Views Integration in a Quantitative Portfolio Allocation 
Master Thesis of Thibault Vatter1;2 
Supervized by David Morton de Lachapelle2 and Paolo De Los Rios1 
Abstract Modi
cations of statistical forecasts by investors having a particular percep-tion 
of future market conditions prove to be of utmost importance in practice. In this 
thesis, we investigate the eects of market views and review dierent possibilities to 
incorporate them in a quantitative scheme. In the
rst section, we start by recalling 
the optimal allocation problem and set the notations. In the second section, we re-view 
the concepts of information sets and ecient market hypothesis and formalize the 
incorporation of views in a quantitative framework. In the third section, we present 
the path-breaking approach of Black and Litterman, capitalizing on Gaussian markets, 
the CAPM and Bayes rule. In the fourth section, we oer new insights into Meucci's 
approach, translating views into information gain using f-divergences as a measure of 
distortion between distributions. In the
fth section, we conclude on the project and 
give directions of interest for the future. 
1LBS - Institute of Theoretical Physics, EPFL, thibault.vatter@epfl.ch 
2QAM Department, Swissquote Bank SA, thibault.vatter@swissquote.ch
2 Views Integration in Quantitative Portfolio Allocation 
Contents 
1 Introduction 4 
1.1 Quantitative portfolio allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
1.2 The mean-variance allocation scheme . . . . . . . . . . . . . . . . . . . . . . . . . 6 
1.3 A general formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
1.4 Dimension reduction and linear factor models . . . . . . . . . . . . . . . . . . . . 12 
1.5 The Fama{French three-factor model and market benchmarks . . . . . . . . . . . 14 
2 Quantitative integration of market views 17 
2.1 Information sets, ecient market hypothesis and market views . . . . . . . . . . 17 
2.2 Problem formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 
2.2.1 Views focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 
2.2.2 Views integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 
3 The Black-Litterman model and extensions 23 
3.1 First pillar: a Gaussian market . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 
3.2 Second pillar: CAPM reverse optimization . . . . . . . . . . . . . . . . . . . . . . 25 
3.3 Third pillar: Bayesian views integration . . . . . . . . . . . . . . . . . . . . . . . 28 
3.4 The Augmented Black-Litterman model . . . . . . . . . . . . . . . . . . . . . . . 32
CONTENTS 3 
4 The scenario-based approach 36 
4.1 Learning from disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 
4.2 Analytical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 
4.3 Fully 
exible probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 
4.4 Relative entropy minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 
4.5 Copulas and 
exible market models . . . . . . . . . . . . . . . . . . . . . . . . . . 46 
4.5.1 Time-varying dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 
4.5.2 Some useful copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 
4.5.3 Dependence structure estimation . . . . . . . . . . . . . . . . . . . . . . . 53 
4.5.4 Closing the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 
4.6 Numerical example : portfolio stress testing . . . . . . . . . . . . . . . . . . . . . 57 
4.6.1 Measures of market risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 
4.6.2 Stress testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 
4.7 Numerical example: mean-variance, market equilibrium and relative entropy . . . 60 
5 Conclusion 61 
6 Acknowledgments 63 
A The Fama and French factors 68 
B Jensen-Shannon's divergence minimization 69 
C Mean-CV aR optimization 70
4 Views Integration in Quantitative Portfolio Allocation 
1 Introduction 
To use the [expected returns-variance] rule in the selection of securities we must have proce- 
dures for
nding reasonable i and ij . These procedures, I believe, should combine statistical 
techniques and the judgment of practical men. 
Harry Markowitz, 1952 
Since its begining with Markowitz in 1952, modern portfolio theory mixes art and science: judg- 
ment of practical men and powerful statistical techniques. The two approaches, although 
complementary, are sometimes dicult to conciliate. While practitioners frequently discard 
quantitative strategies as obscures mathematical complications,
nancial engineers forget that 
portfolio management is often about common sense. We attempt to reconcile both in a sound 
theoretical and practical framework. In this scope, we review methods allowing the alteration 
of statistical forecasts by an investor having a particular perception of future market conditions; 
these modi
ed forecasts contain the investor's views in suitable form for a quantitative portfolio 
allocation. 
The idea is to set in a single frame current approaches and related concepts to formalize this 
problem and bring sound theoretical and practical answers. We choose to adopt a general for-malism 
without elaborating much on the underlying technical concepts. In order to keep the 
reader a
oat, we try to give as many heuristic justi
cations, intuitions and numerical example 
as possible rather than hard proofs. We start with the basics and progress towards increasingly 
complex methods while keeping practical applicability in mind, at the cost of simplifying some-times 
drastically real-world situations and behaviors. We assume only that the reader is familiar 
with the basics of probability and statistics (from an introductory university level course), and 
we try to make the
nance notions as self-contained as possible. 
This thesis is organized as follows. In the
rst section, we expose the problem of optimal asset 
allocation along with useful notations and practical examples. We also introduce the issue of 
dimension reduction and linear models, as exogenous factors are often the focus of practitioners 
views. In the second section, we de
ne what kind of information is relevant for portfolio opti-mization 
in the context of the ecient market hypothesis of Fama. Then, we formalize the 
problem of incorporating this information into an actual allocation. In the third section, we start 
as often in
nance with the Gaussian description of markets. Using the CAPM1 equilibrium and 
1Introduced by William Sharpe and John Lintner, the Capital Asset Pricing Model describes the relationship 
between a security risk and its associated premium.
Introduction 5 
Bayes rule, the Black-Litterman model brings the
rst answer to the problem. In the fourth 
section, we leave Gaussian markets for more advanced statistical modelling and use the concept 
of distortion between distributions to translate market views into information gain. To generate 
the required Monte-Carlo simulations and test this technique in various situations, we present 
an advanced and 
exible market model. Finally, we conclude in the
fth section and propose 
directions for further research. 
1.1 Quantitative portfolio allocation 
Let us de
ne si;t, the price at time t of security i (typically i can be a stock representing partial 
ownership of a
rm). Holding this security from time t1 to time t yields the one-period simple 
return 
ri;t = 
si;t  si;t1 
si;t1 
: (1) 
Working with returns instead of prices is usually preferred, because their time-series properties 
are easier to handle2 and because they are a natural measure of performance, which is essential in 
portfolio allocation. We can now consider an investor who picks a bunch of n dierent securities 
in which he wants to invest his wealth. Namely, he composes at time t  1 a portfolio p (with 
value sp;t1 equal to his wealth) by combining those securities, e.g. buying Np 
i;t1 shares3 of 
security i to hold over the next period. At time t, the price of the securities have changed, and 
the value sp;t and realized return rp;t of the portfolio are 
sp;t = 
Xn 
i=1 
Np 
i;t1si;t; 
rp;t = 
sp;t  sp;t1 
sp;t1 
= 
Xn 
i=1 
Np 
i;t1si;t1 
| sp{;tz1 } 
wp 
i;t1 
ri;t = w 
p;t1rt; (2) 
where we used vector notation for the portfolio weights wp;t1 = 
 
wp 
1;t1;    ;wp 
n;t1 
 
and the 
returns of the n securities rt = (r1;t;    ; rn;t). The optimal allocation problem now consists in 
a constrained expected utility maximization in order to
nd the optimal vector of weights wp;t to 
hold over the next period. The expected utility is an investment criterion (e.g. maximize expected 
2For example, they exhibit quasi-stationary patterns, whereas the prices often grow or decline over time. 
3Np 
i;t1 can be either positive or negative if one considers shorting the underlying security, that is borrowing it 
from a broker and selling it naked, thus making a pro
t in case of falling price.
6 Views Integration in Quantitative Portfolio Allocation 
portfolio return, diversi
cation, Sharpe ratio, ...). It is usually represented by a utility function 
U, which depends on both the weights and the joint distribution of the returns at t + 1. We use 
probabilistic concepts because in practice it is (most of the time) impossible to know for sure the 
future returns of a single security, let alone an entire basket of securities: there are unpredictable 
events which forbid us to infer the future only from the past and the present, and even strategies 
based on
xed income products4 such as bonds held until maturity suer from credit risk (e.g. 
bankruptcies and other defaults events). In what follows, we require at least our strategy to be 
self-
nancing, i.e. prices before and after re-balancing the portfolio have to be equal. We do not 
consider non self-
nancing strategies (e.g. the optimal consumption/saving problem introduced 
by Fisher in [31]) which need in general to be solved using dynamic programming (see [1] for an 
introduction on the subject in Economics). In this respect, our minimal investment constraint is 
Pn 
called the budget constraint and is expressed as 
i=1 
wp 
i;t = 1 8t. 
1.2 The mean-variance allocation scheme 
Let us give an example within the mean-variance framework pioneered by Markowitz in [45]. 
We start by assuming that an investor has originally picked the securities in which he wanted 
to invest. Indeed Markowitz's framework (as other quantitative allocation schemes) was not 
developed for stock picking (i.e. the initial choice of the n securities). In fact, themean-variance 
oered the
rst rigorous approach to wealth allocation, but was by no means thought to help 
selecting the investment universe. The expected utility criterion can be derived heuristically 
by considering a second-order development of a generic (unspeci
ed) utility function U of the 
portfolio return rp, that is 
U (rp)  U (0) + 
@U 
@rp
rp=0 
rp + 
@2U 
@r2 
p
rp=0 
r2 
p + O 
 
r3 
p 
 
; (3) 
with U (rp)  0. This development can indeed only be valid when considering small investment 
horizons such as daily or weekly, that is horizons for which rp is (usually) close to zero. Truncating 
the higher order terms, the expectation of equation (3) yields 
E[U (rp)]  
@U 
@rp
rp=0 
E[rp] + 
@2U 
@r2 
p
rp=0 
E 
 
