SlideShare a Scribd company logo
1 of 5
Download to read offline
International Association of Scientific Innovation and Research (IASIR)
(An Association Unifying the Sciences, Engineering, and Applied Research)
International Journal of Emerging Technologies in Computational
and Applied Sciences (IJETCAS)
www.iasir.net
IJETCAS 14-357; © 2014, IJETCAS All Rights Reserved Page 196
ISSN (Print): 2279-0047
ISSN (Online): 2279-0055
CLUSTER BASED HYBRID ROUTING TO IMPROVE QOS IN
WIRELESS MESH NETWORK
V.Shanthi1
, M.Selvi2
, E.Muniyasamy Alias Anand3
1,2
Department of Electronics and Communication Engineering,
Sri Eshwar College of Engineering, TamilNadu
INDIA
3
Department of Electronics and Communication Engineering,
Vickram College of Engineering, TamilNadu
INDIA
_________________________________________________________________________________________
Abstract: Maximizing the network throughput in a multichannel multiradio wireless mesh network various
efforts have been committed.The recent solution are based on either static (or) dynamic approaches.In this
approaches MMAC (MULTICHANNEL MAC) protocol is used which is optimized only for network throughput.
A hybrid multichannel multiradio wireless mesh network is developed for channel allocation and routing.Here
each mesh node has both static and dynamic interfaces. ADCA (ADAPTIVE DYNAMIC CHANNEL
ALLOCATTION ) protocol is used in hybrid multichannel WMN,here ADCA optimizes both throughput and
delay in the channel assignment, and also it results in reducing packet delay without degrading the network
throughput.To balance the channel usage in the network ICAR (INTERFERENCE AND CONGESTION AWARE
ROUTING PROTOCOL) is added. Simulation is done by NS2 (network simulator -2). The hybrid architecture
achieves lower delay than the static and dynamic approaches and also it improves the QOS(quality of service)
in the network architecture.Additionally we also compare with clustering approach is to improve the network
throughput and QOS than the hybrid architecture.
Keywords: WMN,hybrid channel allocation,clustering approach,routing
____________________________________________________________________________________
I. Introduction
WIRELESS mesh networking has fascinated grand look into attention freshly. WMN has become a hopeful
technology to facilitate that has the budding to smooth the progress of many useful applications. Capacity
reduction problem is the one of the major problem facing in WMN due to wireless interference.The major
challenge in multiradio multichannel WMN is the allocation of channel to interfaces with in mesh router as a
result the network capacity can be maximized.The current two approaches of channel allocation are static and
dynamic allocation. In static channel allocation, each one interface of all mesh router is assign a channel
permanently. In dynamic channel allocation, an interface is formal to change from one channel to another
channel frequently. Both approaches have their mertis and demerits. Static approach do not require interfaces
to change channels and have lower overhead. Dynamic approach need frequent channel switching and thus have
higher overhead than the static strategies.Due to the inflexibility of static channel allocation and the purely
dynamic channel allocation,in this paper we suggest a hybrid architecture.Comparing to static and dynamic
channel allocation it has serveral advantages. Here this architecture, has two interfaces,One interface from each
router uses the dynamic channel allocation approach while the other interfaces use the static channel allocation
approach. The working of links in static channels provide high throughput paths from end-users to the gateway
while the dynamic channels links improve the network connectivity and the network’s adaptivity to the
changing traffic. Hence, this hybrid architecture can achieve better adaptivity than the purely static architecture
without much increase of overhead compared to the purely dynamic architecture.In this pape we converse
several important issues in the hybrid wireless mesh network. 1) The system architecture: where each mesh
node contains both static and dynamic interfaces, we converse on how to manage the channel assignment
between both types of interfaces, so that the channel resources could be utilized efficiently. 2) The channel
allocation for dynamic interfaces: Multichannel MAC protocol (MMAC) [6] is presently one of the most
proficient dynamic channel allocation. The channel assignment in MMAC is obtained only for network
throughput. We propose an Adaptive Dynamic Channel Allocation protocol (ADCA), which obtained for both
throughput and delay in the channel assignment.Compared with MMAC, ADCA is better to reduce the packet
delay without corrupting the network throughput. The rest of the paper is ordered as follows: We précis the
previous work in II. In III,we introduce the network model. In IV protocol design in MMAC and V we present
our dynamic channel allocation protocol and the routing algorithm in the hybrid wireless mesh network. We
estimate our comparision result and clustering approach in VI, and at last we conclude our work in VII.
V.Shanthi et al., International Journal of Emerging Technologies in Computational and Applied Sciences, 8(2), March-May, 2014, pp. 196-
200
IJETCAS 14-357; © 2014, IJETCAS All Rights Reserved Page 197
II. ROUTING AND PREVIOUS WORK.
In the hybrid structure, have static links and dynamic links, both can be used to transmit data. We
added an (ICAR) Interference and Congestion Aware Routing protocol. Which provides and balancing the
channel usage over the network and to improve the network throughput. Many studies have been devoted on
how to allocate channel in multichannel WMN and how to minimize interference and maximize throughput.Two
fundamental channel allocation strategies have been considered: 1) Static channel allocation, where the
interfaces are assigning channels permanently(2).Dynamic channel allocation, where interfaces are authorized to
change to different channels. The Raniwala et al [1] wished-for an iterative approach to work out the joint
routing and channel assignment problem, each mesh router changes from time to time. Alicherry et al [2] and
Kodialam and Nandagopal [11], they proposed an approximation algorithm for getting joint routing and
channel assignment. In this paper, link level channel allocation algorithms on dynamic interfaces were spot
lighted .Unlike previous approaches, we suggest a hybrid architecture in this paper, which uses dynamic channel
allocation strategy on one way and static channel allocation strategy on the other way of each node. In our
comparison, the hybrid wireless mesh network is capable to obtained the advantages of both channel allocation
methodologies.The hybrid multichannel allocation protocol (HMCP) has been proposed in [11]. For each node,
it assigns some channel interface as fixed channels, where as letting the remaining interfaces to switch channels.
III. NETWORK MODEL
In this model, we suggest to use the hybrid architecture for achieving high throughput and network
adaptivity to changing traffic and low channel switching overhead. Let G(V,E) be the network topology, Here
represents a set of mesh routers and E represents a pairs of mesh routers that are with in radio communication
range.FIGURE I, describes a hybrid multichannel multiradio wireless mesh network. Most mesh nodes
including the gateway have 3 interfaces, and a few boundary nodes(c,g,i.f )have 2 interfaces. For each mesh
node, one interface works as dynamic interface, and the others work as static interfaces. After the network
topology has been constructed, each link can then be assigned channels. The links nearer to the gateways are
specified superior priority to be allocated with less overcrowded channels. In FIGURE I, the link is shown in
bold lines, are called as static link. Dynamic interfaces work in an on-demand fashion. Two dynamic interfaces
that are within radio transmission range of each other are able to discuss a common channel and communicate
when they have data to transmit. We call these links as dynamic links. Here we use TDMA-style dynamic
multichannel MAC protocols such as MMAC [6]. In this the time is divided into fixed-length intervals, each
one consists of control interval and data interval. In the control interval, all nodes communicate on a default
channel (or control channel) to discuss the channels to use in the data interval. In the data interval, nodes
transmit and receive data on the negotiated channels (or data channel).
FIGURE I: Hybrid WMN Architecture
IV. PROTOCOL DESIGN IN MMAC
In FIGURE II, consider A has some data to send to C. According to MMAC, in the interval t1 the
packets are transmitted from A to B and then in the second interval t2, the packets are transmitted from B to C.
Although the packets can be transmitted from A to C through B in one interval, MMAC actually requires two
intervals. Because of this, B has to wait till the second interval to discuss a common channel with C in order to
