SlideShare a Scribd company logo
1 of 35
MCE 565
Wave Motion & Vibration in Continuous Media
Spring 2005
Professor M. H. Sadd
Introduction to Finite Element Methods
Need for Computational Methods
â€ĸ Solutions Using Either Strength of Materials or Theory of
Elasticity Are Normally Accomplished for Regions and
Loadings With Relatively Simple Geometry
â€ĸ Many Applicaitons Involve Cases with Complex Shape,
Boundary Conditions and Material Behavior
â€ĸ Therefore a Gap Exists Between What Is Needed in
Applications and What Can Be Solved by Analytical Closed-
form Methods
â€ĸ This Has Lead to the Development of Several
Numerical/Computational Schemes Including: Finite
Difference, Finite Element and Boundary Element Methods
Introduction to Finite Element Analysis
The finite element method is a computational scheme to solve field problems in
engineering and science. The technique has very wide application, and has been used on
problems involving stress analysis, fluid mechanics, heat transfer, diffusion, vibrations,
electrical and magnetic fields, etc. The fundamental concept involves dividing the body
under study into a finite number of pieces (subdomains) called elements (see Figure).
Particular assumptions are then made on the variation of the unknown dependent
variable(s) across each element using so-called interpolation or approximation functions.
This approximated variation is quantified in terms of solution values at special element
locations called nodes. Through this discretization process, the method sets up an
algebraic system of equations for unknown nodal values which approximate the
continuous solution. Because element size, shape and approximating scheme can be
varied to suit the problem, the method can accurately simulate solutions to problems of
complex geometry and loading and thus this technique has become a very useful and
practical tool.
Advantages of Finite Element Analysis
- Models Bodies of Complex Shape
- Can Handle General Loading/Boundary Conditions
- Models Bodies Composed of Composite and Multiphase Materials
- Model is Easily Refined for Improved Accuracy by Varying
Element Size and Type (Approximation Scheme)
- Time Dependent and Dynamic Effects Can Be Included
- Can Handle a Variety Nonlinear Effects Including Material
Behavior, Large Deformations, Boundary Conditions, Etc.
Basic Concept of the Finite Element Method
Any continuous solution field such as stress, displacement,
temperature, pressure, etc. can be approximated by a
discrete model composed of a set of piecewise continuous
functions defined over a finite number of subdomains.
Exact Analytical Solution
x
T
Approximate Piecewise
Linear Solution
x
T
One-Dimensional Temperature Distribution
Two-Dimensional Discretization
-1
-0.5
0
0.5
1
1.5
2
2.5
3
1
1.5
2
2.5
3
3.5
4
-3
-2
-1
0
1
2
x
y
u(x,y)
Approximate Piecewise
Linear Representation
Discretization Concepts
x
T
Exact Temperature Distribution, T(x)
Finite Element Discretization
Linear Interpolation Model
(Four Elements)
Quadratic Interpolation Model
(Two Elements)
T1
T2
T2
T3 T3
T4 T4
T5
T1
T2
T3
T4 T5
Piecewise Linear Approximation
T
x
T1
T2
T3 T3
T4 T5
T
T1
T2
T3
T4 T5
Piecewise Quadratic Approximation
x
Temperature Continuous but with
Discontinuous Temperature Gradients
Temperature and Temperature Gradients
Continuous
Common Types of Elements
One-Dimensional Elements
Line
Rods, Beams, Trusses, Frames
Two-Dimensional Elements
Triangular, Quadrilateral
Plates, Shells, 2-D Continua
Three-Dimensional Elements
Tetrahedral, Rectangular Prism (Brick)
3-D Continua
Discretization Examples
One-Dimensional
Frame Elements
Two-Dimensional
Triangular Elements
Three-Dimensional
Brick Elements
Basic Steps in the Finite Element Method
Time Independent Problems
- Domain Discretization
- Select Element Type (Shape and Approximation)
- Derive Element Equations (Variational and Energy Methods)
- Assemble Element Equations to Form Global System
[K]{U} = {F}
[K] = Stiffness or Property Matrix
{U} = Nodal Displacement Vector
{F} = Nodal Force Vector
- Incorporate Boundary and Initial Conditions
- Solve Assembled System of Equations for Unknown Nodal
Displacements and Secondary Unknowns of Stress and Strain Values
Common Sources of Error in FEA
â€ĸ Domain Approximation
â€ĸ Element Interpolation/Approximation
â€ĸ Numerical Integration Errors
(Including Spatial and Time Integration)
â€ĸ Computer Errors (Round-Off, Etc., )
Measures of Accuracy in FEA
Accuracy
Error = |(Exact Solution)-(FEM Solution)|
Convergence
Limit of Error as:
Number of Elements (h-convergence)
or
Approximation Order (p-convergence)
Increases
Ideally, Error ī‚Ž 0 as Number of Elements or
Approximation Order ī‚Ž ī‚Ĩ
Two-Dimensional Discretization Refinement
(Discretization with 228 Elements)
(Discretization with 912 Elements)
(Triangular Element)
(Node)
ī‚ˇ
ī‚ˇ
ī‚ˇ
One Dimensional Examples
Static Case
1 2
u1 u2
Bar Element
Uniaxial Deformation of Bars
Using Strength of Materials Theory
Beam Element
Deflection of Elastic Beams
Using Euler-Bernouli Theory
1 2
w1
w2
q2
q1
dx
du
a
u
q
cu
au
dx
d
,
:
ion
Specificat
Condtions
Boundary
0
)
(
:
Equation
al
Differenti
ī€Ŋ
ī€­
ī€Ģ
ī€­
)
(
,
,
,
:
ion
Specificat
Condtions
Boundary
)
(
)
(
:
Equation
al
Differenti
2
2
2
2
2
2
2
2
dx
w
d
b
dx
d
dx
w
d
b
dx
dw
w
x
f
dx
w
d
b
dx
d
ī€Ŋ
ī€­
Two Dimensional Examples
u1
u2
1
2
3 u3
v1
v2
v3
1
2
3
f1
f2
f3
Triangular Element
Scalar-Valued, Two-Dimensional
Field Problems
Triangular Element
Vector/Tensor-Valued, Two-
Dimensional Field Problems
y
x n
y
n
x
dn
d
y
x
f
y
x
ī‚ļ
f
ī‚ļ
ī€Ģ
ī‚ļ
f
ī‚ļ
ī€Ŋ
f
f
ī€Ŋ
ī‚ļ
f
ī‚ļ
ī€Ģ
ī‚ļ
f
ī‚ļ
,
:
ion
Specificat
Condtions
Boundary
)
,
(
:
Equation
ial
Different
Example
2
2
2
2
y
x
y
y
x
x
y
x
n
y
v
C
x
u
C
n
x
v
y
u
C
T
n
x
v
y
u
C
n
y
v
C
x
u
C
T
F
y
v
x
u
y
E
v
F
y
v
x
u
x
E
u
īƒˇ
īƒˇ
īƒ¸
īƒļ
īƒ§
īƒ§
īƒ¨
īƒĻ
ī‚ļ
ī‚ļ
ī€Ģ
ī‚ļ
ī‚ļ
ī€Ģ
īƒˇ
īƒˇ
īƒ¸
īƒļ
īƒ§
īƒ§
īƒ¨
īƒĻ
ī‚ļ
ī‚ļ
ī€Ģ
ī‚ļ
ī‚ļ
ī€Ŋ
īƒˇ
īƒˇ
īƒ¸
īƒļ
īƒ§
īƒ§
īƒ¨
īƒĻ
ī‚ļ
ī‚ļ
ī€Ģ
ī‚ļ
ī‚ļ
ī€Ģ
īƒˇ
īƒˇ
īƒ¸
īƒļ
īƒ§
īƒ§
īƒ¨
īƒĻ
ī‚ļ
ī‚ļ
ī€Ģ
ī‚ļ
ī‚ļ
ī€Ŋ
ī€Ŋ
ī€Ģ
īƒˇ
īƒˇ
īƒ¸
īƒļ
īƒ§
īƒ§
īƒ¨
īƒĻ
ī‚ļ
ī‚ļ
ī€Ģ
ī‚ļ
ī‚ļ
ī‚ļ
ī‚ļ
īŽ
ī€­
ī€Ģ
īƒ‘
ī­
ī€Ŋ
ī€Ģ
īƒˇ
īƒˇ
īƒ¸
īƒļ
īƒ§
īƒ§
īƒ¨
īƒĻ
ī‚ļ
ī‚ļ
ī€Ģ
ī‚ļ
ī‚ļ
ī‚ļ
ī‚ļ
īŽ
ī€­
ī€Ģ
īƒ‘
ī­
22
12
66
66
12
11
2
2
Conditons
Boundary
0
)
1
(
2
0
)
1
(
2
ents
Displacem
of
Terms
in
Equations
Field
Elasticity
Development of Finite Element Equation
â€ĸ The Finite Element Equation Must Incorporate the Appropriate Physics
of the Problem
â€ĸ For Problems in Structural Solid Mechanics, the Appropriate Physics
Comes from Either Strength of Materials or Theory of Elasticity
â€ĸ FEM Equations are Commonly Developed Using Direct, Variational-
Virtual Work or Weighted Residual Methods
Variational-Virtual Work Method
Based on the concept of virtual displacements, leads to relations between internal and
external virtual work and to minimization of system potential energy for equilibrium
Weighted Residual Method
Starting with the governing differential equation, special mathematical operations
develop the “weak form” that can be incorporated into a FEM equation. This
method is particularly suited for problems that have no variational statement. For
stress analysis problems, a Ritz-Galerkin WRM will yield a result identical to that
found by variational methods.
Direct Method
Based on physical reasoning and limited to simple cases, this method is
worth studying because it enhances physical understanding of the process
Simple Element Equation Example
Direct Stiffness Derivation
1 2
k
u1 u2
F1 F2
}
{
}
]{
[
rm
Matrix Fo
in
or
2
Node
at
m
Equilibriu
1
Node
at
m
Equilibriu
2
1
2
1
2
1
2
2
1
1
F
u
K
F
F
u
u
k
k
k
k
ku
ku
F
ku
ku
F
ī€Ŋ
īƒž
īƒŊ
īƒŧ
īƒŽ
īƒ­
īƒŦ
ī€Ŋ
īƒž
īƒŊ
īƒŧ
īƒŽ
īƒ­
īƒŦ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€Ģ
ī€­
ī€Ŋ
īƒž
ī€­
ī€Ŋ
īƒž
Stiffness Matrix Nodal Force Vector
Common Approximation Schemes
One-Dimensional Examples
