An Introduction to the Finite Element Method


Published on

Published in: Education, Technology, Business
No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

An Introduction to the Finite Element Method

  1. 1. Introduction to the Finite Element Method Spring 2010
  2. 2. Course Objectives <ul><li>The student should be capable of writing simple programs to solve different problems using finite element method. </li></ul>
  3. 3. Assessment <ul><li>10% Assignments (1 per week) </li></ul><ul><li>20% Quizzes (best 2 out of 3) </li></ul><ul><ul><li>Week of 12/11/2006 </li></ul></ul><ul><ul><li>Week of 20/12/2006 </li></ul></ul><ul><ul><li>Week of 17/1/2006 </li></ul></ul><ul><li>20% Course Project </li></ul><ul><li>25% Midterm exam (Week of 2/12/2006) </li></ul><ul><li>25% Final exam (starting 3/2/2007) </li></ul>
  4. 4. Fundamental Course Agreement <ul><li>Homework is sent in electronic format (No hardcopies are accepted) </li></ul><ul><li>Computer programs have to written in MATLAB or Mathematica script </li></ul><ul><li>No late homework is accepted </li></ul><ul><li>No excuses are accepted for missing a quiz </li></ul><ul><li>Best two out of three quizzes are counted </li></ul>
  5. 5. References <ul><li>J.N. Reddy, “An Introduction to the Finite Element Method” 3rd ed., McGraw Hill, ISBN 007-124473-5 </li></ul><ul><li>D.V. Hutton, “Fundamentals of Finite Element Analysis” 1st ed., McGraw Hill, ISBN 007-121857-2 </li></ul><ul><li>K. Bathe, “Finite Element Procedures,” Prentice Hall, 1996. (in library) </li></ul><ul><li>T. Hughes, “The finite Element Method: Linear Static and Dynamic Finite Element analysis,” Dover Publications, 2000. (in library) </li></ul>
  6. 6. Numerical Solution of Boundary Value Problems Weighted Residual Methods
  7. 7. Objectives <ul><li>In this section we will be introduced to the general classification of approximate methods </li></ul><ul><li>Special attention will be paid for the weighted residual method </li></ul><ul><li>Derivation of a system of linear equations to approximate the solution of an ODE will be presented using different techniques </li></ul>
  8. 8. Why Approximate? <ul><li>Ignorance </li></ul><ul><li>Readily Available Packages </li></ul><ul><li>Need to Develop New Techniques </li></ul><ul><li>Good use of your computer! </li></ul><ul><li>In general, the problem does not have an analytical solution! </li></ul>
  9. 9. Classification of Approximate Solutions of D.E.’s <ul><li>Discrete Coordinate Method </li></ul><ul><ul><li>Finite difference Methods </li></ul></ul><ul><ul><li>Stepwise integration methods </li></ul></ul><ul><ul><ul><li>Euler method </li></ul></ul></ul><ul><ul><ul><li>Runge-Kutta methods </li></ul></ul></ul><ul><ul><ul><li>Etc… </li></ul></ul></ul><ul><li>Distributed Coordinate Method </li></ul>
  10. 10. Distributed Coordinate Methods <ul><li>Weighted Residual Methods </li></ul><ul><ul><li>Interior Residual </li></ul></ul><ul><ul><ul><li>Collocation </li></ul></ul></ul><ul><ul><ul><li>Galrekin </li></ul></ul></ul><ul><ul><ul><li>Finite Element </li></ul></ul></ul><ul><ul><li>Boundary Residual </li></ul></ul><ul><ul><ul><li>Boundary Element Method </li></ul></ul></ul><ul><li>Stationary Functional Methods </li></ul><ul><ul><li>Reyligh-Ritz methods </li></ul></ul><ul><ul><li>Finite Element method </li></ul></ul>
  11. 11. Basic Concepts <ul><li>A linear differential equation may be written in the form: </li></ul><ul><li>Where L(.) is a linear differential operator. </li></ul><ul><li>An approximate solution maybe of the form: </li></ul>
  12. 12. Basic Concepts <ul><li>Applying the differential operator on the approximate solution, you get: </li></ul>Residue
  13. 13. Handling the Residue <ul><li>The weighted residual methods are all based on minimizing the value of the residue. </li></ul><ul><li>Since the residue can not be zero over the whole domain, different techniques were introduced. </li></ul>
  14. 14. Collocation Method <ul><li>The idea behind the collocation method is similar to that behind the buttons of your shirt! </li></ul><ul><li>Assume a solution, then force the residue to be zero at the collocation points </li></ul>
  15. 15. Collocation Method
