Interactive Visualization
in Human Time
Mike Martinez
www.ociweb.com
@brillozon
StampedeCon 2015
July 15-16, 2015
Saint Louis, MO
Several forms
Several forms
Long History
Clarify Intuitions
d
dx
f (x) = lim
h→ 0
f (x+h)−f (x)
h
Clarify Intuitions
∫
a
b
f (x)dx = lim
n→ ∞
∑
i=1
n
(b−a
n
f (a+(b−a
n )i)
)
Information Dense
Hidden Insights
Shapes of Data
Data Analytics
Data Exploration
Interactive Visualization
Brushing and Linking
Response Times
there's your problem
Data
analytics
Processing Times
Storage Sizes
aggregation
network
Query Times
Network latency
And capacityWrite Times
Query Times Write Times
Selection Times
Rendering Times
Level of Detail
MoreDetail
Discrete /
Continuous
Hierarchical
Financial Engineering
Math? Lolwut!
Portfolio Theory
Constant Expected Return (CER) model:
Ri t ∼ iid N (μ i ,σ i
2
); i = 1,...,N ( assets)
t = 1,...,T (time)
^SRi =
^μ i − rf
^σ i
Minimum Variance Portfolio:
^m =
^Σ −1
⋅1
1
T
⋅^Σ
−1
⋅1
;
^m is portfolio weightings
such that ^m
T
⋅1 = 1
^μ p, ^m = ^m
T
^μ ; p is portfolio
^σ p , ^m = ( ^mT
⋅^Σ⋅^m)
1
2
^σ p , ^m1 , ^m2
2
= ^m1
T
⋅^Σ⋅ ^m2 = ^m2
T
⋅^Σ⋅ ^m1
Markowitz Algorithm to find Efficient Frontier:
min
x
σ p , x
2
= ^x
T
⋅^Σ⋅^x
μ p , x = xT
⋅μ = μ p
0
xT
⋅1 = 1
constraint for no short sales: xi≥0
Tangency Portfolio:
^t =
^Σ
−1
⋅(μ−rf 1)
1T
⋅^Σ −1
⋅(μ−rf 1)
; ^t is portfolio weightings
max
^t
μ p ,t − rf
σ p ,t
; such that ^t
T
⋅1 = 1
CER model
Constant Expected Return (CER) model:
Ri t ∼ iid N (μ i ,σ i
2
); i = 1,...,N ( assets)
t = 1,...,T (time)
^SRi =
^μ i − rf
^σ i
Minimum Variance Portfolio:
^m =
^Σ
−1
⋅1
1
T
⋅^Σ
−1
⋅1
;
^m is portfolio weightings
such that ^m
T
⋅1 = 1
^μ p, ^m = ^mT
^μ ; p is portfolio
^σ p , ^m = ( ^m
T
⋅^Σ⋅^m)
1
2
^σ p , ^m1 , ^m2
2
= ^m1
T
⋅^Σ⋅ ^m2 = ^m2
T
⋅^Σ⋅ ^m1
Markowitz Algorithm to find Efficient Frontier:
min
x
σ p , x
2
= ^xT
⋅^Σ⋅^x
μ p , x = x
T
⋅μ = μ p
0
x
T
⋅1 = 1
constraint for no short sales: xi≥0
Tangency Portfolio:
^t =
^Σ −1
⋅(μ−rf 1)
1T
⋅^Σ −1
⋅(μ−rf 1)
; ^t is portfolio weightings
max
^t
μ p ,t − rf
σ p ,t
; such that ^tT
⋅1 = 1Constant Expected Return (CER) model:
Rit ∼ iid N (μ i,σ i
2
); i = 1,..., N ( assets)
t = 1,...,T (time)
t1
t2
t3
t4
Ri2
Ri3 Ri4
Rit
= (Rit
– Ri(t-1)
)/ Ri(t-1)
Efficient Frontier
Constant Expected Return (CER) model:
Ri t ∼ iid N (μ i ,σ i
2
); i = 1,...,N ( assets)
t = 1,...,T (time)
^SRi =
^μ i − rf
^σ i
Minimum Variance Portfolio:
^m =
^Σ
−1
⋅1
1T
⋅^Σ −1
⋅1
;
^m is portfolio weightings
such that ^m
T
⋅1 = 1
^μ p, ^m = ^m
T
^μ ; p is portfolio
^σ p , ^m = ( ^m
T
⋅^Σ⋅^m)
1
2
^σ p , ^m1 , ^m2
2
= ^m1
T
⋅^Σ⋅ ^m2 = ^m2
T
⋅^Σ⋅ ^m1
Markowitz Algorithm to find Efficient Frontier:
min
x
σ p , x
2
= ^xT
⋅^Σ⋅^x
μ p , x = x
T
⋅μ = μ p
0
xT
⋅1 = 1
constraint for no short sales: xi≥0
Tangency Portfolio:
^t =
^Σ
−1
⋅(μ−rf 1)
1T
⋅^Σ −1
⋅(μ−rf 1)
; ^t is portfolio weightings
max
^t
μ p ,t − rf
σ p ,t
; such that ^tT
⋅1 = 1
Return
Risk
Feasible portfolios
Efficient Frontier:
min
x
σ p, x
2
= ^x
T
⋅^Σ⋅^x ; μ p, x = x
T
⋅μ = μ p
0
x
Minimum variance
Constant Expected Return (CER) model:
Ri t ∼ iid N (μ i ,σ i
2
); i = 1,...,N ( assets)
t = 1,...,T (time)
^SRi =
^μ i − rf
^σ i
Minimum Variance Portfolio:
^m =
^Σ
−1
⋅1
1
T
⋅^Σ
−1
⋅1
;
^m is portfolio weightings
such that ^m
T
⋅1 = 1
^μ p, ^m = ^mT
^μ ; p is portfolio
^σ p , ^m = ( ^m
T
⋅^Σ⋅^m)
1
2
^σ p , ^m1 , ^m2
2
= ^m1
T
⋅^Σ⋅ ^m2 = ^m2
T
⋅^Σ⋅ ^m1
Markowitz Algorithm to find Efficient Frontier:
min
x
σ p , x
2
= ^xT
⋅^Σ⋅^x
μ p , x = x
T
⋅μ = μ p
0
x
T
⋅1 = 1
constraint for no short sales: xi≥0
Tangency Portfolio:
^t =
^Σ −1
⋅(μ−rf 1)
1T
⋅^Σ −1
⋅(μ−rf 1)
; ^t is portfolio weightings
max
^t
μ p ,t − rf
σ p ,t
; such that ^tT
⋅1 = 1
Minimum Variance Portfolio:
^m =
^Σ
−1
⋅1
1T
⋅^Σ −1
⋅1
Return
Risk
Feasible portfolios
Tangency
Constant Expected Return (CER) model:
Ri t ∼ iid N (μ i ,σ i
2
); i = 1,...,N ( assets)
t = 1,...,T (time)
^SRi =
^μ i − rf
^σ i
Minimum Variance Portfolio:
^m =
^Σ
−1
⋅1
1T
⋅^Σ −1
⋅1
;
^m is portfolio weightings
such that ^m
T
⋅1 = 1
^μ p, ^m = ^m
T
^μ ; p is portfolio
^σ p , ^m = ( ^m
T
⋅^Σ⋅^m)
1
2
^σ p , ^m1 , ^m2
2
= ^m1
T
⋅^Σ⋅ ^m2 = ^m2
T
⋅^Σ⋅ ^m1
Markowitz Algorithm to find Efficient Frontier:
min
x
σ p , x
2
= ^xT
⋅^Σ⋅^x
μ p , x = x
T
⋅μ = μ p
0
xT
⋅1 = 1
constraint for no short sales: xi≥0
Tangency Portfolio:
^t =
^Σ
−1
⋅(μ−rf 1)
1T
⋅^Σ −1
⋅(μ−rf 1)
; ^t is portfolio weightings
max
^t
μ p ,t − rf
σ p ,t
; such that ^tT
⋅1 = 1Tangency Portfolio:
max
^t
μ p ,t − rf
σ p ,t
; ^t =
^Σ
−1
⋅(μ−rf 1)
1T
⋅^Σ −1
⋅(μ−rf 1)
Return
Risk
Efficient Frontier
Feasible portfolios
Sharpe Ratio
Risk free
return
Co-variance
sample co-variance of n observations of k variables:
qjk =
1
n−1
∑
i=1
n
(xij − ¯x j)(xik − ¯xk )
where: ¯xj =
1
n
∑
i=1
n
xij and ¯xk =
1
n
∑
i=1
n
xik
Portfolio Performance
Portfolio Allocations
Aggregation
A&B C&D E&F G&H
A B C D E F G H
A&B&C&D E&F&G&H
all
D & (E&F) & G
Aggregated
data
Raw
data
Store precomputed
“tiles” of data
O(log2
nn) operations
to combine nn arbitrary
raw data elements
Aggregating Data
Commutative Operations
3, 4, 8
2, 6, 7
4, 7, 10, 3
1, 5
Sum,count: {30,6}
Average: 5
Sum,count: {24,4}
Average: 6
Sum,count: {15,3}
Average: 5
Sum,count: {15,3}
Average: 5
Sum,count: {6,2}
Average: 3
Sum,count: {30,6}
Average: 4.5
Sum,count: {60,12}
Average: 4.75
Wrong!