Linear Quadratic Cubic
Polynomial Approximation
Most often polynomials are used to construct approximation
functions for each element. Depending on the order of
approximation, different numbers of element parameters are
needed to construct the appropriate function.
Special Approximation
For some cases (e.g. infinite elements, crack or other singular
elements) the approximation function is chosen to have special
properties as determined from theoretical considerations
One-Dimensional Bar Element
īƒž
ī¤
ī€Ģ
ī€Ģ
ī€Ŋ
ī¤
īŗ īƒ˛
īƒ˛ ī—
ī—
udV
f
u
P
u
P
edV j
j
i
i
}
]{
[
:
Law
Strain
-
Stress
}
]{
[
}
{
]
[
)
(
:
Strain
}
{
]
[
)
(
:
ion
Approximat
d
B
d
B
d
N
d
N
E
Ee
dx
d
u
x
dx
d
dx
du
e
u
x
u
k
k
k
k
k
k
ī€Ŋ
ī€Ŋ
īŗ
ī€Ŋ
ī€Ŋ
īš
ī€Ŋ
ī€Ŋ
ī€Ŋ
īš
ī€Ŋ
īƒĨ
īƒĨ
īƒž
ī€Ģ
īƒž
īƒŊ
īƒŧ
īƒŽ
īƒ­
īƒŦ
ī€Ŋ īƒ˛
īƒ˛
L
T
T
j
i
T
L
T
T
fdx
A
P
P
dx
E
A
0
0
]
[
}
{
}
{
}
{
]
[
]
[
}
{ N
δd
δd
d
B
B
δd
īƒ˛
īƒ˛ ī€Ģ
ī€Ŋ
L
T
L
T
fdx
A
dx
E
A
0
0
]
[
}
{
}
{
]
[
]
[ N
P
d
B
B
Vector
ent
Displacem
Nodal
}
{
Vector
Loading
]
[
}
{
Matrix
Stiffness
]
[
]
[
]
[
0
0
ī€Ŋ
īƒž
īƒŊ
īƒŧ
īƒŽ
īƒ­
īƒŦ
ī€Ŋ
ī€Ŋ
ī€Ģ
īƒž
īƒŊ
īƒŧ
īƒŽ
īƒ­
īƒŦ
ī€Ŋ
ī€Ŋ
ī€Ŋ
īƒ˛
īƒ˛
j
i
L
T
j
i
L
T
u
u
fdx
A
P
P
dx
E
A
K
d
N
F
B
B
}
{
}
]{
[ F
d
K ī€Ŋ
One-Dimensional Bar Element
A = Cross-sectional Area
E = Elastic Modulus
f(x) = Distributed Loading
dV
u
F
dS
u
T
dV
e i
V
i
S
i
n
i
ij
V
ij
t
ī¤
ī€Ģ
ī¤
ī€Ŋ
ī¤
īŗ īƒ˛
īƒ˛
īƒ˛
Virtual Strain Energy = Virtual Work Done by Surface and Body Forces
For One-Dimensional Case
īƒ˛
īƒ˛ ī—
ī—
ī¤
ī€Ģ
ī€Ģ
ī€Ŋ
ī¤
īŗ udV
f
u
P
u
P
edV j
j
i
i
ī—
(i) (j)
Axial Deformation of an Elastic Bar
Typical Bar Element
dx
du
AE
P i
i ī€­
ī€Ŋ
dx
du
AE
P
j
j ī€­
ī€Ŋ
i
u j
u
L
x
(Two Degrees of Freedom)
Linear Approximation Scheme
ī› ī
Vector
ent
Displacem
Nodal
}
{
Matrix
Function
ion
Approximat
]
[
}
]{
[
1
)
(
)
(
1
2
1
2
1
2
1
2
2
1
1
2
1
1
2
1
2
1
2
1
1
2
1
ī€Ŋ
ī€Ŋ
ī€Ŋ
īƒž
īƒŊ
īƒŧ
īƒŽ
īƒ­
īƒŦ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€Ŋ
īƒž
īƒŊ
īƒŧ
īƒŽ
īƒ­
īƒŦ
īš
īš
ī€Ŋ
īš
ī€Ģ
īš
ī€Ŋ
īƒˇ
īƒ¸
īƒļ
īƒ§
īƒ¨
īƒĻ
ī€Ģ
īƒˇ
īƒ¸
īƒļ
īƒ§
īƒ¨
īƒĻ
ī€­
ī€Ŋ
ī€­
ī€Ģ
ī€Ŋ
īƒž
ī€Ģ
ī€Ŋ
ī€Ŋ
īƒž
ī€Ģ
ī€Ŋ
d
N
d
N
nt
Displaceme
Elastic
e
Approximat
u
u
L
x
L
x
u
u
u
u
x
u
x
u
L
x
u
L
x
x
L
u
u
u
u
L
a
a
u
a
u
x
a
a
u
x (local coordinate system)
(1) (2)
i
u j
u
L
x
(1) (2)
u(x)
x
(1) (2)
īš1(x) īš2(x)
1
īšk(x) – Lagrange Interpolation Functions
Element Equation
Linear Approximation Scheme, Constant Properties
Vector
ent
Displacem
Nodal
}
{
1
1
2
]
[
}
{
1
1
1
1
1
1
1
1
]
[
]
[
]
[
]
[
]
[
2
1
2
1
0
2
1
0
2
1
0
0
ī€Ŋ
īƒž
īƒŊ
īƒŧ
īƒŽ
īƒ­
īƒŦ
ī€Ŋ
īƒž
īƒŊ
īƒŧ
īƒŽ
īƒ­
īƒŦ
ī€Ģ
īƒž
īƒŊ
īƒŧ
īƒŽ
īƒ­
īƒŦ
ī€Ŋ
īƒ¯
īƒž
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒŽ
īƒ¯
īƒ­
īƒŦ
ī€­
ī€Ģ
īƒž
īƒŊ
īƒŧ
īƒŽ
īƒ­
īƒŦ
ī€Ŋ
ī€Ģ
īƒž
īƒŊ
īƒŧ
īƒŽ
īƒ­
īƒŦ
ī€Ŋ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€Ŋ
īƒž
īƒŊ
īƒŧ
īƒŽ
īƒ­
īƒŦ
ī€­
īƒ¯
īƒž
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒŽ
īƒ¯
īƒ­
īƒŦ
ī€­
ī€Ŋ
ī€Ŋ
ī€Ŋ
īƒ˛
īƒ˛
īƒ˛
īƒ˛
u
u
L
Af
P
P
dx
L
x
L
x
Af
P
P
fdx
A
P
P
L
AE
L
L
L
L
L
AE
dx
AE
dx
E
A
K
o
L
o
L
T
L
T
L
T
d
N
F
B
B
B
B
īƒž
īƒŊ
īƒŧ
īƒŽ
īƒ­
īƒŦ
ī€Ģ
īƒž
īƒŊ
īƒŧ
īƒŽ
īƒ­
īƒŦ
ī€Ŋ
īƒž
īƒŊ
īƒŧ
īƒŽ
īƒ­
īƒŦ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
īƒž
ī€Ŋ
1
1
2
1
1
1
1
}
{
}
]{
[
2
1
2
1 L
Af
P
P
u
u
L
AE o
F
d
K
Quadratic Approximation Scheme
ī› ī }
]{
[
)
(
)
(
)
(
4
2
3
2
1
3
2
1
3
3
2
2
1
1
2
3
2
1
3
2
3
2
1
2
1
1
2
3
2
1
d
N
nt
Displaceme
Elastic
e
Approximat
ī€Ŋ
īƒ¯
īƒž
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒŽ
īƒ¯
īƒ­
īƒŦ
īš
īš
īš
ī€Ŋ
īš
ī€Ģ
īš
ī€Ģ
īš
ī€Ŋ
ī€Ģ
ī€Ģ
ī€Ŋ
ī€Ģ
ī€Ģ
ī€Ŋ
ī€Ŋ
īƒž
ī€Ģ
ī€Ģ
ī€Ŋ
u
u
u
u
u
x
u
x
u
x
u
L
a
L
a
a
u
L
a
L
a
a
u
a
u
x
a
x
a
a
u
x
(1) (3)
1
u 3
u
(2)
2
u
L
u(x)
x
(1) (3)
(2)
x
(1) (3)
(2)
1
īš1(x) īš3(x)
īš2(x)
īƒ¯
īƒž
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒŽ
īƒ¯
īƒ­
īƒŦ
ī€Ŋ
īƒ¯
īƒž
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒŽ
īƒ¯
īƒ­
īƒŦ
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€­
ī€­
3
2
1
3
2
1
7
8
1
8
16
8
1
8
7
3
F
F
F
u
u
u
L
AE
Equation
Element
Lagrange Interpolation Functions
Using Natural or Normalized Coordinates
1
1 ī‚Ŗ
ī¸
ī‚Ŗ
ī€­
ī¸
(1) (2)
)
1
(
2
1
)
1
(
2
1
2
1
ī¸
ī€Ģ
ī€Ŋ
īš
ī¸
ī€­
ī€Ŋ
īš
)
1
(
2
1
)
1
)(
1
(
)
1
(
2
1
3
2
1
ī¸
ī€Ģ
ī¸
ī€Ŋ
īš
ī¸
ī€Ģ
ī¸
ī€­
ī€Ŋ
īš
ī¸
ī€­
ī¸
ī€­
ī€Ŋ
īš
)
1
)(
3
1
)(
3
1
(
16
9
)
3
1
)(
1
)(
1
(
16
27
)
3
1
)(
1
)(
1
(
16
27
)
3
1
)(
3
1
)(
1
(
16
9
4
3
2
1
ī¸
ī€Ģ
ī¸
ī€­
ī¸
ī€Ģ
ī€­
ī€Ŋ
īš
ī¸
ī€Ģ
ī¸
ī€Ģ
ī¸
ī€­
ī€Ŋ
īš
ī¸
ī€­
ī¸
ī€Ģ
ī¸
ī€­
ī€Ŋ
īš
ī¸
ī€­
ī¸
ī€Ģ
ī¸
ī€­
ī€­
ī€Ŋ
īš
ī¸
(1) (2) (3)
ī¸
(1) (2) (3) (4)
īƒŽ
īƒ­
īƒŦ
ī‚š
ī€Ŋ
ī€Ŋ
ī¸
īš
j
i
j
i
j
i
,
0
,
1
)
(
Simple Example
P
A1,E1,L1 A2,E2,L2
(1) (3)
(2)
1 2
īƒ¯
īƒž
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒŽ
īƒ¯
īƒ­
īƒŦ
ī€Ŋ
īƒ¯
īƒž
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒŽ
īƒ¯
īƒ­
īƒŦ
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
0
0
0
0
0
1
1
0
1
1
1
Element
Equation
Global
)
1
(
2
)
1
(
1
3
2
1
1
1
1
P
P
U
U
U
L
E
A
īƒ¯
īƒž
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒŽ
īƒ¯
īƒ­
īƒŦ
ī€Ŋ
īƒ¯
īƒž
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒŽ
īƒ¯
īƒ­
īƒŦ
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
)
2
(
2
)
2
(
1
3
2
1
2
2
2
0
1
1
0
1
1
0
0
0
0
2
Element
Equation
Global
P
P
U
U
U
L
E
A
īƒ¯
īƒž
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒŽ
īƒ¯
īƒ­
īƒŦ
ī€Ŋ
īƒ¯
īƒž
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒŽ
īƒ¯
īƒ­
īƒŦ
ī€Ģ
ī€Ŋ
īƒ¯
īƒž
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒŽ
īƒ¯
īƒ­
īƒŦ
īƒē
īƒē
īƒē
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€Ģ
ī€­
ī€­
3
2
1
)
2
(
2
)
2
(
1
)
1
(
2
)
1
(
1
3
2
1
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
0
0
Equation
System
Global
Assembled
P
P
P
P
P
P
P
U
U
U
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
0
Loading
ed
Distribut
Zero
Take
ī€Ŋ
f
Simple Example Continued
P
A1,E1,L1 A2,E2,L2
(1) (3)
(2)
1 2
0
0
Conditions
Boundary
)
2
(
1
)
1
(
2
)
2
(
2
1
ī€Ŋ
ī€Ģ
ī€Ŋ
ī€Ŋ
P
P
P
P
U
īƒ¯
īƒž
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒŽ
īƒ¯
īƒ­
īƒŦ
ī€Ŋ
īƒ¯
īƒž
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒŽ
īƒ¯
īƒ­
īƒŦ
īƒē
īƒē
īƒē
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€Ģ
ī€­
ī€­
P
P
U
U
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
0
0
0
0
Equation
System
Global
Reduced
)
1
(
1
3
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
īƒž
īƒŊ
īƒŧ
īƒŽ
īƒ­
īƒŦ
ī€Ŋ
īƒž
īƒŊ
īƒŧ
īƒŽ
īƒ­
īƒŦ
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€Ģ
P
U
U
L
E
A
L
E
A
L
E
A
L
E
A
L
E
A
0
3
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
L
E
A ,
,
Properties
m
For Unifor
īƒž
īƒŊ
īƒŧ
īƒŽ
īƒ­
īƒŦ
ī€Ŋ
īƒž
īƒŊ
īƒŧ
īƒŽ
īƒ­
īƒŦ
īƒē
īƒģ
īƒš
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
P
U
U
L
AE 0
1
1
1
2
3
2
P
P
AE
PL
U
AE
PL
U ī€­
ī€Ŋ
ī€Ŋ
ī€Ŋ
īƒž )
1
(
1
3
2 ,
2
,
Solving
One-Dimensional Beam Element
Deflection of an Elastic Beam
2
2
4
2
3
1
1
2
1
1
2
2
2
4
2
2
2
3
1
2
2
2
1
2
2
1
,
,
,
,
,
dx
dw
u
w
u
dx
dw
u
w
u
dx
w
d
EI
Q
dx
w
d
EI
dx
d
Q
dx
w
d
EI
Q
dx
w
d
EI
dx
d
Q
ī€­
ī€Ŋ
q
ī€Ŋ
ī€Ŋ
ī€­
ī€Ŋ
q
ī€Ŋ
ī€Ŋ
īƒˇ
īƒˇ
īƒ¸
īƒļ
īƒ§
īƒ§
īƒ¨
īƒĻ
ī€­
ī€Ŋ
īƒˇ
īƒˇ
īƒ¸
īƒļ
īƒ§
īƒ§
īƒ¨
īƒĻ
ī€­
ī€Ŋ
īƒˇ
īƒˇ
īƒ¸
īƒļ
īƒ§
īƒ§
īƒ¨
īƒĻ
ī€Ŋ
īƒˇ
īƒˇ
īƒ¸
īƒļ
īƒ§
īƒ§
īƒ¨
īƒĻ
ī€Ŋ
I = Section Moment of Inertia
E = Elastic Modulus
f(x) = Distributed Loading
ī—
(1) (2)
Typical Beam Element
1
w
L
2
w
1
q 2
q
1
M 2
M
1
V 2
V
x
Virtual Strain Energy = Virtual Work Done by Surface and Body Forces
īƒž
ī¤
ī€Ģ
ī€Ģ
ī€Ģ
ī€Ģ
ī€Ŋ
ī¤
īŗ īƒ˛
īƒ˛ ī—
ī—
wdV
f
w
Q
u
Q
u
Q
u
Q
edV 4
4
3
3
2
2
1
1
īƒ˛
īƒ˛ ī€Ģ
ī€Ģ
ī€Ģ
ī€Ģ
ī€Ŋ
L
T
L
dV
f
w
Q
u
Q
u
Q
u
Q
dx
EI
0
4
4
3
3
2
2
1
1
0
]
[
}
{
]
[
]
[ N
d
B
B T
(Four Degrees of Freedom)
Beam Approximation Functions
To approximate deflection and slope at each
node requires approximation of the form
3
4
2
3
2
1
)
( x
c
x
c
x
c
c
x
w ī€Ģ
ī€Ģ
ī€Ģ
ī€Ŋ
Evaluating deflection and slope at each node
allows the determination of ci thus leading to
Functions
ion
Approximat
Cubic
Hermite