  16. 16. Example Problem
  17. 17. The bar tensile problem
  18. 18. Bar application Applying the collocation method
  19. 19. In Matrix Form Solve the above system for the “generalized coordinates” a i to get the solution for u(x)
  20. 20. Notes on the trial functions <ul><li>They should be at least twice differentiable! </li></ul><ul><li>They should satisfy all boundary conditions! </li></ul><ul><li>Those are called the “Admissibility Conditions”. </li></ul>
  21. 21. Using Admissible Functions <ul><li>For a constant forcing function, F(x)=f </li></ul><ul><li>The strain at the free end of the bar should be zero (slope of displacement is zero). We may use: </li></ul>
  22. 22. Using the function into the DE: <ul><li>Since we only have one term in the series, we will select one collocation point! </li></ul><ul><li>The midpoint is a reasonable choice! </li></ul>
  23. 23. Solving: <ul><li>Then, the approximate solution for this problem is: </li></ul><ul><li>Which gives the maximum displacement to be: </li></ul><ul><li>And maximum strain to be: </li></ul>
  24. 24. The Subdomain Method (free reading) <ul><li>The idea behind the subdomain method is to force the integral of the residue to be equal to zero on an subinterval of the domain </li></ul>
  25. 25. The Subdomain Method
  26. 26. Bar application Applying the subdomain method
  27. 27. In Matrix Form Solve the above system for the “generalized coordinates” a i to get the solution for u(x)
  28. 28. The Galerkin Method <ul><li>Galerkin suggested that the residue should be multiplied by a weighting function that is a part of the suggested solution then the integration is performed over the whole domain!!! </li></ul><ul><li>Actually, it turned out to be a VERY GOOD idea </li></ul>
  29. 29. The Galerkin Method
  30. 30. Bar application Applying Galerkin method
  31. 31. In Matrix Form Solve the above system for the “generalized coordinates” a i to get the solution for u(x)
  32. 32. Same conditions on the functions are applied <ul><li>They should be at least twice differentiable! </li></ul><ul><li>They should satisfy all boundary conditions! </li></ul><ul><li>Let’s use the same function as in the collocation method: </li></ul>
  33. 33. Substituting with the approximate solution:
  34. 34. Substituting with the approximate solution: (Int. by Parts) Zero!
  35. 35. What did we gain? <ul><li>The functions are required to be less differentiable </li></ul><ul><li>Not all boundary conditions need to be satisfied </li></ul><ul><li>The matrix became symmetric! </li></ul>
  36. 36. Summary <ul><li>We may solve differential equations using a series of functions with different weights . </li></ul><ul><li>When those functions are used, Residue appears in the differential equation </li></ul><ul><li>The weights of the functions may be determined to minimize the residue by different techniques </li></ul><ul><li>One very important technique is the Galerkin method. </li></ul>
  37. 37. NOTE <ul><li>Next Sunday 5/11 (No lecture) </li></ul><ul><li>Following week 12/11, Quiz #1 will be held covering all the material up-to this lecture </li></ul><ul><li>Homework #1 is due next week (Electronic submission of report and code is mandatory. </li></ul>
  38. 38. Report Should Include … <ul><li>Cover page </li></ul><ul><li>Introduction section indicating the procedure you used with the equations as implemented in your code </li></ul><ul><li>Results section </li></ul><ul><li>Observations and Conclusions if any according to the output of your program. </li></ul>
  39. 39. Homework #1 <ul><li>Solve the beam bending problem, for beam displacement, for a simply supported beam with a load placed at the center of the beam using </li></ul><ul><ul><li>Collocation Method </li></ul></ul><ul><ul><li>Subdomain Method </li></ul></ul><ul><ul><li>Galerkin Method </li></ul></ul><ul><li>Use three term Sin series that satisfies all BC’s </li></ul><ul><li>Write a program that produces the results for n-term solution. </li></ul>
  40. 40. Exact Solution
  41. 41. The Finite Element Method 2 nd order DE’s in 1-D
  42. 42. Objectives <ul><li>Understand the basic steps of the finite element analysis </li></ul><ul><li>Apply the finite element method to second order differential equations in 1-D </li></ul>