Associative
(grouping)
Commutative
(order)
Sum
Count
Average
Associative
Commutative
X
X
X
X
X
Covariance aggregation
Covariance values:
N * (N – 1) / 2
For each time sample
For 10,000 stocks tracking a daily
Close over 10 years this can reach
100,000,000,000 individual values
instrument
instrument
time
*
* * * * * * * * * *
* *
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* *
* *
* *
* *
*
*
*
*
*
*
*
*
*
*
*
*
*
� is a set of two time series(u,v)
aggregating the two subsets �1,�2
μ u, 1,μ v ,1 ,μ u,2 ,μ v ,2 are the means of u,v
on �1 ,�2 respectively
n = n1+n2
δ u, 2,1 = μ u, 2−μ u, 1
δ v , 2,1 = μ v ,2−μ v ,1
C
2,�
= C
2,�1
+ C
2,�2
+
n1 n2
n
δ u,2,1 δ v ,2,1
also recall that in general: μ = μ 1+n2
δ 2,1
n
References
● Articles
– Alexander Mordvintsev, Christopher Olah, Mike Tyka. Inceptionism: going deeper into Neural Networks. June 17, 2015
(http://googleresearch.blogspot.co.uk/2015/06/inceptionism-going-deeper-into-neural.html)
– Zhicheng Liu, Jeffery Heer.
Effects of latency on interactive visual analysis. August 12, 2014
(http://istc-bigdata.org/index.php/effects-of-latency-on-interactive-visual-analysis/)
– Pébay, Phillipe, “Formulas for Robust, One-Pass Parallel Computation of Covariances and Arbitrary-Order Statistical Moments”, 2008
(http://prod.sandia.gov/techlib/access-control.cgi/2008/086212.pdf)
Java Implementation in Apache Hive as org.apache.hadoop.hive.ql.udf.generic.GenericUDAFCovariance
(https://hive.apache.org/javadocs/r0.10.0/api/org/apache/hadoop/hive/ql/udf/generic/GenericUDAFCovariance.html)
● GitHub
– Slide charts (slides 5, 6, 9, 10, 11, 13, 16(partial), 23, 24, 25):
https://github.com/oci-labs/StampedeCon-2015
– Visualization tool (slide 15):
● https://github.com/uwdata/imMens
● Links
– Ggobi: http://www.ggobi.org/
● Books
– Edward R. Tufte. The Visual Display of Quantitative Information. 2001
Copyrights
● Slide 2
– Www.cartoonstock.com
(https://www.cartoonstock.com/cartoonview.asp?catref=mbcn2693)
● Slide 4
– CC BY 2.0
(https://www.flickr.com/photos/jackversloot/2563365462)
● Slide 7
– CC BY-SA 4.0
(https://en.wikipedia.org/wiki/Charles_Joseph_Minard#/media/File:Minard_map_of_napoleon.png)
● Slide 8
– Alexander Mordvintsev, Christopher Olah, Mike Tyka.
Inceptionism: going deeper into Neural Networks.
June 17, 2015
(http://googleresearch.blogspot.co.uk/2015/06/inceptionism-going-deeper-into-neural.html)
Accessed June 21, 2015
● Slide 12
– CC BY 2.0
(https://www.flickr.com/photos/jurvetson/4182789146/)
● Slide 16
– Congress – public domain
(http://media-3.web.britannica.com/eb-media//97/149697-050-05A96268.jpg)
– Chair – public domain
(https://openclipart.org/detail/3817/man-in-chair)
● Slide 17
– CC BY 2.0
(https://www.flickr.com/photos/frontierofficial/16122472323/)
● Slide 30
CC BY 2.0 (https://www.flickr.com/photos/fliegender/396848298/)
x

Interactive Visualization in Human Time -StampedeCon 2015

  • 1.
