SlideShare a Scribd company logo
Financial Engineering and Risk Management
Mean Variance Optimization
Martin Haugh Garud Iyengar
Columbia University
Industrial Engineering and Operations Research
Overview
Assets and portfolios
Quantifying random asset and portfolio returns: mean and variance
Mean-variance optimal portfolios
Efficient frontier
Sharpe ratio and Sharpe optimal portfolios
Market portfolio
Capital Asset Pricing Model
2
Assets and portfolios
Asset ≡ anything we can purchase
Random price P(t)
Random gross return R(t) = P(t+1)
P(t)
Random net return: r(t) = R(t) − 1 = P(t+1)−P(t)
P(t)
Total wealth W > 0 distributed over d assets
wi = dollar amount in asset i: wi > 0 ≡ long, wi < 0 ≡ short
Net return on a position w
rw(t) =
d
i=1 Ri(t)wi −
n
i=1 wi
W
=
d
i=1 ri(t)wi
d
i=1 wi
=
d
i=1
ri(t) ·
wi
W
xi
portfolio vector x = (x1, . . . , xd): each component can be +ve/-ve
xi = fraction invested in asset i ⇒
d
i=1
xi = 1
3
How does one deal with randomness?
Random net return on the portfolio rx =
d
i=1 rixi
How does one “quantify” random returns ?
Maximize expected return E[rx]?
Should one worry about spread around the mean?
How does one quantify the spread?
4
Random returns on assets and portfolios
Parameters defining asset returns
Mean of asset returns: µi = E[ri(t)]
Variance of asset returns: σ2
i = var(ri(t))
Covariance of asset returns: σij = cov ri(t), rj(t) = ρijσiσj
Correlation of asset returns ρij = cor ri(t), rj(t)
All parameters assumed to be constant over time.
Parameters defining portfolio returns
Expected return on a portfolio x = (x1, . . . , xd)
µx = E[rx(t)] =
d
i=1
E[ri(t)]xi =
d
i=1
µixi
Variance of the return on portfolio x:
σ2
x = var(rx(t)) = var
d
i=1
rixi =
d
i=1
d
j=1
cov ri(t), rj(t) xixj
5
Example
d = 2 assets with Normally distributed returns N(µ, σ2
)
r1 ∼ N(1, 0.1) r2 ∼ N(2, 0.5) cor(r1, r2) = −0.25
Parameters
µ1 = 1 µ2 = 2
σ2
1 = var(r1) = 0.1 σ2
2 = var(r2) = 0.5
σ12 = cov(r1, r2) = cor(r1, r2)σ1σ2 = −0.25
√
0.05 = 0.0559
Portfolio: (x, 1 − x)
µx =
d
i=1
µixi = x + 2(1 − x)
σ2
x =
d
i,j=1
σijxixj =
d
i=1
σ2
i x2
i + 2
j>i
σijxixj
= 0.1x2
+ 0.5(1 − x)2
+ 2(0.0559)x(1 − x)
6
Diversification reduces uncertainty
d assets each with µi ≡ µ, σi ≡ σ, ρij = 0 for all i = j
Two different portfolios
x = (1, 0, . . . , 0) : everything invested in asset 1
y = 1
d (1, 1, . . . , 1) : equal investment in all assets.
Expected returns of the two portfolios
µx = E[
d
i=1 µixi] = µ1 = µ
µy = E[
d
i=1 µiyi] = 1
d
d
i=1 µi = µ
Both have the same expected return!
Variance of returns of the two portfolios
σ2
x = var(
d
i=1 rixi) = σ2
σ2
y = var(
d
i=1 riyi) =
d
i=1 σ2
(1
d )2
= σ2
d
Diversified portfolio has a much lower variance!
7
Markowitz mean-variance portfolio selection
Markowitz (1954) proposed that
“Return” of a portfolio ≡ Expected return µx
“Risk” of a portfolio ≡ volatility σx
Efficient frontier
0 20 40 60 80 100 120 140 160 180
−60
−40
−20
0
20
40
60
80
100
120
volatility (%)
return(%)
Efficient frontier ≡ max return
for a given risk
How does one characterize the
efficient frontier?
How does one compute effi-
cient/optimal portfolios?
8
Mean variance formulations
Minimize risk ensuring return ≥ target return
minx σ2
x
s.t. µx ≥ r
≡ minx
d
i=1
d
j=1 σijxixj
s.t.
d
i=1 µixi ≥ r
d
i=1 xi = 1.
Maximize return ensuring risk ≤ risk budget
maxx µx
s.t. σ2
x ≤ ¯σ2
≡ maxx
d
i=1 µixi
s.t.
d
i=1
d
j=1 σijxixj ≤ ¯σ2
,
d
i=1 xi = 1.
Maximize a risk-adjusted return
maxx µx − τσ2
x ≡ maxx
d
i=1 µixi − τ
d
i=1
d
j=1 σijxixj
s.t.
d
i=1 xi = 1.
τ ≡ risk-aversion parameter
9
Financial Engineering and Risk Management
Efficient frontier
Martin Haugh Garud Iyengar
Columbia University
Industrial Engineering and Operations Research
Mean-variance for 2-asset market
d = 2 assets
Asset 1: mean return µ1 and variance σ2
1
Asset 2: mean return µ2 and variance σ2
2
Correlation between asset returns ρ
Portfolio: (x, 1 − x)
µx =
d
i=1
µixi = µ1x + µ2(1 − x)
σ2
x =
d
i,j=1
σijxixj =
d
i=1
σ2
i x2
i + 2
j>i
σijxixj
= σ2
1x2
+ σ2
2(1 − x)2
+ 2ρσ1σ2x(1 − x)
2
Mean-variance for 2-asset market
Minimize risk formulation for the mean-variance portfolio selection problem
minx σ2
1x2
+ σ2
2(1 − x)2
+ 2ρσ1σ2x(1 − x)
s.t. µ1x + µ2(1 − x) = r
Expected return constraint: x = r−µ2
µ1−µ2
Variance:
σ2
r = σ2
1
r − µ2
µ1 − µ2
2
+ σ2
2
µ1 − r
µ1 − µ2
2
+ 2ρσ1σ2
r − µ2
µ1 − µ2
µ1 − r
µ1 − µ2
= ar2
+ br + c
Explicit expression for the variance as a function of target return r.
3
Efficient frontier
0 2 4 6 8 10 12 14
−6
−4
−2
0
2
4
6
8
10
12
volatility (%)
return(%)
σmin
rmin
Efficient
Inefficient
Only the top half is efficient! why did we get the bottom?
How does one solve the d asset problem?
4
Computing the optimal portfolio
Mean-variance portfolio selection problem
σ2
(r) = minx
d
i=1
d
j=1 σijxixj
s.t.
d
i=1 µixi = r
d
i=1 xi = 1.
Form the Lagrangian with Lagrange multipliers u and v
L =
d
i=1
d
j=1
σijxixj − v
d
i=1
µixi − r − u
d
i=1
xi − 1
Setting ∂L
∂xi
= 0 for i = 1, . . . , d gives d equations
2
d
j=1
σijxj − vµi − u = 0, for all i = 1, . . . d (∗)
Can solve the d + 2 equations in d + 2 variables: x1, . . . , xd, u and v.
Theorem. A portfolio x is mean-variance optimal if, and only if, it is feasible and
there exists u and v satisfying (∗).
5
Computing the optimal portfolio
Matrix formulation