r2 
p 
 
; (4) 
4Fixed income product are essentially a contract binding a borrower and a lender: in the simplest form, the 
borrower receive a given amount of money when issuing the product, while committing himself to a string of future 
periodic payments, with eventual repayment of the principal (original amount) at maturity. Bonds are example of 
such securities, which oer return in the form of an interest rate.
Introduction 7 
where we neglected the
rst term as the addition of a scalar plays no role in the expected utility 
maximization (or the utility of zero return is zero). The truncation can by justi
ed for instance 
in Gaussian markets when the whole distribution is characterized only by the
rst two moments, 
provided a non-negative portfolio expected return5. Then only two economic assumptions 
are needed: the rational investor prefers more to less and he is risk-averse6. While the
rst is 
straightforward in the context of rational expectations, the second has been shown empirically 
for instance in [54]. Those assumptions imply that the utility is an increasing function (or 
equivalently the
rst derivative is positive) of the portfolio return, and moreover concave (i.e. 
the second derivative is negative), which can be understood if one considers the squared return 
as being a measure of dispersion, that is of market risk. More formally, we de
ne the vector 
of conditional expectations t = (E[r1;t+1jFt] ;    ;E[rn;t+1jFt]) and covariance matrix t 
with ij;t = Cov [ri;t+1; rj;t+1jFt]7 for the individual securities at time t, where Ft denotes all 
information available at that time, and jFt means conditional on the information set Ft8. Then 
we have the portfolio conditional expected return 
E[rp;t+1jFt] = 
Xn 
i=1 
wp 
i;t1E[ri;t+1jFt] = w 
p;tt; (5) 
which is the weighted average over the portfolio positions of the security conditional expected 
returns, likewise the portfolio variance 
V ar [rp;t+1jFt] = Cov 
h 
w 
p;trt+1;w 
p;trt+1jFt 
i 
= 
Xn 
i=1 
 
wp 
i;t 
2 
V ar [ri;t+1jFt] + 
Xn 
i;j=1;i6=j 
wp 
i;twp 
j;tCov [ri;t+1; rj;t+1jFt] 
= w 
p;ttwp;t (6) 
and the volatility  [rp;t+1jFt] = 
p 
V ar [rp;t+1jFt] of the portfolio, with respect to the all infor-mation 
available at time t. Finally the mean-variance expected utility, equivalently9 to (4), with 
5If it was not the case, the investor would not bother optimizing. 
6We de
ne the risk-averse investor as a rational investor who prefers the less risky when facing two opportunities 
with equal expected payo. 
7We de
ne the conditional covariance between two random variables ri and rj as 
Cov [ri;t+1; rj;t+1jFt]= E [(ri;t+1  E [ri;t+1jFt]) (rj;t+1  E  
[rj;t+1jFt]) jFt]. If ri = rj , we de
ne the condi- 
tional variance V ar [ri;t+1jFt] = Cov [ri;t+1; ri;t+1jFt]= (ri;t+1  2 E 
E [ri;t+1jFt])jFt 
 
and conditional standard 
deviation (also called volatility in our context)  [ri;t+1jFt] = 
p 
V ar [ri;t+1jFt]. 
8We will give later a formal de
nition for the information set using the concept of
ltered probability space. 
9The dierence comes from assuming that E [rp;t+1jFt]2  E 
 
r2 
p;t+1jFt 
 
, or equivalently V ar [rp;t+1jFt]  
E 
 
r2 
p;t+1jFt 
 
.
8 Views Integration in Quantitative Portfolio Allocation 
risk-aversion parameter 
 reads 
E[U (wp;t;t;t)] = E[rp;t+1jFt]  

 
2 
V ar [rp;t+1jFt] 
= w 
p;tt  

 
2 
w 
p;ttwp;t: (7) 
The risk-aversion parameter 

 =  
1 
2 
@2U 
@r2 
p
rp=0 
@U 
@rp
rp=0 
; (8) 
which represents a trade-o between the expected performance of the portfolio and its associated 
uncertainty, is assumed to be chosen before the optimization and then constant over the holding 
period. With the additional budget constraint and dropping the subscripts t and p for simplic-ity, 
the optimization problem of
nding the optimal w can be formulated as the Lagrangian 
maximization 
(w; )  argmax 
w; 
fL (w; )g ; 
L(w; ) = w  

 
2 
ww   
 
w1  1 
 
; (9) 
where we added the Lagrangian multiplier  and 1 is a vector ones. The
rst-order conditions 
@L(w; ) =@wjw; = 0 and @L(w; ) =@jw; = 0 yield the optimal weights of the portfolio 
  
w 
 
! 
= 
  

 1 
1 0 
!1   
 
1 
! 
: (10) 
which corresponds to a global maximum of 9 provided  is positive de
nite. The set of values 
for 
 2 (0;1) induces a set of attainable portfolios de
ning the so-called the (mean-variance) 
ecient frontier, that is all the portfolios a rational investor could invest in given the infor-mation 
available at time t. This is illustrated in
gure 1 for a simple two-asset case. For an 
investor with low risk-aversion (say 
  1), the expected utility maximization only consists 
in maximizing the expected performance of the portfolio. Thus, the investor would hold short 
as much as possible securities with lowest expected returns and hold long as much as possible 
securities with maximal expected return. On the contrary with a large risk-aversion, expected 
performance becomes negligible with respect to market risk, and the investor will hold a portfolio 
with minimal volatility.
Introduction 9 
Figure 1: Ecient frontier and portfolio weights with  = (0:05; 0:08) and  = 
 
0:1 0:04 
0:04 0:12 
 
. 
1.3 A general formalism 
Let us now generalize the notions presented above to obtain a more compact formalism, general 
enough to accommodate all the concepts we present in this document. We start by assuming 
that the price of our portfolio at t is now driven by a N-dimensional vector10 xt of risk-factors: 
sp;t = 
Xn 
i=1 
Np 
i;t1Pi(xtjFt); 
rp;t = 
sp;t  sp;t1 
sp;t1 
= 
Xn 
i=1 
Np 
i;t1Pi(xt1jFt) 
| sp{;tz1 } 
wp 
i;t1 
ri;t = w 
p;t1rt; (11) 
where 
 Pi(xtjFt) is a deterministic mapping that links a given realization of the risk-factors to the 
price of security i, based on the information available at time t, 
 rt is the vector of returns computed using Pi(xtjFt) and Pi(xt1jFt) instead of si;t and 
si;t1, that is ri;t = (Pi(xtjFt)=Pi(xt1jFt)  1) 8i 2 [1;    ; n]. 
10The number of risk-factors N is typically smaller than the number of securities n.
10 Views Integration in Quantitative Portfolio Allocation 
For example, if stock i belongs to the portfolio, it is customary to take (at least) its return as 
a risk factor (i.e. xi;t = ri;t), and we have Pi(xtjFt) = si;t1(1 + xi;t) (with si;t1 the price at 
t1). In general, risk-factors may be the returns of individual securities, but could also include 
market/sector indices, FX rates, sovereign yield curves, macroeconomic indicators, etc. While 
the pricing function may not depend on the other securities, one should not mistake it for an 
independence hypothesis between the risk-factors, as these are usually not independent. For 
example, in the simple case described above (with only the returns of the individuals securities 
as risk-factors), the pricing function of each security only depends on one risk-factor, whereas 
it is well known that asset returns are correlated (e.g. between securities of the same country 
or industry sector). In the remainder of the document, we will refer to the risk-factors as the 
random vector driving a so-called market model. We emphasize that the description oered by 
the risk-factors that one chooses can often be applied to a dierent and broader market than the 
investment universe. Then, a historical observation corresponds supposedly to a realization of 
the market model, which we will now formally de
ne. Let (
x;F; Px) be the