the
are
where
,
)
(
)
(
)
(
)
(
)
( 4
4
3
3
2
2
1
1
i
u
x
u
x
u
x
u
x
x
w
f
f
ī€Ģ
f
ī€Ģ
f
ī€Ģ
f
ī€Ŋ
Beam Element Equation
īƒ˛
īƒ˛ ī€Ģ
ī€Ģ
ī€Ģ
ī€Ģ
ī€Ŋ
L
T
L
dV
f
w
Q
u
Q
u
Q
u
Q
dx
EI
0
4
4
3
3
2
2
1
1
0
]
[
}
{
]
[
]
[ N
d
B
B T
īƒ¯
īƒ¯
īƒž
īƒ¯
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒ¯
īƒŽ
īƒ¯
īƒ¯
īƒ­
īƒŦ
ī€Ŋ
4
3
2
1
}
{
u
u
u
u
d ]
[
]
[
]
[ 4
3
2
1
dx
d
dx
d
dx
d
dx
d
dx
d f
f
f
f
ī€Ŋ
ī€Ŋ
N
B
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€­
ī€­
ī€­
ī€­
ī€Ŋ
ī€Ŋ īƒ˛
2
2
2
2
3
0
2
3
3
3
6
3
6
3
2
3
3
6
3
6
2
]
[
]
[
]
[
L
L
L
L
L
L
L
L
L
L
L
L
L
EI
dx
EI
L
B
B
K T
īƒ¯
īƒ¯
īƒž
īƒ¯
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒ¯
īƒŽ
īƒ¯
īƒ¯
īƒ­
īƒŦ
ī€­
ī€Ģ
īƒ¯
īƒ¯
īƒž
īƒ¯
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒ¯
īƒŽ
īƒ¯
īƒ¯
īƒ­
īƒŦ
ī€Ŋ
īƒ¯
īƒ¯
īƒž
īƒ¯
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒ¯
īƒŽ
īƒ¯
īƒ¯
īƒ­
īƒŦ
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€­
ī€­
ī€­
ī€­
L
L
fL
Q
Q
Q
Q
u
u
u
u
L
L
L
L
L
L
L
L
L
L
L
L
L
EI
6
6
12
2
3
3
3
6
3
6
3
2
3
3
6
3
6
2
4
3
2
1
4
3
2
1
2
2
2
2
3
īƒ¯
īƒ¯
īƒž
īƒ¯
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒ¯
īƒŽ
īƒ¯
īƒ¯
īƒ­
īƒŦ
ī€­
ī€Ŋ
īƒ¯
īƒ¯
īƒž
īƒ¯
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒ¯
īƒŽ
īƒ¯
īƒ¯
īƒ­
īƒŦ
f
f
f
f
ī€Ŋ īƒ˛
īƒ˛
L
L
fL
dx
f
dx
f
L
L
T
6
6
12
]
[
0
4
3
2
1
0
N
FEA Beam Problem
f
a b
Uniform EI
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒž
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒŽ
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒ­
īƒŦ
ī€Ģ
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒž
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒŽ
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒ­
īƒŦ
ī€­
ī€­
ī€Ŋ
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒž
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒŽ
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒ­
īƒŦ
īƒē
īƒē
īƒē
īƒē
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€­
ī€­
ī€­
ī€­
0
0
0
0
6
6
12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
/
2
/
3
/
1
/
3
0
0
/
3
/
6
/
3
/
6
0
0
/
1
/
3
/
2
/
3
0
0
/
3
/
6
/
3
/
6
2 )
1
(
4
)
1
(
3
)
1
(
2
)
1
(
1
6
5
4
3
2
1
2
2
2
3
2
3
2
2
2
3
2
3
Q
Q
Q
Q
a
a
fa
U
U
U
U
U
U
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
EI
1
Element
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒž
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒŽ
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒ­
īƒŦ
ī€Ŋ
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒž
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒŽ
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒ­
īƒŦ
īƒē
īƒē
īƒē
īƒē
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€­
ī€­
ī€­
ī€­
)
2
(
4
)
2
(
3
)
2
(
2
)
2
(
1
6
5
4
3
2
1
2
2
2
3
2
3
2
2
2
3
2
3
0
0
/
2
/
3
/
1
/
3
0
0
/
3
/
6
/
3
/
6
0
0
/
1
/
3
/
2
/
3
0
0
/
3
/
6
/
3
/
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
Q
Q
Q
Q
U
U
U
U
U
U
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
EI
2
Element
(1) (3)
(2)
1 2
FEA Beam Problem
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒž
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒŽ
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒ­
īƒŦ
ī€Ģ
ī€Ģ
ī€Ģ
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒž
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒŽ
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒ­
īƒŦ
ī€­
ī€­
ī€Ŋ
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒž
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒŽ
īƒ¯
īƒ¯
īƒ¯
īƒ¯
īƒ­
īƒŦ
īƒē
īƒē
īƒē
īƒē
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
īƒ—
īƒ—
īƒ—
īƒ—
īƒ—
īƒ—
īƒ—
īƒ—
īƒ—
ī€Ģ
īƒ—
īƒ—
īƒ—
ī€­
ī€­
ī€­
ī€Ģ
īƒ—
īƒ—
īƒ—
ī€­
ī€­
ī€­
)
2
(
4
)
2
(
3
)
2
(
2
)
1
(
4
)
2
(
1
)
1
(
3
)
1
(
2
)
1
(
1
6
5
4
3
2
1
2
3
2
2
3
2
2
3
3
2
2
3
2
3
0
0
6
6
12
/
2
/
3
/
6
/
1
/
3
/
2
/
2
/
3
/
6
/
3
/
3
/
6
/
6
0
0
/
1
/
3
/
2
0
0
/
3
/
6
/
3
/
6
2
Q
Q
Q
Q
Q
Q
Q
Q
a
a
fa
U
U
U
U
U
U
a
a
a
a
a
b
a
a
a
b
a
b
a
a
a
a
a
a
a
a
EI
System
Assembled
Global
0
,
0
,
0 )
2
(
4
)
2
(
3
)
1
(
1
2
)
1
(
1
1 ī€Ŋ
ī€Ŋ
ī€Ŋ
q
ī€Ŋ
ī€Ŋ
ī€Ŋ Q
Q
U
w
U
Conditions
Boundary
0
,
0 )
2
(
2
)
1
(
4
)
2
(
1
)
1
(
3 ī€Ŋ
ī€Ģ
ī€Ŋ
ī€Ģ Q
Q
Q
Q
Conditions
Matching
īƒ¯
īƒ¯
īƒž
īƒ¯
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒ¯
īƒŽ
īƒ¯
īƒ¯
īƒ­
īƒŦ
ī€Ģ
īƒ¯
īƒ¯
īƒž
īƒ¯
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒ¯
īƒŽ
īƒ¯
īƒ¯
īƒ­
īƒŦ
ī€­
ī€Ŋ
īƒ¯
īƒ¯
īƒž
īƒ¯
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒ¯
īƒŽ
īƒ¯
īƒ¯
īƒ­
īƒŦ
īƒē
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
īƒ—
īƒ—
īƒ—
īƒ—
īƒ—
ī€Ģ
īƒ—
ī€­
ī€­
ī€­
ī€Ģ
0
0
0
0
0
0
6
12
/
2
/
3
/
6
/
1
/
3
/
2
/
2
/
3
/
6
/
3
/
3
/
6
/
6
2
4
3
2
1
2
3
2
3
3
2
2
3
3
a
fa
U
U
U
U
a
a
a
a
a
b
a
a
a
b
a
b
a
EI
System
Reduced
Solve System for Primary Unknowns U1 ,U2 ,U3 ,U4
Nodal Forces Q1 and Q2 Can Then Be Determined
(1) (3)
(2)
1 2
Special Features of Beam FEA
Analytical Solution Gives
Cubic Deflection Curve
Analytical Solution Gives
Quartic Deflection Curve
FEA Using Hermit Cubic Interpolation
Will Yield Results That Match Exactly
With Cubic Analytical Solutions
Truss Element
Generalization of Bar Element With Arbitrary Orientation
x
y
k=AE/L
q
ī€Ŋ
q
ī€Ŋ cos
,
sin c
s
Frame Element
Generalization of Bar and Beam Element with Arbitrary Orientation
ī—
(1) (2)
1
w
L
2
w
1
q 2
q
1
M 2
M
1
V 2
V
2
P
1
P
1
u 2
u
īƒ¯
īƒ¯
īƒ¯
īƒž
īƒ¯
īƒ¯
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒ¯
īƒ¯
īƒŽ
īƒ¯
īƒ¯
īƒ¯
īƒ­
īƒŦ
ī€Ŋ
īƒ¯
īƒ¯
īƒ¯
īƒž
īƒ¯
īƒ¯
īƒ¯
īƒŊ
īƒŧ
īƒ¯
īƒ¯
īƒ¯
īƒŽ
īƒ¯
īƒ¯
īƒ¯
īƒ­
īƒŦ
q
q
īƒē
īƒē
īƒē
īƒē
īƒē
īƒē
īƒē
īƒē
īƒē
īƒē
īƒē
īƒē
īƒē
īƒģ
īƒš
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĒ
īƒĢ
īƒŠ
ī€­
ī€­
ī€­
ī€­
ī€­
ī€­
ī€­
ī€­
4
3
2
2
1
1
2
2
2
1
1
1
2
2
2
3
2
3
2
2
2
3
2
3
4
6
0
2
6
0
6
12
0
6
12
0
0
0
0
0
2
6
0
4
6
0
6
12
0
6
12
0
0
0
0
0
Q
Q
P
Q
Q
P
w
u
w
u
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
AE
L
AE
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
EI
L
AE
L
AE
Element Equation Can Then Be Rotated to Accommodate Arbitrary Orientation
Some Standard FEA References
Bathe, K.J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982, 1995.
Beer, G. and Watson, J.O., Introduction to Finite and Boundary Element Methods for Engineers, John Wiley, 1993
Bickford, W.B., A First Course in the Finite Element Method, Irwin, 1990.
Burnett, D.S., Finite Element Analysis, Addison-Wesley, 1987.
Chandrupatla, T.R. and Belegundu, A.D., Introduction to Finite Elements in Engineering, Prentice-Hall, 2002.
Cook, R.D., Malkus, D.S. and Plesha, M.E., Concepts and Applications of Finite Element Analysis, 3rd Ed., John Wiley,
1989.
Desai, C.S., Elementary Finite Element Method, Prentice-Hall, 1979.
Fung, Y.C. and Tong, P., Classical and Computational Solid Mechanics, World Scientific, 2001.
Grandin, H., Fundamentals of the Finite Element Method, Macmillan, 1986.
Huebner, K.H., Thorton, E.A. and Byrom, T.G., The Finite Element Method for Engineers, 3rd Ed., John Wiley, 1994.
Knight, C.E., The Finite Element Method in Mechanical Design, PWS-KENT, 1993.
Logan, D.L., A First Course in the Finite Element Method, 2nd Ed., PWS Engineering, 1992.
Moaveni, S., Finite Element Analysis – Theory and Application with ANSYS, 2nd Ed., Pearson Education, 2003.
Pepper, D.W. and Heinrich, J.C., The Finite Element Method: Basic Concepts and Applications, Hemisphere, 1992.
Pao, Y.C., A First Course in Finite Element Analysis, Allyn and Bacon, 1986.
Rao, S.S., Finite Element Method in Engineering, 3rd Ed., Butterworth-Heinemann, 1998.
Reddy, J.N., An Introduction to the Finite Element Method, McGraw-Hill, 1993.
Ross, C.T.F., Finite Element Methods in Engineering Science, Prentice-Hall, 1993.
Stasa, F.L., Applied Finite Element Analysis for Engineers, Holt, Rinehart and Winston, 1985.
Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, Fourth Edition, McGraw-Hill, 1977, 1989.