2σ11 2σ12 . . . 2σ1d −µ1 −1
2σ21 2σ22 . . . 2σ2d −µ2 −1
...
...
...
...
...
...
2σd1 2σd2 . . . 2σdd −µd −1
µ1 µ2 . . . µd 0 0
1 1 . . . 1 0 0









A









x1
x2
...
xd
v
u









=









0
0
...
0
r
1









b
Therefore 








x1
x2
...
xd
v
u









= A−1
b
6
Two fund theorem
Fix two different target returns: r1 = r2
Suppose
x(1)
= (x
(1)
1 , . . . , x
(1)
d ) optimal for r1: Lagrange multipliers (v1, u1)
x(2)
= (x
(2)
1 , . . . , x
(2)
d ) optimal for r2: Lagrange multipliers (v2, u2)
Consider any other return r
Choose β = r−r1
r2−r1
Consider the position: y = (1 − β)x(1)
+ βx(2)
y is a portfolio
d
i=1
yi = (1 − β)
d
i=1
x
(1)
i + β
d
i=1
x
(2)
i = (1 − β) + β = 1
y is feasible for target return r
d
i=1
µiyi = (1 − β)
d
i=1
µix
(1)
i + β
d
i=1
µix
(2)
i = (1 − β)r1 + βr2 = r
7
Two fund theorem (contd)
Set v = (1 − β)v1 + βv2 and u = (1 − β)u1 + βu2.
2
d
j=1
σijyj − vµi − u =
d
j=1
2σij((1 − β)x
(1)
j + βx
(2)
j )
− µi((1 − β)v1 + βv2) − ((1 − β)u1 + βu2)
= (1 − β) 2
d
j=1
σijx
(1)
j − v1µi − u1
+ β 2
d
j=1
σijx
(2)
j − v2µi − u2 = 0
y is optimal for target return r!
Theorem All efficient portfolios can be constructed by diversifying between any
two efficient portfolios with different expected returns.
Why are there so many funds in the market?
8
Efficient frontier
The optimal portfolio for target return r
y∗
=
r2 − r
r2 − r1
x(1)
+
r − r1
r2 − r1
x(2)
= r
x(2)
− x(1)
r2 − r1
g
+
r2x(1)
− r1x(2)
r2 − r1
h
y∗
i = rgi + hi, i = 1, . . . , d.
Therefore
σ2
(r) =
d
i=1
d
j=1
σij(rgi + hi)(rgj + hj)
= r2
d
i=1
d
j=1
σijgigj + 2r
d
i=1
d
j=1
σijgihj +
d
i=1
d
j=1
σijhihj
The d-asset frontier has the same structure as the 2-asset frontier.
9
Efficient frontier
0 2 4 6 8 10 12 14
−6
−4
−2
0
2
4
6
8
10
12
volatility (%)
return(%)
σmin
rmin
Efficient
Inefficient
10
Financial Engineering and Risk Management
Mean-variance with a risk-free asset
Martin Haugh Garud Iyengar
Columbia University
Industrial Engineering and Operations Research
Mean Variance with a risk-free asset
New asset: pays net return rf with no risk (deterministic return)
x0 = fraction invested in the risk-free asset
Mean-variance problem: x0 does not contribute to risk.
max rf x0 +
d
i=1 µixi − τ
d
i=1
d
j=1 σijxixj
s. t. x0 +
d
i=1 xi = 1.
Only meaningful for r ≥ rf
Substituting x0 = 1 −
d
i=1 xi we get
max rf +
d
i=1(µi − rf )xi − τ
d
i=1
d
j=1 σijxixj
ˆµi = µi − rf = excess return of asset i
2
Mean-variance optimal portfolio
Taking derivatives we get
ˆµi − 2τ
d
j=1
σijxj = 0, i = 1, . . . , d.
Matrix formulation
2τ