vatter_pdm_1.1

  • 1.
    Views Integration ina Quantitative Portfolio Allocation Master Thesis of Thibault Vatter1;2 Supervized by David Morton de Lachapelle2 and Paolo De Los Rios1 Abstract Modi
  • 2.
    cations of statisticalforecasts by investors having a particular percep-tion of future market conditions prove to be of utmost importance in practice. In this thesis, we investigate the eects of market views and review dierent possibilities to incorporate them in a quantitative scheme. In the
  • 3.
    rst section, westart by recalling the optimal allocation problem and set the notations. In the second section, we re-view the concepts of information sets and ecient market hypothesis and formalize the incorporation of views in a quantitative framework. In the third section, we present the path-breaking approach of Black and Litterman, capitalizing on Gaussian markets, the CAPM and Bayes rule. In the fourth section, we oer new insights into Meucci's approach, translating views into information gain using f-divergences as a measure of distortion between distributions. In the
  • 4.
    fth section, weconclude on the project and give directions of interest for the future. 1LBS - Institute of Theoretical Physics, EPFL, thibault.vatter@epfl.ch 2QAM Department, Swissquote Bank SA, thibault.vatter@swissquote.ch
  • 5.
    2 Views Integrationin Quantitative Portfolio Allocation Contents 1 Introduction 4 1.1 Quantitative portfolio allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 The mean-variance allocation scheme . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 A general formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Dimension reduction and linear factor models . . . . . . . . . . . . . . . . . . . . 12 1.5 The Fama{French three-factor model and market benchmarks . . . . . . . . . . . 14 2 Quantitative integration of market views 17 2.1 Information sets, ecient market hypothesis and market views . . . . . . . . . . 17 2.2 Problem formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.1 Views focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.2 Views integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 The Black-Litterman model and extensions 23 3.1 First pillar: a Gaussian market . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 Second pillar: CAPM reverse optimization . . . . . . . . . . . . . . . . . . . . . . 25 3.3 Third pillar: Bayesian views integration . . . . . . . . . . . . . . . . . . . . . . . 28 3.4 The Augmented Black-Litterman model . . . . . . . . . . . . . . . . . . . . . . . 32
  • 6.
    CONTENTS 3 4The scenario-based approach 36 4.1 Learning from disorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Analytical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3 Fully exible probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.4 Relative entropy minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.5 Copulas and exible market models . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.5.1 Time-varying dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.5.2 Some useful copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.5.3 Dependence structure estimation . . . . . . . . . . . . . . . . . . . . . . . 53 4.5.4 Closing the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.6 Numerical example : portfolio stress testing . . . . . . . . . . . . . . . . . . . . . 57 4.6.1 Measures of market risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.6.2 Stress testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.7 Numerical example: mean-variance, market equilibrium and relative entropy . . . 60 5 Conclusion 61 6 Acknowledgments 63 A The Fama and French factors 68 B Jensen-Shannon's divergence minimization 69 C Mean-CV aR optimization 70
  • 7.
    4 Views Integrationin Quantitative Portfolio Allocation 1 Introduction To use the [expected returns-variance] rule in the selection of securities we must have proce- dures for
  • 8.
    nding reasonable iand ij . These procedures, I believe, should combine statistical techniques and the judgment of practical men. Harry Markowitz, 1952 Since its begining with Markowitz in 1952, modern portfolio theory mixes art and science: judg- ment of practical men and powerful statistical techniques. The two approaches, although complementary, are sometimes dicult to conciliate. While practitioners frequently discard quantitative strategies as obscures mathematical complications,
  • 9.
    nancial engineers forgetthat portfolio management is often about common sense. We attempt to reconcile both in a sound theoretical and practical framework. In this scope, we review methods allowing the alteration of statistical forecasts by an investor having a particular perception of future market conditions; these modi
  • 10.
    ed forecasts containthe investor's views in suitable form for a quantitative portfolio allocation. The idea is to set in a single frame current approaches and related concepts to formalize this problem and bring sound theoretical and practical answers. We choose to adopt a general for-malism without elaborating much on the underlying technical concepts. In order to keep the reader a oat, we try to give as many heuristic justi
  • 11.
    cations, intuitions andnumerical example as possible rather than hard proofs. We start with the basics and progress towards increasingly complex methods while keeping practical applicability in mind, at the cost of simplifying some-times drastically real-world situations and behaviors. We assume only that the reader is familiar with the basics of probability and statistics (from an introductory university level course), and we try to make the
  • 12.
    nance notions asself-contained as possible. This thesis is organized as follows. In the
  • 13.
    rst section, weexpose the problem of optimal asset allocation along with useful notations and practical examples. We also introduce the issue of dimension reduction and linear models, as exogenous factors are often the focus of practitioners views. In the second section, we de
  • 14.
    ne what kindof information is relevant for portfolio opti-mization in the context of the ecient market hypothesis of Fama. Then, we formalize the problem of incorporating this information into an actual allocation. In the third section, we start as often in
  • 15.
    nance with theGaussian description of markets. Using the CAPM1 equilibrium and 1Introduced by William Sharpe and John Lintner, the Capital Asset Pricing Model describes the relationship between a security risk and its associated premium.
  • 16.
    Introduction 5 Bayesrule, the Black-Litterman model brings the
  • 17.
    rst answer tothe problem. In the fourth section, we leave Gaussian markets for more advanced statistical modelling and use the concept of distortion between distributions to translate market views into information gain. To generate the required Monte-Carlo simulations and test this technique in various situations, we present an advanced and exible market model. Finally, we conclude in the
  • 18.
    fth section andpropose directions for further research. 1.1 Quantitative portfolio allocation Let us de
  • 19.
    ne si;t, theprice at time t of security i (typically i can be a stock representing partial ownership of a
  • 20.
    rm). Holding thissecurity from time t1 to time t yields the one-period simple return ri;t = si;t si;t1 si;t1 : (1) Working with returns instead of prices is usually preferred, because their time-series properties are easier to handle2 and because they are a natural measure of performance, which is essential in portfolio allocation. We can now consider an investor who picks a bunch of n dierent securities in which he wants to invest his wealth. Namely, he composes at time t 1 a portfolio p (with value sp;t1 equal to his wealth) by combining those securities, e.g. buying Np i;t1 shares3 of security i to hold over the next period. At time t, the price of the securities have changed, and the value sp;t and realized return rp;t of the portfolio are sp;t = Xn i=1 Np i;t1si;t; rp;t = sp;t sp;t1 sp;t1 = Xn i=1 Np i;t1si;t1 | sp{;tz1 } wp i;t1 ri;t = w p;t1rt; (2) where we used vector notation for the portfolio weights wp;t1 = wp 1;t1; ;wp n;t1 and the returns of the n securities rt = (r1;t; ; rn;t). The optimal allocation problem now consists in a constrained expected utility maximization in order to
  • 21.
    nd the optimalvector of weights wp;t to hold over the next period. The expected utility is an investment criterion (e.g. maximize expected 2For example, they exhibit quasi-stationary patterns, whereas the prices often grow or decline over time. 3Np i;t1 can be either positive or negative if one considers shorting the underlying security, that is borrowing it from a broker and selling it naked, thus making a pro
  • 22.
    t in caseof falling price.
  • 23.
    6 Views Integrationin Quantitative Portfolio Allocation portfolio return, diversi
  • 24.
    cation, Sharpe ratio,...). It is usually represented by a utility function U, which depends on both the weights and the joint distribution of the returns at t + 1. We use probabilistic concepts because in practice it is (most of the time) impossible to know for sure the future returns of a single security, let alone an entire basket of securities: there are unpredictable events which forbid us to infer the future only from the past and the present, and even strategies based on
  • 25.
    xed income products4such as bonds held until maturity suer from credit risk (e.g. bankruptcies and other defaults events). In what follows, we require at least our strategy to be self-
  • 26.
    nancing, i.e. pricesbefore and after re-balancing the portfolio have to be equal. We do not consider non self-
  • 27.
    nancing strategies (e.g.the optimal consumption/saving problem introduced by Fisher in [31]) which need in general to be solved using dynamic programming (see [1] for an introduction on the subject in Economics). In this respect, our minimal investment constraint is Pn called the budget constraint and is expressed as i=1 wp i;t = 1 8t. 1.2 The mean-variance allocation scheme Let us give an example within the mean-variance framework pioneered by Markowitz in [45]. We start by assuming that an investor has originally picked the securities in which he wanted to invest. Indeed Markowitz's framework (as other quantitative allocation schemes) was not developed for stock picking (i.e. the initial choice of the n securities). In fact, themean-variance oered the
  • 28.
    rst rigorous approachto wealth allocation, but was by no means thought to help selecting the investment universe. The expected utility criterion can be derived heuristically by considering a second-order development of a generic (unspeci
  • 29.
    ed) utility functionU of the portfolio return rp, that is U (rp) U (0) + @U @rp
  • 33.
    rp=0 rp + @2U @r2 p
  • 37.
    rp=0 r2 p+ O r3 p ; (3) with U (rp) 0. This development can indeed only be valid when considering small investment horizons such as daily or weekly, that is horizons for which rp is (usually) close to zero. Truncating the higher order terms, the expectation of equation (3) yields E[U (rp)] @U @rp
  • 41.
    rp=0 E[rp] + @2U @r2 p
  • 45.
    rp=0 E r2 p ; (4) 4Fixed income product are essentially a contract binding a borrower and a lender: in the simplest form, the borrower receive a given amount of money when issuing the product, while committing himself to a string of future periodic payments, with eventual repayment of the principal (original amount) at maturity. Bonds are example of such securities, which oer return in the form of an interest rate.