More Related Content

What's hot

Finite element method
Finite element methodFinite element method
Finite element methodMevada Maulik
 
Finite Element Analysis of Truss Structures
Finite Element Analysis of Truss StructuresFinite Element Analysis of Truss Structures
Finite Element Analysis of Truss StructuresMahdi Damghani
 
isoparametric formulation
isoparametric formulationisoparametric formulation
isoparametric formulationmurali mohan
 
Finite Element Method
Finite Element MethodFinite Element Method
Finite Element MethodMuhammad Haris
 
Formation of partial differential equations by eliminating arbitrary functions
Formation of partial differential equations by eliminating arbitrary functionsFormation of partial differential equations by eliminating arbitrary functions
Formation of partial differential equations by eliminating arbitrary functionsDr. Boddu Muralee Bala Krushna
 
Me2353 finite-element-analysis-lecture-notes
Me2353 finite-element-analysis-lecture-notesMe2353 finite-element-analysis-lecture-notes
Me2353 finite-element-analysis-lecture-notesAmit Ghongade
 
Introduction to FEA and applications
Introduction to FEA and applicationsIntroduction to FEA and applications
Introduction to FEA and applicationsPadmanabhan Krishnan
 
Shape functions
Shape functionsShape functions
Shape functionsManoj Shukla
 
Finite Element Analysis Lecture Notes Anna University 2013 Regulation
Finite Element Analysis Lecture Notes Anna University 2013 Regulation Finite Element Analysis Lecture Notes Anna University 2013 Regulation
Finite Element Analysis Lecture Notes Anna University 2013 Regulation NAVEEN UTHANDI
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problemsTarun Gehlot
 
Galerkin method
Galerkin methodGalerkin method
Galerkin methodtenoriocederj
 
Finite element method
Finite element methodFinite element method
Finite element methodSantosh Chavan
 
Introduction to FEM
Introduction to FEMIntroduction to FEM
Introduction to FEMmezkurra
 
Finite element method vs classical method 1
Finite element method vs classical method 1Finite element method vs classical method 1
Finite element method vs classical method 1manoj kumar
 
Finite Element Analysis - UNIT-2
Finite Element Analysis - UNIT-2Finite Element Analysis - UNIT-2
Finite Element Analysis - UNIT-2propaul
 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANKASHOK KUMAR RAJENDRAN
 
General steps of the finite element method
General steps of the finite element methodGeneral steps of the finite element method
General steps of the finite element methodmahesh gaikwad
 

What's hot (20)

Finite element method
Finite element methodFinite element method
Finite element method
 
Finite Element Analysis of Truss Structures
Finite Element Analysis of Truss StructuresFinite Element Analysis of Truss Structures
Finite Element Analysis of Truss Structures
 
isoparametric formulation
isoparametric formulationisoparametric formulation
isoparametric formulation
 
Finite Element Method
Finite Element MethodFinite Element Method
Finite Element Method
 
Formation of partial differential equations by eliminating arbitrary functions
Formation of partial differential equations by eliminating arbitrary functionsFormation of partial differential equations by eliminating arbitrary functions
Formation of partial differential equations by eliminating arbitrary functions
 
Me2353 finite-element-analysis-lecture-notes
Me2353 finite-element-analysis-lecture-notesMe2353 finite-element-analysis-lecture-notes
Me2353 finite-element-analysis-lecture-notes
 
Introduction to FEA and applications
Introduction to FEA and applicationsIntroduction to FEA and applications
Introduction to FEA and applications
 
Shape functions
Shape functionsShape functions
Shape functions
 
Fem lecture
Fem lectureFem lecture
Fem lecture
 
Finite Element Analysis Lecture Notes Anna University 2013 Regulation
Finite Element Analysis Lecture Notes Anna University 2013 Regulation Finite Element Analysis Lecture Notes Anna University 2013 Regulation
Finite Element Analysis Lecture Notes Anna University 2013 Regulation
 
Finite elements for 2‐d problems
Finite elements  for 2‐d problemsFinite elements  for 2‐d problems
Finite elements for 2‐d problems
 
Galerkin method
Galerkin methodGalerkin method
Galerkin method
 
Fem 1
Fem 1Fem 1
Fem 1
 
Finite element method
Finite element methodFinite element method
Finite element method
 
First order partial differential equations
First order partial differential equationsFirst order partial differential equations
First order partial differential equations
 
Introduction to FEM
Introduction to FEMIntroduction to FEM
Introduction to FEM
 
Finite element method vs classical method 1
Finite element method vs classical method 1Finite element method vs classical method 1
Finite element method vs classical method 1
 
Finite Element Analysis - UNIT-2
Finite Element Analysis - UNIT-2Finite Element Analysis - UNIT-2
Finite Element Analysis - UNIT-2
 