σ11 σ12 . . . σ1d
σ21 σ22 . . . σ2d
...
...
...
...
σd1 σd2 . . . σdd





V





x1
x2
...
xd





=



ˆµ1
...
ˆµd



ˆµ
⇒ x(τ) =
1
2τ
V−1
ˆµ
The family of frontier portfolios as a function of τ:
1 −
d
i=1
xi(τ), x(τ) : τ ≥ 0
3
One-fund theorem
The positions in the risky assets in the frontier portfolio
x =
1
2τ
V−1
ˆµ
do not add up to 1.
Define a portfolio of risky assets by dividing x by the sum of its components.
s∗
=
1
d
i=1 xi
x =
1
1
2τ
d
i=1(V−1
ˆµ)i
1
2τ
V−1
ˆµ
The portfolio s∗
is independent of τ! Since
d
i=1 xi = 1 − x0, x = (1 − x0)s∗
.
Family of frontier portfolios = {(x0, (1 − x0)s∗
) : x0 ∈ R}
Theorem All efficient portfolios in a market with a risk-free asset can be
constructed by diversifying between the risk-less asset and the single portfolio s∗
.
4
Efficient frontier with risk-free asset
Return and risk of portfolio s∗
: µ∗
s =
d
i=1 µis∗
i , σ∗
s =
d
i=1 j=1 σ2
ijs∗
i s∗
j
Return on a generic frontier portfolio: x0 in risk-free and (1 − x0) in s∗
µx = x0rf + (1 − x0)µ∗
s σx = (1 − x0)σ∗
s
Efficient Frontier
0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9
10
(0, rf ) ≡ risk-free asset
volatility (%)
return(%)
(σ∗
s , µ∗
s) ≡ s∗
Straight line with an intercept rf
at σ = 0 and slope
m =
µs − rf
σs
How does this relate to the fron-
tier with only risky assets?
Does the portfolio s∗
have an
economic interpretation?
5
Efficient frontier with risk-free asset
0 1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9
volatility (%)
return(%)
θ
(σ∗
s , µ∗
s) ≡ s∗
rf
s∗
must be an efficient risky portfolio
The efficient frontier with a risk-free
asset must be tangent to the efficient
frontier with only risky assets.
The portfolio s∗
maximizes the angle θ or equivalently
tan(θ) =
d
i=1 µixi − rf
d
i=1
d
j=1 σijxixj
=
expected excess return
volatility
6
Sharpe Ratio
Definition. The Sharpe ratio of a portfolio or an asset is the ratio of the
expected excess return to the volatility. The Sharpe optimal portfolio is a
portfolio that maximizes the Sharpe ratio.
The portfolio s∗
is a Sharpe optimal portfolio
s∗
= argmax
x:
d
i=1
xi =1
µx − rf
σx
Investors diversify between the risk-free asset and the Sharpe optimal portfolio.
The investment in the various risky assets are in fixed proportions ...
prices/returns should be correlated! This insight leads to the Capital Asset
Pricing Model.
7
Financial Engineering and Risk Management
Capital Asset Pricing Model
Martin Haugh Garud Iyengar
Columbia University
Industrial Engineering and Operations Research
Market Portfolio
Definition. Let Ci, i = 1, . . . , d, denote the market capitalization of the d
assets. Then the market portfolio x(m)
is defined as follows.
x
(m)
i =
Ci
d
j=1 Cj
, i = 1, . . . , d.
Let µm denote the expected net rate of return on the market portfolio, and let
σm denote the volatility of the market portfolio.
Suppose all investors in the market are mean-variance optimizers. Then all of
them invest in the Sharpe optimal portfolio s∗
. Let
w(k)
= wealth of the k-th investor
x
(k)
0 = fraction of wealth of the k-investor in the risk-free asset
Then
Ci =
k
w(k)
(1 − x
(k)
0 )s∗
i
The market portfolio x(m)
= Sharpe optimal portfolio s∗
!
2
Capital Market Line
Capital market line is another name for the efficient frontier with risk-free asset
Recall: Efficient frontier = line though the points (0, rf ) and (σm, µm)
Slope of the capital market line
mCML =
µm − rf
σm
= maximum achievable Sharpe ratio
mCML is frequently called the price of risk. It is used to compare projects.
Example. Suppose the price of a share of an oil pipeline venture is $875. It is
expected to yield $1000 in one year, but the volatility σ = 40%. The current
interest rate rf = 5%, the expected rate of return on the market portfolio
µm = 17% and the volatility of the market σm = 12%. Is the oil pipeline worth
considering?
roil =
1000
875
− 1 = 14% ¯r = rf +
µm − rf
σm
σ = 45%
Not worth considering!
3
Inferring asset returns from market returns
An asset is a portfolio: asset j ≡ x(j)
= (0, . . . , 1, . . . , 0) , 1 in the j-th position.
Diversify between x(j)
and market portfolio x(m)
: γx(j)
+ (1 − γ)x(m)
return µγ = γµj + (1 − γ)µm
volatility σγ = γ2σ2
j + (1 − γ)2σ2
m + 2σjmγ(1 − γ)
0 1 2 3 4 5 6 7 8 9
1
2
3
4
5
6
7
8
9
volatility (%)
return(%)
(σm, µm) ≡ x(m)
risk-free asset ≡ (0, rf )
Efficient frontier with risk−free
Efficient frontier w/o risk−free
Efficient frontier of market + asset 2
4
All three curves are tangent at (σm, rm)
Slope of the capital market line
mCML =
µm − rf
σm
Slope of the frontier generated by asset j and market portfolio x(m)
dµγ
dσγ
=
dµγ
dγ
dσγ
dγ
=
µj − µm
γσ2
j −(1−γ)σ2
m+(1−γ)σjm−γσjm
√
γ2σ2
j +(1−γ)2σ2
m+2σjmγ(1−γ)
dµγ
dσγ γ=0
=
µj − µm
σjm−σ2
m
σm
Equating slopes at γ = 0 we get the following result:
µj − rf =
σjm
σ2
m
beta of asset j
(µm − rf )
This pricing formula is called the Capital Asset Pricing Model (CAPM).
5
Connecting CAPM to regression
Regress the excess return rj − rf of asset j on the excess market return rm − rf
(rj − rf ) = α + β(rm − rf ) + j
Parameter estimates
coefficient βj =
cov(rj −rf ,rm−rf )
var(rm−rf ) =
σjm
σ2
m
intercept αj = (E[rj] − rf ) − β(E[rm] − rf ) = (µj − rf ) − β(µm − rf ).
residuals j and (rm − rf ) are uncorrelated, i.e. cor( j, rm − rf ) = 0.
CAPM implies that αj = 0 for all assets.
Effective relation: rj − rf = βj(rm − rf ) + j
Decomposition of risk
var(rj − rf ) = β2
j var(rm − rf ) + var( )
σ2
j = β2
j σ2
m
market risk
+ var( )
residual risk
Only compensated for taking on market risk and not residual risk
6
Security Market Line
Plot of the historical returns on an asset vs rf + β(µm − rf )
−2 −1.5 −1 −0.5 0 0.5
−8
−6
−4
−2
0
2
4
1
2
3
4
5
6
7
8
Security market line
beta
return(%)
The assets are labeled in the order they appears in the spreadsheet.
All assets should lie on the security line if CAPM holds. So why the discrepancy?
7
Assumptions underlying CAPM
All investors have identical information about the uncertain returns.
All investors are mean-variance optimizers (or the returns are Normal)
The markets are in equilibrium.
Leveraging deviations from the security market line
Jensen’s index or alpha
α = (ˆµj − rf ) − βj(ˆµm − rf )
hold long if positive, short otherwise
Sharpe ratio of a stock
sj =
ˆµj − rf
ˆσj
hold long if > mMCM, short otherwise.
8
CAPM as a pricing formula
Suppose the payoff from an investment in 1yr is X. What is the fair price for this
investment.
Let rX = X
P − 1 denote the net rate of return on X. The beta of X is given by
βX =
cov(rX , rm)
σ2
m
=
1
P
cov(X, rm)
σ2
m
Suppose CAPM holds. Then µX = E[rX ] must lie on the security market line, i.e.
µX = rf + βX (rm − rf )
E[X]
P
− 1 = rf +
1
P
cov(X, rm)
var(rm)
(µm − rf )
Rearranging terms:
P =
E[X]
1 + rf
−
cov(X, rm)
(1 + rf )var(rm)
(µm − rf )
9

More Related Content

What's hot

Manajemen keuangan bab 10
Manajemen keuangan bab 10Manajemen keuangan bab 10
Manajemen keuangan bab 10Lia Ivvana
 
Time Value Of Money
Time Value Of MoneyTime Value Of Money
Time Value Of Money
Syafril Djaelani,SE, MM
 
Contoh biaya standar
Contoh biaya standarContoh biaya standar
Contoh biaya standar
Lisyadiah Marifataini
 
analisis fundamental dan analisis teknikal saham
analisis fundamental dan analisis teknikal sahamanalisis fundamental dan analisis teknikal saham
analisis fundamental dan analisis teknikal saham
JUNSERNAIBAHO
 
Penentuan Harga Transfer
Penentuan Harga TransferPenentuan Harga Transfer
Penentuan Harga Transfer
widya adhy
 
Handout-MAN-308-Pemilihan-Portofolio.pptx
Handout-MAN-308-Pemilihan-Portofolio.pptxHandout-MAN-308-Pemilihan-Portofolio.pptx
Handout-MAN-308-Pemilihan-Portofolio.pptx
WindaF1
 
Psak 65-laporan-keuangan-konsolidasian-ifrs-10-consolidated-fs-22012014
Psak 65-laporan-keuangan-konsolidasian-ifrs-10-consolidated-fs-22012014Psak 65-laporan-keuangan-konsolidasian-ifrs-10-consolidated-fs-22012014
Psak 65-laporan-keuangan-konsolidasian-ifrs-10-consolidated-fs-22012014
Sri Apriyanti Husain
 
Analisis sumber dan penggunaan modal kerja
Analisis sumber dan penggunaan modal kerjaAnalisis sumber dan penggunaan modal kerja
Analisis sumber dan penggunaan modal kerjarizky nurul chasanah
 
Portofolio investasi-bab-9-penilaian-obligasi
Portofolio investasi-bab-9-penilaian-obligasiPortofolio investasi-bab-9-penilaian-obligasi
Portofolio investasi-bab-9-penilaian-obligasi
Judianto Nugroho
 