  • 46.
    Introduction 7 wherewe neglected the
  • 47.
    rst term asthe addition of a scalar plays no role in the expected utility maximization (or the utility of zero return is zero). The truncation can by justi
  • 48.
    ed for instance in Gaussian markets when the whole distribution is characterized only by the
  • 49.
    rst two moments, provided a non-negative portfolio expected return5. Then only two economic assumptions are needed: the rational investor prefers more to less and he is risk-averse6. While the
  • 50.
    rst is straightforwardin the context of rational expectations, the second has been shown empirically for instance in [54]. Those assumptions imply that the utility is an increasing function (or equivalently the
  • 51.
    rst derivative ispositive) of the portfolio return, and moreover concave (i.e. the second derivative is negative), which can be understood if one considers the squared return as being a measure of dispersion, that is of market risk. More formally, we de
  • 52.
    ne the vector of conditional expectations t = (E[r1;t+1jFt] ; ;E[rn;t+1jFt]) and covariance matrix t with ij;t = Cov [ri;t+1; rj;t+1jFt]7 for the individual securities at time t, where Ft denotes all information available at that time, and jFt means conditional on the information set Ft8. Then we have the portfolio conditional expected return E[rp;t+1jFt] = Xn i=1 wp i;t1E[ri;t+1jFt] = w p;tt; (5) which is the weighted average over the portfolio positions of the security conditional expected returns, likewise the portfolio variance V ar [rp;t+1jFt] = Cov h w p;trt+1;w p;trt+1jFt i = Xn i=1 wp i;t 2 V ar [ri;t+1jFt] + Xn i;j=1;i6=j wp i;twp j;tCov [ri;t+1; rj;t+1jFt] = w p;ttwp;t (6) and the volatility [rp;t+1jFt] = p V ar [rp;t+1jFt] of the portfolio, with respect to the all infor-mation available at time t. Finally the mean-variance expected utility, equivalently9 to (4), with 5If it was not the case, the investor would not bother optimizing. 6We de
  • 53.
    ne the risk-averseinvestor as a rational investor who prefers the less risky when facing two opportunities with equal expected payo. 7We de
  • 54.
    ne the conditionalcovariance between two random variables ri and rj as Cov [ri;t+1; rj;t+1jFt]= E [(ri;t+1 E [ri;t+1jFt]) (rj;t+1 E [rj;t+1jFt]) jFt]. If ri = rj , we de
  • 55.
    ne the condi- tional variance V ar [ri;t+1jFt] = Cov [ri;t+1; ri;t+1jFt]= (ri;t+1 2 E E [ri;t+1jFt])jFt and conditional standard deviation (also called volatility in our context) [ri;t+1jFt] = p V ar [ri;t+1jFt]. 8We will give later a formal de
  • 56.
    nition for theinformation set using the concept of
  • 57.
    ltered probability space. 9The dierence comes from assuming that E [rp;t+1jFt]2 E r2 p;t+1jFt , or equivalently V ar [rp;t+1jFt] E r2 p;t+1jFt .
  • 58.
    8 Views Integrationin Quantitative Portfolio Allocation risk-aversion parameter reads E[U (wp;t;t;t)] = E[rp;t+1jFt] 2 V ar [rp;t+1jFt] = w p;tt 2 w p;ttwp;t: (7) The risk-aversion parameter = 1 2 @2U @r2 p
  • 61.
  • 64.
    rp=0 ; (8) which represents a trade-o between the expected performance of the portfolio and its associated uncertainty, is assumed to be chosen before the optimization and then constant over the holding period. With the additional budget constraint and dropping the subscripts t and p for simplic-ity, the optimization problem of
  • 65.
    nding the optimalw can be formulated as the Lagrangian maximization (w; ) argmax w; fL (w; )g ; L(w; ) = w 2 ww w1 1 ; (9) where we added the Lagrangian multiplier and 1 is a vector ones. The
  • 66.
    rst-order conditions @L(w;) =@wjw; = 0 and @L(w; ) =@jw; = 0 yield the optimal weights of the portfolio w ! = 1 1 0 !1 1 ! : (10) which corresponds to a global maximum of 9 provided is positive de
  • 67.
    nite. The setof values for 2 (0;1) induces a set of attainable portfolios de
  • 68.
    ning the so-calledthe (mean-variance) ecient frontier, that is all the portfolios a rational investor could invest in given the infor-mation available at time t. This is illustrated in
  • 69.
    gure 1 fora simple two-asset case. For an investor with low risk-aversion (say 1), the expected utility maximization only consists in maximizing the expected performance of the portfolio. Thus, the investor would hold short as much as possible securities with lowest expected returns and hold long as much as possible securities with maximal expected return. On the contrary with a large risk-aversion, expected performance becomes negligible with respect to market risk, and the investor will hold a portfolio with minimal volatility.
  • 70.
    Introduction 9 Figure1: Ecient frontier and portfolio weights with = (0:05; 0:08) and = 0:1 0:04 0:04 0:12 . 1.3 A general formalism Let us now generalize the notions presented above to obtain a more compact formalism, general enough to accommodate all the concepts we present in this document. We start by assuming that the price of our portfolio at t is now driven by a N-dimensional vector10 xt of risk-factors: sp;t = Xn i=1 Np i;t1Pi(xtjFt); rp;t = sp;t sp;t1 sp;t1 = Xn i=1 Np i;t1Pi(xt1jFt) | sp{;tz1 } wp i;t1 ri;t = w p;t1rt; (11) where Pi(xtjFt) is a deterministic mapping that links a given realization of the risk-factors to the price of security i, based on the information available at time t, rt is the vector of returns computed using Pi(xtjFt) and Pi(xt1jFt) instead of si;t and si;t1, that is ri;t = (Pi(xtjFt)=Pi(xt1jFt) 1) 8i 2 [1; ; n]. 10The number of risk-factors N is typically smaller than the number of securities n.
  • 71.
    10 Views Integrationin Quantitative Portfolio Allocation For example, if stock i belongs to the portfolio, it is customary to take (at least) its return as a risk factor (i.e. xi;t = ri;t), and we have Pi(xtjFt) = si;t1(1 + xi;t) (with si;t1 the price at t1). In general, risk-factors may be the returns of individual securities, but could also include market/sector indices, FX rates, sovereign yield curves, macroeconomic indicators, etc. While the pricing function may not depend on the other securities, one should not mistake it for an independence hypothesis between the risk-factors, as these are usually not independent. For example, in the simple case described above (with only the returns of the individuals securities as risk-factors), the pricing function of each security only depends on one risk-factor, whereas it is well known that asset returns are correlated (e.g. between securities of the same country or industry sector). In the remainder of the document, we will refer to the risk-factors as the random vector driving a so-called market model. We emphasize that the description oered by the risk-factors that one chooses can often be applied to a dierent and broader market than the investment universe. Then, a historical observation corresponds supposedly to a realization of the market model, which we will now formally de
  • 72.
    ne. Let ( x;F;Px) be the
  • 73.
    ltered probability spacefor the market model driven by our vector x of N risk-factors, with a set of possibles outcomes x = x1 xN RN for the random vector x, a
  • 74.
    ltration (i.e. asequence of sv-algebras fFtgt0, Ft F 8t) representing all the informa-tion available at time t, a probability measure Px where Px (!) denotes the (unconditional) probability of the out-come ! 2 x. For (x1; ; xN) 2 xt+1jFt , the distribution function Fxt+1jFt (x1; ; xN) = Pxt+1jFt (x1;t+1 x1; ; xN;t+1 xN) (12) denotes the probability of the joint event (x1;t+1 x1; ; xN;t+1 xN) given the information available at time t. Conversely, it may also be convenient to use the survival distribution, which can be de
  • 75.
    ned as Fxt+1jFt(x1; ; xN) = Pxt+1jFt (x1;t+1 x1; ; xN;t+1 xN) ; (13) that is the probability of the joint event (x1;t+1 x1; ; xN;t+1 xN) given the information available at time t. For simplicity, we will assume xt+1jFt = RN at all times, even if this is not realistic11. Keeping in mind that 1 should be inf xi;t+1jFt and 1 should be sup xi;t+1jFt for 11Take for example xi as the return on a stock, then a realization xi;t = 1 means that the company went bankrupt and therefore yields xi;t+1jFt = f0g.
  • 76.
    Introduction 11 alli 2 f1; ;Ng, the joint probability density, if it exists, is the function f : xt+1jFt ! R such that Fxt+1jFt (x1; ; xN) = x1 1 xN 1 fxt+1jFt (x1; ; xN) dx1 dxN (14) for all (x1; ; xN) 2 xt+1jFt . If this function exists, Fxt+1jFt is said to be absolutely continu- ous. For all i 2 f1; ;Ng and xi 2 Xi;t+1jFt , we can also de
  • 77.
    ne the marginalsas Fxi;t+1jFt(xi) = Fxt+1jFt(1; ; xi; ;1); (15) 1 fxi;t+1jFt(xi) = 1 1 1 fxt+1jFt(x1; ; xi; ; xN)dx1 dxN; (16) where Fxi;t+1jFt(xi) = Pxt+1jFt (xi;t+1 xi) and the joint density in the third equality is in-tegrated over all variables but xi. Indeed, one can also de
  • 78.
    ne the marginalsfor the survival distribution as Fxi;t+1jFt(xi) = Fxt+1jFt(1; ; xi; ;1) = Pxt+1jFt (xi;t+1 xi) for all i 2 f1; ;Ng and xi 2 Xi;t+1jFt . From now on, we will only consider absolutely continuous distributions and denote xt+1jFt fxt+1jFt . If we knew this probability density, the optimal allocation would be w p;t argmax wp;t2C E U(wp;t; fxt+1jFt) ; (17) where C is the set of investment constraints and E[U] the expected utility function to maximize. As one may have guessed, in practice, an investor never accesses the complete information set Ft. Let us denote It the information set publicly available12 8t. Requiring the property It Ft 8t means that the public information available to most investors represents only a subset of the complete information. For example, consider a
  • 79.
    rm whose quarterlyresults announcement is expected at time t + 1. Then at time t, corporate insiders such as the Executive Management already know the quarterly results and thus have an extended information set Jt, which reads formally It Jt Ft. We often still need the second inclusion because insiders are not om-niscient (e.g. they always lack some internal or external private information). However, the complementary information set (that is the information set Bt such that Jt S Bt = Ft) may also be of negligible importance or irrelevant in the sense Fxt+1jJt Fxt+1jFt , and we will denote equivalently in this case Jt Ft. This discussion is closely related to the classical problems of market eciency andasymmetric information in Economics and contract theory, but we shall leave this aside for now and give more details about these concepts and their link to dierent information sets and market views later in the document. Before we introduce the problem of 12More details will be given on the precise meaning of publicly available in the context of market views.
  • 80.
    12 Views Integrationin Quantitative Portfolio Allocation market views, we assume that our investor has an incomplete information set, for instance It, to model the distribution of future returns. Then we will explain how it is possible to incorporate the investors private information Jt to model the market distribution conditional on (It [ Jt) Ft 8t. In what follows, we recall succinctly the problem of dimension reduction and (linear) factor models, because these notions are necessary here for two reasons:
  • 81.