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANKME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
ME6603 - FINITE ELEMENT ANALYSIS UNIT - IV NOTES AND QUESTION BANK
 
General steps of the finite element method
General steps of the finite element methodGeneral steps of the finite element method
General steps of the finite element method
 

Similar to FEM Lecture.ppt

Introduction to finite element method
Introduction to finite element methodIntroduction to finite element method
Introduction to finite element methodshahzaib601980
 
Fem notes
Fem notesFem notes
Fem notesVIGNESH C
 
Introduction_to_exament_Methods.pdf
Introduction_to_exament_Methods.pdfIntroduction_to_exament_Methods.pdf
Introduction_to_exament_Methods.pdfMustafaELALAMI
 
Lecture on Introduction to finite element methods & its contents
Lecture on Introduction  to  finite element methods  & its  contentsLecture on Introduction  to  finite element methods  & its  contents
Lecture on Introduction to finite element methods & its contentsMesayAlemuTolcha1
 
Finite Element Method.pptx
Finite Element Method.pptxFinite Element Method.pptx
Finite Element Method.pptxHassanShah396906
 
Introduction of finite element analysis1
Introduction of finite element analysis1Introduction of finite element analysis1
Introduction of finite element analysis1ssuser2209b4
 
Unit I fdocuments.in_introduction-to-fea-and-applications.ppt
Unit I fdocuments.in_introduction-to-fea-and-applications.pptUnit I fdocuments.in_introduction-to-fea-and-applications.ppt
Unit I fdocuments.in_introduction-to-fea-and-applications.pptAdityaChavan99
 
Chapter24rev1.pptPart 6Chapter 24Boundary-Valu.docx
Chapter24rev1.pptPart 6Chapter 24Boundary-Valu.docxChapter24rev1.pptPart 6Chapter 24Boundary-Valu.docx
Chapter24rev1.pptPart 6Chapter 24Boundary-Valu.docxtiffanyd4
 
A Comprehensive Introduction of the Finite Element Method for Undergraduate C...
A Comprehensive Introduction of the Finite Element Method for Undergraduate C...A Comprehensive Introduction of the Finite Element Method for Undergraduate C...
A Comprehensive Introduction of the Finite Element Method for Undergraduate C...IJERA Editor
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysisTarun Gehlot
 
Introduction to fem
Introduction to femIntroduction to fem
Introduction to femAnubhav Singh
 
INTRODUCTION TO FINITE ELEMENT ANALYSIS
INTRODUCTION TO FINITE ELEMENT ANALYSISINTRODUCTION TO FINITE ELEMENT ANALYSIS
INTRODUCTION TO FINITE ELEMENT ANALYSISAchyuth Peri
 

Similar to FEM Lecture.ppt (20)

Introduction to FEA
Introduction to FEAIntroduction to FEA
Introduction to FEA
 
Introduction to finite element method
Introduction to finite element methodIntroduction to finite element method
Introduction to finite element method
 
ED7201 FEMMD_notes
ED7201 FEMMD_notesED7201 FEMMD_notes
ED7201 FEMMD_notes
 
Fem notes
Fem notesFem notes
Fem notes
 
Introduction to Finite Elements
Introduction to Finite ElementsIntroduction to Finite Elements
Introduction to Finite Elements
 
Fem utkarsh
Fem utkarshFem utkarsh
Fem utkarsh
 
Introduction_to_exament_Methods.pdf
Introduction_to_exament_Methods.pdfIntroduction_to_exament_Methods.pdf
Introduction_to_exament_Methods.pdf
 
Lecture on Introduction to finite element methods & its contents
Lecture on Introduction  to  finite element methods  & its  contentsLecture on Introduction  to  finite element methods  & its  contents
Lecture on Introduction to finite element methods & its contents
 
Finite Element Method.pptx
Finite Element Method.pptxFinite Element Method.pptx
Finite Element Method.pptx
 
Introduction of finite element analysis1
Introduction of finite element analysis1Introduction of finite element analysis1
Introduction of finite element analysis1
 
Unit I fdocuments.in_introduction-to-fea-and-applications.ppt
Unit I fdocuments.in_introduction-to-fea-and-applications.pptUnit I fdocuments.in_introduction-to-fea-and-applications.ppt
Unit I fdocuments.in_introduction-to-fea-and-applications.ppt
 
Chapter24rev1.pptPart 6Chapter 24Boundary-Valu.docx
Chapter24rev1.pptPart 6Chapter 24Boundary-Valu.docxChapter24rev1.pptPart 6Chapter 24Boundary-Valu.docx
Chapter24rev1.pptPart 6Chapter 24Boundary-Valu.docx
 
FEA_Theory.ppt
FEA_Theory.pptFEA_Theory.ppt
FEA_Theory.ppt
 
A Comprehensive Introduction of the Finite Element Method for Undergraduate C...
A Comprehensive Introduction of the Finite Element Method for Undergraduate C...A Comprehensive Introduction of the Finite Element Method for Undergraduate C...
A Comprehensive Introduction of the Finite Element Method for Undergraduate C...
 
Introduction to finite element analysis
Introduction to finite element analysisIntroduction to finite element analysis
Introduction to finite element analysis
 
Fea theory
Fea theoryFea theory
Fea theory
 
Introduction to fem
Introduction to femIntroduction to fem
Introduction to fem
 
INTRODUCTION TO FINITE ELEMENT ANALYSIS
INTRODUCTION TO FINITE ELEMENT ANALYSISINTRODUCTION TO FINITE ELEMENT ANALYSIS
INTRODUCTION TO FINITE ELEMENT ANALYSIS
 
Weighted residual.pdf
Weighted residual.pdfWeighted residual.pdf
Weighted residual.pdf
 
Lecture 11 & 12
Lecture 11 & 12Lecture 11 & 12
Lecture 11 & 12
 

Recently uploaded

Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 

Recently uploaded (20)

Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
CÃŗdigo Creativo y Arte de Software | Unidad 1
CÃŗdigo Creativo y Arte de Software | Unidad 1CÃŗdigo Creativo y Arte de Software | Unidad 1
CÃŗdigo Creativo y Arte de Software | Unidad 1
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 