Biaya standar - akuntansi manajemen
Biaya standar - akuntansi manajemenBiaya standar - akuntansi manajemen
Biaya standar - akuntansi manajemen
Arifin Pa'e
 
Portofolio investasi-bab-7-efisiensi-pasar
Portofolio investasi-bab-7-efisiensi-pasarPortofolio investasi-bab-7-efisiensi-pasar
Portofolio investasi-bab-7-efisiensi-pasar
Judianto Nugroho
 
Penentuan harga transfer
Penentuan harga transferPenentuan harga transfer
Penentuan harga transfervitalfrans
 
Derivatif dan lindung nilai bagian 1
Derivatif dan lindung nilai bagian 1Derivatif dan lindung nilai bagian 1
Derivatif dan lindung nilai bagian 1
Futurum2
 
Present bab 13 auditing
Present bab 13 auditingPresent bab 13 auditing
Present bab 13 auditing
chikma jaoharah
 
Interest rate parity 1
Interest rate parity 1Interest rate parity 1
Interest rate parity 1Anshu Singh
 
Modul Reksa Dana
Modul Reksa DanaModul Reksa Dana
Modul Reksa Dana
Dani Setiawan
 
Security valuation bonds updated
Security valuation bonds updatedSecurity valuation bonds updated
Security valuation bonds updatedSudarshan Kadariya
 
Technical Analysis Basics
Technical Analysis BasicsTechnical Analysis Basics
Technical Analysis Basics
RISHABH SURANA
 
MENYELESAIKAN PENGUJIAN DALAM SIKLUS PENJUALAN DAN PENAGIHAN PIUTANG USAHA.pdf
MENYELESAIKAN PENGUJIAN DALAM SIKLUS PENJUALAN DAN PENAGIHAN PIUTANG USAHA.pdfMENYELESAIKAN PENGUJIAN DALAM SIKLUS PENJUALAN DAN PENAGIHAN PIUTANG USAHA.pdf
MENYELESAIKAN PENGUJIAN DALAM SIKLUS PENJUALAN DAN PENAGIHAN PIUTANG USAHA.pdf
GideonGimsonTamba
 
International bond market hard copy
International  bond market   hard copyInternational  bond market   hard copy
International bond market hard copyDharmik
 

What's hot (20)

Manajemen keuangan bab 10
Manajemen keuangan bab 10Manajemen keuangan bab 10
Manajemen keuangan bab 10
 
Time Value Of Money
Time Value Of MoneyTime Value Of Money
Time Value Of Money
 
Contoh biaya standar
Contoh biaya standarContoh biaya standar
Contoh biaya standar
 
analisis fundamental dan analisis teknikal saham
analisis fundamental dan analisis teknikal sahamanalisis fundamental dan analisis teknikal saham
analisis fundamental dan analisis teknikal saham
 
Penentuan Harga Transfer
Penentuan Harga TransferPenentuan Harga Transfer
Penentuan Harga Transfer
 
Handout-MAN-308-Pemilihan-Portofolio.pptx
Handout-MAN-308-Pemilihan-Portofolio.pptxHandout-MAN-308-Pemilihan-Portofolio.pptx
Handout-MAN-308-Pemilihan-Portofolio.pptx
 
Psak 65-laporan-keuangan-konsolidasian-ifrs-10-consolidated-fs-22012014
Psak 65-laporan-keuangan-konsolidasian-ifrs-10-consolidated-fs-22012014Psak 65-laporan-keuangan-konsolidasian-ifrs-10-consolidated-fs-22012014
Psak 65-laporan-keuangan-konsolidasian-ifrs-10-consolidated-fs-22012014
 
Analisis sumber dan penggunaan modal kerja
Analisis sumber dan penggunaan modal kerjaAnalisis sumber dan penggunaan modal kerja
Analisis sumber dan penggunaan modal kerja
 
Portofolio investasi-bab-9-penilaian-obligasi
Portofolio investasi-bab-9-penilaian-obligasiPortofolio investasi-bab-9-penilaian-obligasi
Portofolio investasi-bab-9-penilaian-obligasi
 
Biaya standar - akuntansi manajemen
Biaya standar - akuntansi manajemenBiaya standar - akuntansi manajemen
Biaya standar - akuntansi manajemen
 
Portofolio investasi-bab-7-efisiensi-pasar
Portofolio investasi-bab-7-efisiensi-pasarPortofolio investasi-bab-7-efisiensi-pasar
Portofolio investasi-bab-7-efisiensi-pasar
 
Penentuan harga transfer
Penentuan harga transferPenentuan harga transfer
Penentuan harga transfer
 
Derivatif dan lindung nilai bagian 1
Derivatif dan lindung nilai bagian 1Derivatif dan lindung nilai bagian 1
Derivatif dan lindung nilai bagian 1
 
Present bab 13 auditing
Present bab 13 auditingPresent bab 13 auditing
Present bab 13 auditing
 
Interest rate parity 1
Interest rate parity 1Interest rate parity 1
Interest rate parity 1
 
Modul Reksa Dana
Modul Reksa DanaModul Reksa Dana
Modul Reksa Dana
 
Security valuation bonds updated
Security valuation bonds updatedSecurity valuation bonds updated
Security valuation bonds updated
 
Technical Analysis Basics
Technical Analysis BasicsTechnical Analysis Basics
Technical Analysis Basics
 
MENYELESAIKAN PENGUJIAN DALAM SIKLUS PENJUALAN DAN PENAGIHAN PIUTANG USAHA.pdf
MENYELESAIKAN PENGUJIAN DALAM SIKLUS PENJUALAN DAN PENAGIHAN PIUTANG USAHA.pdfMENYELESAIKAN PENGUJIAN DALAM SIKLUS PENJUALAN DAN PENAGIHAN PIUTANG USAHA.pdf
MENYELESAIKAN PENGUJIAN DALAM SIKLUS PENJUALAN DAN PENAGIHAN PIUTANG USAHA.pdf
 
International bond market hard copy
International  bond market   hard copyInternational  bond market   hard copy
International bond market hard copy
 

Similar to mean_variance

CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
The Statistical and Applied Mathematical Sciences Institute
 
Options Portfolio Selection
Options Portfolio SelectionOptions Portfolio Selection
Options Portfolio Selection
guasoni
 
ISI MSQE Entrance Question Paper (2013)
ISI MSQE Entrance Question Paper (2013)ISI MSQE Entrance Question Paper (2013)
ISI MSQE Entrance Question Paper (2013)
CrackDSE
 
Interactive Visualization in Human Time -StampedeCon 2015
Interactive Visualization in Human Time -StampedeCon 2015Interactive Visualization in Human Time -StampedeCon 2015
Interactive Visualization in Human Time -StampedeCon 2015
StampedeCon
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniquesKrishna Gali
 
Aplikom03 excel or
Aplikom03 excel orAplikom03 excel or
Aplikom03 excel or
Arif Rahman
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
NiccoloAaronMendozaA
 
51542 0131469657 ism-1
51542 0131469657 ism-151542 0131469657 ism-1
51542 0131469657 ism-1
Ani_Agustina
 
