This document summarizes a master's thesis on integrating market views into quantitative portfolio allocation. It introduces the concepts of optimal asset allocation, mean-variance optimization, and dimension reduction using linear factor models. It then discusses incorporating investor views through information sets and the efficient market hypothesis. The Black-Litterman model uses a Gaussian market assumption, CAPM reverse optimization, and Bayesian updating to integrate views. An alternative approach uses f-divergences to measure distortions between probability distributions and translate views into information gain. The thesis concludes by proposing directions for future research.