continue transmitting the data.
V.Shanthi et al., International Journal of Emerging Technologies in Computational and Applied Sciences, 8(2), March-May, 2014, pp. 196-
200
IJETCAS 14-357; © 2014, IJETCAS All Rights Reserved Page 198
FIGURE II: Unnessesary Delay Of MMAC
V. ADAPTIVE DYNAMIC CHANNEL ALLOCATION
ADCA uses the similar to frame work with MMAC. Yong ding et al [11] proposed about ADCA. It
divides time into fixed length intervals. Each interval is additional split into control interval and data interval.
Let T be the interval length.Tc be the control interval length, and Td be the data interval. In the control interval,
all nodes switch to the same default channel and negotiate channels. In the data interval, the nodes working on
the same channel transmit and receive data among each other. In this MMAC protocol ,interval length T is set
to 100 ms, and control interval Tc is set to 20 ms, which is long enough for nodes to negotiate channels when
network traffic is saturated. Our protocol uses the same parameter settings (T and Tc), but is different in the
channel allocation scheme during control interval.
FIGURE III: Adaptive Dynamic Channel Allocation
In ADCA, dynamic interface maintain many queues in the link layer with one queue for each
neighbor.The data to be sent to each neighbor are uffered in the corresponding queue. The first step of channel
negotiation in ADCA is similar with MMAC. For each dynamic interface, if it has data to transmit, it choose a
neighbor that it wants to communicate and try to negotiate a common channel with the neighbor. There are
many methods for selecting neighbors. If throughput is the only consideration, we may select the neighbor with
the longest queue. However, this approach may cause malnourishment therefore, For that we supplement it with
some justice consideration.Here we evaluate a neighbor’s priority by considering both its queue length and how
long the queue has not been served. As a result, during this step, pairs of nodes have discuss common channels
with each other. such as the example in FIGURE III.Different from MMAC, ADCA enables further channel
cooperation among nodes.
VI. COMPARISION RESULT OF STATIC AND HYBRID ARCHITECTURE
The results of the different simulation are summarized in the list that follows:
FIGURE IV: Demonstrates the hybrid architecture compared with the static architecture. In this
packet jitter of hybrid architecture is lower than the static architecture. Here x axis denotes the data rates and y
axis denotes the packet jitter. Green colour curve denotes hybrid architecture results and red colour curve
denotes static architecture result.
V.Shanthi et al., International Journal of Emerging Technologies in Computational and Applied Sciences, 8(2), March-May, 2014, pp. 196-
200
IJETCAS 14-357; © 2014, IJETCAS All Rights Reserved Page 199
FIGURE V: Presents the hybrid architecture compared with the static architecture. In this throughput
of hybrid architecture is higher than the static architecture. Here x axis denotes the ratio skewed and y axis
denotes the throughput. Green colour curve denotes static architecture results and red colour curve denotes
hybrid architecture results.
FIGURE VI: Shows the hybrid architecture compared with the static architecture. In this packet delay
of hybrid architecture is lower than the static architecture Here x axis denotes the data rates and y axis denotes
the packet delay. Green colour curve denotes hybrid architecture results and red colour curve denotes static
architecture results.
VII. CLUSTERING APPROACH RESULTS
one achievable approach to accomplish such goal is to use Cluster-based Multipath Routing.The plan following
this method assumes that nodes in the network enclose to be grouped in clusters, all cluster having a clusterhead.
Cluster-heads from dissimilar clusters do not hold up with each other, so by selecting path that pass in this
nodes, non-interfering paths are selected.Channel selection is based on dynamic ( based on Highest energy
level in every nodes). To reduce the routing distance and increase the QOS through the clustering approaches
packets transfer from CH to Sink node( receiver node) Throughput can be increased compare to the hybrid
architecture and packet delay can be reduced compared to the hybrid architecture.
Steps to create cluster and CH -
Step 1-choose number of nodes at random in wireless mesh network and create clusters of those nodes on the
beginning of cut of frequency of the nodes.
Step 2-In a cluster cut of frequency selected by the user. The frequency is divided into three levels, Higher,
Middle and Lower levels.
Step 3-choose the cluster head on the basis of battery power. choice of cluster head in energy efficient
techniques normally depends on the initial energy, residual energy, and average energy of the network or energy
consumption rate or combination of these.
Step 4-After selection of cluster head, for the communiqué between two cluster heads or other nodes.
Established the connection between new cluster head to other nearest cluster heads in wireless mesh network.
s
FIGURE VII: Shows the throughput of clustering. Here x axis denotes the data rates and y axis
denotes the throughput.
FIGURE VIII: Shows the average delay of clustering. Here x axis denotes the data rates and y axis
denotes the average delay.
V.Shanthi et al., International Journal of Emerging Technologies in Computational and Applied Sciences, 8(2), March-May, 2014, pp. 196-
200
IJETCAS 14-357; © 2014, IJETCAS All Rights Reserved Page 200
FIGURE IX: Shows the average jitter of clustering. Here x axis denotes the data rates and y axis
denotes the average jitter.
VIII. CONCLUSION
The hybrid wireless mesh network architecture, achieves high throughput and reduce packet delay than
the static and dynamic interfaces. Have made two contributions. First, proposed an adaptive dynamic channel
allocation protocol to be used on dynamic interfaces. Compared with MMAC, ADCA reduces the packet
delivery delay without degrading the network throughput. In addition, proposed an interference and congestion
aware routing algorithm in the hybrid network, which balances the channel usage in the network and therefore
increases the network throughput. The simulation results have shown that, Hybrid architecture achieves better
results compared to the purely static architecture, Hybrid approach is more adaptive to the changing traffic
without significant increase in overhead. And additionally by comparing with the clustering
approaches,throughput can be increased than the hybrid method.Finally we can improve our QOS of network in
this clustering approaches
REFERENCES
[1] Raniwala, K. Gopalan, and T. Chiueh, “Centralized Channel Asignment and Routing Algorithms for Multi-Channel Wireless
Mesh Networks,” ACM Mobile Computing and Comm. Rev., vol. 8, pp. 50-65, 2004.
[2] M. Alicherry, R. Bhatia, and L. Li, “Joint Channel Assignment and Routing for Throughput Optimization in Multi-Radio Wireless
Mesh Networks,” Proc. ACM MobiCom, 2005.
[3] A.Raniwala and T.Chiueh, “Architecture and Algorithms for an IEEE 802.11-based Multi-Channel Wireless Mesh Network,”
Proc. IEEE INFOCOM, 2005.
[4] J.Tang,G.Xue,andW.Zhang,“Interference-Aware Topology Control and QoS Routing in Multi-Channel Wireless Mesh Networks,”
Proc. ACM MobiHoc, 2005.
[5] S.-L. Wu, C.-Y. Lin, Y.-C. Tseng, and J.-P. Sheu, “A New Multi- Channel Mac Protocol with On-Demand Channel Assignment
for Multi-Hop Mobile Ad Hoc Networks,” Proc. Int’l Symp. Parallel Architectures, Algorithms, and Networks (ISPAN), 2000.
[6] J. So and N. Vaidya, “Multi-Channel Mac for Ad Hoc Networks: Handling Multi-Channel Hidden Terminals Using a Single
Transceiver,” Proc. ACM MobiHoc, 2004.
[7] I.F. Akyildiz, X. Wang, and W. Wang, “Wireless Mesh Networks: A Survey,” Computer Networks, vol. 47, pp. 445-487, 2005.
[8]. P. Gupta and P.R. Kumar, “The Capacity of Wireless Networks,” IEEE Trans. Infomation Theory, vol. 46, no. 2, pp. 388-404,
Mar. 2000.
[9] J.Padhye,S.Agarwal V.N. Padmanabhan, L. Qiu, A. Rao, and B. Zill, “Estimation of Link Interference in Static Multi-Hop
Wireless Networks,” Proc. Internet Measurement Conf., 2005.
[10] M.OE,“Advanced Internet Technology ii: Internet Operation Wireless Network Operation,”http://www.soi.wide.ad.jp/
class/20040013/slides/09, 2010.
[11] Yong ding ,kanthakumar pongaliur,and li xiao “ channel allocation and routing in hybrid multichannel multiradio wireless mesh
networks”
[12] Martin Krebs, Andr´e Stein, M´onica Alejandra Lora “Topology Stability-based Clustering for Wireless Mesh Networks”.
[13] Cristina Neves Fonseca “Multipath Routing for Wireless Mesh Networks”.
[14] Abdessalam Elhabbash, Yousif Mansour “Location Enhanced Cluster Based Routing protocol”.
[15] P . Krishna N. H. Vaidya, M. Chatterjee, D. K. Pradhan “A Cluster-based Approach for Routing in Dynamic Networks”
[16 ] Sudarsanan.D, Sharanabasava, Megha.J “ A Study on Wireless Mesh Network with Hierarchical Cluster”.