4.5 sec and csc worked 3rd
4.5   sec and csc worked 3rd4.5   sec and csc worked 3rd
4.5 sec and csc worked 3rd
Jonna Ramsey
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
Pume Ananda
 
Options pricing using Lattice models
Options pricing using Lattice modelsOptions pricing using Lattice models
Options pricing using Lattice models
Quasar Chunawala
 
LP Graphical Solution
LP Graphical SolutionLP Graphical Solution
LP Graphical Solution
unemployedmba
 
ISI MSQE Entrance Question Paper (2010)
ISI MSQE Entrance Question Paper (2010)ISI MSQE Entrance Question Paper (2010)
ISI MSQE Entrance Question Paper (2010)
CrackDSE
 
Modeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationModeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential Equation
Mark Chang
 
51554 0131469657 ism-13
51554 0131469657 ism-1351554 0131469657 ism-13
51554 0131469657 ism-13Carlos Fuentes
 
Randomized algorithms ver 1.0
Randomized algorithms ver 1.0Randomized algorithms ver 1.0
Randomized algorithms ver 1.0
Dr. C.V. Suresh Babu
 
EPCA_MODULE-2.pptx
EPCA_MODULE-2.pptxEPCA_MODULE-2.pptx
EPCA_MODULE-2.pptx
BenCorejadoAgarcio
 

Similar to mean_variance (20)

Chapter 6
Chapter 6Chapter 6
Chapter 6
 
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
CLIM Fall 2017 Course: Statistics for Climate Research, Statistics of Climate...
 
Options Portfolio Selection
Options Portfolio SelectionOptions Portfolio Selection
Options Portfolio Selection
 
ISI MSQE Entrance Question Paper (2013)
ISI MSQE Entrance Question Paper (2013)ISI MSQE Entrance Question Paper (2013)
ISI MSQE Entrance Question Paper (2013)
 
Interactive Visualization in Human Time -StampedeCon 2015
Interactive Visualization in Human Time -StampedeCon 2015Interactive Visualization in Human Time -StampedeCon 2015
Interactive Visualization in Human Time -StampedeCon 2015
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
Aplikom03 excel or
Aplikom03 excel orAplikom03 excel or
Aplikom03 excel or
 
2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf2.1 Calculus 2.formulas.pdf.pdf
2.1 Calculus 2.formulas.pdf.pdf
 
51542 0131469657 ism-1
51542 0131469657 ism-151542 0131469657 ism-1
51542 0131469657 ism-1
 
4.5 sec and csc worked 3rd
4.5   sec and csc worked 3rd4.5   sec and csc worked 3rd
4.5 sec and csc worked 3rd
 
Functions limits and continuity
Functions limits and continuityFunctions limits and continuity
Functions limits and continuity
 
functions limits and continuity
functions limits and continuityfunctions limits and continuity
functions limits and continuity
 
Options pricing using Lattice models
Options pricing using Lattice modelsOptions pricing using Lattice models
Options pricing using Lattice models
 
F ch
F chF ch
F ch
 
LP Graphical Solution
LP Graphical SolutionLP Graphical Solution
LP Graphical Solution
 
ISI MSQE Entrance Question Paper (2010)
ISI MSQE Entrance Question Paper (2010)ISI MSQE Entrance Question Paper (2010)
ISI MSQE Entrance Question Paper (2010)
 
Modeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationModeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential Equation
 
51554 0131469657 ism-13
51554 0131469657 ism-1351554 0131469657 ism-13
51554 0131469657 ism-13
 
Randomized algorithms ver 1.0
Randomized algorithms ver 1.0Randomized algorithms ver 1.0
Randomized algorithms ver 1.0
 
EPCA_MODULE-2.pptx
EPCA_MODULE-2.pptxEPCA_MODULE-2.pptx
EPCA_MODULE-2.pptx
 

More from FTSA Academy

Institute small-business-payroll-report
Institute small-business-payroll-reportInstitute small-business-payroll-report
Institute small-business-payroll-report
FTSA Academy
 
Statement of investor_rights_english
Statement of investor_rights_englishStatement of investor_rights_english
Statement of investor_rights_english
FTSA Academy
 
حقوق المستثمرين
حقوق المستثمرينحقوق المستثمرين
حقوق المستثمرين
FTSA Academy
 
cfa_charter_factsheet
cfa_charter_factsheetcfa_charter_factsheet
cfa_charter_factsheetFTSA Academy
 
Full Contract عقد التداول نسخة كاملة
Full Contract عقد التداول نسخة كاملةFull Contract عقد التداول نسخة كاملة
Full Contract عقد التداول نسخة كاملة
FTSA Academy
 
Strategic planing Pfiffer method
Strategic planing Pfiffer methodStrategic planing Pfiffer method
Strategic planing Pfiffer methodFTSA Academy
 
Bbva open mind-book-reinventing-the-company-in-the-digital-age-business-innov...
Bbva open mind-book-reinventing-the-company-in-the-digital-age-business-innov...Bbva open mind-book-reinventing-the-company-in-the-digital-age-business-innov...
Bbva open mind-book-reinventing-the-company-in-the-digital-age-business-innov...
FTSA Academy
 
Bbva open mind-book-change-19-key-essays-on-how-internet-is-changing-our-live...
Bbva open mind-book-change-19-key-essays-on-how-internet-is-changing-our-live...Bbva open mind-book-change-19-key-essays-on-how-internet-is-changing-our-live...
Bbva open mind-book-change-19-key-essays-on-how-internet-is-changing-our-live...
FTSA Academy
 
Wef global competitivenessreport_2014-15
Wef global competitivenessreport_2014-15Wef global competitivenessreport_2014-15
Wef global competitivenessreport_2014-15
FTSA Academy
 
Forex market-outlook-2015
Forex market-outlook-2015Forex market-outlook-2015
Forex market-outlook-2015
FTSA Academy
 
Wef ygl circular_economyinnovation_positionpaper_2013
Wef ygl circular_economyinnovation_positionpaper_2013Wef ygl circular_economyinnovation_positionpaper_2013
Wef ygl circular_economyinnovation_positionpaper_2013FTSA Academy
 
Mlkslideshare 140120113126-phpapp02
Mlkslideshare 140120113126-phpapp02Mlkslideshare 140120113126-phpapp02
Mlkslideshare 140120113126-phpapp02FTSA Academy
 
Wef nr gcr_2013-2014_ar
Wef nr gcr_2013-2014_arWef nr gcr_2013-2014_ar
Wef nr gcr_2013-2014_arFTSA Academy
 
Wef global competitivenessreport_2013-14
Wef global competitivenessreport_2013-14Wef global competitivenessreport_2013-14
Wef global competitivenessreport_2013-14FTSA Academy
 
WEF World economic forum report _2011-12
WEF World economic forum report _2011-12WEF World economic forum report _2011-12
WEF World economic forum report _2011-12
FTSA Academy
 
التخطيط الإستراتيجي بنموذج فايفر
التخطيط الإستراتيجي بنموذج فايفرالتخطيط الإستراتيجي بنموذج فايفر
التخطيط الإستراتيجي بنموذج فايفرFTSA Academy
 

More from FTSA Academy (17)

Institute small-business-payroll-report
Institute small-business-payroll-reportInstitute small-business-payroll-report
Institute small-business-payroll-report
 