    Interactive Visualization in HumanTime Mike Martinez www.ociweb.com @brillozon StampedeCon 2015 July 15-16, 2015 Saint Louis, MO
  • 2.
  • 3.
  • 4.
  • 5.
    Clarify Intuitions d dx f (x)= lim h→ 0 f (x+h)−f (x) h
  • 6.
    Clarify Intuitions ∫ a b f (x)dx= lim n→ ∞ ∑ i=1 n (b−a n f (a+(b−a n )i) )
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
    there's your problem Data analytics ProcessingTimes Storage Sizes aggregation network Query Times Network latency And capacityWrite Times Query Times Write Times Selection Times Rendering Times
  • 16.
    Level of Detail MoreDetail Discrete/ Continuous Hierarchical
  • 17.
  • 18.
    Portfolio Theory Constant ExpectedReturn (CER) model: Ri t ∼ iid N (μ i ,σ i 2 ); i = 1,...,N ( assets) t = 1,...,T (time) ^SRi = ^μ i − rf ^σ i Minimum Variance Portfolio: ^m = ^Σ −1 ⋅1 1 T ⋅^Σ −1 ⋅1 ; ^m is portfolio weightings such that ^m T ⋅1 = 1 ^μ p, ^m = ^m T ^μ ; p is portfolio ^σ p , ^m = ( ^mT ⋅^Σ⋅^m) 1 2 ^σ p , ^m1 , ^m2 2 = ^m1 T ⋅^Σ⋅ ^m2 = ^m2 T ⋅^Σ⋅ ^m1 Markowitz Algorithm to find Efficient Frontier: min x σ p , x 2 = ^x T ⋅^Σ⋅^x μ p , x = xT ⋅μ = μ p 0 xT ⋅1 = 1 constraint for no short sales: xi≥0 Tangency Portfolio: ^t = ^Σ −1 ⋅(μ−rf 1) 1T ⋅^Σ −1 ⋅(μ−rf 1) ; ^t is portfolio weightings max ^t μ p ,t − rf σ p ,t ; such that ^t T ⋅1 = 1
  • 19.
    CER model Constant ExpectedReturn (CER) model: Ri t ∼ iid N (μ i ,σ i 2 ); i = 1,...,N ( assets) t = 1,...,T (time) ^SRi = ^μ i − rf ^σ i Minimum Variance Portfolio: ^m = ^Σ −1 ⋅1 1 T ⋅^Σ −1 ⋅1 ; ^m is portfolio weightings such that ^m T ⋅1 = 1 ^μ p, ^m = ^mT ^μ ; p is portfolio ^σ p , ^m = ( ^m T ⋅^Σ⋅^m) 1 2 ^σ p , ^m1 , ^m2 2 = ^m1 T ⋅^Σ⋅ ^m2 = ^m2 T ⋅^Σ⋅ ^m1 Markowitz Algorithm to find Efficient Frontier: min x σ p , x 2 = ^xT ⋅^Σ⋅^x μ p , x = x T ⋅μ = μ p 0 x T ⋅1 = 1 constraint for no short sales: xi≥0 Tangency Portfolio: ^t = ^Σ −1 ⋅(μ−rf 1) 1T ⋅^Σ −1 ⋅(μ−rf 1) ; ^t is portfolio weightings max ^t μ p ,t − rf σ p ,t ; such that ^tT ⋅1 = 1Constant Expected Return (CER) model: Rit ∼ iid N (μ i,σ i 2 ); i = 1,..., N ( assets) t = 1,...,T (time) t1 t2 t3 t4 Ri2 Ri3 Ri4 Rit = (Rit – Ri(t-1) )/ Ri(t-1)
  • 20.