    rst they formthe basics of equilibrium pricing theories that are needed in the Black-Litterman model, and second because appropriately chosen factors allow to model a market of large size in a parsimonious way. 1.4 Dimension reduction and linear factor models Portfolios are often composed of hundreds of securities, but the data available to model them are usually limited to empirical time series ranging from a few hundred to a few thousand observations. In the equity case, this consists in a lot more data than the one available to model credit default events for instance, but it is still often insucient to model directly the whole joint distribution. Dimension reduction is thus an essential concern both in academic and applied research. Furthermore, many alpha-generating13 strategies are based on exposure to exogenous factors such as market indices, growth of industry sectors, or evolution of exchange rates. As practitioners often have views related to those exogenous factors, this also explains why they are commonly used to model large investment universes. The purpose is to write the N-dimensional vector of risk-factors x as a N 1 function14 g : RL ! RN of a L 1 vector y = (y1; ; yL)of L N (or possibly L N) factors. In full generality, any kind of factor model reads x = g (y) = 0 g1 (y1; ; yL) ... BB@ gN (y1; ; yL) 1 CCA : (18) There are dozens of techniques used in various scienti
  • 82.
  • 83.
    elds, but thereexists basically two approaches in
  • 84.
    nance: the statisticaltechniques and economically motivated equilibrium pricing theories. For example, the Principal Component Analysis (PCA, see [46] for details) may be the most widely used in the
  • 85.
    rst category, whereasfor the second, the Capital Asset Pricing Model or the more recent Arbitrage Pricing Theory (CAPM and APT, see [26] for example) are now standard in most
  • 86.
    nance textbooks. 13Thealpha is a measure of a risk-adjusted return on an investment. To generate alpha means to generate abnormal (usually positive) returns compared to that of the market. 14As mentioned in subsection 1.1 for the risk-factors, the support and image of g are most of the time restricted to smaller subsets of L R and NR .
  • 87.
    Introduction 13 Inmany cases, one assumes a linear relationship between the original risk-factors and the new set of factors, which can be interpreted as a
  • 88.
    rst order Taylorpolynomial approximation of g (more likely in low-volatility periods) for small realizations of y. Thus we write 0 BB@ x1 ... xN 1 CCA = 0 BB@ g1 (y) ... gN (y)
  • 96.
    1 CCA y=0 + 0 BB@ @g1 @F1 (y) @g1 @FL (y) ... . . . ... @gN @F1 (y) @gN @FL (y) 1 CCA
  • 104.
    y=0 0 BB@ y1 ... yL 1 CCA + 0 BB@ 1 ... N 1 CCA ; (19) where we added a vector of residual errors = (1; ; N). In matrix form, this expression for the risk-factors at time t reads xt = a + Byt + t; (20) where a is a N 1 vector of constants and B is a N L matrix of exposures to the factors. Byt represents the systemic part of the returns (i.e. typically depending on the market), while t is called the idiosyncratic part. The most commonly used technique to decompose xt as in equation (20) is an OLS regression on exogenously-speci
  • 105.
    ed factors (forexample the returns of a market index in case of the CAPM) or endogenous factors (e.g. using statistically de
  • 106.
    ned factors asthe eigenvectors of the sample correlation matrix of x). For any sample period ]t T; t[ used to estimate a as ba and B as bB , where the subscript bx will from now on be used to denote an estimator of the quantity x, the OLS regression provides the following important result dCov [yijjIt] = bE [j;t+1jIt] = 0 8i 2 f1; ;Lg and 8j 2 f1; ;Ng : (21) In theory,
  • 107.
    nding factors suchthat Cov [ijjIt] = 0 8t, 8i 2 f1; ;Lg and 8j 2 f1; ;Ng (that is
  • 108.
    nding a setof factors such that the idiosyncratic parts are uncorrelated) would be very convenient, because one could then model the factors yt+1 fyt+1jIt on their probability space ( y; I; Py), which is easier than modeling xt+1 fxt+1jIt as L N. Then, one would only need to model univariate marginals i;t+1 fi;t+1jIt on their probability space ( i ; I; Pi) 8i 2 f1; ;mg to retrieve xt+1 fxt+1jIt . In practice however dCov [ij ] = 0 is never achieved15, but we usually have dCov [ijjIt] dCov [xixjjIt] if the factors are appropriately chosen. Then it is common practice to consider the residuals as uncorrelated. If additionally the marginals are close to Gaussians, it is convenient to model them as independent random variables, that is t+1 f1;t+1jIt fN;t+1jIt . We leave further consideration on the factor dependence structure for the subsection 4.5, where we present a complete market model, and give now a practical and 15Correlated errors can be handled by Generalized Linear models, at the cost of the handy OLS property from equation (21).
  • 109.
    14 Views Integrationin Quantitative Portfolio Allocation important example of linear factor model. 1.5 The Fama–French three-factor model and market benchmarks A widely used factor model in
  • 110.
    nance is theFama{French three-factor model [28, 29]. Fama, E. and Eugene, F. started with the CAPM, which uses one market factor to characterize (in sample) about 70% of the variability of stocks returns in the U.S. equity universe. Through research, they were able to identify that portfolios composed of small-cap and high book-to-market ratio stocks (the later are called value stocks) have a higher expected return than those composed of large-cap and small book-to-market ratio stocks (the later are calledgrowth stocks). This lead them to a model explaining more than 90% of the variability of U.S. stock returns with two additional factors added to the market factor: the small minus big factor (the average return of portfolios composed of small cap stocks minus the average return of portfolios composed of large cap stocks) and the high minus low factor (the average return of portfolios composed of high book-to-market stocks capitalization minus the average return of portfolios composed of small book-to-market stocks). For more details about the construction of the factors, we refer to appendix A. As an example of how to use the three factors and more generally throughout the whole document, we use a set of the 673 weekly prices than 303 stocks traded on the New-York Stock Exchange (NYSE) between January 1999 and December 201116. The whole U.S. market is much wider that 303 stocks, so it is important to compare our universe to the whole market in order to detect possible statistical biases. Furthermore, in the context of portfolio allocation, it is necessary to test our allocations against appropriate benchmarks. The literature on the subject is very rich, and among general characteristics (see [5] for example), we require a few attributes for our benchmark portfolios: Investible: we should be able to invest in all the securities. Appropriate: our benchmark has to be relevant to our investment strategy. Unambiguous: our benchmark has to be unambiguous in the sense that it is perfectly de
  • 111.
    ned at alltimes without an optimization process. 16Incidentally, this choice corresponds to the part of the U.S. stock universe in which on can invest through Swissquote's electronic asset management engine, or ePB from now on.
  • 112.
    Introduction 15 Thesimplest example of benchmark is an equally-weighted benchmark, that is a portfolio with weights we i;t = 1=n 8i and 8t. However, tracking this benchmark can generate very high trans-action costs as one needs to constantly re-balance all positions in portfolio, selling winners and buying losers to maintain equal weights17. Furthermore, giving the same importance in our benchmark to very small or large companies may not be a good proxy for the market portfo-lio. In what follows, we will consider wmt a capitalization-weighted benchmark on the universe, de
  • 113.
    ned by weights wm i;t = Pmi;t n i=1mi;t ; (22) where mi;t is the market capitalization of security i at time t. In
  • 114.
    gure 2, weshow the normalized 2000 2002 2004 2006 2008 2010 2012 0.8 1.0 1.2 1.4 1.6 Normalized value US market Cap−weighted benchmark Figure 2: The Fama-French market factor and our universe's benchmark value of our benchmark against the market factor of Fama and French. It should be noted that this factor is in fact a capitalization weighted benchmark of the whole US stock market, to which we will simply refer as the market from now on. We observe that they show similar patterns, but that the
  • 115.
    nal performance ofour benchmark over the sampling period is 64%, whereas that of the whole US stock market is only 44%. It can mainly be explained by a survivor bias, in the sense that our universe is only composed of stocks that were not delisted during the 17Hence the equally-weighted is a contrarian strategy.
  • 116.
    16 Views Integrationin Quantitative Portfolio Allocation Name Mean Std Dev Min Max t-stat Intercept 0.002 0.002 -0.002 0.008 15.855 Market 0.990 0.367 0.217 1.935 -0.454 SMB 0.002 0.344 -0.700 1.379 0.121 HML 0.303 0.579 -2.086 1.809 9.107 Table 1: Summary statistics for the Fama-French factor model. For the market factor, the t-stat is computed with the null hypothesis that the true mean is 1, whereas the null is that the mean equals 0 for the other coecients. As the degree of freedom is 302, the 95% critical value is 1.650. sampling period, hence yielding an upward bias in their performances. In table 1, we present summary statistics for the coecients obtained by an OLS regression of the Fama-French factors on our stock universe. We observe that our mean intercept is small, but signi
  • 117.
    cantly dierent from0, which is another evidence of the survivor bias in our universe. As expected, the mean exposure to the market is 1 (and this hypothesis cannot be rejected at the 95% con
  • 118.
    dence level). Furthermore,our universe does not appear either upward nor downward market cap biased (as we cannot reject the hypothesis that the mean of the exposure to the SMB factor is dierent from zero at the 95% con
  • 119.
    dence level), butwe still observe a signi
  • 120.
    cant upward book-to-marketbias. o o N(0,1) Original data Residuals from model −5 0 5 10 15 20 0.0 0.1 0.2 0.3 0.4 Rescaled correlation Density llllllllll l l l l l l l l l lll l l l l l l l l l l l l l l l lllllll lll llllllllllllll l l l l l l l ll l l l l l l l l l l lllllllllllllllllllllllllll Figure 3: Density of rescaled correlations. Because of the two upward biases, we can expect portfolios composed of stocks in this universe to have signi
  • 121.
    cantly greater returns than portfolios composed of all US stocks, and thus we need to be careful with any conclusion about performances in the context of portfo-lio allocation. To evaluate graphically if the dependence between the securities was cap-tured by the model, we show the distribution of correlations b [ri; rjjIt] and b [i; jjIt] in
  • 122.
    g-ure 3, wherewe rescaled the correlations by the square-root of the number of observations (weeks) in the sample. If the data (or the residuals) were uncorrelated, then the corre-lations should follow a standard normal distri-bution. We observe that most of the (linear) dependence between the returns is captured by our model (the mean correlation is reduced from 0.278 to 0.026), but that there is still a large positive skew in the distribution. This can mainly be explained by the fact that the model fails to capture the dependence between highly correlated stocks (the largest coecient is only
  • 123.
