 20 20k k 1 Ck 1 2  3 20 21k k 1 20! k  1!21  k !  3   1 k!20  k ! 20! 2
  • 11. Ck 2  3 20 20k k 1 Ck 1 2  3 20 21k k 1 20! k  1!21  k !  3   1 k!20  k ! 20! 2 21  k 3  1 k 2
  • 12. Ck 2  3 20 20k k 1 Ck 1 2  3 20 21k k 1 20! k  1!21  k !  3   1 k!20  k ! 20! 2 21  k 3  1 k 2 63  3k  2k
  • 13. Ck 2  3 20 20k k 1 Ck 1 2  3 20 21k k 1 20! k  1!21  k !  3   1 k!20  k ! 20! 2 21  k 3  1 k 2 63  3k  2k  5k  63 63 k 5
  • 14. Ck 2  3 20 20k k 1 Ck 1 2  3 20 21k k 1 20! k  1!21  k ! 3   1 k!20  k ! 20! 2 21  k 3  1 k 2 63  3k  2k  5k  63 63 k 5 k  12
  • 15. Ck 2  3 20 20k k 1 Ck 1 2  3 20 21k k 1 20! k  1!21  k ! 3   1 k!20  k ! 20! 2 21  k 3  1 k 2 63  3k  2k  5k  63 63 k 5 k  12 T13  20C12 28312 is the greatest coefficient
  • 16. 1 ii  Find the greatest term of 3x  4 15 when x  2
  • 17. 1 ii  Find the greatest term of 3x  4 when x  15 15k 2  3 Tk 1  Ck   4  15 k 2
  • 18. 1 ii  Find the greatest term of 3x  4 when x  15 15k 2  3 Tk 1  Ck   4  (Ignore the negative as only 15 k 2 concerned with magnitude)
  • 19. 1 ii  Find the greatest term of 3x  4 when x  15 15k 2  3 Tk 1  Ck   4  (Ignore the negative as only 15 k 2 concerned with magnitude) 16k Tk 15Ck 1   4  3 k 1    2
  • 20. 1 ii  Find the greatest term of 3x  4 when x  15 15k 2  3 Tk 1  Ck   4  (Ignore the negative as only 15 k 2 concerned with magnitude) 16k Tk 15Ck 1   4  3 k 1    2 If Tk 1  Tk then Tk 1 is the greatest term
  • 21. 1 ii  Find the greatest term of 3x  4 when x  15 15k 2  3 Tk 1  Ck   4  (Ignore the negative as only 15 k 2 concerned with magnitude) 16k Tk 15Ck 1   4  3 k 1    2 If Tk 1  Tk then Tk 1 is the greatest term 15 k 16k Ck   4  15Ck 1   4  3 k 3 k 1    15 2 2
  • 22. 1 ii  Find the greatest term of 3x  4 when x  15 15k 2  3 Tk 1  Ck   4  (Ignore the negative as only 15 k 2 concerned with magnitude) 16k Tk 15Ck 1   4  3 k 1    2 If Tk 1  Tk then Tk 1 is the greatest term 15 k 16k Ck   4  15Ck 1   4  3 k 3 k 1    15 2 2 15 k C k   4  3 k   15  2 1 16k 15  3  4 k 1 Ck 1    2
  • 23. 1 ii  Find the greatest term of 3x  4 when x  15 15k 2  3 Tk 1  Ck   4  (Ignore the negative as only 15 k 2 concerned with magnitude) 16k Tk 15Ck 1   4  3 k 1    2 If Tk 1  Tk then Tk 1 is the greatest term 15 k 16k Ck   4  15Ck 1   4  3 k 3 k 1    15 2 2 15 k C k   4  3 k   15  2 1 16k 15  3  4 k 1 Ck 1    2 15! k  1!16  k ! 4   1 k!15  k ! 15! 3 2
  • 24. 15! k  1!16  k ! 4   1 k!15  k ! 15! 3 2
  • 25. 15! k  1!16  k ! 4   1 k!15  k ! 15! 3 2 16  k 8  1 k 3
  • 26. 15! k  1!16  k ! 4   1 k!15  k ! 15! 3 2 16  k 8  1 k 3 128  8k  3k
  • 27. 15! k  1!16  k ! 4   1 k!15  k ! 15! 3 2 16  k 8  1 k 3 128  8k  3k  11k  128 128 k 11
  • 28. 15! k  1!16  k ! 4   1 k!15  k ! 15! 3 2 16  k 8  1 k 3 128  8k  3k  11k  128 128 k 11 k  11
  • 29. 15! k  1!16  k ! 4   1 k!15  k ! 15! 3 2 16  k 8  1 k 3 128  8k  3k  11k  128 128 k 11 k  11 4 T12 15C11   4 3  11   2
  • 30. 15! k  1!16  k ! 4   1 k!15  k ! 15! 3 2 16  k 8  1 k 3 128  8k  3k  11k  128 128 k 11 k  11 4 T12 15C11   4 3  11   2 T12 15C11 34 218 is the greatest term
  • 31. 15! k  1!16  k !  4   1 k!15  k ! 15! 3 2 16  k 8  1 k 3 128  8k  3k Exercise 5E; 1 to 5,  11k  128 6ac, 7bd, 8b, 10 128 k 11 k  11 4 T12 15C11   4 3  11   2 T12 15C11 34 218 is the greatest term