More Related Content

What's hot

JCWAEED: JOINT CHANNEL ASSIGNMENT AND WEIGHTED AVERAGE EXPECTED END-TO-END DE...
JCWAEED: JOINT CHANNEL ASSIGNMENT AND WEIGHTED AVERAGE EXPECTED END-TO-END DE...JCWAEED: JOINT CHANNEL ASSIGNMENT AND WEIGHTED AVERAGE EXPECTED END-TO-END DE...
JCWAEED: JOINT CHANNEL ASSIGNMENT AND WEIGHTED AVERAGE EXPECTED END-TO-END DE...csandit
 
Handover Behaviour of Transparent Relay in WiMAX Networks
Handover Behaviour of Transparent Relay in WiMAX NetworksHandover Behaviour of Transparent Relay in WiMAX Networks
Handover Behaviour of Transparent Relay in WiMAX NetworksIDES Editor
 
Enhancement of energy efficiency and throughput using csmaca dcf operation fo...
Enhancement of energy efficiency and throughput using csmaca dcf operation fo...Enhancement of energy efficiency and throughput using csmaca dcf operation fo...
Enhancement of energy efficiency and throughput using csmaca dcf operation fo...eSAT Publishing House
 
COMPARATIVE PERFORMANCE ASSESSMENT OF VBLAST ENCODED 8×8 MIMO MC-CDMA WIRELES...
COMPARATIVE PERFORMANCE ASSESSMENT OF VBLAST ENCODED 8×8 MIMO MC-CDMA WIRELES...COMPARATIVE PERFORMANCE ASSESSMENT OF VBLAST ENCODED 8×8 MIMO MC-CDMA WIRELES...
COMPARATIVE PERFORMANCE ASSESSMENT OF VBLAST ENCODED 8×8 MIMO MC-CDMA WIRELES...pijans
 
A DDRESSING T HE M ULTICHANNEL S ELECTION , S CHEDULING A ND C OORDINATION...
A DDRESSING  T HE  M ULTICHANNEL S ELECTION , S CHEDULING  A ND C OORDINATION...A DDRESSING  T HE  M ULTICHANNEL S ELECTION , S CHEDULING  A ND C OORDINATION...
A DDRESSING T HE M ULTICHANNEL S ELECTION , S CHEDULING A ND C OORDINATION...pijans
 
Performance Analysis of Energy Optimized LTE-V2X Networks for Delay Sensitive...
Performance Analysis of Energy Optimized LTE-V2X Networks for Delay Sensitive...Performance Analysis of Energy Optimized LTE-V2X Networks for Delay Sensitive...
Performance Analysis of Energy Optimized LTE-V2X Networks for Delay Sensitive...IJCNCJournal
 
論文-A Novel Cross-layer Mesh Router Placement Scheme for Wireless Mesh Networks
論文-A Novel Cross-layer Mesh Router Placement Scheme for Wireless Mesh Networks論文-A Novel Cross-layer Mesh Router Placement Scheme for Wireless Mesh Networks
論文-A Novel Cross-layer Mesh Router Placement Scheme for Wireless Mesh NetworksHarvey Chang
 
A Cross Layer Based Scalable Channel Slot Re-Utilization Technique for Wirele...
A Cross Layer Based Scalable Channel Slot Re-Utilization Technique for Wirele...A Cross Layer Based Scalable Channel Slot Re-Utilization Technique for Wirele...
A Cross Layer Based Scalable Channel Slot Re-Utilization Technique for Wirele...csandit
 
A Distributed Three-hop Routing Protocol to Increase the Capacity of Hybrid W...
A Distributed Three-hop Routing Protocol to Increase the Capacity of Hybrid W...A Distributed Three-hop Routing Protocol to Increase the Capacity of Hybrid W...
A Distributed Three-hop Routing Protocol to Increase the Capacity of Hybrid W...1crore projects
 
Ijarcet vol-2-issue-7-2277-2280
Ijarcet vol-2-issue-7-2277-2280Ijarcet vol-2-issue-7-2277-2280
Ijarcet vol-2-issue-7-2277-2280Editor IJARCET
 
Civilizing the Network Lifespan of Manets Through Cooperative Mac Protocol Me...
Civilizing the Network Lifespan of Manets Through Cooperative Mac Protocol Me...Civilizing the Network Lifespan of Manets Through Cooperative Mac Protocol Me...
Civilizing the Network Lifespan of Manets Through Cooperative Mac Protocol Me...IRJET Journal
 
Channel Allocation and Routing in Wireless Mesh Networks: A survey and qualit...
Channel Allocation and Routing in Wireless Mesh Networks: A survey and qualit...Channel Allocation and Routing in Wireless Mesh Networks: A survey and qualit...
Channel Allocation and Routing in Wireless Mesh Networks: A survey and qualit...ijwmn
 
GPSFR: GPS-Free Routing Protocol for Vehicular Networks with Directional Ante...
GPSFR: GPS-Free Routing Protocol for Vehicular Networks with Directional Ante...GPSFR: GPS-Free Routing Protocol for Vehicular Networks with Directional Ante...
GPSFR: GPS-Free Routing Protocol for Vehicular Networks with Directional Ante...ijwmn
 
A Proactive Greedy Routing Protocol Precludes Sink-Hole Formation in Wireless...
A Proactive Greedy Routing Protocol Precludes Sink-Hole Formation in Wireless...A Proactive Greedy Routing Protocol Precludes Sink-Hole Formation in Wireless...
A Proactive Greedy Routing Protocol Precludes Sink-Hole Formation in Wireless...ijwmn
 
PERFORMANCE EVALUATION OF MC-CDMA SYSTEM OVER RAYLEIGH FADING CHANNEL
PERFORMANCE EVALUATION OF MC-CDMA SYSTEM OVER RAYLEIGH FADING CHANNELPERFORMANCE EVALUATION OF MC-CDMA SYSTEM OVER RAYLEIGH FADING CHANNEL
PERFORMANCE EVALUATION OF MC-CDMA SYSTEM OVER RAYLEIGH FADING CHANNELIJCSES Journal
 

What's hot (17)

JCWAEED: JOINT CHANNEL ASSIGNMENT AND WEIGHTED AVERAGE EXPECTED END-TO-END DE...
JCWAEED: JOINT CHANNEL ASSIGNMENT AND WEIGHTED AVERAGE EXPECTED END-TO-END DE...JCWAEED: JOINT CHANNEL ASSIGNMENT AND WEIGHTED AVERAGE EXPECTED END-TO-END DE...
JCWAEED: JOINT CHANNEL ASSIGNMENT AND WEIGHTED AVERAGE EXPECTED END-TO-END DE...
 