    Quantitative integration ofmarket views 17 reduced from 0.853 to 0.719). However, because the proportion of correlation coecients higher than 0.25 is still reduced from 57% to 2%, the model does well at capturing the overall (linear) dependence. We will refer to this three-factor model several times during the remainder of the thesis and leave it aside for now. 2 Quantitative integration of market views Since the path-breaking approach of Black and Litterman in 1992, academics and practitioners proposed various methods in order to modify quantitative allocations according to investors having a particular perception of future market conditions. The precedent chapter was dedicated to recalling the basics in quantitative portfolio allocation and setting the frame for the next stage. On the other hand, this chapter is devoted to present the necessary economic notions for the integration of market views, and as well as their formalization and incorporation in the quantitative framework we exposed. 2.1 Information sets, efficient market hypothesis and market views As we mentioned in the introduction, there is an in
  • 124.
    nite number ofdistinct informations sets, but they are not all relevant in the context of portfolio allocation. We will make now a distinction between three subsets (or class of subsets) of Ft: The set Kt composed of all the information contained in past securities prices until time t, that is mainly time series of prices, volumes and all data used in technical analysis. The set It, with Kt It, composed of all information publicly available at time t, that is the information contained in Kt as well as fundamental and contemporaneous information which may impact present prices (such as newspapers, informations from a provider like Bloomberg or Reuters, and so on). All the sets Jt, with It Jt, composed of private information at time t. As opposed to It and Kt, Jt is not unambiguously de
  • 125.
    ned, because eachmarket participant may have his own Jt. While the two
  • 126.
    rst sets arefairly straightforward, Jt may be slightly more complicated to grasp. For example, there are many sets Jt on which investors cannot legally make pro
  • 127.
    ts, the so-called material non-public information (for example the balance sheet of a company before it
  • 128.
    18 Views Integrationin Quantitative Portfolio Allocation is made public), because of laws forbidding insider trading. However, the concerned corporate insiders still trade while possessing superior private information (e.g. a CEO may to some extent buy shares of his
  • 129.
  • 130.
  • 131.
    tability to come).While some investors believe that those trades yield valuable information (i.e. allowing them to generate abnormal returns compared to that of the market), academic studies [43, 35, 30, 58, 41, 37] have provided mixed evidence for this hypothesis. Because these trades are reported to regulators and then publicly disclosed, we will still consider them as part of It. Nonetheless, investment banks and brokerage houses spend a huge amount of money on analysts covering companies, which would probably not be the case if they couldn't obtain some valuable information. Some may counter this reasoning arguing that they mainly provide a service to please their clients, meaning that their so-called coverage does not yield valuable information. For studies on the pro
  • 132.
    tability of institutionalanalyst recommendations, we refer for example to [6, 7, 36, 8] (even though the literature on the subject is very rich and de
  • 133.
    nitely not limitedto these papers). As for the potential mistakes in these studies because of database ex-post manipulations, they were
  • 134.
    rst documented in[42]. As mentioned in the introduction, the concept of dierent information sets is closely linked with the concept of ecient-market hypothesis (thereafter EMH) which is a central concept in portfolio allocation and a pillar of the Black-Litterman model that we will describe later in this chapter. This hypothesis was developed by Fama in [27] and describes what information one could use to beat the market (or yield abnormal returns) with temporal regularity (i.e. consistently over time). But
  • 135.
  • 136.
    rst: what isthe market? It is mostly a theoretical concept based on the as-sumption that assets are in
  • 137.
    nitely divisible: themarket portfolio is usually de
  • 138.
    ned as aweighted bundle of all assets investible, and the US market factor of Fama and French is merely a proxy for the US stock market. The market can be de
  • 139.
    ned in manyways, for example it could also be a known market index, or a weighted benchmark over several asset classes (such as
  • 140.
    xed income, commodities,etc). While it is fairly complicated to identify the market portfolio, a recent study on the control network of transnational corporations [59] suggests that the so-called market portfolio may consist of far less assets (a core of 147
  • 141.
    rms) than commonlybelieved (as global indices count several hundreds of even thousands of assets). In this document, we only consider that the stock market portfolio, represented by the market factor of Fama and French, exists and assume its historical prices available in order to perform various estimations. Then, the ecient-market hypothesis exists essentially in 3 (sometimes not so clearly) distinct forms18: 18Here we consider Jt as the set of all relevant private information in the sense described in the
  • 142.
    rst chapter, thatis the set such that for Lt with Lt S Kt = Ft, we have Fxt+1jJt Fxt+1jFt or equivalently Jt Ft.
  • 143.
    Quantitative integration ofmarket views 19 The strong form implies that all public and private information is instantaneously re- ected in security prices. With our formalism, it means that Kt It Jt Ft, or equivalently Fxt+1jKt Fxt+1jIt Fxt+1jJt Fxt+1jFt . It means that one cannot hope to optimize portfolio allocation in order to beat the market, even using private information, as it is already priced. The semi-strong form implies that only public information is instantaneously re ected in security prices. We will denote it Kt It Jt Ft, or equivalently Fxt+1jKt Fxt+1jIt6= Fxt+1jJt Fxt+1jFt . It means that in possession of private information, one could optimize portfolio allocation in order to beat the market by having more information about the distribution of future returns, but that all public information is already priced19. The weak form implies that only the information from past prices is re ected in present prices. We will denote it Kt It Jt Ft, or equivalently Fxt+1jKt6= Fxt+1jIt6= Fxt+1jJt Fxt+1jFt . With this form of eciency, one could improve optimization in order to beat the market by both including contemporaneous (e.g. fundamental) and/or private information20. With this de
  • 144.
    nition, ineciency representsthe case where it is possible to yield abnormal returns by using past prices (for example patterns in price changes). While academics found evidence in favor and disfavor of each of the forms in thousands studies published during 50+ years, or criticized them in the context of behavioral
  • 145.
  • 146.
    nancial crisis21, theonly con-sensus is the rejection of the strong form because of frictions slowing the diusion of private informations22 and practice (i.e. the real world) is indeed quite dierent. We've already cited investment banks and brokerage spending money on analysts coverage as well as investors believ-ing in following corporate insider trades, but there are plenty of other examples of practitioners rejecting market eciency. For example, technical analysts have made a profession capitalizing on (their belief in) complete market ineciency, looking for patterns in prices. Furthermore, the whole hedge fund industry is based on the belief that skilled people are able to generate (consistently over time) abnormal returns. 19Investors believing in the pro
  • 147.
    tability of followingcorporate insiders trades make in fact the hypothesis that the market is not semi-strongly ecient (or weakly, or not at all). 20Investors believing in analyst recommendations and coverage from investment banks make in fact the hypoth- esis that the market is only weakly ecient (or not ecient at all). However, it could sometimes appear more like insider trading: the market could be semi-strongly ecient, but investment bankers would advise their client with a private information set Jt with It Jt (for instance during Facebook's IPO) allowing for abnormal pro
  • 148.
    ts. 21As thesubject is standard in the most basic economics textbooks and because entire books have been written only on the hypothesis, we feel that a long list of references would not provide added value to this document. 22The laws preventing insider trading are in fact barriers for private information to become public and priced instantaneously.
  • 149.
    20 Views Integrationin Quantitative Portfolio Allocation eE In what follows, we consider the market to be semi-strongly ecient for the sake of simplicity23, but most of what we present can be (and actually is) applied to weakly or inecient markets. We capitalize on the belief that practitioners daily engaged in the market often have a particular perception of its future evolution. In fact, we will only assume that asymmetry of information24 do exist, that is It Jt Ft for an investor with his own private set Jt6= It. For example, this investor could forecast a large positive jump in the price of stock i over the next investment period, which would read [ri;t+1jIt;Jt] bi;t. Note that, as we choose to use bx for the estimator of the quantity x, the subscript ~x is from now on used for the investor's market views on the quantity x, sometimes dierent from bx. In this case, the view is assumed dierent from any estimator of future performance bE we would use if we only looked at past realizations of the risk-factors or using all publicly available (included fundamental) information. Furthermore, this view might also come with a con
  • 150.
    dence (i.e. thefact that investors are rarely 100% certain about their views, except for above-mentioned illegal insider trading). 2.2 Problem formalization Given that information asymmetry exists, we introduce formally in this subsection what it implies in the context of portfolio allocation. We describe qualitatively how this asymmetry can (and should) be taken into account by a savvy investor to optimally allocate his portfoliok, given the information at his disposal. As discussed in the introduction, assuming the reference model xt+1 fxt+1jFt for the joint density of our N risk-factors to be known, the optimal allocation at t reads w argmax w2C E U(w; fxt+1jFt) ; (23) where C is the set of investment constraints and E[U] the expected utility function to maxi-mize. Unfortunately, an investor can only use an estimated distribution inferred from the pub-lic information set, which we assumed incomplete, for the optimal allocation, that is he uses b fxt+1jIt6= fxt+1jFt to obtain bw argmax w2C E h U(w; b fxt+1jIt) i 6= w: (24) It is straightforward to understand this in presence of asymmetric information, but there is another interpretation even in a perfectly ecient market: Bayesian principles state that even 23To be completely honest, another reason is historic, in the sense that it was the academic consensus when Black-Litterman proposed their original model. 24Here, we only mean that all relevant information is not already priced.
  • 151.
