Biomechanics Module

                  Newton’s laws
Musculoskeletal levers and mechanical advantage
        Classification of force systems
         Vector addition and resolution
Biomechanics Module




Newton’s Laws

 Law of Inertia
 Law of Acceleration
 Law of Action-Reaction




                           2
Biomechanics Module




    Law of Inertia (equilibrium)

    




3                             Hall, Basic Biomechanics, 5th ed
Biomechanics Module




    Law of Inertia (equilibrium)

    




4
Biomechanics Module




    Law of Acceleration

    




5
Biomechanics Module




    Law of Acceleration

                          




6
Biomechanics Module




    Law of Acceleration

                         




7
Biomechanics Module




    Law of Acceleration

    




                          B




                              10 pounds



8
Biomechanics Module




Newton’s Laws

 Law of Inertia
                        Within object
 Law of Acceleration
 Law of Action-Reaction Between objects




                                           9
Biomechanics Module




     Law of Action-Reaction

      For every action, there is an equal and opposite
       reaction
      (Forces occur in pairs)
      Between two objects




10
Biomechanics Module




     Law of Action-Reaction

      For every action, there is an equal and opposite
       reaction
      (Forces occur in pairs)
      Between two objects
      Objects must be in contact




11
Biomechanics Module




     Law of Action-Reaction

      For every action, there is an equal and opposite
       reaction




12
Biomechanics Module




Law of Action-Reaction

 Ground reaction force




                  Body
  GRF       =     weight




                               13
                           Hall, Fig 12-1
Biomechanics Module




     Musculoskeletal Levers

      Why is Charlie Brown up in the air?




14
Biomechanics Module




     Musculoskeletal Levers

      Why is Charlie Brown up in the air?




15
Biomechanics Module




     Musculoskeletal Levers

      (Force A)(MAA) vs (Force B)(MAB)
      Charlie Brown is up in the air if:
          (Charlie’s force)(MA) < (Linus’ force)(MA)




                   Force A


                             MAA                       MAB
                                                             Force B
                                       fulcrum,
                                      pivot point
16
Biomechanics Module




     Musculoskeletal Levers

      Interaction between the forces or loads on the
       segment and the joint

      Levers: two forces and a pivot point (fulcrum, axis)
           Internal force (muscle)
           External load (gravity etc)
           Pivot point (joint)
          (N.B. not consistent w/ Levangie)




17
Biomechanics Module




     Musculoskeletal Levers
      First class lever
      Second class lever
      Third class lever

      Differentiated by the relative position of the internal force, external
       load, and pivot point




18
Biomechanics Module




     Musculoskeletal Levers

      First class lever




                                         Internal
                                          force


                           fulcrum, pi
                            vot point


19
Biomechanics Module




     Musculoskeletal Levers

      Second class lever




                              Internal
                               force




                fulcrum, pi
                 vot point




20
Biomechanics Module




     Musculoskeletal Levers

      Third class lever


                              Internal
                               force




                 fulcrum,
                pivot point




21
Biomechanics Module




     Mechanical advantage

     




22
Biomechanics Module




     Mechanical advantage

     



                              First Class Lever
                 Ext
                Ext                                           Int


                                                                    Mech Adv = 1 if
                                                                    fulcrum in middle
                                   fulcrum,
                                  pivot point



                       External MA    =         Internal MA
23
Biomechanics Module




     Mechanical advantage

     



                            Second Class Lever
                                    Ext                 Int


                                                              Mech Adv > 1

              fulcrum



                      External MA   <     Internal MA
24
Biomechanics Module




     Mechanical advantage

     



                             Third Class Lever
                                    Int                 Ext


                                                              Mech Adv < 1

              fulcrum



                      External MA    >    Internal MA
25
Biomechanics Module




Classification of force systems

 Linear
      same segment
      same plane
      same line




                                  26
Biomechanics Module




Classification of force systems

 Linear
      same segment
      same plane
      same line
 Concurrent
      same segment
      same plane
      common point of application