Handover Behaviour of Transparent Relay in WiMAX Networks
Handover Behaviour of Transparent Relay in WiMAX NetworksHandover Behaviour of Transparent Relay in WiMAX Networks
Handover Behaviour of Transparent Relay in WiMAX Networks
 
Enhancement of energy efficiency and throughput using csmaca dcf operation fo...
Enhancement of energy efficiency and throughput using csmaca dcf operation fo...Enhancement of energy efficiency and throughput using csmaca dcf operation fo...
Enhancement of energy efficiency and throughput using csmaca dcf operation fo...
 
COMPARATIVE PERFORMANCE ASSESSMENT OF VBLAST ENCODED 8×8 MIMO MC-CDMA WIRELES...
COMPARATIVE PERFORMANCE ASSESSMENT OF VBLAST ENCODED 8×8 MIMO MC-CDMA WIRELES...COMPARATIVE PERFORMANCE ASSESSMENT OF VBLAST ENCODED 8×8 MIMO MC-CDMA WIRELES...
COMPARATIVE PERFORMANCE ASSESSMENT OF VBLAST ENCODED 8×8 MIMO MC-CDMA WIRELES...
 
A DDRESSING T HE M ULTICHANNEL S ELECTION , S CHEDULING A ND C OORDINATION...
A DDRESSING  T HE  M ULTICHANNEL S ELECTION , S CHEDULING  A ND C OORDINATION...A DDRESSING  T HE  M ULTICHANNEL S ELECTION , S CHEDULING  A ND C OORDINATION...
A DDRESSING T HE M ULTICHANNEL S ELECTION , S CHEDULING A ND C OORDINATION...
 
Performance Analysis of Energy Optimized LTE-V2X Networks for Delay Sensitive...
Performance Analysis of Energy Optimized LTE-V2X Networks for Delay Sensitive...Performance Analysis of Energy Optimized LTE-V2X Networks for Delay Sensitive...
Performance Analysis of Energy Optimized LTE-V2X Networks for Delay Sensitive...
 
論文-A Novel Cross-layer Mesh Router Placement Scheme for Wireless Mesh Networks
論文-A Novel Cross-layer Mesh Router Placement Scheme for Wireless Mesh Networks論文-A Novel Cross-layer Mesh Router Placement Scheme for Wireless Mesh Networks
論文-A Novel Cross-layer Mesh Router Placement Scheme for Wireless Mesh Networks
 
A Cross Layer Based Scalable Channel Slot Re-Utilization Technique for Wirele...
A Cross Layer Based Scalable Channel Slot Re-Utilization Technique for Wirele...A Cross Layer Based Scalable Channel Slot Re-Utilization Technique for Wirele...
A Cross Layer Based Scalable Channel Slot Re-Utilization Technique for Wirele...
 
A Distributed Three-hop Routing Protocol to Increase the Capacity of Hybrid W...
A Distributed Three-hop Routing Protocol to Increase the Capacity of Hybrid W...A Distributed Three-hop Routing Protocol to Increase the Capacity of Hybrid W...
A Distributed Three-hop Routing Protocol to Increase the Capacity of Hybrid W...
 
218
218218
218
 
Ijarcet vol-2-issue-7-2277-2280
Ijarcet vol-2-issue-7-2277-2280Ijarcet vol-2-issue-7-2277-2280
Ijarcet vol-2-issue-7-2277-2280
 
Civilizing the Network Lifespan of Manets Through Cooperative Mac Protocol Me...
Civilizing the Network Lifespan of Manets Through Cooperative Mac Protocol Me...Civilizing the Network Lifespan of Manets Through Cooperative Mac Protocol Me...
Civilizing the Network Lifespan of Manets Through Cooperative Mac Protocol Me...
 
Channel Allocation and Routing in Wireless Mesh Networks: A survey and qualit...
Channel Allocation and Routing in Wireless Mesh Networks: A survey and qualit...Channel Allocation and Routing in Wireless Mesh Networks: A survey and qualit...
Channel Allocation and Routing in Wireless Mesh Networks: A survey and qualit...
 
GPSFR: GPS-Free Routing Protocol for Vehicular Networks with Directional Ante...
GPSFR: GPS-Free Routing Protocol for Vehicular Networks with Directional Ante...GPSFR: GPS-Free Routing Protocol for Vehicular Networks with Directional Ante...
GPSFR: GPS-Free Routing Protocol for Vehicular Networks with Directional Ante...
 
A Proactive Greedy Routing Protocol Precludes Sink-Hole Formation in Wireless...
A Proactive Greedy Routing Protocol Precludes Sink-Hole Formation in Wireless...A Proactive Greedy Routing Protocol Precludes Sink-Hole Formation in Wireless...
A Proactive Greedy Routing Protocol Precludes Sink-Hole Formation in Wireless...
 
PERFORMANCE EVALUATION OF MC-CDMA SYSTEM OVER RAYLEIGH FADING CHANNEL
PERFORMANCE EVALUATION OF MC-CDMA SYSTEM OVER RAYLEIGH FADING CHANNELPERFORMANCE EVALUATION OF MC-CDMA SYSTEM OVER RAYLEIGH FADING CHANNEL
PERFORMANCE EVALUATION OF MC-CDMA SYSTEM OVER RAYLEIGH FADING CHANNEL
 
E1073644
E1073644E1073644
E1073644
 

Viewers also liked (18)

Aijrfans14 243
Aijrfans14 243Aijrfans14 243
Aijrfans14 243
 
Ijebea14 215
Ijebea14 215Ijebea14 215
Ijebea14 215
 
Ijetcas14 371
Ijetcas14 371Ijetcas14 371
Ijetcas14 371
 
Ijetcas14 315
Ijetcas14 315Ijetcas14 315
Ijetcas14 315
 
Ijetcas14 474
Ijetcas14 474Ijetcas14 474
Ijetcas14 474
 
Ijetcas14 536
Ijetcas14 536Ijetcas14 536
Ijetcas14 536
 
Ijetcas14 435
Ijetcas14 435Ijetcas14 435
Ijetcas14 435
 
Ijetcas14 460
Ijetcas14 460Ijetcas14 460
Ijetcas14 460
 
Ijetcas14 312
Ijetcas14 312Ijetcas14 312
Ijetcas14 312
 
Ijetcas14 443
Ijetcas14 443Ijetcas14 443
Ijetcas14 443
 
Aijrfans14 269
Aijrfans14 269Aijrfans14 269
Aijrfans14 269
 
Ijetcas14 562
Ijetcas14 562Ijetcas14 562
Ijetcas14 562
 
Ijetcas14 392
Ijetcas14 392Ijetcas14 392
Ijetcas14 392
 
Ijetcas14 479
Ijetcas14 479Ijetcas14 479
Ijetcas14 479
 
Sulfide Minerals
Sulfide MineralsSulfide Minerals
Sulfide Minerals
 
Aijrfans14 227
Aijrfans14 227Aijrfans14 227
Aijrfans14 227
 
Ijetcas14 639
Ijetcas14 639Ijetcas14 639
Ijetcas14 639
 
Ijetcas14 648
Ijetcas14 648Ijetcas14 648
Ijetcas14 648
 

Similar to Ijetcas14 357

Improving the network lifetime of mane ts through cooperative mac protocol de...
Improving the network lifetime of mane ts through cooperative mac protocol de...Improving the network lifetime of mane ts through cooperative mac protocol de...
Improving the network lifetime of mane ts through cooperative mac protocol de...Pvrtechnologies Nellore
 