FEM Lecture.ppt

  • 1. MCE 565 Wave Motion & Vibration in Continuous Media Spring 2005 Professor M. H. Sadd Introduction to Finite Element Methods
  • 2. Need for Computational Methods â€ĸ Solutions Using Either Strength of Materials or Theory of Elasticity Are Normally Accomplished for Regions and Loadings With Relatively Simple Geometry â€ĸ Many Applicaitons Involve Cases with Complex Shape, Boundary Conditions and Material Behavior â€ĸ Therefore a Gap Exists Between What Is Needed in Applications and What Can Be Solved by Analytical Closed- form Methods â€ĸ This Has Lead to the Development of Several Numerical/Computational Schemes Including: Finite Difference, Finite Element and Boundary Element Methods
  • 3. Introduction to Finite Element Analysis The finite element method is a computational scheme to solve field problems in engineering and science. The technique has very wide application, and has been used on problems involving stress analysis, fluid mechanics, heat transfer, diffusion, vibrations, electrical and magnetic fields, etc. The fundamental concept involves dividing the body under study into a finite number of pieces (subdomains) called elements (see Figure). Particular assumptions are then made on the variation of the unknown dependent variable(s) across each element using so-called interpolation or approximation functions. This approximated variation is quantified in terms of solution values at special element locations called nodes. Through this discretization process, the method sets up an algebraic system of equations for unknown nodal values which approximate the continuous solution. Because element size, shape and approximating scheme can be varied to suit the problem, the method can accurately simulate solutions to problems of complex geometry and loading and thus this technique has become a very useful and practical tool.
  • 4. Advantages of Finite Element Analysis - Models Bodies of Complex Shape - Can Handle General Loading/Boundary Conditions - Models Bodies Composed of Composite and Multiphase Materials - Model is Easily Refined for Improved Accuracy by Varying Element Size and Type (Approximation Scheme) - Time Dependent and Dynamic Effects Can Be Included - Can Handle a Variety Nonlinear Effects Including Material Behavior, Large Deformations, Boundary Conditions, Etc.
  • 5. Basic Concept of the Finite Element Method Any continuous solution field such as stress, displacement, temperature, pressure, etc. can be approximated by a discrete model composed of a set of piecewise continuous functions defined over a finite number of subdomains. Exact Analytical Solution x T Approximate Piecewise Linear Solution x T One-Dimensional Temperature Distribution
  • 7. Discretization Concepts x T Exact Temperature Distribution, T(x) Finite Element Discretization Linear Interpolation Model (Four Elements) Quadratic Interpolation Model (Two Elements) T1 T2 T2 T3 T3 T4 T4 T5 T1 T2 T3 T4 T5 Piecewise Linear Approximation T x T1 T2 T3 T3 T4 T5 T T1 T2 T3 T4 T5 Piecewise Quadratic Approximation x Temperature Continuous but with Discontinuous Temperature Gradients Temperature and Temperature Gradients Continuous
  • 8. Common Types of Elements One-Dimensional Elements Line Rods, Beams, Trusses, Frames Two-Dimensional Elements Triangular, Quadrilateral Plates, Shells, 2-D Continua Three-Dimensional Elements Tetrahedral, Rectangular Prism (Brick) 3-D Continua
  • 10. Basic Steps in the Finite Element Method Time Independent Problems - Domain Discretization - Select Element Type (Shape and Approximation) - Derive Element Equations (Variational and Energy Methods) - Assemble Element Equations to Form Global System [K]{U} = {F} [K] = Stiffness or Property Matrix {U} = Nodal Displacement Vector {F} = Nodal Force Vector - Incorporate Boundary and Initial Conditions - Solve Assembled System of Equations for Unknown Nodal Displacements and Secondary Unknowns of Stress and Strain Values
  • 11. Common Sources of Error in FEA â€ĸ Domain Approximation â€ĸ Element Interpolation/Approximation â€ĸ Numerical Integration Errors (Including Spatial and Time Integration) â€ĸ Computer Errors (Round-Off, Etc., )
  • 12. Measures of Accuracy in FEA Accuracy Error = |(Exact Solution)-(FEM Solution)| Convergence Limit of Error as: Number of Elements (h-convergence) or Approximation Order (p-convergence) Increases Ideally, Error ī‚Ž 0 as Number of Elements or Approximation Order ī‚Ž ī‚Ĩ
  • 13. Two-Dimensional Discretization Refinement (Discretization with 228 Elements) (Discretization with 912 Elements) (Triangular Element) (Node) ī‚ˇ ī‚ˇ ī‚ˇ
  • 14. One Dimensional Examples Static Case 1 2 u1 u2 Bar Element Uniaxial Deformation of Bars Using Strength of Materials Theory Beam Element Deflection of Elastic Beams Using Euler-Bernouli Theory 1 2 w1 w2 q2 q1 dx du a u q cu au dx d , : ion Specificat Condtions Boundary 0 ) ( : Equation al Differenti ī€Ŋ ī€­ ī€Ģ ī€­ ) ( , , , : ion Specificat Condtions Boundary ) ( ) ( : Equation al Differenti 2 2 2 2 2 2 2 2 dx w d b dx d dx w d b dx dw w x f dx w d b dx d ī€Ŋ ī€­
  • 15. Two Dimensional Examples u1 u2 1 2 3 u3 v1 v2 v3 1 2 3 f1 f2 f3 Triangular Element Scalar-Valued, Two-Dimensional Field Problems Triangular Element Vector/Tensor-Valued, Two- Dimensional Field Problems y x n y n x dn d y x f y x ī‚ļ f ī‚ļ ī€Ģ ī‚ļ f ī‚ļ ī€Ŋ f f ī€Ŋ ī‚ļ f ī‚ļ ī€Ģ ī‚ļ f ī‚ļ , : ion Specificat Condtions Boundary ) , ( : Equation ial Different Example 2 2 2 2 y x y y x x y x n y v C x u C n x v y u C T n x v y u C n y v C x u C T F y v x u y E v F y v x u x E u īƒˇ īƒˇ īƒ¸ īƒļ īƒ§ īƒ§ īƒ¨ īƒĻ ī‚ļ ī‚ļ ī€Ģ ī‚ļ ī‚ļ ī€Ģ īƒˇ īƒˇ īƒ¸ īƒļ īƒ§ īƒ§ īƒ¨ īƒĻ ī‚ļ ī‚ļ ī€Ģ ī‚ļ ī‚ļ ī€Ŋ īƒˇ īƒˇ īƒ¸ īƒļ īƒ§ īƒ§ īƒ¨ īƒĻ ī‚ļ ī‚ļ ī€Ģ ī‚ļ ī‚ļ ī€Ģ īƒˇ īƒˇ īƒ¸ īƒļ īƒ§ īƒ§ īƒ¨ īƒĻ ī‚ļ ī‚ļ ī€Ģ ī‚ļ ī‚ļ ī€Ŋ ī€Ŋ ī€Ģ īƒˇ īƒˇ īƒ¸ īƒļ īƒ§ īƒ§ īƒ¨ īƒĻ ī‚ļ ī‚ļ ī€Ģ ī‚ļ ī‚ļ ī‚ļ ī‚ļ īŽ ī€­ ī€Ģ īƒ‘ ī­ ī€Ŋ ī€Ģ īƒˇ īƒˇ īƒ¸ īƒļ īƒ§ īƒ§ īƒ¨ īƒĻ ī‚ļ ī‚ļ ī€Ģ ī‚ļ ī‚ļ ī‚ļ ī‚ļ īŽ ī€­ ī€Ģ īƒ‘ ī­ 22 12 66 66 12 11 2 2 Conditons Boundary 0 ) 1 ( 2 0 ) 1 ( 2 ents Displacem of Terms in Equations Field Elasticity
  • 16. Development of Finite Element Equation â€ĸ The Finite Element Equation Must Incorporate the Appropriate Physics of the Problem â€ĸ For Problems in Structural Solid Mechanics, the Appropriate Physics Comes from Either Strength of Materials or Theory of Elasticity â€ĸ FEM Equations are Commonly Developed Using Direct, Variational- Virtual Work or Weighted Residual Methods Variational-Virtual Work Method Based on the concept of virtual displacements, leads to relations between internal and external virtual work and to minimization of system potential energy for equilibrium Weighted Residual Method Starting with the governing differential equation, special mathematical operations develop the “weak form” that can be incorporated into a FEM equation. This method is particularly suited for problems that have no variational statement. For stress analysis problems, a Ritz-Galerkin WRM will yield a result identical to that found by variational methods. Direct Method Based on physical reasoning and limited to simple cases, this method is worth studying because it enhances physical understanding of the process
  • 17. Simple Element Equation Example Direct Stiffness Derivation 1 2 k u1 u2 F1 F2 } { } ]{ [ rm Matrix Fo in or 2 Node at m Equilibriu 1 Node at m Equilibriu 2 1 2 1 2 1 2 2 1 1 F u K F F u u k k k k ku ku F ku ku F ī€Ŋ īƒž īƒŊ īƒŧ īƒŽ īƒ­ īƒŦ ī€Ŋ īƒž īƒŊ īƒŧ īƒŽ īƒ­ īƒŦ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€Ģ ī€­ ī€Ŋ īƒž ī€­ ī€Ŋ īƒž Stiffness Matrix Nodal Force Vector