                                     27
Biomechanics Module




Classification of force systems

 Linear
      same segment
      same plane
      same line
 Concurrent
      same segment
      same plane
      common point of application
 Parallel
      same segment
      same plane
      parallel to each other

                                     28
Biomechanics Module




     Fun with Forces

      Vector addition
           Composition
           Tip to tail
           Parallelogram
      Vector resolution
           Graphical
           Trigonometric
      Application to human movement
           Parallel forces
           Perpendicular forces




29
Biomechanics




Vector addition

 Composition
      Works with collinear vectors

      Same direction (addition)
                     +             =
      Opposite direction (“subtraction”)
                     +             =




                                                       30
                                            Hall, Fig 3-11, 3-12
Biomechanics




Vector addition

 Addition (composition)




     Works with collinear vectors

                                               31
                                    Hall, Fig 3-11, 3-12
Biomechanics




Vector addition

 Addition (composition)




     Works with collinear vectors

                                               32
                                    Hall, Fig 3-11, 3-12
Biomechanics




Vector Addition
 Tip to tail
      Concurrent vectors (vectors which can intersect)



               +        =                       =



               +        =                       =




                                                              33
                                                          Hall, Fig 3-13
Biomechanics




Vector addition
 Addition – tip to tail




                               34
                           Hall, Fig 3-13
Biomechanics




Vector addition
 Addition – tip to tail




                               35
                           Hall, Fig 3-13
Biomechanics




Vector Addition

 Addition – parallelogram


               +   =         =



               +   =         =




                                     36
                                 Hall, Fig 3-13
Biomechanics




Vector addition
 Addition – parallelogram




                                 37
                             Hall, Fig 3-13
Biomechanics




Vector addition
 Addition – parallelogram




                                 38
                             Hall, Fig 3-13
Biomechanics




     Vector Resolution

      Resolving a vector into perpendicular components
      Methods:
           Graph paper
           Trigonometry




39
Biomechanics




     Vector Resolution

      Graphically




40                       Hall, Fig 3-15
Biomechanics




     Vector Resolution

      Graphically




41                       Hall, Fig 3-15
Biomechanics




     Vector Resolution

      Graphically




42                       Hall, Fig 3-15
Biomechanics




Vector Resolution
                                                           Angle   Sin       Cos
 Trigonometric                                              0     0         1
                                                            30     0.50      0.87
                                                     30°    45     0.71      0.71
                    opposite




                                          adjacent
                                                            55     0.82      0.57
                                                            60     0.87      0.5
                                                            90     1         0
60
°        adjacent              opposite




                                                                           43
                                                                       Hall, Fig 3-15
Biomechanics




Vector Resolution
                                                           Angle   Sin       Cos
 Trigonometric                                              0     0         1
                                                            30     0.50      0.87
                                                     30°    45     0.71      0.71
                    opposite




                                          adjacent
                                                            55     0.82      0.57
                                                            60     0.87      0.5
                                                            90     1         0
60°
         adjacent              opposite




                                                                           44
                                                                       Hall, Fig 3-15
Biomechanics




Vector Resolution
                                                                 Angle   Sin       Cos
 Trigonometric                                                    0     0         1
                                                                  30     0.50      0.87
                                                           30°    45     0.71      0.71
                    opposite


       10




                                                adjacent
                                                                  55     0.82      0.57
                               8.7
                                                                  60     0.87      0.5
                                                                  90     1         0
60°
         adjacent                    opposite
           5.0




                                                                                 45
                                                                             Hall, Fig 3-15
Biomechanics




Vector Resolution
                                                                Angle   Sin       Cos
 Trigonometric                                                   0     0         1
                                                                 30     0.50      0.87
                                                          30°    45     0.71      0.71
                    opposite