Ijarcet vol-2-issue-7-2277-2280
Ijarcet vol-2-issue-7-2277-2280Ijarcet vol-2-issue-7-2277-2280
Ijarcet vol-2-issue-7-2277-2280Editor IJARCET
 
Efficient and stable route selection by using cross layer concept for highly...
 Efficient and stable route selection by using cross layer concept for highly... Efficient and stable route selection by using cross layer concept for highly...
Efficient and stable route selection by using cross layer concept for highly...Roopali Singh
 
GTSH: A New Channel Assignment Algorithm in Multi-Radio Multi-channel Wireles...
GTSH: A New Channel Assignment Algorithm in Multi-Radio Multi-channel Wireles...GTSH: A New Channel Assignment Algorithm in Multi-Radio Multi-channel Wireles...
GTSH: A New Channel Assignment Algorithm in Multi-Radio Multi-channel Wireles...IJERA Editor
 
General Model for Single and Multiple Channels WLANs with Quality of Service...
 General Model for Single and Multiple Channels WLANs with Quality of Service... General Model for Single and Multiple Channels WLANs with Quality of Service...
General Model for Single and Multiple Channels WLANs with Quality of Service...ijwmn
 
PERFORMANCE ANALYSIS OF WIRELESS MESH NETWORK USING ADAPTIVE INFORMANT FACTOR...
PERFORMANCE ANALYSIS OF WIRELESS MESH NETWORK USING ADAPTIVE INFORMANT FACTOR...PERFORMANCE ANALYSIS OF WIRELESS MESH NETWORK USING ADAPTIVE INFORMANT FACTOR...
PERFORMANCE ANALYSIS OF WIRELESS MESH NETWORK USING ADAPTIVE INFORMANT FACTOR...IJCSES Journal
 
INTERFERENCE-AWARE CHANNEL ASSIGNMENT FOR MAXIMIZING THROUGHPUT IN WMN
INTERFERENCE-AWARE CHANNEL ASSIGNMENT FOR MAXIMIZING THROUGHPUT IN WMN INTERFERENCE-AWARE CHANNEL ASSIGNMENT FOR MAXIMIZING THROUGHPUT IN WMN
INTERFERENCE-AWARE CHANNEL ASSIGNMENT FOR MAXIMIZING THROUGHPUT IN WMN pijans
 
Multihop Multi-Channel Distributed QOS Scheduling MAC Scheme for Wireless Sen...
Multihop Multi-Channel Distributed QOS Scheduling MAC Scheme for Wireless Sen...Multihop Multi-Channel Distributed QOS Scheduling MAC Scheme for Wireless Sen...
Multihop Multi-Channel Distributed QOS Scheduling MAC Scheme for Wireless Sen...IOSR Journals
 
DYNAMIC HYBRID CHANNEL (WMN) FOR BANDWIDTH GUARANTEES IN AD_HOC NETWORKS
DYNAMIC HYBRID CHANNEL (WMN) FOR BANDWIDTH GUARANTEES IN AD_HOC NETWORKSDYNAMIC HYBRID CHANNEL (WMN) FOR BANDWIDTH GUARANTEES IN AD_HOC NETWORKS
DYNAMIC HYBRID CHANNEL (WMN) FOR BANDWIDTH GUARANTEES IN AD_HOC NETWORKSpharmaindexing
 
Performance evaluation of interference aware topology power and flow control ...
Performance evaluation of interference aware topology power and flow control ...Performance evaluation of interference aware topology power and flow control ...
Performance evaluation of interference aware topology power and flow control ...IJECEIAES
 
Energy Behavior in Ad Hoc Network Minimizing the Number of Hops and Maintaini...
Energy Behavior in Ad Hoc Network Minimizing the Number of Hops and Maintaini...Energy Behavior in Ad Hoc Network Minimizing the Number of Hops and Maintaini...
Energy Behavior in Ad Hoc Network Minimizing the Number of Hops and Maintaini...CSCJournals
 
IJCTET2015123106
IJCTET2015123106IJCTET2015123106
IJCTET2015123106ijctet
 
A CROSS-LAYER BASED SCALABLE CHANNEL SLOT RE-UTILIZATION TECHNIQUE FOR WIRELE...
A CROSS-LAYER BASED SCALABLE CHANNEL SLOT RE-UTILIZATION TECHNIQUE FOR WIRELE...A CROSS-LAYER BASED SCALABLE CHANNEL SLOT RE-UTILIZATION TECHNIQUE FOR WIRELE...
A CROSS-LAYER BASED SCALABLE CHANNEL SLOT RE-UTILIZATION TECHNIQUE FOR WIRELE...cscpconf
 
Dynamic Topology Re-Configuration in Multihop Cellular Networks Using Sequent...
Dynamic Topology Re-Configuration in Multihop Cellular Networks Using Sequent...Dynamic Topology Re-Configuration in Multihop Cellular Networks Using Sequent...
Dynamic Topology Re-Configuration in Multihop Cellular Networks Using Sequent...IJERA Editor
 
Evaluation of Energy Consumption using Receiver–Centric MAC Protocol in Wirel...
Evaluation of Energy Consumption using Receiver–Centric MAC Protocol in Wirel...Evaluation of Energy Consumption using Receiver–Centric MAC Protocol in Wirel...
Evaluation of Energy Consumption using Receiver–Centric MAC Protocol in Wirel...IJECEIAES
 
rupali published paper
rupali published paperrupali published paper
rupali published paperRoopali Singh
 

Similar to Ijetcas14 357 (20)

Improving the network lifetime of mane ts through cooperative mac protocol de...
Improving the network lifetime of mane ts through cooperative mac protocol de...Improving the network lifetime of mane ts through cooperative mac protocol de...
Improving the network lifetime of mane ts through cooperative mac protocol de...
 
Ijarcet vol-2-issue-7-2277-2280
Ijarcet vol-2-issue-7-2277-2280Ijarcet vol-2-issue-7-2277-2280
Ijarcet vol-2-issue-7-2277-2280
 
Efficient and stable route selection by using cross layer concept for highly...
 Efficient and stable route selection by using cross layer concept for highly... Efficient and stable route selection by using cross layer concept for highly...
Efficient and stable route selection by using cross layer concept for highly...
 
GTSH: A New Channel Assignment Algorithm in Multi-Radio Multi-channel Wireles...
GTSH: A New Channel Assignment Algorithm in Multi-Radio Multi-channel Wireles...GTSH: A New Channel Assignment Algorithm in Multi-Radio Multi-channel Wireles...
GTSH: A New Channel Assignment Algorithm in Multi-Radio Multi-channel Wireles...
 
General Model for Single and Multiple Channels WLANs with Quality of Service...
 General Model for Single and Multiple Channels WLANs with Quality of Service... General Model for Single and Multiple Channels WLANs with Quality of Service...
General Model for Single and Multiple Channels WLANs with Quality of Service...
 