GTG Introduction
GTG Introduction GTG Introduction
GTG Introduction
 
Statement of investor_rights_english
Statement of investor_rights_englishStatement of investor_rights_english
Statement of investor_rights_english
 
حقوق المستثمرين
حقوق المستثمرينحقوق المستثمرين
حقوق المستثمرين
 
cfa_charter_factsheet
cfa_charter_factsheetcfa_charter_factsheet
cfa_charter_factsheet
 
Full Contract عقد التداول نسخة كاملة
Full Contract عقد التداول نسخة كاملةFull Contract عقد التداول نسخة كاملة
Full Contract عقد التداول نسخة كاملة
 
Strategic planing Pfiffer method
Strategic planing Pfiffer methodStrategic planing Pfiffer method
Strategic planing Pfiffer method
 
Bbva open mind-book-reinventing-the-company-in-the-digital-age-business-innov...
Bbva open mind-book-reinventing-the-company-in-the-digital-age-business-innov...Bbva open mind-book-reinventing-the-company-in-the-digital-age-business-innov...
Bbva open mind-book-reinventing-the-company-in-the-digital-age-business-innov...
 
Bbva open mind-book-change-19-key-essays-on-how-internet-is-changing-our-live...
Bbva open mind-book-change-19-key-essays-on-how-internet-is-changing-our-live...Bbva open mind-book-change-19-key-essays-on-how-internet-is-changing-our-live...
Bbva open mind-book-change-19-key-essays-on-how-internet-is-changing-our-live...
 
Wef global competitivenessreport_2014-15
Wef global competitivenessreport_2014-15Wef global competitivenessreport_2014-15
Wef global competitivenessreport_2014-15
 
Forex market-outlook-2015
Forex market-outlook-2015Forex market-outlook-2015
Forex market-outlook-2015
 
Wef ygl circular_economyinnovation_positionpaper_2013
Wef ygl circular_economyinnovation_positionpaper_2013Wef ygl circular_economyinnovation_positionpaper_2013
Wef ygl circular_economyinnovation_positionpaper_2013
 
Mlkslideshare 140120113126-phpapp02
Mlkslideshare 140120113126-phpapp02Mlkslideshare 140120113126-phpapp02
Mlkslideshare 140120113126-phpapp02
 
Wef nr gcr_2013-2014_ar
Wef nr gcr_2013-2014_arWef nr gcr_2013-2014_ar
Wef nr gcr_2013-2014_ar
 
Wef global competitivenessreport_2013-14
Wef global competitivenessreport_2013-14Wef global competitivenessreport_2013-14
Wef global competitivenessreport_2013-14
 
WEF World economic forum report _2011-12
WEF World economic forum report _2011-12WEF World economic forum report _2011-12
WEF World economic forum report _2011-12
 
التخطيط الإستراتيجي بنموذج فايفر
التخطيط الإستراتيجي بنموذج فايفرالتخطيط الإستراتيجي بنموذج فايفر
التخطيط الإستراتيجي بنموذج فايفر
 