    Quantitative integration ofmarket views 21 with Kt It Jt Ft, we would still base our estimation b fri;t+1jFt of the true density fri;t+1jFt using a sample of
  • 152.
    nite size, thusinducing an estimation error. As an investor may detain a private information set Jt, re ecting his own perception of future market evolutions, the goal of market-views integration methods is to incorporate this new in-formation set in the estimated distribution for the risk-factors. Let us go back to our simple mean-variance two-asset example and assume that the investor believes in his variance forecast statistically inferred from the publicly available information. Assume now that he believes that the company whose stock represents the second asset may soon announce lower than expected earnings, changing his forecast to an expected return of 6% from the initial 8%. We represent the ecient frontier and portfolio weights in
  • 153.
    gure 4, wherewe observe that optimal portfolios contain more of the
  • 154.
    rst asset forall risk aversions, but that the dierence decreases while we increase the risk aversion, because the risk has more and more impact (and the forecast has not been modi
  • 155.
    ed). l l l l l llll l l l l l l l l l l l 10 15 20 25 30 7 8 9 10 Volatility (%) Expected return (%) 2.0 1.5 1.0 0.5 −50 0 50 100 150 Weight in portfolio (%) Decreasing risk−aversion l l Asset 1 Asset 2 l l l l l llll l l l l l l l l l l l 7.5 8.0 8.5 9.0 9.5 10.0 5.5 5.6 5.7 5.8 Volatility (%) Expected return (%) 2.0 1.5 1.0 0.5 0 20 40 60 80 100 Weight in portfolio (%) Decreasing risk−aversion l l Asset 1 Asset 2 Figure 4: Ecient frontier and weights,
  • 156.
    rst with b = (0:05; 0:08) and then with b = (0:05; 0:06).
  • 157.
    22 Views Integrationin Quantitative Portfolio Allocation Furthermore, we observe that as the dierence in expected returns between the assets has been reduced, the increase in utility coming from buying more of asset 2 than asset 1 is smaller for the same risk-aversion parameters, which leads to more diversi
  • 158.
    ed and lessvolatile portfolios. In
  • 159.
    gure 5, weshow realized returns both sets of portfolios for various scenarios. First, we Figure 5: Realized returns with the initial allocation in blue and the one modi
  • 160.
    ed by theview in red. On the left, the circles are for asset returns of (0:06; 0:07) and triangles for (0:07; 0:06). On the right, the circles are for asset returns of (0:07;0:06) and triangles for (0:06;0:07). observe that, because the weights are almost the same for high risk aversions the returns are also very close, but the dierence increases dramatically when we decrease risk aversion and give more importance to performance forecasts. Second, we observe that the second set of portfolios outperform the
  • 161.
  • 162.
    rst asset outperformsthe second as expected, and that this dierence also increases as we give more importance to return forecasts. 2.2.1 Views focus In our optimal allocation framework, K views may then be K statements made on K generic functions of the risk-factors. At time t, those functions, the so-called focus of the views, can be represented as a K 1 function of a N 1 random vector xt = (x1;t; ; xN;t)of risk-factors, which we can write v : RN ! RK vt v (xt) = 0 BB@ v1 (x1;t; ; xN;t) ... vK (x1;t; ; xN;t) 1 CCA ; (25)
  • 163.
    The Black-Litterman modeland extensions 23 where, as for g in (1.4), the support and image of v are most of the time restricted to smaller sub-sets of RN and RK. The estimated distribution of this new random vector over the next period inherits the (estimated) distribution of the reference model, and we will write vt+1 b fvt+1jIt . Then the most detailed view would be the speci
  • 164.
    cation of acomplete new distribution e fvt+1jIt;Jt for the focus, that is by writing vt+1 e fvt+1jIt;Jt6= b fvt+1jIt . However, views are more often statements on speci
  • 165.
    c features ofthe distribution of the focus (e.g. low-order moments, or more generally any measure of location, scale or dependence). For example, one could input views on expectations eE (vk;t+1jIt;Jt) S mk or volatilities e (vk;t+1jIt;Jt) S k, for a speci
  • 166.
    ed mk, respec-tively k representing the view of the investor. An investor may have a qualitative ranking view, e.g.
  • 167.
    nancials will outperformindustrials, like eE (vi;t+1jIt;Jt) : : : eE (vk;t+1jIt;Jt). Fur-thermore, one may want to input views on correlations (via the speci
  • 168.
    cation of anew correlation matrix e C(vt+1)) e.g. to perform stress-tests. Finally, one may have a view on the lower (upper) tail behavior (via the speci
  • 169.
    cation of anew quantile eQ vt+1(u) for a tail level u) or co-dependence (via the speci
  • 170.
    cation of anew copula of vt+1, e Cvt+1(u) at joint threshold levels u). 2.2.2 Views integration The goal is to
  • 171.
    nd a wayto take these views into account in order to obtain the new distribution of the focus and infer e fxt+1jIt;Jt6= b fxt+1jIt for the risk-factors. Once this new distribution is known, the optimal portfolio allocation becomes w argmax w2C E h U(w; e fxt+1jIt;Jt) i : (26) To infer the new distribution, scholars have followed various approaches. It started, as often in quantitative
  • 172.
    nance, by consideringa Gaussian market at equilibrium. Using Bayesian inference, the Black-Litterman model and extensions provide analytical formulas that represent the
  • 173.
    rst mathematically soundway of modifying forecasts in the scheme developed by Markowitz. With the next chapter, we enter the heart of the project by describing this method, giving numerical illustrations at every step. 3 The Black-Litterman model and extensions What is the Black-Litterman (BL) model about? A nice answer starts by quoting the conclusions of Markowitz in his seminal paper of 1952:
  • 174.
    24 Views Integrationin Quantitative Portfolio Allocation My feeling is that statistical computations should be used to arrive at a tentative set of these i and ij . Judgment should then be used in increasing or decreasing some of these i and ij on the basis of factors or nuances not taken into account by the formal computations. [...] One suggestion is to use the observed i, ij for some period of the past. I believe that better methods, which take into account more information, can be found. I believe that what is needed is essentially a probabilistic reformulation of security analysis. I will not pursue this subject here, for this is another story. In 1990 and 1992, Black F. and Litterman R. proposed the now called Black-Litterman model, published
  • 175.
    rst in FixedIncome Research of Goldman Sachs and in the Financial Analysts Journal in their path-breaking articles [10] and [11], to address at least two of the issues raised by Markowitz. First, BL capitalizes on a prior estimate of market consensus for a security's expected return (the i) to regularize Markowitz's mean-variance. Second, it oers a sound way of modifying these expected returns and the covariances25 with respect to more information, that is the private information set. 3.1 First pillar: a Gaussian market In the original approach, the risk-factors are the security excess returns over the risk-free rate26 (xi;t ri;t rf;t 8i 2 f1; ; ng and 8t). Given all available public information, we consider a multivariate Gaussian distribution for the reference model, that is xt+1jIt N(tjIt ;b t); (27) where b t is an estimator of t. Furthermore, we assume that the risk in the reference model, represented only by b t in a Gaussian market, was estimated without error (or merely that it is negligible compared to the error on the expected return). However, in a Bayesian framework, we assume the mean vector tjIt itself subject to estimation errors and, given all publicly available information, is distributed as tjIt N(b t; b t); (28) 25The issue not addressed in the Black-Litterman model is the statistical computations to infer the covariances, which is a vast subject studied by both academics and practitioners. 26The risk-free rate is the rate of return of so-called risk-free securities in the sense that they are supposed to oer a sure rate of returns. Most of bonds are not risk-free as the issuer can default (even countries). For example, only treasury bills from the U.S. government (and a few other) is considered as risk-free.
  • 176.
    The Black-Litterman modeland extensions 25 where we also assume that the estimation error's covariance on tjIt is proportional to the estimated covariance (if is equal to zero, there is no estimation error) and b t is a prior to be estimated. 3.2 Second pillar: CAPM reverse optimization The second pillar of the Black-Litterman model lies in the de
  • 177.
    nition of thisprior. It starts with the observation that the mean-variance allocation suers from over-sensitivity to the vector of expected returns. In [9], it is shown for instance that a small shift in the expected return of a single asset can yield an entirely dierent portfolio. Furthermore, the historical estimator27 is known to lead to counter-intuitive portfolios, as we show in the following example with the 20 largest stocks (in term of market capitalization) from the universe we presented in the
  • 178.
    rst chapter. Takingtwo years of weekly returns (from December 23 2009 till December 28 2011), 1.5 2.5 3.5 4.5 0.0 0.5 1.0 1.5 2.0 Volatility (%) Expected return (%) 1.5 2.5 3.5 4.5 −1000 −500 0 500 1000 Weight in portfolio (%) Volatility (%) Unconstrained 1.5 2.5 3.5 4.5 0.0 0.5 1.0 1.5 2.0 Volatility (%) Expected return (%) 1.5 2.5 3.5 4.5 0 20 40 60 80 100 Weight in portfolio (%) Volatility (%) l l l l l l l l l l l l l l l l l l l l ORCL MSFT KO XOM GE IBM PEP AAPL PG ABT PFE JNJ OXY WFC MCD WMT INTC CSCO QCOM AMZN Long−only Figure 6: Mean-variance allocation using the historical estimator. On the left-hand side, the triangles represent the individual security expected returns and volatilities. In blue and green, we showed the two securities with maximal expected returns. we show the results of a mean-variance optimization both in the unconstrained (except for the 27b t = PT k=0 (r1;tk rf;tk) =(T + 1); ; PT k=0 (rn;tk rf;tk) =(T + 1)
  • 179.
    26 Views Integrationin Quantitative Portfolio Allocation budget constraint) and long-only constrained (with wi 0 for all i) cases in
  • 180.
  • 181.
    rst case, theoptimizer returns very large long and short positions, whereas the long-only optimizer returns positions concentrated on a very small number of assets (those of maximal expected return). Moreover, this historical estimator is only one investor's personal perspective. When Black and Litterman developed their work, the semi-ecient form of EMH was not as disputed as it is today. This is why they based their prior on the hypothesis that the market for liquid stocks and bonds showed semi-eciency. In short, they supposed that any rational investor should in principle know that the market cannot be beaten without access to private information, and therefore should hold a combination of the market portfolio and a risk-free asset in order to achieve any level of risk desired28. Knowing this, the idea of a portfolio optimization who would not take the market expectation into account is pointless. Furthermore, any consistent optimization with a risk aversion equal to that of the market should yield the market portfolio. In fact, the Black- Litterman method consists in a way for investors to tilt the market portfolio with respect to their private information. Based on these considerations, the Black-Litterman model uses the CAPM to construct an economically motivated prior. Basically, under some equilibrium assumptions, the CAPM states that any security's expected return over the risk free rate should be equal to that of the expected market excess return times its (linear) exposure to the market excess return, that is b t =b