PERFORMANCE ANALYSIS OF WIRELESS MESH NETWORK USING ADAPTIVE INFORMANT FACTOR...
PERFORMANCE ANALYSIS OF WIRELESS MESH NETWORK USING ADAPTIVE INFORMANT FACTOR...PERFORMANCE ANALYSIS OF WIRELESS MESH NETWORK USING ADAPTIVE INFORMANT FACTOR...
PERFORMANCE ANALYSIS OF WIRELESS MESH NETWORK USING ADAPTIVE INFORMANT FACTOR...
 
INTERFERENCE-AWARE CHANNEL ASSIGNMENT FOR MAXIMIZING THROUGHPUT IN WMN
INTERFERENCE-AWARE CHANNEL ASSIGNMENT FOR MAXIMIZING THROUGHPUT IN WMN INTERFERENCE-AWARE CHANNEL ASSIGNMENT FOR MAXIMIZING THROUGHPUT IN WMN
INTERFERENCE-AWARE CHANNEL ASSIGNMENT FOR MAXIMIZING THROUGHPUT IN WMN
 
A017210110
A017210110A017210110
A017210110
 
Multihop Multi-Channel Distributed QOS Scheduling MAC Scheme for Wireless Sen...
Multihop Multi-Channel Distributed QOS Scheduling MAC Scheme for Wireless Sen...Multihop Multi-Channel Distributed QOS Scheduling MAC Scheme for Wireless Sen...
Multihop Multi-Channel Distributed QOS Scheduling MAC Scheme for Wireless Sen...
 
DYNAMIC HYBRID CHANNEL (WMN) FOR BANDWIDTH GUARANTEES IN AD_HOC NETWORKS
DYNAMIC HYBRID CHANNEL (WMN) FOR BANDWIDTH GUARANTEES IN AD_HOC NETWORKSDYNAMIC HYBRID CHANNEL (WMN) FOR BANDWIDTH GUARANTEES IN AD_HOC NETWORKS
DYNAMIC HYBRID CHANNEL (WMN) FOR BANDWIDTH GUARANTEES IN AD_HOC NETWORKS
 
Performance evaluation of interference aware topology power and flow control ...
Performance evaluation of interference aware topology power and flow control ...Performance evaluation of interference aware topology power and flow control ...
Performance evaluation of interference aware topology power and flow control ...
 
Energy Behavior in Ad Hoc Network Minimizing the Number of Hops and Maintaini...
Energy Behavior in Ad Hoc Network Minimizing the Number of Hops and Maintaini...Energy Behavior in Ad Hoc Network Minimizing the Number of Hops and Maintaini...
Energy Behavior in Ad Hoc Network Minimizing the Number of Hops and Maintaini...
 
IJCTET2015123106
IJCTET2015123106IJCTET2015123106
IJCTET2015123106
 
A CROSS-LAYER BASED SCALABLE CHANNEL SLOT RE-UTILIZATION TECHNIQUE FOR WIRELE...
A CROSS-LAYER BASED SCALABLE CHANNEL SLOT RE-UTILIZATION TECHNIQUE FOR WIRELE...A CROSS-LAYER BASED SCALABLE CHANNEL SLOT RE-UTILIZATION TECHNIQUE FOR WIRELE...
A CROSS-LAYER BASED SCALABLE CHANNEL SLOT RE-UTILIZATION TECHNIQUE FOR WIRELE...
 
Dynamic Topology Re-Configuration in Multihop Cellular Networks Using Sequent...
Dynamic Topology Re-Configuration in Multihop Cellular Networks Using Sequent...Dynamic Topology Re-Configuration in Multihop Cellular Networks Using Sequent...
Dynamic Topology Re-Configuration in Multihop Cellular Networks Using Sequent...
 
Evaluation of Energy Consumption using Receiver–Centric MAC Protocol in Wirel...
Evaluation of Energy Consumption using Receiver–Centric MAC Protocol in Wirel...Evaluation of Energy Consumption using Receiver–Centric MAC Protocol in Wirel...
Evaluation of Energy Consumption using Receiver–Centric MAC Protocol in Wirel...
 
Enhancing Power Unbiased Cooperative Media Access Control Protocol in Manets
Enhancing Power Unbiased Cooperative Media Access Control Protocol in ManetsEnhancing Power Unbiased Cooperative Media Access Control Protocol in Manets
Enhancing Power Unbiased Cooperative Media Access Control Protocol in Manets
 
B04020812
B04020812B04020812
B04020812
 
B031201016019
B031201016019B031201016019
B031201016019
 
rupali published paper
rupali published paperrupali published paper
rupali published paper
 

More from Iasir Journals (20)

ijetcas14 650
ijetcas14 650ijetcas14 650
ijetcas14 650
 
Ijetcas14 647
Ijetcas14 647Ijetcas14 647
Ijetcas14 647
 
Ijetcas14 643
Ijetcas14 643Ijetcas14 643
Ijetcas14 643
 
Ijetcas14 641
Ijetcas14 641Ijetcas14 641
Ijetcas14 641
 
Ijetcas14 632
Ijetcas14 632Ijetcas14 632
Ijetcas14 632
 
Ijetcas14 624
Ijetcas14 624Ijetcas14 624
Ijetcas14 624
 
Ijetcas14 619
Ijetcas14 619Ijetcas14 619
Ijetcas14 619
 
Ijetcas14 615
Ijetcas14 615Ijetcas14 615
Ijetcas14 615
 
Ijetcas14 608
Ijetcas14 608Ijetcas14 608
Ijetcas14 608
 
Ijetcas14 605
Ijetcas14 605Ijetcas14 605
Ijetcas14 605
 
Ijetcas14 604
Ijetcas14 604Ijetcas14 604
Ijetcas14 604
 
Ijetcas14 598
Ijetcas14 598Ijetcas14 598
Ijetcas14 598
 
Ijetcas14 594
Ijetcas14 594Ijetcas14 594
Ijetcas14 594
 
Ijetcas14 593
Ijetcas14 593Ijetcas14 593
Ijetcas14 593
 
Ijetcas14 591
Ijetcas14 591Ijetcas14 591
Ijetcas14 591
 
Ijetcas14 589
Ijetcas14 589Ijetcas14 589
Ijetcas14 589
 
Ijetcas14 585
Ijetcas14 585Ijetcas14 585
Ijetcas14 585
 
Ijetcas14 584
Ijetcas14 584Ijetcas14 584
Ijetcas14 584
 
Ijetcas14 583
Ijetcas14 583Ijetcas14 583
Ijetcas14 583
 
Ijetcas14 580
Ijetcas14 580Ijetcas14 580
Ijetcas14 580
 

Recently uploaded

Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 

Recently uploaded (20)

Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 

Ijetcas14 357

  • 1. International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) www.iasir.net IJETCAS 14-357; © 2014, IJETCAS All Rights Reserved Page 196 ISSN (Print): 2279-0047 ISSN (Online): 2279-0055 CLUSTER BASED HYBRID ROUTING TO IMPROVE QOS IN WIRELESS MESH NETWORK V.Shanthi1 , M.Selvi2 , E.Muniyasamy Alias Anand3 1,2 Department of Electronics and Communication Engineering, Sri Eshwar College of Engineering, TamilNadu INDIA 3 Department of Electronics and Communication Engineering, Vickram College of Engineering, TamilNadu INDIA _________________________________________________________________________________________ Abstract: Maximizing the network throughput in a multichannel multiradio wireless mesh network various efforts have been committed.The recent solution are based on either static (or) dynamic approaches.In this approaches MMAC (MULTICHANNEL MAC) protocol is used which is optimized only for network throughput. A hybrid multichannel multiradio wireless mesh network is developed for channel allocation and routing.Here each mesh node has both static and dynamic interfaces. ADCA (ADAPTIVE DYNAMIC CHANNEL ALLOCATTION ) protocol is used in hybrid multichannel WMN,here ADCA optimizes both throughput and delay in the channel assignment, and also it results in reducing packet delay without degrading the network throughput.To balance the channel usage in the network ICAR (INTERFERENCE AND CONGESTION AWARE ROUTING PROTOCOL) is added. Simulation is done by NS2 (network simulator -2). The hybrid architecture achieves lower delay than the static and dynamic approaches and also it improves the QOS(quality of service) in the network architecture.Additionally we also compare with clustering approach is to improve the network throughput and QOS than the hybrid architecture. Keywords: WMN,hybrid channel allocation,clustering approach,routing ____________________________________________________________________________________ I. Introduction WIRELESS mesh networking has fascinated grand look into attention freshly. WMN has become a hopeful technology to facilitate that has the budding to smooth the progress of many useful applications. Capacity reduction problem is the one of the major problem facing in WMN due to wireless interference.The major challenge in multiradio multichannel WMN is the allocation of channel to interfaces with in mesh router as a result the network capacity can be maximized.The current two approaches of channel allocation are static and dynamic allocation. In static channel allocation, each one interface of all mesh router is assign a channel permanently. In dynamic channel allocation, an interface is formal to change from one channel to another channel frequently. Both approaches have their mertis and demerits. Static approach do not require interfaces to change channels and have lower overhead. Dynamic approach need frequent channel switching and thus have higher overhead than the static strategies.Due to the inflexibility of static channel allocation and the purely dynamic channel allocation,in this paper we suggest a hybrid architecture.Comparing to static and dynamic channel allocation it has serveral advantages. Here this architecture, has two interfaces,One interface from each router uses the dynamic channel allocation approach while the other interfaces use the static channel allocation approach. The working of links in static channels provide high throughput paths from end-users to the gateway while the dynamic channels links improve the network connectivity and the network’s adaptivity to the changing traffic. Hence, this hybrid architecture can achieve better adaptivity than the purely static architecture without much increase of overhead compared to the purely dynamic architecture.In this pape we converse several important issues in the hybrid wireless mesh network. 1) The system architecture: where each mesh node contains both static and dynamic interfaces, we converse on how to manage the channel assignment between both types of interfaces, so that the channel resources could be utilized efficiently. 2) The channel allocation for dynamic interfaces: Multichannel MAC protocol (MMAC) [6] is presently one of the most proficient dynamic channel allocation. The channel assignment in MMAC is obtained only for network throughput. We propose an Adaptive Dynamic Channel Allocation protocol (ADCA), which obtained for both throughput and delay in the channel assignment.Compared with MMAC, ADCA is better to reduce the packet delay without corrupting the network throughput. The rest of the paper is ordered as follows: We précis the previous work in II. In III,we introduce the network model. In IV protocol design in MMAC and V we present our dynamic channel allocation protocol and the routing algorithm in the hybrid wireless mesh network. We estimate our comparision result and clustering approach in VI, and at last we conclude our work in VII.
  • 2. V.Shanthi et al., International Journal of Emerging Technologies in Computational and Applied Sciences, 8(2), March-May, 2014, pp. 196- 200 IJETCAS 14-357; © 2014, IJETCAS All Rights Reserved Page 197 II. ROUTING AND PREVIOUS WORK. In the hybrid structure, have static links and dynamic links, both can be used to transmit data. We added an (ICAR) Interference and Congestion Aware Routing protocol. Which provides and balancing the channel usage over the network and to improve the network throughput. Many studies have been devoted on how to allocate channel in multichannel WMN and how to minimize interference and maximize throughput.Two fundamental channel allocation strategies have been considered: 1) Static channel allocation, where the interfaces are assigning channels permanently(2).Dynamic channel allocation, where interfaces are authorized to change to different channels. The Raniwala et al [1] wished-for an iterative approach to work out the joint routing and channel assignment problem, each mesh router changes from time to time. Alicherry et al [2] and Kodialam and Nandagopal [11], they proposed an approximation algorithm for getting joint routing and channel assignment. In this paper, link level channel allocation algorithms on dynamic interfaces were spot lighted .Unlike previous approaches, we suggest a hybrid architecture in this paper, which uses dynamic channel allocation strategy on one way and static channel allocation strategy on the other way of each node. In our comparison, the hybrid wireless mesh network is capable to obtained the advantages of both channel allocation methodologies.The hybrid multichannel allocation protocol (HMCP) has been proposed in [11]. For each node, it assigns some channel interface as fixed channels, where as letting the remaining interfaces to switch channels. III. NETWORK MODEL In this model, we suggest to use the hybrid architecture for achieving high throughput and network adaptivity to changing traffic and low channel switching overhead. Let G(V,E) be the network topology, Here represents a set of mesh routers and E represents a pairs of mesh routers that are with in radio communication range.FIGURE I, describes a hybrid multichannel multiradio wireless mesh network. Most mesh nodes including the gateway have 3 interfaces, and a few boundary nodes(c,g,i.f )have 2 interfaces. For each mesh node, one interface works as dynamic interface, and the others work as static interfaces. After the network topology has been constructed, each link can then be assigned channels. The links nearer to the gateways are specified superior priority to be allocated with less overcrowded channels. In FIGURE I, the link is shown in bold lines, are called as static link. Dynamic interfaces work in an on-demand fashion. Two dynamic interfaces that are within radio transmission range of each other are able to discuss a common channel and communicate when they have data to transmit. We call these links as dynamic links. Here we use TDMA-style dynamic multichannel MAC protocols such as MMAC [6]. In this the time is divided into fixed-length intervals, each one consists of control interval and data interval. In the control interval, all nodes communicate on a default channel (or control channel) to discuss the channels to use in the data interval. In the data interval, nodes transmit and receive data on the negotiated channels (or data channel). FIGURE I: Hybrid WMN Architecture IV. PROTOCOL DESIGN IN MMAC In FIGURE II, consider A has some data to send to C. According to MMAC, in the interval t1 the packets are transmitted from A to B and then in the second interval t2, the packets are transmitted from B to C. Although the packets can be transmitted from A to C through B in one interval, MMAC actually requires two intervals. Because of this, B has to wait till the second interval to discuss a common channel with C in order to continue transmitting the data.