  43. 43. The Mathematical Model <ul><li>Solve: </li></ul><ul><li>Subject to: </li></ul>
  44. 44. Step #1: Discretization <ul><li>At this step, we divide the domain into elements . </li></ul><ul><li>The elements are connected at nodes . </li></ul><ul><li>All properties of the domain are defined at those nodes. </li></ul>
  45. 45. Step #2: Element Equations <ul><li>Let’s concentrate our attention to a single element. </li></ul><ul><li>The same DE applies on the element level, hence, we may follow the procedure for weighted residual methods on the element level! </li></ul>
  46. 46. Polynomial Approximation <ul><li>Now, we may propose an approximate solution for the primary variable, u(x), within that element. </li></ul><ul><li>The simplest proposition would be a polynomial! </li></ul>
  47. 47. Polynomial Approximation <ul><li>Interpolating the values of displacement knowing the nodal displacements, we may write: </li></ul>
  48. 48. Polynomial Approximation
  49. 49. Step #2: Element Equations (cont’d) <ul><li>Assuming constant domain properties: </li></ul><ul><li>Applying the Galerkin method: </li></ul>
  50. 50. Step #2: Element Equations (cont’d) <ul><li>Note that: </li></ul><ul><li>And: </li></ul>
  51. 51. Step #2: Element Equations (cont’d) <ul><li>For i=j=1: (and ignoring boundary terms) </li></ul><ul><li>Which gives: </li></ul>
  52. 52. Step #2: Element Equations (cont’d) <ul><li>Repeating for all terms: </li></ul><ul><li>The above equation is called the element equation . </li></ul>
  53. 53. What happens for adjacent elements?
  54. 54. Homework #2 <ul><li>Derive the element equation without ignoring the boundary terms. </li></ul><ul><li>What are differences in the element equation. </li></ul><ul><li>The solution should be handed using the same report format (use equation editor to write your report). </li></ul>
  55. 55. Finite Element Procedure <ul><li>Connecting Elements </li></ul><ul><li>Boundary Conditions </li></ul><ul><li>Solving Equations </li></ul>
  56. 56. Objectives <ul><li>Learn how the finite element model for the whole domain is assembled </li></ul><ul><li>Learn how to apply boundary conditions </li></ul><ul><li>Solving the system of linear equations </li></ul>
  57. 57. Recall <ul><li>In the previous lecture, we obtained the element equation that relates the element degrees of freedom to the externally applied fields </li></ul><ul><li>Which maybe written: </li></ul>
  58. 58. Two–Element example
  59. 59. Illustration: Bar application <ul><li>Discretization: Divide the bar into N number of elements. The length of each element will be (L/N) </li></ul><ul><li>Derive the element equation from the differential equation for constant properties an externally applied force: </li></ul>
  60. 60. Performing Integration: Note that if the integration is evaluated from 0 to h e , where h e is the element length, the same results will be obtained .
  61. 61. Two–Element bar example
  62. 62. Applying Boundary Conditions
  63. 63. Applying BC’s <ul><li>For the bar with fixed left side and free right side, we may force the value of the left-displacement to be equal to zero: </li></ul>
  64. 64. Solving <ul><li>Removing the first row and column of the system of equations: </li></ul><ul><li>Solving: </li></ul>
  65. 65. Secondary Variables <ul><li>Using the values of the displacements obtained, we may get the value of the reaction force: </li></ul>
  66. 66. Secondary Variables <ul><li>Using the first equation, we get: </li></ul><ul><li>Which is the exact value of the reaction force. </li></ul>
  67. 67. Summary <ul><li>In this lecture, we learned how to assemble the global matrices of the finite element model; how to apply the boundary conditions, and solve the system of equations obtained. </li></ul><ul><li>And finally, how to obtain the secondary variables. </li></ul>
  68. 68. Homework #3 <ul><li>Problems #3.9 & 3.13 from the text book </li></ul><ul><li>Write down a computer code that solves the problem for N elements. </li></ul>
  69. 69. Bars and Trusses
  70. 70. Objectives