  • 18. Common Approximation Schemes One-Dimensional Examples Linear Quadratic Cubic Polynomial Approximation Most often polynomials are used to construct approximation functions for each element. Depending on the order of approximation, different numbers of element parameters are needed to construct the appropriate function. Special Approximation For some cases (e.g. infinite elements, crack or other singular elements) the approximation function is chosen to have special properties as determined from theoretical considerations
  • 19. One-Dimensional Bar Element īƒž ī¤ ī€Ģ ī€Ģ ī€Ŋ ī¤ īŗ īƒ˛ īƒ˛ ī— ī— udV f u P u P edV j j i i } ]{ [ : Law Strain - Stress } ]{ [ } { ] [ ) ( : Strain } { ] [ ) ( : ion Approximat d B d B d N d N E Ee dx d u x dx d dx du e u x u k k k k k k ī€Ŋ ī€Ŋ īŗ ī€Ŋ ī€Ŋ īš ī€Ŋ ī€Ŋ ī€Ŋ īš ī€Ŋ īƒĨ īƒĨ īƒž ī€Ģ īƒž īƒŊ īƒŧ īƒŽ īƒ­ īƒŦ ī€Ŋ īƒ˛ īƒ˛ L T T j i T L T T fdx A P P dx E A 0 0 ] [ } { } { } { ] [ ] [ } { N δd δd d B B δd īƒ˛ īƒ˛ ī€Ģ ī€Ŋ L T L T fdx A dx E A 0 0 ] [ } { } { ] [ ] [ N P d B B Vector ent Displacem Nodal } { Vector Loading ] [ } { Matrix Stiffness ] [ ] [ ] [ 0 0 ī€Ŋ īƒž īƒŊ īƒŧ īƒŽ īƒ­ īƒŦ ī€Ŋ ī€Ŋ ī€Ģ īƒž īƒŊ īƒŧ īƒŽ īƒ­ īƒŦ ī€Ŋ ī€Ŋ ī€Ŋ īƒ˛ īƒ˛ j i L T j i L T u u fdx A P P dx E A K d N F B B } { } ]{ [ F d K ī€Ŋ
  • 20. One-Dimensional Bar Element A = Cross-sectional Area E = Elastic Modulus f(x) = Distributed Loading dV u F dS u T dV e i V i S i n i ij V ij t ī¤ ī€Ģ ī¤ ī€Ŋ ī¤ īŗ īƒ˛ īƒ˛ īƒ˛ Virtual Strain Energy = Virtual Work Done by Surface and Body Forces For One-Dimensional Case īƒ˛ īƒ˛ ī— ī— ī¤ ī€Ģ ī€Ģ ī€Ŋ ī¤ īŗ udV f u P u P edV j j i i ī— (i) (j) Axial Deformation of an Elastic Bar Typical Bar Element dx du AE P i i ī€­ ī€Ŋ dx du AE P j j ī€­ ī€Ŋ i u j u L x (Two Degrees of Freedom)
  • 21. Linear Approximation Scheme ī› ī Vector ent Displacem Nodal } { Matrix Function ion Approximat ] [ } ]{ [ 1 ) ( ) ( 1 2 1 2 1 2 1 2 2 1 1 2 1 1 2 1 2 1 2 1 1 2 1 ī€Ŋ ī€Ŋ ī€Ŋ īƒž īƒŊ īƒŧ īƒŽ īƒ­ īƒŦ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€Ŋ īƒž īƒŊ īƒŧ īƒŽ īƒ­ īƒŦ īš īš ī€Ŋ īš ī€Ģ īš ī€Ŋ īƒˇ īƒ¸ īƒļ īƒ§ īƒ¨ īƒĻ ī€Ģ īƒˇ īƒ¸ īƒļ īƒ§ īƒ¨ īƒĻ ī€­ ī€Ŋ ī€­ ī€Ģ ī€Ŋ īƒž ī€Ģ ī€Ŋ ī€Ŋ īƒž ī€Ģ ī€Ŋ d N d N nt Displaceme Elastic e Approximat u u L x L x u u u u x u x u L x u L x x L u u u u L a a u a u x a a u x (local coordinate system) (1) (2) i u j u L x (1) (2) u(x) x (1) (2) īš1(x) īš2(x) 1 īšk(x) – Lagrange Interpolation Functions
  • 22. Element Equation Linear Approximation Scheme, Constant Properties Vector ent Displacem Nodal } { 1 1 2 ] [ } { 1 1 1 1 1 1 1 1 ] [ ] [ ] [ ] [ ] [ 2 1 2 1 0 2 1 0 2 1 0 0 ī€Ŋ īƒž īƒŊ īƒŧ īƒŽ īƒ­ īƒŦ ī€Ŋ īƒž īƒŊ īƒŧ īƒŽ īƒ­ īƒŦ ī€Ģ īƒž īƒŊ īƒŧ īƒŽ īƒ­ īƒŦ ī€Ŋ īƒ¯ īƒž īƒ¯ īƒŊ īƒŧ īƒ¯ īƒŽ īƒ¯ īƒ­ īƒŦ ī€­ ī€Ģ īƒž īƒŊ īƒŧ īƒŽ īƒ­ īƒŦ ī€Ŋ ī€Ģ īƒž īƒŊ īƒŧ īƒŽ īƒ­ īƒŦ ī€Ŋ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€Ŋ īƒž īƒŊ īƒŧ īƒŽ īƒ­ īƒŦ ī€­ īƒ¯ īƒž īƒ¯ īƒŊ īƒŧ īƒ¯ īƒŽ īƒ¯ īƒ­ īƒŦ ī€­ ī€Ŋ ī€Ŋ ī€Ŋ īƒ˛ īƒ˛ īƒ˛ īƒ˛ u u L Af P P dx L x L x Af P P fdx A P P L AE L L L L L AE dx AE dx E A K o L o L T L T L T d N F B B B B īƒž īƒŊ īƒŧ īƒŽ īƒ­ īƒŦ ī€Ģ īƒž īƒŊ īƒŧ īƒŽ īƒ­ īƒŦ ī€Ŋ īƒž īƒŊ īƒŧ īƒŽ īƒ­ īƒŦ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€­ īƒž ī€Ŋ 1 1 2 1 1 1 1 } { } ]{ [ 2 1 2 1 L Af P P u u L AE o F d K
  • 23. Quadratic Approximation Scheme ī› ī } ]{ [ ) ( ) ( ) ( 4 2 3 2 1 3 2 1 3 3 2 2 1 1 2 3 2 1 3 2 3 2 1 2 1 1 2 3 2 1 d N nt Displaceme Elastic e Approximat ī€Ŋ īƒ¯ īƒž īƒ¯ īƒŊ īƒŧ īƒ¯ īƒŽ īƒ¯ īƒ­ īƒŦ īš īš īš ī€Ŋ īš ī€Ģ īš ī€Ģ īš ī€Ŋ ī€Ģ ī€Ģ ī€Ŋ ī€Ģ ī€Ģ ī€Ŋ ī€Ŋ īƒž ī€Ģ ī€Ģ ī€Ŋ u u u u u x u x u x u L a L a a u L a L a a u a u x a x a a u x (1) (3) 1 u 3 u (2) 2 u L u(x) x (1) (3) (2) x (1) (3) (2) 1 īš1(x) īš3(x) īš2(x) īƒ¯ īƒž īƒ¯ īƒŊ īƒŧ īƒ¯ īƒŽ īƒ¯ īƒ­ īƒŦ ī€Ŋ īƒ¯ īƒž īƒ¯ īƒŊ īƒŧ īƒ¯ īƒŽ īƒ¯ īƒ­ īƒŦ īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€­ ī€­ 3 2 1 3 2 1 7 8 1 8 16 8 1 8 7 3 F F F u u u L AE Equation Element
  • 24. Lagrange Interpolation Functions Using Natural or Normalized Coordinates 1 1 ī‚Ŗ ī¸ ī‚Ŗ ī€­ ī¸ (1) (2) ) 1 ( 2 1 ) 1 ( 2 1 2 1 ī¸ ī€Ģ ī€Ŋ īš ī¸ ī€­ ī€Ŋ īš ) 1 ( 2 1 ) 1 )( 1 ( ) 1 ( 2 1 3 2 1 ī¸ ī€Ģ ī¸ ī€Ŋ īš ī¸ ī€Ģ ī¸ ī€­ ī€Ŋ īš ī¸ ī€­ ī¸ ī€­ ī€Ŋ īš ) 1 )( 3 1 )( 3 1 ( 16 9 ) 3 1 )( 1 )( 1 ( 16 27 ) 3 1 )( 1 )( 1 ( 16 27 ) 3 1 )( 3 1 )( 1 ( 16 9 4 3 2 1 ī¸ ī€Ģ ī¸ ī€­ ī¸ ī€Ģ ī€­ ī€Ŋ īš ī¸ ī€Ģ ī¸ ī€Ģ ī¸ ī€­ ī€Ŋ īš ī¸ ī€­ ī¸ ī€Ģ ī¸ ī€­ ī€Ŋ īš ī¸ ī€­ ī¸ ī€Ģ ī¸ ī€­ ī€­ ī€Ŋ īš ī¸ (1) (2) (3) ī¸ (1) (2) (3) (4) īƒŽ īƒ­ īƒŦ ī‚š ī€Ŋ ī€Ŋ ī¸ īš j i j i j i , 0 , 1 ) (
  • 25. Simple Example P A1,E1,L1 A2,E2,L2 (1) (3) (2) 1 2 īƒ¯ īƒž īƒ¯ īƒŊ īƒŧ īƒ¯ īƒŽ īƒ¯ īƒ­ īƒŦ ī€Ŋ īƒ¯ īƒž īƒ¯ īƒŊ īƒŧ īƒ¯ īƒŽ īƒ¯ īƒ­ īƒŦ īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€­ 0 0 0 0 0 1 1 0 1 1 1 Element Equation Global ) 1 ( 2 ) 1 ( 1 3 2 1 1 1 1 P P U U U L E A īƒ¯ īƒž īƒ¯ īƒŊ īƒŧ īƒ¯ īƒŽ īƒ¯ īƒ­ īƒŦ ī€Ŋ īƒ¯ īƒž īƒ¯ īƒŊ īƒŧ īƒ¯ īƒŽ īƒ¯ īƒ­ īƒŦ īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€­ ) 2 ( 2 ) 2 ( 1 3 2 1 2 2 2 0 1 1 0 1 1 0 0 0 0 2 Element Equation Global P P U U U L E A īƒ¯ īƒž īƒ¯ īƒŊ īƒŧ īƒ¯ īƒŽ īƒ¯ īƒ­ īƒŦ ī€Ŋ īƒ¯ īƒž īƒ¯ īƒŊ īƒŧ īƒ¯ īƒŽ īƒ¯ īƒ­ īƒŦ ī€Ģ ī€Ŋ īƒ¯ īƒž īƒ¯ īƒŊ īƒŧ īƒ¯ īƒŽ īƒ¯ īƒ­ īƒŦ īƒē īƒē īƒē īƒē īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€Ģ ī€­ ī€­ 3 2 1 ) 2 ( 2 ) 2 ( 1 ) 1 ( 2 ) 1 ( 1 3 2 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 Equation System Global Assembled P P P P P P P U U U L E A L E A L E A L E A L E A L E A L E A L E A 0 Loading ed Distribut Zero Take ī€Ŋ f
  • 26. Simple Example Continued P A1,E1,L1 A2,E2,L2 (1) (3) (2) 1 2 0 0 Conditions Boundary ) 2 ( 1 ) 1 ( 2 ) 2 ( 2 1 ī€Ŋ ī€Ģ ī€Ŋ ī€Ŋ P P P P U īƒ¯ īƒž īƒ¯ īƒŊ īƒŧ īƒ¯ īƒŽ īƒ¯ īƒ­ īƒŦ ī€Ŋ īƒ¯ īƒž īƒ¯ īƒŊ īƒŧ īƒ¯ īƒŽ īƒ¯ īƒ­ īƒŦ īƒē īƒē īƒē īƒē īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€Ģ ī€­ ī€­ P P U U L E A L E A L E A L E A L E A L E A L E A L E A 0 0 0 0 Equation System Global Reduced ) 1 ( 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 īƒž īƒŊ īƒŧ īƒŽ īƒ­ īƒŦ ī€Ŋ īƒž īƒŊ īƒŧ īƒŽ īƒ­ īƒŦ īƒē īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€Ģ P U U L E A L E A L E A L E A L E A 0 3 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 L E A , , Properties m For Unifor īƒž īƒŊ īƒŧ īƒŽ īƒ­ īƒŦ ī€Ŋ īƒž īƒŊ īƒŧ īƒŽ īƒ­ īƒŦ īƒē īƒģ īƒš īƒĒ īƒĢ īƒŠ ī€­ ī€­ P U U L AE 0 1 1 1 2 3 2 P P AE PL U AE PL U ī€­ ī€Ŋ ī€Ŋ ī€Ŋ īƒž ) 1 ( 1 3 2 , 2 , Solving
  • 27. One-Dimensional Beam Element Deflection of an Elastic Beam 2 2 4 2 3 1 1 2 1 1 2 2 2 4 2 2 2 3 1 2 2 2 1 2 2 1 , , , , , dx dw u w u dx dw u w u dx w d EI Q dx w d EI dx d Q dx w d EI Q dx w d EI dx d Q ī€­ ī€Ŋ q ī€Ŋ ī€Ŋ ī€­ ī€Ŋ q ī€Ŋ ī€Ŋ īƒˇ īƒˇ īƒ¸ īƒļ īƒ§ īƒ§ īƒ¨ īƒĻ ī€­ ī€Ŋ īƒˇ īƒˇ īƒ¸ īƒļ īƒ§ īƒ§ īƒ¨ īƒĻ ī€­ ī€Ŋ īƒˇ īƒˇ īƒ¸ īƒļ īƒ§ īƒ§ īƒ¨ īƒĻ ī€Ŋ īƒˇ īƒˇ īƒ¸ īƒļ īƒ§ īƒ§ īƒ¨ īƒĻ ī€Ŋ I = Section Moment of Inertia E = Elastic Modulus f(x) = Distributed Loading ī— (1) (2) Typical Beam Element 1 w L 2 w 1 q 2 q 1 M 2 M 1 V 2 V x Virtual Strain Energy = Virtual Work Done by Surface and Body Forces īƒž ī¤ ī€Ģ ī€Ģ ī€Ģ ī€Ģ ī€Ŋ ī¤ īŗ īƒ˛ īƒ˛ ī— ī— wdV f w Q u Q u Q u Q edV 4 4 3 3 2 2 1 1 īƒ˛ īƒ˛ ī€Ģ ī€Ģ ī€Ģ ī€Ģ ī€Ŋ L T L dV f w Q u Q u Q u Q dx EI 0 4 4 3 3 2 2 1 1 0 ] [ } { ] [ ] [ N d B B T (Four Degrees of Freedom)
  • 28. Beam Approximation Functions To approximate deflection and slope at each node requires approximation of the form 3 4 2 3 2 1 ) ( x c x c x c c x w ī€Ģ ī€Ģ ī€Ģ ī€Ŋ Evaluating deflection and slope at each node allows the determination of ci thus leading to Functions ion Approximat Cubic Hermite the are where , ) ( ) ( ) ( ) ( ) ( 4 4 3 3 2 2 1 1 i u x u x u x u x x w f f ī€Ģ f ī€Ģ f ī€Ģ f ī€Ŋ