                                               adjacent
                               10                                55     0.82      0.57
                                                                 60     0.87      0.5
                                                                 90     1         0
60°
         adjacent                   opposite




                                                                                46
                                                                            Hall, Fig 3-15
Biomechanics




Vector Resolution
                                                                  Angle   Sin       Cos
 Trigonometric                                                     0     0         1
                                                                   30     0.50      0.87
                                                            30°    45     0.71      0.71
                    opposite


       10                            10




                                                 adjacent
                                                                   55     0.82      0.57
                               8.7                          8.7
                                                                   60     0.87      0.5
                                                                   90     1         0
60°
         adjacent                     opposite
           5.0                          5.0




                                                                                  47
                                                                              Hall, Fig 3-15
Biomechanics




Vector Resolution
                                                        Angle   Sin       Cos
 Trigonometric                                           0     0         1
                                                         30     0.50      0.87


                  20sin(55) = 16.4
                                                         45     0.71      0.71
                                                         55     0.82      0.57
                                                         60     0.87      0.5
                                                         90     1         0

                                       55
                                       °
                                     20cos(55) = 11.4




                                                                        48
                                                                    Hall, Fig 3-15
Biomechanics




Vector Resolution
                                        Angle   Sin       Cos
 Trigonometric                           0     0         1
                                         30     0.50      0.87
                         45°
                                         45     0.71      0.71
                                         55     0.82      0.57
                                         60     0.87      0.5
                                         90     1         0
               55°                30°



               Hypotenuse = 100




                                                        49
                                                    Hall, Fig 3-15
Biomechanics




Vector Resolution
                                                     Angle   Sin       Cos
 Trigonometric                                        0     0         1
                                                      30     0.50      0.87
                             45°71
                                                      45     0.71      0.71

                        71                            55     0.82      0.57
         82
                                                50    60     0.87      0.5
                                                      90     1         0
               55° 57                87   30°



               Hypotenuse = 100




                                                                     50
                                                                 Hall, Fig 3-15
Biomechanics




Vector Resolution
                                                     Angle   Sin         Cos
 Trigonometric                                        0     0           1
      How does angle change the composition?         30     0.50        0.87
                                                      45     0.71        0.71
                                                      55     0.82        0.57
                                                      60     0.87        0.5
                                                      90     1           0




90°       60°      45°           30°            0°




                                                                    51
Biomechanics Module




     Application to human movement

      Resolve force into:
           Perpendicular force
                 Rotation
           Parallel force
                 Compression
           Position dependent               perpendicular