  71. 71. Bar Example (Ex. 4.5.2, p. 187) <ul><li>Consider the bar shown in the above figure. </li></ul><ul><li>It is composed of two different parts. One steel tapered part, and uniform Aluminum part. </li></ul><ul><li>Calculate the displacement field using finite element method. </li></ul>
  72. 72. Bar Example <ul><li>The bar may be represented by two elements. </li></ul><ul><li>The stiffness matrices of the two elements may be obtained using the following integration: </li></ul>
  73. 73. Bar Example <ul><li>For the Aluminum bar: E=10 7 psi, and A=1 in 2 . we get: </li></ul><ul><li>For the Steel bar: E=3810 7 psi, and A=(1.5-0.5x/96) in 2 . we get: </li></ul>
  74. 74. Bar Example <ul><li>Assembling the Stiffness matrix and utilizing the external forces, we get: </li></ul><ul><li>The boundary conditions may be applied and the system of equations solved. </li></ul>
  75. 75. Bar Example <ul><li>Solving, we get: </li></ul><ul><li>For the secondary variables: </li></ul>
  76. 76. Reading Task <ul><li>Please read and understand examples, 4.5.1 & 4.5.3. </li></ul>
  77. 77. Trusses <ul><li>A truss is a set of bars that are connected at frictionless joints. </li></ul><ul><li>The Truss bars are generally oriented in the plain. </li></ul>
  78. 78. Trusses <ul><li>Now, the problem lies in the transformation of the local displacements of the bar, which are always in the direction of the bar, to the global degrees of freedom that are generally oriented in the plain. </li></ul>
  79. 79. Equation of Motion
  80. 80. Transformation Matrix
  81. 81. The Equation of Motion Becomes <ul><li>Substituting into the FEM: </li></ul><ul><li>Transforming the forces: </li></ul><ul><li>Finally: </li></ul>
  82. 82. Recall Where:
  83. 83. Element Stiffness Matrix in Global Coordinates
  84. 84. Element Stiffness Matrix in Global Coordinates
  85. 85. Example: 4.6.1 pp. 196-201 <ul><li>Use the finite element analysis to find the displacements of node C. </li></ul>
  86. 86. Element Equations
  87. 87. Assembly Procedure
  88. 88. Global Force Vector Remember! NO distributed load is applied to a truss
  89. 89. Boundary Conditions Remove the corresponding rows and columns Continue! (as before)
  90. 90. Results
  91. 91. Postcomputation
  92. 92. Postcomputation
  93. 93. Summary <ul><li>In this lecture we learned how to apply the finite element modeling technique to bar problems with general orientation in a plain. </li></ul>
  94. 94. Homework #5 <ul><li>Problem 4.27, </li></ul><ul><ul><li>Due 13/12/2006 before 9:00am </li></ul></ul><ul><li>Problem 4.44, </li></ul><ul><ul><li>Due 20/12/2006 before 9:00am </li></ul></ul>
  95. 95. Announcements <ul><li>Compensation Tutorial for E15: </li></ul><ul><ul><li>Next Sunday 17/12/2006 3 rd Period in H6 </li></ul></ul><ul><li>Next Lecture: </li></ul><ul><ul><li>Wednesday 20/12/2006 3 rd Period in H6 </li></ul></ul><ul><li>Next Quiz: </li></ul><ul><ul><li>Wednesday 20/12/2006 3 rd Period in H6 </li></ul></ul><ul><ul><li>(This Lecture is included) </li></ul></ul>
  96. 96. Term Projects <ul><li>A problem has got to be solved using the finite element method </li></ul><ul><li>A report is going to be presented by each group presenting the problem and its solution </li></ul>
  97. 97. The Report should contain: <ul><li>Cover page </li></ul><ul><ul><li>Project Title </li></ul></ul><ul><ul><li>Names of team members </li></ul></ul><ul><li>Table of contents </li></ul><ul><li>Introduction and literature survey </li></ul><ul><ul><li>Introduction to the problem </li></ul></ul><ul><ul><li>Historical background and relevance of the problem </li></ul></ul><ul><ul><li>Papers and books that presented the problem </li></ul></ul><ul><ul><li>Latest achievements in the problem </li></ul></ul>
  98. 98. The Report should contain: <ul><li>The finite element derivation </li></ul><ul><ul><li>Governing equation </li></ul></ul><ul><ul><li>Derivation of the element matrices </li></ul></ul><ul><ul><ul><li>Using Glerkin method </li></ul></ul></ul><ul><ul><ul><li>Application of Symbolic manipulator to derive the matrix equations will be appreciated </li></ul></ul></ul><ul><ul><li>Solution procedure </li></ul></ul>