  • 29. Beam Element Equation īƒ˛ īƒ˛ ī€Ģ ī€Ģ ī€Ģ ī€Ģ ī€Ŋ L T L dV f w Q u Q u Q u Q dx EI 0 4 4 3 3 2 2 1 1 0 ] [ } { ] [ ] [ N d B B T īƒ¯ īƒ¯ īƒž īƒ¯ īƒ¯ īƒŊ īƒŧ īƒ¯ īƒ¯ īƒŽ īƒ¯ īƒ¯ īƒ­ īƒŦ ī€Ŋ 4 3 2 1 } { u u u u d ] [ ] [ ] [ 4 3 2 1 dx d dx d dx d dx d dx d f f f f ī€Ŋ ī€Ŋ N B īƒē īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€­ ī€­ ī€­ ī€­ ī€Ŋ ī€Ŋ īƒ˛ 2 2 2 2 3 0 2 3 3 3 6 3 6 3 2 3 3 6 3 6 2 ] [ ] [ ] [ L L L L L L L L L L L L L EI dx EI L B B K T īƒ¯ īƒ¯ īƒž īƒ¯ īƒ¯ īƒŊ īƒŧ īƒ¯ īƒ¯ īƒŽ īƒ¯ īƒ¯ īƒ­ īƒŦ ī€­ ī€Ģ īƒ¯ īƒ¯ īƒž īƒ¯ īƒ¯ īƒŊ īƒŧ īƒ¯ īƒ¯ īƒŽ īƒ¯ īƒ¯ īƒ­ īƒŦ ī€Ŋ īƒ¯ īƒ¯ īƒž īƒ¯ īƒ¯ īƒŊ īƒŧ īƒ¯ īƒ¯ īƒŽ īƒ¯ īƒ¯ īƒ­ īƒŦ īƒē īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€­ ī€­ ī€­ ī€­ L L fL Q Q Q Q u u u u L L L L L L L L L L L L L EI 6 6 12 2 3 3 3 6 3 6 3 2 3 3 6 3 6 2 4 3 2 1 4 3 2 1 2 2 2 2 3 īƒ¯ īƒ¯ īƒž īƒ¯ īƒ¯ īƒŊ īƒŧ īƒ¯ īƒ¯ īƒŽ īƒ¯ īƒ¯ īƒ­ īƒŦ ī€­ ī€Ŋ īƒ¯ īƒ¯ īƒž īƒ¯ īƒ¯ īƒŊ īƒŧ īƒ¯ īƒ¯ īƒŽ īƒ¯ īƒ¯ īƒ­ īƒŦ f f f f ī€Ŋ īƒ˛ īƒ˛ L L fL dx f dx f L L T 6 6 12 ] [ 0 4 3 2 1 0 N
  • 30. FEA Beam Problem f a b Uniform EI īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒž īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒŊ īƒŧ īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒŽ īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒ­ īƒŦ ī€Ģ īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒž īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒŊ īƒŧ īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒŽ īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒ­ īƒŦ ī€­ ī€­ ī€Ŋ īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒž īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒŊ īƒŧ īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒŽ īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒ­ īƒŦ īƒē īƒē īƒē īƒē īƒē īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€­ ī€­ ī€­ ī€­ 0 0 0 0 6 6 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 / 2 / 3 / 1 / 3 0 0 / 3 / 6 / 3 / 6 0 0 / 1 / 3 / 2 / 3 0 0 / 3 / 6 / 3 / 6 2 ) 1 ( 4 ) 1 ( 3 ) 1 ( 2 ) 1 ( 1 6 5 4 3 2 1 2 2 2 3 2 3 2 2 2 3 2 3 Q Q Q Q a a fa U U U U U U a a a a a a a a a a a a a a a a EI 1 Element īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒž īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒŊ īƒŧ īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒŽ īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒ­ īƒŦ ī€Ŋ īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒž īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒŊ īƒŧ īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒŽ īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒ­ īƒŦ īƒē īƒē īƒē īƒē īƒē īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€­ ī€­ ī€­ ī€­ ) 2 ( 4 ) 2 ( 3 ) 2 ( 2 ) 2 ( 1 6 5 4 3 2 1 2 2 2 3 2 3 2 2 2 3 2 3 0 0 / 2 / 3 / 1 / 3 0 0 / 3 / 6 / 3 / 6 0 0 / 1 / 3 / 2 / 3 0 0 / 3 / 6 / 3 / 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 Q Q Q Q U U U U U U b b b b b b b b b b b b b b b b EI 2 Element (1) (3) (2) 1 2
  • 31. FEA Beam Problem īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒž īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒŊ īƒŧ īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒŽ īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒ­ īƒŦ ī€Ģ ī€Ģ ī€Ģ īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒž īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒŊ īƒŧ īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒŽ īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒ­ īƒŦ ī€­ ī€­ ī€Ŋ īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒž īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒŊ īƒŧ īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒŽ īƒ¯ īƒ¯ īƒ¯ īƒ¯ īƒ­ īƒŦ īƒē īƒē īƒē īƒē īƒē īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ īƒ— īƒ— īƒ— īƒ— īƒ— īƒ— īƒ— īƒ— īƒ— ī€Ģ īƒ— īƒ— īƒ— ī€­ ī€­ ī€­ ī€Ģ īƒ— īƒ— īƒ— ī€­ ī€­ ī€­ ) 2 ( 4 ) 2 ( 3 ) 2 ( 2 ) 1 ( 4 ) 2 ( 1 ) 1 ( 3 ) 1 ( 2 ) 1 ( 1 6 5 4 3 2 1 2 3 2 2 3 2 2 3 3 2 2 3 2 3 0 0 6 6 12 / 2 / 3 / 6 / 1 / 3 / 2 / 2 / 3 / 6 / 3 / 3 / 6 / 6 0 0 / 1 / 3 / 2 0 0 / 3 / 6 / 3 / 6 2 Q Q Q Q Q Q Q Q a a fa U U U U U U a a a a a b a a a b a b a a a a a a a a EI System Assembled Global 0 , 0 , 0 ) 2 ( 4 ) 2 ( 3 ) 1 ( 1 2 ) 1 ( 1 1 ī€Ŋ ī€Ŋ ī€Ŋ q ī€Ŋ ī€Ŋ ī€Ŋ Q Q U w U Conditions Boundary 0 , 0 ) 2 ( 2 ) 1 ( 4 ) 2 ( 1 ) 1 ( 3 ī€Ŋ ī€Ģ ī€Ŋ ī€Ģ Q Q Q Q Conditions Matching īƒ¯ īƒ¯ īƒž īƒ¯ īƒ¯ īƒŊ īƒŧ īƒ¯ īƒ¯ īƒŽ īƒ¯ īƒ¯ īƒ­ īƒŦ ī€Ģ īƒ¯ īƒ¯ īƒž īƒ¯ īƒ¯ īƒŊ īƒŧ īƒ¯ īƒ¯ īƒŽ īƒ¯ īƒ¯ īƒ­ īƒŦ ī€­ ī€Ŋ īƒ¯ īƒ¯ īƒž īƒ¯ īƒ¯ īƒŊ īƒŧ īƒ¯ īƒ¯ īƒŽ īƒ¯ īƒ¯ īƒ­ īƒŦ īƒē īƒē īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ īƒ— īƒ— īƒ— īƒ— īƒ— ī€Ģ īƒ— ī€­ ī€­ ī€­ ī€Ģ 0 0 0 0 0 0 6 12 / 2 / 3 / 6 / 1 / 3 / 2 / 2 / 3 / 6 / 3 / 3 / 6 / 6 2 4 3 2 1 2 3 2 3 3 2 2 3 3 a fa U U U U a a a a a b a a a b a b a EI System Reduced Solve System for Primary Unknowns U1 ,U2 ,U3 ,U4 Nodal Forces Q1 and Q2 Can Then Be Determined (1) (3) (2) 1 2
  • 32. Special Features of Beam FEA Analytical Solution Gives Cubic Deflection Curve Analytical Solution Gives Quartic Deflection Curve FEA Using Hermit Cubic Interpolation Will Yield Results That Match Exactly With Cubic Analytical Solutions
  • 33. Truss Element Generalization of Bar Element With Arbitrary Orientation x y k=AE/L q ī€Ŋ q ī€Ŋ cos , sin c s
  • 34. Frame Element Generalization of Bar and Beam Element with Arbitrary Orientation ī— (1) (2) 1 w L 2 w 1 q 2 q 1 M 2 M 1 V 2 V 2 P 1 P 1 u 2 u īƒ¯ īƒ¯ īƒ¯ īƒž īƒ¯ īƒ¯ īƒ¯ īƒŊ īƒŧ īƒ¯ īƒ¯ īƒ¯ īƒŽ īƒ¯ īƒ¯ īƒ¯ īƒ­ īƒŦ ī€Ŋ īƒ¯ īƒ¯ īƒ¯ īƒž īƒ¯ īƒ¯ īƒ¯ īƒŊ īƒŧ īƒ¯ īƒ¯ īƒ¯ īƒŽ īƒ¯ īƒ¯ īƒ¯ īƒ­ īƒŦ q q īƒē īƒē īƒē īƒē īƒē īƒē īƒē īƒē īƒē īƒē īƒē īƒē īƒē īƒģ īƒš īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĒ īƒĢ īƒŠ ī€­ ī€­ ī€­ ī€­ ī€­ ī€­ ī€­ ī€­ 4 3 2 2 1 1 2 2 2 1 1 1 2 2 2 3 2 3 2 2 2 3 2 3 4 6 0 2 6 0 6 12 0 6 12 0 0 0 0 0 2 6 0 4 6 0 6 12 0 6 12 0 0 0 0 0 Q Q P Q Q P w u w u L EI L EI L EI L EI L EI L EI L EI L EI L AE L AE L EI L EI L EI L EI L EI L EI L EI L EI L AE L AE Element Equation Can Then Be Rotated to Accommodate Arbitrary Orientation
  • 35. Some Standard FEA References Bathe, K.J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982, 1995. Beer, G. and Watson, J.O., Introduction to Finite and Boundary Element Methods for Engineers, John Wiley, 1993 Bickford, W.B., A First Course in the Finite Element Method, Irwin, 1990. Burnett, D.S., Finite Element Analysis, Addison-Wesley, 1987. Chandrupatla, T.R. and Belegundu, A.D., Introduction to Finite Elements in Engineering, Prentice-Hall, 2002. Cook, R.D., Malkus, D.S. and Plesha, M.E., Concepts and Applications of Finite Element Analysis, 3rd Ed., John Wiley, 1989. Desai, C.S., Elementary Finite Element Method, Prentice-Hall, 1979. Fung, Y.C. and Tong, P., Classical and Computational Solid Mechanics, World Scientific, 2001. Grandin, H., Fundamentals of the Finite Element Method, Macmillan, 1986. Huebner, K.H., Thorton, E.A. and Byrom, T.G., The Finite Element Method for Engineers, 3rd Ed., John Wiley, 1994. Knight, C.E., The Finite Element Method in Mechanical Design, PWS-KENT, 1993. Logan, D.L., A First Course in the Finite Element Method, 2nd Ed., PWS Engineering, 1992. Moaveni, S., Finite Element Analysis – Theory and Application with ANSYS, 2nd Ed., Pearson Education, 2003. Pepper, D.W. and Heinrich, J.C., The Finite Element Method: Basic Concepts and Applications, Hemisphere, 1992. Pao, Y.C., A First Course in Finite Element Analysis, Allyn and Bacon, 1986. Rao, S.S., Finite Element Method in Engineering, 3rd Ed., Butterworth-Heinemann, 1998. Reddy, J.N., An Introduction to the Finite Element Method, McGraw-Hill, 1993. Ross, C.T.F., Finite Element Methods in Engineering Science, Prentice-Hall, 1993. Stasa, F.L., Applied Finite Element Analysis for Engineers, Holt, Rinehart and Winston, 1985. Zienkiewicz, O.C. and Taylor, R.L., The Finite Element Method, Fourth Edition, McGraw-Hill, 1977, 1989.