                                  parallel




52
Biomechanics Module




     End of Biomechanics Module

      Don’t forget to take the quiz




53

Biomechanics module

  • 1.
    Biomechanics Module Newton’s laws Musculoskeletal levers and mechanical advantage Classification of force systems Vector addition and resolution
  • 2.
    Biomechanics Module Newton’s Laws Law of Inertia  Law of Acceleration  Law of Action-Reaction 2
  • 3.
    Biomechanics Module Law of Inertia (equilibrium)  3 Hall, Basic Biomechanics, 5th ed
  • 4.
    Biomechanics Module Law of Inertia (equilibrium)  4
  • 5.
    Biomechanics Module Law of Acceleration  5
  • 6.
    Biomechanics Module Law of Acceleration  6
  • 7.
    Biomechanics Module Law of Acceleration   7
  • 8.
    Biomechanics Module Law of Acceleration  B 10 pounds 8
  • 9.
    Biomechanics Module Newton’s Laws Law of Inertia Within object  Law of Acceleration  Law of Action-Reaction Between objects 9
  • 10.
    Biomechanics Module Law of Action-Reaction  For every action, there is an equal and opposite reaction  (Forces occur in pairs)  Between two objects 10
  • 11.
    Biomechanics Module Law of Action-Reaction  For every action, there is an equal and opposite reaction  (Forces occur in pairs)  Between two objects  Objects must be in contact 11
  • 12.
    Biomechanics Module Law of Action-Reaction  For every action, there is an equal and opposite reaction 12
  • 13.
    Biomechanics Module Law ofAction-Reaction  Ground reaction force Body GRF = weight 13 Hall, Fig 12-1
  • 14.
    Biomechanics Module Musculoskeletal Levers  Why is Charlie Brown up in the air? 14
  • 15.
    Biomechanics Module Musculoskeletal Levers  Why is Charlie Brown up in the air? 15
  • 16.
    Biomechanics Module Musculoskeletal Levers  (Force A)(MAA) vs (Force B)(MAB)  Charlie Brown is up in the air if: (Charlie’s force)(MA) < (Linus’ force)(MA) Force A MAA MAB Force B fulcrum, pivot point 16
  • 17.
    Biomechanics Module Musculoskeletal Levers  Interaction between the forces or loads on the segment and the joint  Levers: two forces and a pivot point (fulcrum, axis)  Internal force (muscle)  External load (gravity etc)  Pivot point (joint) (N.B. not consistent w/ Levangie) 17
  • 18.
    Biomechanics Module Musculoskeletal Levers  First class lever  Second class lever  Third class lever  Differentiated by the relative position of the internal force, external load, and pivot point 18
  • 19.
    Biomechanics Module Musculoskeletal Levers  First class lever Internal force fulcrum, pi vot point 19
  • 20.
    Biomechanics Module Musculoskeletal Levers  Second class lever Internal force fulcrum, pi vot point 20
  • 21.
    Biomechanics Module Musculoskeletal Levers  Third class lever Internal force fulcrum, pivot point 21
  • 22.
    Biomechanics Module Mechanical advantage  22
  • 23.
    Biomechanics Module Mechanical advantage  First Class Lever Ext Ext Int Mech Adv = 1 if fulcrum in middle fulcrum, pivot point External MA = Internal MA 23
  • 24.
    Biomechanics Module Mechanical advantage  Second Class Lever Ext Int Mech Adv > 1 fulcrum External MA < Internal MA 24
  • 25.
    Biomechanics Module Mechanical advantage  Third Class Lever Int Ext Mech Adv < 1 fulcrum External MA > Internal MA 25
  • 26.
    Biomechanics Module Classification offorce systems  Linear  same segment  same plane  same line 26
  • 27.
    Biomechanics Module Classification offorce systems  Linear  same segment  same plane  same line  Concurrent  same segment  same plane  common point of application 27
  • 28.
    Biomechanics Module Classification offorce systems  Linear  same segment  same plane  same line  Concurrent  same segment  same plane  common point of application  Parallel  same segment  same plane  parallel to each other 28