  99. 99. The Report should contain: <ul><li>The numerical results and verification </li></ul><ul><ul><li>Program results </li></ul></ul><ul><ul><li>Verification of results compared to published results </li></ul></ul><ul><ul><li>Parametric study </li></ul></ul><ul><li>Discussion </li></ul><ul><ul><li>Observations of the results </li></ul></ul><ul><ul><li>Further work that may be performed with the problem </li></ul></ul><ul><ul><li>Future developments of the model </li></ul></ul><ul><li>References </li></ul>
  100. 100. Evaluation <ul><li>Report (50%) </li></ul><ul><li>Code (30%) </li></ul><ul><ul><li>Structured: Functions built, easily modified </li></ul></ul><ul><ul><li>Readability: Organization, remarks </li></ul></ul><ul><ul><li>Length: The shorter the better </li></ul></ul><ul><li>Results (20%) </li></ul>
  101. 101. Projects <ul><li>Heat transfer in a 2-D heat sink </li></ul><ul><li>2-D flow around a blunt body in a wind tunnel </li></ul><ul><li>Vibration characteristics of a pipe with internal fluid flow </li></ul><ul><li>Panel flutter of a beam </li></ul><ul><li>Rotating Timoshenko beam/blade </li></ul>
  102. 102. Heat transfer in a 2-D heat sink <ul><li>The heat sink will have heat flowing from one side </li></ul><ul><li>Convection transfer on the surfaces </li></ul><ul><li>Different boundary conditions on the other three sides </li></ul><ul><li>Plot contours of temperature distribution with different boundary conditions </li></ul>
  103. 103. 2-D flow around a blunt body in a wind tunnel <ul><li>Potential flow in a duct </li></ul><ul><li>Rectangular body with different Dimensions </li></ul><ul><li>Study the effect of the body size on the flow speed on both sides </li></ul><ul><li>Plot contours of potential function, pressure, and velocity potential </li></ul>
  104. 104. Vibration characteristics of a pipe with internal fluid flow <ul><li>Study the change of the natural frequencies with the flow speed under different boundary conditions and fluid density </li></ul><ul><li>Indicate the flow speeds at which instabilities occur </li></ul>
  105. 105. Panel flutter of a beam <ul><li>A fixed-fixed beam is subjected to flow over its surface </li></ul><ul><li>Plot the effect of the flow speed on the natural frequencies of the beam </li></ul><ul><li>Indicate the speed at which instability occurs </li></ul>
  106. 106. Rotating Timoshenko beam/blade <ul><li>Rotating beams undergo centrifugal tension that results in the change of its natural frequencies </li></ul><ul><li>Study the effect of rotation speed on the beam natural frequencies and frequency response to excitations at the root </li></ul>
  107. 107. Teams <ul><li>2-3 Students teams </li></ul><ul><li>Names and selected projects should be submitted before 4PM on Thursday 21/12/2006 </li></ul>
  108. 108. Work Progress <ul><li>A report should be submitted By 4PM every Wednesday </li></ul><ul><li>27/12/2006 </li></ul><ul><ul><li>The report should contain a preliminary literature survey </li></ul></ul><ul><ul><li>Problem statement </li></ul></ul><ul><ul><li>Governing equations </li></ul></ul><ul><li>10/1/2007 </li></ul><ul><ul><li>The report should contain a deeper literature survey </li></ul></ul><ul><ul><li>The preliminary derivations of the finite element model </li></ul></ul><ul><li>17/1/2007 </li></ul><ul><ul><li>A more mature version of the report should be presented </li></ul></ul><ul><ul><li>Preliminary results of the code </li></ul></ul><ul><ul><li>List of the program script should be included </li></ul></ul><ul><li>24/1/2007 </li></ul><ul><ul><li>Final version of the report should be presented together with the code </li></ul></ul>
  109. 109. Beams and Frames
  110. 110. Beams and Frames <ul><li>Beams are the most-used structural elements. </li></ul><ul><li>Many real structures may be approximated as beam elements </li></ul><ul><li>Two main beam theories: </li></ul><ul><ul><li>Euler-Bernoulli beam theory </li></ul></ul><ul><ul><li>Timoshenko beam theory </li></ul></ul>
  111. 111. Euler-Bernoulli Beam Theory <ul><li>The main assumption in the Euler-Bernoulli beam theory is that the beam’s thickness is too small compared to the beam length </li></ul><ul><li>That assumption resulted in that the sheer deformation of the beam may be neglected without much error in the analysis </li></ul>