mean_variance

  • 1. Financial Engineering and Risk Management Mean Variance Optimization Martin Haugh Garud Iyengar Columbia University Industrial Engineering and Operations Research
  • 2. Overview Assets and portfolios Quantifying random asset and portfolio returns: mean and variance Mean-variance optimal portfolios Efficient frontier Sharpe ratio and Sharpe optimal portfolios Market portfolio Capital Asset Pricing Model 2
  • 3. Assets and portfolios Asset ≡ anything we can purchase Random price P(t) Random gross return R(t) = P(t+1) P(t) Random net return: r(t) = R(t) − 1 = P(t+1)−P(t) P(t) Total wealth W > 0 distributed over d assets wi = dollar amount in asset i: wi > 0 ≡ long, wi < 0 ≡ short Net return on a position w rw(t) = d i=1 Ri(t)wi − n i=1 wi W = d i=1 ri(t)wi d i=1 wi = d i=1 ri(t) · wi W xi portfolio vector x = (x1, . . . , xd): each component can be +ve/-ve xi = fraction invested in asset i ⇒ d i=1 xi = 1 3
  • 4. How does one deal with randomness? Random net return on the portfolio rx = d i=1 rixi How does one “quantify” random returns ? Maximize expected return E[rx]? Should one worry about spread around the mean? How does one quantify the spread? 4
  • 5. Random returns on assets and portfolios Parameters defining asset returns Mean of asset returns: µi = E[ri(t)] Variance of asset returns: σ2 i = var(ri(t)) Covariance of asset returns: σij = cov ri(t), rj(t) = ρijσiσj Correlation of asset returns ρij = cor ri(t), rj(t) All parameters assumed to be constant over time. Parameters defining portfolio returns Expected return on a portfolio x = (x1, . . . , xd) µx = E[rx(t)] = d i=1 E[ri(t)]xi = d i=1 µixi Variance of the return on portfolio x: σ2 x = var(rx(t)) = var d i=1 rixi = d i=1 d j=1 cov ri(t), rj(t) xixj 5
  • 6. Example d = 2 assets with Normally distributed returns N(µ, σ2 ) r1 ∼ N(1, 0.1) r2 ∼ N(2, 0.5) cor(r1, r2) = −0.25 Parameters µ1 = 1 µ2 = 2 σ2 1 = var(r1) = 0.1 σ2 2 = var(r2) = 0.5 σ12 = cov(r1, r2) = cor(r1, r2)σ1σ2 = −0.25 √ 0.05 = 0.0559 Portfolio: (x, 1 − x) µx = d i=1 µixi = x + 2(1 − x) σ2 x = d i,j=1 σijxixj = d i=1 σ2 i x2 i + 2 j>i σijxixj = 0.1x2 + 0.5(1 − x)2 + 2(0.0559)x(1 − x) 6
  • 7. Diversification reduces uncertainty d assets each with µi ≡ µ, σi ≡ σ, ρij = 0 for all i = j Two different portfolios x = (1, 0, . . . , 0) : everything invested in asset 1 y = 1 d (1, 1, . . . , 1) : equal investment in all assets. Expected returns of the two portfolios µx = E[ d i=1 µixi] = µ1 = µ µy = E[ d i=1 µiyi] = 1 d d i=1 µi = µ Both have the same expected return! Variance of returns of the two portfolios σ2 x = var( d i=1 rixi) = σ2 σ2 y = var( d i=1 riyi) = d i=1 σ2 (1 d )2 = σ2 d Diversified portfolio has a much lower variance! 7
  • 8. Markowitz mean-variance portfolio selection Markowitz (1954) proposed that “Return” of a portfolio ≡ Expected return µx “Risk” of a portfolio ≡ volatility σx Efficient frontier 0 20 40 60 80 100 120 140 160 180 −60 −40 −20 0 20 40 60 80 100 120 volatility (%) return(%) Efficient frontier ≡ max return for a given risk How does one characterize the efficient frontier? How does one compute effi- cient/optimal portfolios? 8
  • 9. Mean variance formulations Minimize risk ensuring return ≥ target return minx σ2 x s.t. µx ≥ r ≡ minx d i=1 d j=1 σijxixj s.t. d i=1 µixi ≥ r d i=1 xi = 1. Maximize return ensuring risk ≤ risk budget maxx µx s.t. σ2 x ≤ ¯σ2 ≡ maxx d i=1 µixi s.t. d i=1 d j=1 σijxixj ≤ ¯σ2 , d i=1 xi = 1. Maximize a risk-adjusted return maxx µx − τσ2 x ≡ maxx d i=1 µixi − τ d i=1 d j=1 σijxixj s.t. d i=1 xi = 1. τ ≡ risk-aversion parameter 9
  • 10. Financial Engineering and Risk Management Efficient frontier Martin Haugh Garud Iyengar Columbia University Industrial Engineering and Operations Research
  • 11. Mean-variance for 2-asset market d = 2 assets Asset 1: mean return µ1 and variance σ2 1 Asset 2: mean return µ2 and variance σ2 2 Correlation between asset returns ρ Portfolio: (x, 1 − x) µx = d i=1 µixi = µ1x + µ2(1 − x) σ2 x = d i,j=1 σijxixj = d i=1 σ2 i x2 i + 2 j>i σijxixj = σ2 1x2 + σ2 2(1 − x)2 + 2ρσ1σ2x(1 − x) 2
  • 12. Mean-variance for 2-asset market Minimize risk formulation for the mean-variance portfolio selection problem minx σ2 1x2 + σ2 2(1 − x)2 + 2ρσ1σ2x(1 − x) s.t. µ1x + µ2(1 − x) = r Expected return constraint: x = r−µ2 µ1−µ2 Variance: σ2 r = σ2 1 r − µ2 µ1 − µ2 2 + σ2 2 µ1 − r µ1 − µ2 2 + 2ρσ1σ2 r − µ2 µ1 − µ2 µ1 − r µ1 − µ2 = ar2 + br + c Explicit expression for the variance as a function of target return r. 3
  • 13. Efficient frontier 0 2 4 6 8 10 12 14 −6 −4 −2 0 2 4 6 8 10 12 volatility (%) return(%) σmin rmin Efficient Inefficient Only the top half is efficient! why did we get the bottom? How does one solve the d asset problem? 4
  • 14. Computing the optimal portfolio Mean-variance portfolio selection problem σ2 (r) = minx d i=1 d j=1 σijxixj s.t. d i=1 µixi = r d i=1 xi = 1. Form the Lagrangian with Lagrange multipliers u and v L = d i=1 d j=1 σijxixj − v d i=1 µixi − r − u d i=1 xi − 1 Setting ∂L ∂xi = 0 for i = 1, . . . , d gives d equations 2 d j=1 σijxj − vµi − u = 0, for all i = 1, . . . d (∗) Can solve the d + 2 equations in d + 2 variables: x1, . . . , xd, u and v. Theorem. A portfolio x is mean-variance optimal if, and only if, it is feasible and there exists u and v satisfying (∗). 5
  • 15. Computing the optimal portfolio Matrix formulation          2σ11 2σ12 . . . 2σ1d −µ1 −1 2σ21 2σ22 . . . 2σ2d −µ2 −1 ... ... ... ... ... ... 2σd1 2σd2 . . . 2σdd −µd −1 µ1 µ2 . . . µd 0 0 1 1 . . . 1 0 0          A          x1 x2 ... xd v u          =          0 0 ... 0 r 1          b Therefore          x1 x2 ... xd v u          = A−1 b 6
  • 16. Two fund theorem Fix two different target returns: r1 = r2 Suppose x(1) = (x (1) 1 , . . . , x (1) d ) optimal for r1: Lagrange multipliers (v1, u1) x(2) = (x (2) 1 , . . . , x (2) d ) optimal for r2: Lagrange multipliers (v2, u2) Consider any other return r Choose β = r−r1 r2−r1 Consider the position: y = (1 − β)x(1) + βx(2) y is a portfolio d i=1 yi = (1 − β) d i=1 x (1) i + β d i=1 x (2) i = (1 − β) + β = 1 y is feasible for target return r d i=1 µiyi = (1 − β) d i=1 µix (1) i + β d i=1 µix (2) i = (1 − β)r1 + βr2 = r 7
  • 17. Two fund theorem (contd) Set v = (1 − β)v1 + βv2 and u = (1 − β)u1 + βu2. 2 d j=1 σijyj − vµi − u = d j=1 2σij((1 − β)x (1) j + βx (2) j ) − µi((1 − β)v1 + βv2) − ((1 − β)u1 + βu2) = (1 − β) 2 d j=1 σijx (1) j − v1µi − u1 + β 2 d j=1 σijx (2) j − v2µi − u2 = 0 y is optimal for target return r! Theorem All efficient portfolios can be constructed by diversifying between any two efficient portfolios with different expected returns. Why are there so many funds in the market? 8
  • 18. Efficient frontier The optimal portfolio for target return r y∗ = r2 − r r2 − r1 x(1) + r − r1 r2 − r1 x(2) = r x(2) − x(1) r2 − r1 g + r2x(1) − r1x(2) r2 − r1 h y∗ i = rgi + hi, i = 1, . . . , d. Therefore σ2 (r) = d i=1 d j=1 σij(rgi + hi)(rgj + hj) = r2 d i=1 d j=1 σijgigj + 2r d i=1 d j=1 σijgihj + d i=1 d j=1 σijhihj The d-asset frontier has the same structure as the 2-asset frontier. 9
  • 19. Efficient frontier 0 2 4 6 8 10 12 14 −6 −4 −2 0 2 4 6 8 10 12 volatility (%) return(%) σmin rmin Efficient Inefficient 10
  • 20. Financial Engineering and Risk Management Mean-variance with a risk-free asset Martin Haugh Garud Iyengar Columbia University Industrial Engineering and Operations Research