  • 29.
    Biomechanics Module Fun with Forces  Vector addition  Composition  Tip to tail  Parallelogram  Vector resolution  Graphical  Trigonometric  Application to human movement  Parallel forces  Perpendicular forces 29
  • 30.
    Biomechanics Vector addition  Composition  Works with collinear vectors  Same direction (addition) + =  Opposite direction (“subtraction”) + = 30 Hall, Fig 3-11, 3-12
  • 31.
    Biomechanics Vector addition  Addition(composition) Works with collinear vectors 31 Hall, Fig 3-11, 3-12
  • 32.
    Biomechanics Vector addition  Addition(composition) Works with collinear vectors 32 Hall, Fig 3-11, 3-12
  • 33.
    Biomechanics Vector Addition  Tipto tail  Concurrent vectors (vectors which can intersect) + = = + = = 33 Hall, Fig 3-13
  • 34.
    Biomechanics Vector addition  Addition– tip to tail 34 Hall, Fig 3-13
  • 35.
    Biomechanics Vector addition  Addition– tip to tail 35 Hall, Fig 3-13
  • 36.
    Biomechanics Vector Addition  Addition– parallelogram + = = + = = 36 Hall, Fig 3-13
  • 37.
    Biomechanics Vector addition  Addition– parallelogram 37 Hall, Fig 3-13
  • 38.
    Biomechanics Vector addition  Addition– parallelogram 38 Hall, Fig 3-13
  • 39.
    Biomechanics Vector Resolution  Resolving a vector into perpendicular components  Methods:  Graph paper  Trigonometry 39
  • 40.
    Biomechanics Vector Resolution  Graphically 40 Hall, Fig 3-15
  • 41.
    Biomechanics Vector Resolution  Graphically 41 Hall, Fig 3-15
  • 42.
    Biomechanics Vector Resolution  Graphically 42 Hall, Fig 3-15
  • 43.
    Biomechanics Vector Resolution Angle Sin Cos  Trigonometric 0 0 1 30 0.50 0.87 30° 45 0.71 0.71 opposite adjacent 55 0.82 0.57 60 0.87 0.5 90 1 0 60 ° adjacent opposite 43 Hall, Fig 3-15
  • 44.
    Biomechanics Vector Resolution Angle Sin Cos  Trigonometric 0 0 1 30 0.50 0.87 30° 45 0.71 0.71 opposite adjacent 55 0.82 0.57 60 0.87 0.5 90 1 0 60° adjacent opposite 44 Hall, Fig 3-15
  • 45.
    Biomechanics Vector Resolution Angle Sin Cos  Trigonometric 0 0 1 30 0.50 0.87 30° 45 0.71 0.71 opposite 10 adjacent 55 0.82 0.57 8.7 60 0.87 0.5 90 1 0 60° adjacent opposite 5.0 45 Hall, Fig 3-15
  • 46.
    Biomechanics Vector Resolution Angle Sin Cos  Trigonometric 0 0 1 30 0.50 0.87 30° 45 0.71 0.71 opposite adjacent 10 55 0.82 0.57 60 0.87 0.5 90 1 0 60° adjacent opposite 46 Hall, Fig 3-15
  • 47.
    Biomechanics Vector Resolution Angle Sin Cos  Trigonometric 0 0 1 30 0.50 0.87 30° 45 0.71 0.71 opposite 10 10 adjacent 55 0.82 0.57 8.7 8.7 60 0.87 0.5 90 1 0 60° adjacent opposite 5.0 5.0 47 Hall, Fig 3-15
  • 48.
    Biomechanics Vector Resolution Angle Sin Cos  Trigonometric 0 0 1 30 0.50 0.87 20sin(55) = 16.4 45 0.71 0.71 55 0.82 0.57 60 0.87 0.5 90 1 0 55 ° 20cos(55) = 11.4 48 Hall, Fig 3-15
  • 49.
    Biomechanics Vector Resolution Angle Sin Cos  Trigonometric 0 0 1 30 0.50 0.87 45° 45 0.71 0.71 55 0.82 0.57 60 0.87 0.5 90 1 0 55° 30° Hypotenuse = 100 49 Hall, Fig 3-15
  • 50.
    Biomechanics Vector Resolution Angle Sin Cos  Trigonometric 0 0 1 30 0.50 0.87 45°71 45 0.71 0.71 71 55 0.82 0.57 82 50 60 0.87 0.5 90 1 0 55° 57 87 30° Hypotenuse = 100 50 Hall, Fig 3-15
  • 51.
    Biomechanics Vector Resolution Angle Sin Cos  Trigonometric 0 0 1  How does angle change the composition? 30 0.50 0.87 45 0.71 0.71 55 0.82 0.57 60 0.87 0.5 90 1 0 90° 60° 45° 30° 0° 51
  • 52.
    Biomechanics Module Application to human movement  Resolve force into:  Perpendicular force  Rotation  Parallel force  Compression  Position dependent perpendicular parallel 52
  • 53.
    Biomechanics Module End of Biomechanics Module  Don’t forget to take the quiz 53