  112. 112. Governing Equation <ul><li>The equation governing the deformation of and E-B beam under transverse loading may be written in the form: </li></ul>
  113. 113. The Thin-Beam Elements <ul><li>The thin beam element has a special feature, namely, the two degrees of freedom at each node are related. </li></ul>
  114. 114. Beam Interpolation Function
  115. 115. Beam Interpolation Function
  116. 116. Beam Interpolation Function
  117. 117. Beam Interpolation Function
  118. 118. Beam Interpolation Function
  119. 119. Interpolation Functions
  120. 120. Beam Stiffness Matrix <ul><li>The governing equation is: </li></ul><ul><li>Using the series solution </li></ul>
  121. 121. Beam Stiffness Matrix <ul><li>The governing equation becomes </li></ul><ul><li>Applying Galerkin method: </li></ul>
  122. 122. Beam Stiffness Matrix <ul><li>Using integration by parts, twice, and ignoring the boundary terms, we get: </li></ul><ul><li>In matrix form: </li></ul>
  123. 123. Use of Symbolic Manipulator Beam Example
  124. 124. Optional Homework #6 <ul><li>Derive the expression for the interpolation function for a beam in terms of nodal displacements and slopes. </li></ul><ul><li>Try to use a symbolic manipulator to generate the expressions. </li></ul>
  125. 125. Two Dimensional Elements
  126. 126. 2-D Elements <ul><li>In this section, we will be introduced to two dimensional elements with single degree of freedom per node. </li></ul><ul><li>Detailed attention will be paid to rectangular elements. </li></ul>
  127. 127. For the 2-D BV Problem <ul><li>Let’s consider a problem with a single dependent variable </li></ul><ul><li>We may set one degree of freedom to each node; say f i . </li></ul><ul><li>Further, let’s only consider a rectangular element that is aligned with the physical coordinates </li></ul>
  128. 128. A Rectangular Element <ul><li>For the approximation of a general function f(x,y) over the element you need a 2-D interpolation function </li></ul>
  129. 129. Let’s follow the same procedure!
  130. 130. 2-D Interpolation Function
  131. 131. 2-D Interpolation Function
  132. 132. 2-D Interpolation Function
  133. 133. How does this look like?
  134. 134. 2-D Interpolation Functions
  135. 135. 2-D Interpolation Functions
  136. 136. Example: Laplace Equation
  137. 137. Example: Laplace Equation Applying the Galerkin method and integrating by parts, the element equation becomes
  138. 138. The Element Equaiton
  139. 139. The Logistic Problem!
  140. 140. The Logistic Problem <ul><li>In the 2-D problems, the numbering scheme, usually, is not as straight forward as the 1-D problem </li></ul>
  141. 141. 1-D Example <ul><li>Element #1 is associated with nodes 1&2 </li></ul><ul><li>Element #2 is associated with nodes 2&3, etc… </li></ul>
  142. 142. 2-D Example
  143. 143. 2-D Example
  144. 144. For Element #5 Global Node Number Local Node Number 5 1 6 2 9 3 8 4
  145. 145. Contribution of element #5 to global matrix 12 11 10 9 8 7 6 5 4 3 2 1 1 2 3 4 1,3 1,4 1,2 1,1 5 2,3 2,4 2,2 2,1 6 7 4,3 4,4 4,2 4,1 8 3,3 3,4 3,2 3,1 9 10 11 12
  146. 146. A Solution for the Logistics’ Problem <ul><li>One solution of the logistic problem is to keep a record of elements and the mapping of the local numbering scheme to the global numbering scheme in a table! </li></ul>
  147. 147. Elements Register: Global Numbering Node Number Element Number 4 3 2 1 4 5 2 1 1 7 8 5 4 2 10 11 8 7 3 5 6 3 2 4 8 9 6 5 5 11 12 9 8 6
  148. 148. Algorithm for Assembling Global Matrix <ul><li>Create a square matrix “A”; N*N (N=Number of nodes) </li></ul><ul><li>For the i th element </li></ul><ul><li>Get the element matrix “B” </li></ul><ul><li>For the j th node </li></ul><ul><li>Get its global number k </li></ul><ul><li>For the m th node </li></ul><ul><li>Get its global number n </li></ul><ul><li>Let A kn =A kn +B jm </li></ul><ul><li>Repeat for all m </li></ul><ul><li>Repeat for all j </li></ul><ul><li>Repeat for all i </li></ul>Node Number Element Number 4 3 2 1 4 5 2 1 1 7 8 5 4 2 10 11 8 7 3 5 6 3 2 4 8 9 6 5 5 11 12 9 8 6 12 11 10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 11 12