  • 21. Mean Variance with a risk-free asset New asset: pays net return rf with no risk (deterministic return) x0 = fraction invested in the risk-free asset Mean-variance problem: x0 does not contribute to risk. max rf x0 + d i=1 µixi − τ d i=1 d j=1 σijxixj s. t. x0 + d i=1 xi = 1. Only meaningful for r ≥ rf Substituting x0 = 1 − d i=1 xi we get max rf + d i=1(µi − rf )xi − τ d i=1 d j=1 σijxixj ˆµi = µi − rf = excess return of asset i 2
  • 22. Mean-variance optimal portfolio Taking derivatives we get ˆµi − 2τ d j=1 σijxj = 0, i = 1, . . . , d. Matrix formulation 2τ      σ11 σ12 . . . σ1d σ21 σ22 . . . σ2d ... ... ... ... σd1 σd2 . . . σdd      V      x1 x2 ... xd      =    ˆµ1 ... ˆµd    ˆµ ⇒ x(τ) = 1 2τ V−1 ˆµ The family of frontier portfolios as a function of τ: 1 − d i=1 xi(τ), x(τ) : τ ≥ 0 3
  • 23. One-fund theorem The positions in the risky assets in the frontier portfolio x = 1 2τ V−1 ˆµ do not add up to 1. Define a portfolio of risky assets by dividing x by the sum of its components. s∗ = 1 d i=1 xi x = 1 1 2τ d i=1(V−1 ˆµ)i 1 2τ V−1 ˆµ The portfolio s∗ is independent of τ! Since d i=1 xi = 1 − x0, x = (1 − x0)s∗ . Family of frontier portfolios = {(x0, (1 − x0)s∗ ) : x0 ∈ R} Theorem All efficient portfolios in a market with a risk-free asset can be constructed by diversifying between the risk-less asset and the single portfolio s∗ . 4
  • 24. Efficient frontier with risk-free asset Return and risk of portfolio s∗ : µ∗ s = d i=1 µis∗ i , σ∗ s = d i=1 j=1 σ2 ijs∗ i s∗ j Return on a generic frontier portfolio: x0 in risk-free and (1 − x0) in s∗ µx = x0rf + (1 − x0)µ∗ s σx = (1 − x0)σ∗ s Efficient Frontier 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 (0, rf ) ≡ risk-free asset volatility (%) return(%) (σ∗ s , µ∗ s) ≡ s∗ Straight line with an intercept rf at σ = 0 and slope m = µs − rf σs How does this relate to the fron- tier with only risky assets? Does the portfolio s∗ have an economic interpretation? 5
  • 25. Efficient frontier with risk-free asset 0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 volatility (%) return(%) θ (σ∗ s , µ∗ s) ≡ s∗ rf s∗ must be an efficient risky portfolio The efficient frontier with a risk-free asset must be tangent to the efficient frontier with only risky assets. The portfolio s∗ maximizes the angle θ or equivalently tan(θ) = d i=1 µixi − rf d i=1 d j=1 σijxixj = expected excess return volatility 6
  • 26. Sharpe Ratio Definition. The Sharpe ratio of a portfolio or an asset is the ratio of the expected excess return to the volatility. The Sharpe optimal portfolio is a portfolio that maximizes the Sharpe ratio. The portfolio s∗ is a Sharpe optimal portfolio s∗ = argmax x: d i=1 xi =1 µx − rf σx Investors diversify between the risk-free asset and the Sharpe optimal portfolio. The investment in the various risky assets are in fixed proportions ... prices/returns should be correlated! This insight leads to the Capital Asset Pricing Model. 7
  • 27. Financial Engineering and Risk Management Capital Asset Pricing Model Martin Haugh Garud Iyengar Columbia University Industrial Engineering and Operations Research
  • 28. Market Portfolio Definition. Let Ci, i = 1, . . . , d, denote the market capitalization of the d assets. Then the market portfolio x(m) is defined as follows. x (m) i = Ci d j=1 Cj , i = 1, . . . , d. Let µm denote the expected net rate of return on the market portfolio, and let σm denote the volatility of the market portfolio. Suppose all investors in the market are mean-variance optimizers. Then all of them invest in the Sharpe optimal portfolio s∗ . Let w(k) = wealth of the k-th investor x (k) 0 = fraction of wealth of the k-investor in the risk-free asset Then Ci = k w(k) (1 − x (k) 0 )s∗ i The market portfolio x(m) = Sharpe optimal portfolio s∗ ! 2
  • 29. Capital Market Line Capital market line is another name for the efficient frontier with risk-free asset Recall: Efficient frontier = line though the points (0, rf ) and (σm, µm) Slope of the capital market line mCML = µm − rf σm = maximum achievable Sharpe ratio mCML is frequently called the price of risk. It is used to compare projects. Example. Suppose the price of a share of an oil pipeline venture is $875. It is expected to yield $1000 in one year, but the volatility σ = 40%. The current interest rate rf = 5%, the expected rate of return on the market portfolio µm = 17% and the volatility of the market σm = 12%. Is the oil pipeline worth considering? roil = 1000 875 − 1 = 14% ¯r = rf + µm − rf σm σ = 45% Not worth considering! 3
  • 30. Inferring asset returns from market returns An asset is a portfolio: asset j ≡ x(j) = (0, . . . , 1, . . . , 0) , 1 in the j-th position. Diversify between x(j) and market portfolio x(m) : γx(j) + (1 − γ)x(m) return µγ = γµj + (1 − γ)µm volatility σγ = γ2σ2 j + (1 − γ)2σ2 m + 2σjmγ(1 − γ) 0 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 volatility (%) return(%) (σm, µm) ≡ x(m) risk-free asset ≡ (0, rf ) Efficient frontier with risk−free Efficient frontier w/o risk−free Efficient frontier of market + asset 2 4
  • 31. All three curves are tangent at (σm, rm) Slope of the capital market line mCML = µm − rf σm Slope of the frontier generated by asset j and market portfolio x(m) dµγ dσγ = dµγ dγ dσγ dγ = µj − µm γσ2 j −(1−γ)σ2 m+(1−γ)σjm−γσjm √ γ2σ2 j +(1−γ)2σ2 m+2σjmγ(1−γ) dµγ dσγ γ=0 = µj − µm σjm−σ2 m σm Equating slopes at γ = 0 we get the following result: µj − rf = σjm σ2 m beta of asset j (µm − rf ) This pricing formula is called the Capital Asset Pricing Model (CAPM). 5
  • 32. Connecting CAPM to regression Regress the excess return rj − rf of asset j on the excess market return rm − rf (rj − rf ) = α + β(rm − rf ) + j Parameter estimates coefficient βj = cov(rj −rf ,rm−rf ) var(rm−rf ) = σjm σ2 m intercept αj = (E[rj] − rf ) − β(E[rm] − rf ) = (µj − rf ) − β(µm − rf ). residuals j and (rm − rf ) are uncorrelated, i.e. cor( j, rm − rf ) = 0. CAPM implies that αj = 0 for all assets. Effective relation: rj − rf = βj(rm − rf ) + j Decomposition of risk var(rj − rf ) = β2 j var(rm − rf ) + var( ) σ2 j = β2 j σ2 m market risk + var( ) residual risk Only compensated for taking on market risk and not residual risk 6
  • 33. Security Market Line Plot of the historical returns on an asset vs rf + β(µm − rf ) −2 −1.5 −1 −0.5 0 0.5 −8 −6 −4 −2 0 2 4 1 2 3 4 5 6 7 8 Security market line beta return(%) The assets are labeled in the order they appears in the spreadsheet. All assets should lie on the security line if CAPM holds. So why the discrepancy? 7
  • 34. Assumptions underlying CAPM All investors have identical information about the uncertain returns. All investors are mean-variance optimizers (or the returns are Normal) The markets are in equilibrium. Leveraging deviations from the security market line Jensen’s index or alpha α = (ˆµj − rf ) − βj(ˆµm − rf ) hold long if positive, short otherwise Sharpe ratio of a stock sj = ˆµj − rf ˆσj hold long if > mMCM, short otherwise. 8
  • 35. CAPM as a pricing formula Suppose the payoff from an investment in 1yr is X. What is the fair price for this investment. Let rX = X P − 1 denote the net rate of return on X. The beta of X is given by βX = cov(rX , rm) σ2 m = 1 P cov(X, rm) σ2 m Suppose CAPM holds. Then µX = E[rX ] must lie on the security market line, i.e. µX = rf + βX (rm − rf ) E[X] P − 1 = rf + 1 P cov(X, rm) var(rm) (µm − rf ) Rearranging terms: P = E[X] 1 + rf − cov(X, rm) (1 + rf )var(rm) (µm − rf ) 9