    Efficient Frontier Constant ExpectedReturn (CER) model: Ri t ∼ iid N (μ i ,σ i 2 ); i = 1,...,N ( assets) t = 1,...,T (time) ^SRi = ^μ i − rf ^σ i Minimum Variance Portfolio: ^m = ^Σ −1 ⋅1 1T ⋅^Σ −1 ⋅1 ; ^m is portfolio weightings such that ^m T ⋅1 = 1 ^μ p, ^m = ^m T ^μ ; p is portfolio ^σ p , ^m = ( ^m T ⋅^Σ⋅^m) 1 2 ^σ p , ^m1 , ^m2 2 = ^m1 T ⋅^Σ⋅ ^m2 = ^m2 T ⋅^Σ⋅ ^m1 Markowitz Algorithm to find Efficient Frontier: min x σ p , x 2 = ^xT ⋅^Σ⋅^x μ p , x = x T ⋅μ = μ p 0 xT ⋅1 = 1 constraint for no short sales: xi≥0 Tangency Portfolio: ^t = ^Σ −1 ⋅(μ−rf 1) 1T ⋅^Σ −1 ⋅(μ−rf 1) ; ^t is portfolio weightings max ^t μ p ,t − rf σ p ,t ; such that ^tT ⋅1 = 1 Return Risk Feasible portfolios Efficient Frontier: min x σ p, x 2 = ^x T ⋅^Σ⋅^x ; μ p, x = x T ⋅μ = μ p 0 x
  • 21.
    Minimum variance Constant ExpectedReturn (CER) model: Ri t ∼ iid N (μ i ,σ i 2 ); i = 1,...,N ( assets) t = 1,...,T (time) ^SRi = ^μ i − rf ^σ i Minimum Variance Portfolio: ^m = ^Σ −1 ⋅1 1 T ⋅^Σ −1 ⋅1 ; ^m is portfolio weightings such that ^m T ⋅1 = 1 ^μ p, ^m = ^mT ^μ ; p is portfolio ^σ p , ^m = ( ^m T ⋅^Σ⋅^m) 1 2 ^σ p , ^m1 , ^m2 2 = ^m1 T ⋅^Σ⋅ ^m2 = ^m2 T ⋅^Σ⋅ ^m1 Markowitz Algorithm to find Efficient Frontier: min x σ p , x 2 = ^xT ⋅^Σ⋅^x μ p , x = x T ⋅μ = μ p 0 x T ⋅1 = 1 constraint for no short sales: xi≥0 Tangency Portfolio: ^t = ^Σ −1 ⋅(μ−rf 1) 1T ⋅^Σ −1 ⋅(μ−rf 1) ; ^t is portfolio weightings max ^t μ p ,t − rf σ p ,t ; such that ^tT ⋅1 = 1 Minimum Variance Portfolio: ^m = ^Σ −1 ⋅1 1T ⋅^Σ −1 ⋅1 Return Risk Feasible portfolios
  • 22.
    Tangency Constant Expected Return(CER) model: Ri t ∼ iid N (μ i ,σ i 2 ); i = 1,...,N ( assets) t = 1,...,T (time) ^SRi = ^μ i − rf ^σ i Minimum Variance Portfolio: ^m = ^Σ −1 ⋅1 1T ⋅^Σ −1 ⋅1 ; ^m is portfolio weightings such that ^m T ⋅1 = 1 ^μ p, ^m = ^m T ^μ ; p is portfolio ^σ p , ^m = ( ^m T ⋅^Σ⋅^m) 1 2 ^σ p , ^m1 , ^m2 2 = ^m1 T ⋅^Σ⋅ ^m2 = ^m2 T ⋅^Σ⋅ ^m1 Markowitz Algorithm to find Efficient Frontier: min x σ p , x 2 = ^xT ⋅^Σ⋅^x μ p , x = x T ⋅μ = μ p 0 xT ⋅1 = 1 constraint for no short sales: xi≥0 Tangency Portfolio: ^t = ^Σ −1 ⋅(μ−rf 1) 1T ⋅^Σ −1 ⋅(μ−rf 1) ; ^t is portfolio weightings max ^t μ p ,t − rf σ p ,t ; such that ^tT ⋅1 = 1Tangency Portfolio: max ^t μ p ,t − rf σ p ,t ; ^t = ^Σ −1 ⋅(μ−rf 1) 1T ⋅^Σ −1 ⋅(μ−rf 1) Return Risk Efficient Frontier Feasible portfolios Sharpe Ratio Risk free return
  • 23.
    Co-variance sample co-variance ofn observations of k variables: qjk = 1 n−1 ∑ i=1 n (xij − ¯x j)(xik − ¯xk ) where: ¯xj = 1 n ∑ i=1 n xij and ¯xk = 1 n ∑ i=1 n xik
  • 24.