  • 3. V.Shanthi et al., International Journal of Emerging Technologies in Computational and Applied Sciences, 8(2), March-May, 2014, pp. 196- 200 IJETCAS 14-357; © 2014, IJETCAS All Rights Reserved Page 198 FIGURE II: Unnessesary Delay Of MMAC V. ADAPTIVE DYNAMIC CHANNEL ALLOCATION ADCA uses the similar to frame work with MMAC. Yong ding et al [11] proposed about ADCA. It divides time into fixed length intervals. Each interval is additional split into control interval and data interval. Let T be the interval length.Tc be the control interval length, and Td be the data interval. In the control interval, all nodes switch to the same default channel and negotiate channels. In the data interval, the nodes working on the same channel transmit and receive data among each other. In this MMAC protocol ,interval length T is set to 100 ms, and control interval Tc is set to 20 ms, which is long enough for nodes to negotiate channels when network traffic is saturated. Our protocol uses the same parameter settings (T and Tc), but is different in the channel allocation scheme during control interval. FIGURE III: Adaptive Dynamic Channel Allocation In ADCA, dynamic interface maintain many queues in the link layer with one queue for each neighbor.The data to be sent to each neighbor are uffered in the corresponding queue. The first step of channel negotiation in ADCA is similar with MMAC. For each dynamic interface, if it has data to transmit, it choose a neighbor that it wants to communicate and try to negotiate a common channel with the neighbor. There are many methods for selecting neighbors. If throughput is the only consideration, we may select the neighbor with the longest queue. However, this approach may cause malnourishment therefore, For that we supplement it with some justice consideration.Here we evaluate a neighbor’s priority by considering both its queue length and how long the queue has not been served. As a result, during this step, pairs of nodes have discuss common channels with each other. such as the example in FIGURE III.Different from MMAC, ADCA enables further channel cooperation among nodes. VI. COMPARISION RESULT OF STATIC AND HYBRID ARCHITECTURE The results of the different simulation are summarized in the list that follows: FIGURE IV: Demonstrates the hybrid architecture compared with the static architecture. In this packet jitter of hybrid architecture is lower than the static architecture. Here x axis denotes the data rates and y axis denotes the packet jitter. Green colour curve denotes hybrid architecture results and red colour curve denotes static architecture result.
  • 4. V.Shanthi et al., International Journal of Emerging Technologies in Computational and Applied Sciences, 8(2), March-May, 2014, pp. 196- 200 IJETCAS 14-357; © 2014, IJETCAS All Rights Reserved Page 199 FIGURE V: Presents the hybrid architecture compared with the static architecture. In this throughput of hybrid architecture is higher than the static architecture. Here x axis denotes the ratio skewed and y axis denotes the throughput. Green colour curve denotes static architecture results and red colour curve denotes hybrid architecture results. FIGURE VI: Shows the hybrid architecture compared with the static architecture. In this packet delay of hybrid architecture is lower than the static architecture Here x axis denotes the data rates and y axis denotes the packet delay. Green colour curve denotes hybrid architecture results and red colour curve denotes static architecture results. VII. CLUSTERING APPROACH RESULTS one achievable approach to accomplish such goal is to use Cluster-based Multipath Routing.The plan following this method assumes that nodes in the network enclose to be grouped in clusters, all cluster having a clusterhead. Cluster-heads from dissimilar clusters do not hold up with each other, so by selecting path that pass in this nodes, non-interfering paths are selected.Channel selection is based on dynamic ( based on Highest energy level in every nodes). To reduce the routing distance and increase the QOS through the clustering approaches packets transfer from CH to Sink node( receiver node) Throughput can be increased compare to the hybrid architecture and packet delay can be reduced compared to the hybrid architecture. Steps to create cluster and CH - Step 1-choose number of nodes at random in wireless mesh network and create clusters of those nodes on the beginning of cut of frequency of the nodes. Step 2-In a cluster cut of frequency selected by the user. The frequency is divided into three levels, Higher, Middle and Lower levels. Step 3-choose the cluster head on the basis of battery power. choice of cluster head in energy efficient techniques normally depends on the initial energy, residual energy, and average energy of the network or energy consumption rate or combination of these. Step 4-After selection of cluster head, for the communiqué between two cluster heads or other nodes. Established the connection between new cluster head to other nearest cluster heads in wireless mesh network. s FIGURE VII: Shows the throughput of clustering. Here x axis denotes the data rates and y axis denotes the throughput. FIGURE VIII: Shows the average delay of clustering. Here x axis denotes the data rates and y axis denotes the average delay.
  • 5. V.Shanthi et al., International Journal of Emerging Technologies in Computational and Applied Sciences, 8(2), March-May, 2014, pp. 196- 200 IJETCAS 14-357; © 2014, IJETCAS All Rights Reserved Page 200 FIGURE IX: Shows the average jitter of clustering. Here x axis denotes the data rates and y axis denotes the average jitter. VIII. CONCLUSION The hybrid wireless mesh network architecture, achieves high throughput and reduce packet delay than the static and dynamic interfaces. Have made two contributions. First, proposed an adaptive dynamic channel allocation protocol to be used on dynamic interfaces. Compared with MMAC, ADCA reduces the packet delivery delay without degrading the network throughput. In addition, proposed an interference and congestion aware routing algorithm in the hybrid network, which balances the channel usage in the network and therefore increases the network throughput. The simulation results have shown that, Hybrid architecture achieves better results compared to the purely static architecture, Hybrid approach is more adaptive to the changing traffic without significant increase in overhead. And additionally by comparing with the clustering approaches,throughput can be increased than the hybrid method.Finally we can improve our QOS of network in this clustering approaches REFERENCES [1] Raniwala, K. Gopalan, and T. Chiueh, “Centralized Channel Asignment and Routing Algorithms for Multi-Channel Wireless Mesh Networks,” ACM Mobile Computing and Comm. Rev., vol. 8, pp. 50-65, 2004. [2] M. Alicherry, R. Bhatia, and L. Li, “Joint Channel Assignment and Routing for Throughput Optimization in Multi-Radio Wireless Mesh Networks,” Proc. ACM MobiCom, 2005. [3] A.Raniwala and T.Chiueh, “Architecture and Algorithms for an IEEE 802.11-based Multi-Channel Wireless Mesh Network,” Proc. IEEE INFOCOM, 2005. [4] J.Tang,G.Xue,andW.Zhang,“Interference-Aware Topology Control and QoS Routing in Multi-Channel Wireless Mesh Networks,” Proc. ACM MobiHoc, 2005. [5] S.-L. Wu, C.-Y. Lin, Y.-C. Tseng, and J.-P. Sheu, “A New Multi- Channel Mac Protocol with On-Demand Channel Assignment for Multi-Hop Mobile Ad Hoc Networks,” Proc. Int’l Symp. Parallel Architectures, Algorithms, and Networks (ISPAN), 2000. [6] J. So and N. Vaidya, “Multi-Channel Mac for Ad Hoc Networks: Handling Multi-Channel Hidden Terminals Using a Single Transceiver,” Proc. ACM MobiHoc, 2004. [7] I.F. Akyildiz, X. Wang, and W. Wang, “Wireless Mesh Networks: A Survey,” Computer Networks, vol. 47, pp. 445-487, 2005. [8]. P. Gupta and P.R. Kumar, “The Capacity of Wireless Networks,” IEEE Trans. Infomation Theory, vol. 46, no. 2, pp. 388-404, Mar. 2000. [9] J.Padhye,S.Agarwal V.N. Padmanabhan, L. Qiu, A. Rao, and B. Zill, “Estimation of Link Interference in Static Multi-Hop Wireless Networks,” Proc. Internet Measurement Conf., 2005. [10] M.OE,“Advanced Internet Technology ii: Internet Operation Wireless Network Operation,”http://www.soi.wide.ad.jp/ class/20040013/slides/09, 2010. [11] Yong ding ,kanthakumar pongaliur,and li xiao “ channel allocation and routing in hybrid multichannel multiradio wireless mesh networks” [12] Martin Krebs, Andr´e Stein, M´onica Alejandra Lora “Topology Stability-based Clustering for Wireless Mesh Networks”. [13] Cristina Neves Fonseca “Multipath Routing for Wireless Mesh Networks”. [14] Abdessalam Elhabbash, Yousif Mansour “Location Enhanced Cluster Based Routing protocol”. [15] P . Krishna N. H. Vaidya, M. Chatterjee, D. K. Pradhan “A Cluster-based Approach for Routing in Dynamic Networks” [16 ] Sudarsanan.D, Sharanabasava, Megha.J “ A Study on Wireless Mesh Network with Hierarchical Cluster”.