  • 25.
  • 26.
    Aggregation A&B C&D E&FG&H A B C D E F G H A&B&C&D E&F&G&H all D & (E&F) & G Aggregated data Raw data Store precomputed “tiles” of data O(log2 nn) operations to combine nn arbitrary raw data elements
  • 27.
  • 28.
    Commutative Operations 3, 4,8 2, 6, 7 4, 7, 10, 3 1, 5 Sum,count: {30,6} Average: 5 Sum,count: {24,4} Average: 6 Sum,count: {15,3} Average: 5 Sum,count: {15,3} Average: 5 Sum,count: {6,2} Average: 3 Sum,count: {30,6} Average: 4.5 Sum,count: {60,12} Average: 4.75 Wrong! Associative (grouping) Commutative (order) Sum Count Average Associative Commutative X X X X X
  • 29.
    Covariance aggregation Covariance values: N* (N – 1) / 2 For each time sample For 10,000 stocks tracking a daily Close over 10 years this can reach 100,000,000,000 individual values instrument instrument time * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * � is a set of two time series(u,v) aggregating the two subsets �1,�2 μ u, 1,μ v ,1 ,μ u,2 ,μ v ,2 are the means of u,v on �1 ,�2 respectively n = n1+n2 δ u, 2,1 = μ u, 2−μ u, 1 δ v , 2,1 = μ v ,2−μ v ,1 C 2,� = C 2,�1 + C 2,�2 + n1 n2 n δ u,2,1 δ v ,2,1 also recall that in general: μ = μ 1+n2 δ 2,1 n
  • 31.
    References ● Articles – AlexanderMordvintsev, Christopher Olah, Mike Tyka. Inceptionism: going deeper into Neural Networks. June 17, 2015 (http://googleresearch.blogspot.co.uk/2015/06/inceptionism-going-deeper-into-neural.html) – Zhicheng Liu, Jeffery Heer. Effects of latency on interactive visual analysis. August 12, 2014 (http://istc-bigdata.org/index.php/effects-of-latency-on-interactive-visual-analysis/) – Pébay, Phillipe, “Formulas for Robust, One-Pass Parallel Computation of Covariances and Arbitrary-Order Statistical Moments”, 2008 (http://prod.sandia.gov/techlib/access-control.cgi/2008/086212.pdf) Java Implementation in Apache Hive as org.apache.hadoop.hive.ql.udf.generic.GenericUDAFCovariance (https://hive.apache.org/javadocs/r0.10.0/api/org/apache/hadoop/hive/ql/udf/generic/GenericUDAFCovariance.html) ● GitHub – Slide charts (slides 5, 6, 9, 10, 11, 13, 16(partial), 23, 24, 25): https://github.com/oci-labs/StampedeCon-2015 – Visualization tool (slide 15): ● https://github.com/uwdata/imMens ● Links – Ggobi: http://www.ggobi.org/ ● Books – Edward R. Tufte. The Visual Display of Quantitative Information. 2001
  • 32.
    Copyrights ● Slide 2 –Www.cartoonstock.com (https://www.cartoonstock.com/cartoonview.asp?catref=mbcn2693) ● Slide 4 – CC BY 2.0 (https://www.flickr.com/photos/jackversloot/2563365462) ● Slide 7 – CC BY-SA 4.0 (https://en.wikipedia.org/wiki/Charles_Joseph_Minard#/media/File:Minard_map_of_napoleon.png) ● Slide 8 – Alexander Mordvintsev, Christopher Olah, Mike Tyka. Inceptionism: going deeper into Neural Networks. June 17, 2015 (http://googleresearch.blogspot.co.uk/2015/06/inceptionism-going-deeper-into-neural.html) Accessed June 21, 2015 ● Slide 12 – CC BY 2.0 (https://www.flickr.com/photos/jurvetson/4182789146/) ● Slide 16 – Congress – public domain (http://media-3.web.britannica.com/eb-media//97/149697-050-05A96268.jpg) – Chair – public domain (https://openclipart.org/detail/3817/man-in-chair) ● Slide 17 – CC BY 2.0 (https://www.flickr.com/photos/frontierofficial/16122472323/) ● Slide 30 CC BY 2.0 (https://www.flickr.com/photos/fliegender/396848298/) x