  • 182.
    t bE (rm;t+1) rf;t + rf;t; (29) with bE (rm;t+1) the expected return of the market for the next period and rf;t the risk-free rate at time t. b
  • 183.
    t is thevector of market exposures, which can be either obtained as implied betas b
  • 184.
    i;t = b twm;t=b2 m;t 29 or with an OLS regression on the sample period de
  • 185.
  • 186.
    r;t 30. In[34], Idzorek shows that the range and standard deviation of b t is much smaller than that of b t with both types of betas. This re-centering of the most extreme values is linked to the Bayesian concept of shrinkage estimation and we give a working example later in the next subsection when implementing actual market views. To continue our example, we de
  • 187.
    ne the marketweights as a capitalization-weighted benchmark of our 20-stock universe, and set the risk-free rate at 0. In
  • 188.
    gure 7, weshow the Black Litterman's reverse optimization (assuming = 0 for simplicity), that is the mean-variance optimized portfolios obtained using the CAPM 28To obtain an expected return larger than the market, one needs to short the risk-free asset in order to buy more of the market portfolio, inducing leverage and also a larger risk. 29For example if the whole market is investible and its weights accessible, that is if one can use the market as the universe's benchmark. 30We stress the fact that b
  • 189.
  • 190.
    i;t in general,as it is shown in [33]
  • 191.
    The Black-Litterman modeland extensions 27 prior instead of the historical estimator, both in the unconstrained and long-only cases. The two dashed black lines show the market Sharpe ratio bE (rm;t+1) =bm;t, that is the market expected bE return per unit of risk, which is the highest on the ecient frontier in the CAPM. One may notice it was not the case when using the historical estimator, where Sharpe ratios four times larger were found (inconsistently with the CAPM). The two vertical black lines are the portfolios obtained by using a risk-aversion equal to the market Sharpe ratio divided by its volatility, that is = (rm;t+1) =b2 m;t, and we observe that both solutions are in fact the market portfolio w ;t = wm;t. An intuitive explanation can also be given in terms of the unconstrained solution 1.5 2.5 3.5 4.5 0.15 0.25 0.35 Volatility (%) Expected return (%) 1.5 2.5 3.5 4.5 −200 0 100 200 Weight in portfolio (%) Volatility (%) Unconstrained 1.5 2.5 3.5 4.5 0.15 0.25 0.35 Volatility (%) Expected return (%) 1.5 2.5 3.5 4.5 0 20 40 60 80 100 Weight in portfolio (%) Volatility (%) l l l l l l l l l l l l l l l l l l l l ORCL MSFT KO XOM GE IBM PEP AAPL PG ABT PFE JNJ OXY WFC MCD WMT INTC CSCO QCOM AMZN Long−only Figure 7: Mean-variance allocation using the CAPM prior. of the mean-variance optimization. Let us write the weights that maximize the Markowitz's expected utility criterion (equation (7)), but without requiring them to sum up to one in the Lagrangian of equation (9), which gives a dierent solution than equation (10), that is w p;t = b 1 t b t = b 1 t b
  • 192.
    t bE (rm;t+1) = bE (rm;t+1)wm;t b2 m;t : (30) By inspecting this equation, one observes that the budget and long-only constraints are satis
  • 193.
  • 194.
    28 Views Integrationin Quantitative Portfolio Allocation for the risk-aversion described above, and as the unconstrained minimization returns the market portfolio, adding a budget or a long-only constraint does not change the result of the optimization at this point. 3.3 Third pillar: Bayesian views integration The third pillar of the Black-Litterman model lies in the integration of market views using Bayes rule and the reference model. In fact, even if the CAPM may seem old-fashioned, any (equilibrium or not) prior can be used and the results implied by considering only the
  • 195.
    rst and thirdpillars remain applicable with b t or any estimate of future returns. The view framework at time t extending public information It to private information Jt consists of three distinct elements. The focus selects linear combinations of the risk-factors on which one has views: a K n pick matrix bQ t 31. Thus, one can input views on separate factors or on portfolios of factors. The views is a K 1 vector of random variables qtjIt;Jt = (q1; ; qK) embedding the expectations of the focus. It is a vector that the user will need to estimate by assigning values corresponding to his views. The con
  • 196.
    dences represent view-estimationerrors: a K K matrix b t 32 which is often chosen to be diagonal for simplicity, meaning that the con
  • 197.
    dences in thedierent views are uncorrelated. bQ t = 0 BB@ bQ 1;1 bQ1;n ... . . . ... bQ K;1 bQ K;n 1 CCA and b t = 0 BB@ b 1;1 0 ... . . . ... 0 b K;K 1 CCA (31) For tjIt;Jt d 6=tjIt 33, it is assumed that bQ ttjIt;Jt = qtjIt;Jt + tjIt;Jt ; (32) 31The hat expresses the fact that the user has to choose a focus which determines a known view structure: this matrix is not random). 32The hat expresses the fact that the user inputs con
  • 198.
    dence in hisviews by himself: this matrix is not random. 33We stress that in the original formulation of the model, the views are expressed on the market estimates rather than on the market itself. This has important consequences that we outline below.
  • 199.
    The Black-Litterman modeland extensions 29 where tjIt;Jt N(0;b t) and 0 is a vector of zeros. Therefore, conditionally on tjIt;Jt , we can write qtjt;It;Jt N(bQ ttjIt;Jt ;b t). Supposing now that our best estimate of qtjt;It;Jt is bqt (i.e. our view), it is possible to obtain analytical expressions for the parameters of the distribution of tjIt;Jt conditional on the views bqt using Bayes rule and write tjIt;Jt N(e t;e t); (33) where e t b t 1 + bQ t b 1 t bQ t 1 and e t e t b t 1 b t + bQ t b 1 t bqt . (34) The full proof can be found for example in [48, 34, 17]. We note that, as expected, when the user does not input any view (bQ t = b t = bqt = 0), e t = b t, e t = b t and thus tjIt;Jt d= tjIt(or equivalently E[rt+1jIt;Jt] E[rt+1jIt]). Moreover, the intuition behind the con
  • 200.
    dence is the following: suppose one only wants to input a view bq1;t on a single security i (i.e. the matrix bQ t picks one security). If 1;1jIt;Jt goes to in
  • 201.
    nity, then wealso have e t = b t, e t = b t and thus tjbq t d= t. However, as 1;1jIt;Jt goes to zero, there is no view estimation error (i.e. full con
  • 202.
    dence) and wehave ei;t = bq1;t, that is the view replaces the original forecast for this security. As the whole distribution of risk-factors is determined by the
  • 203.
    rst two momentsin normal markets, this method represents an elegant way of modifying the input of a traditional mean-variance optimizer. To be fully consistent, we should then write the new posterior market model xt+1jIt;Jt N(e t;b t + e t). Thus, we observe that the no view posterior xt+1jIt N(b t; (1 + )b t) is dierent from the reference model xt+1jIt N(b t;b t) one could expect: e because of the estimation e e e error, the variance has increased. Setting = 0 (meaning that the uncertainty in the mean is negligible compared to that of the returns as in [10]) yields the reference model and the market portfolio with as before. An alternative market based formulation allows one to input views directly on the market rather than on its distribution's
  • 204.
    rst moment estimatesis proposed in [48]. An appealing feature of this formulation is that the parameter is eliminated, implying xt+1jIt;Jt N(t;t) with t and t slightly dierent from equation (34), as we have e t b t b tbQ t h bQ t b tbQ t + b t i1 bQ t b t and e t b t + b tbQ t h bQ t b tbQ t + b t i1 h bqt bQ tb t i . (35) For a discussion of the parameter in the Black-Litterman model, and in particular its link to uncertainty and estimation error, we refer to [60]. It should
  • 205.
    nally be notedthat the market
  • 206.
    30 Views Integrationin Quantitative Portfolio Allocation bE formulation was extended to the larger family of elliptical distributions34 for the reference model in [61], thus making the Black Litterman market model and views integration framework useful for a wider class of asset allocation schemes. Another possibility adopted for example in [17] is to simply use the distribution of the mean vector instead of the market (xt+1jIt;Jt ! tjIt;Jt) for the optimization. This last possibility has the advantage of simplicity, as it tilts directly the reverse optimized market portfolio. To emphasize this interpretation, we consider the market's implied risk-aversion = (rm;t+1) =b2 m;t and write the updated (completely) unconstrained weights, tilted from equation (30) to w p;t = e 1 t e t = e 1 t e t b t 1 b t + bQ t b 1 t bqt = 1 wm;t + bQ t b t 1 bqt ; (36) where the last equality comes from replacing b t by its expression from equation (29). Setting = 1 (meaning that the uncertainty in the mean is equal to that of the returns), we observe that the
  • 207.
    rst term isthe market portfolio, whereas the second term consists of deviations from this portfolio. To continue our example, we use this last approach and consider that a year counts 50 trading weeks to discuss the results in terms of annualized returns. In the two columns of table 2, we present the annualized expected returns for the historical and CAPM's expected returns. As in [34], we observe that the range (dierence between max and min) for the CAPM's implied returns is smaller, as both extremes are shrinked toward the capitalization-weighted mean. As we used implied betas, the weighted mean does indeed not change. We represent now the health sector as a capitalization-weighted benchmark of the 3 healths stocks present in the sample according to their Standard Industrial Classi
  • 208.
    cation (or SICcodes), that is ABT, PFE and JNJ. The expected return of this portfolio is 10:9%. Let us implement two dierent views with dierent degrees of con
  • 209.
  • 210.
    rst view isbearish on the market and we decrease its expected return from 14:8% to 13%. The second view is bullish on the health sector and we increase its expected return from 10:9% to 13%. To implement the views, the pick-matrix is a 2 20 matrix with the market weights wm;t on the
  • 211.
    rst row andthe market weights of the health stocks divided by d= 34To de
  • 212.
  • 213.
  • 214.
    ne spherical distributions.A d 1 random vector x = (x1; ; xd) has a spherical distribution if Ux x for every U 2 dd R such that UU= UU = Id, d= with Id the d d identity. The uncorrelated standard normal N (0; Id), with 0 a d 1 vector of zeros, is an example of spherical distribution. Then a d 1 random vector y = (y1; ; yd) has an elliptical distribution if y +Cx, with a scalar vector 2 dR , a scalar matrix C 2 dd R and x has a spherical distribution.
  • 215.
    The Black-Litterman modeland extensions 31 their sum on the second row. To see the eect of the views, we de
  • 216.
    ne b 1= 104 0 0 106 ! and b 2 = 106 0 0 103 ! : Initial CAPM View 1 View 2 ORCL 9.5 19.12 17.03 19.86 MSFT -2.43 17.15 15.3 17.76 KO 12.98 10.42 9.32 10.87 XOM 15.5 15.99 14.27 16.64 GE 14.16 22.39 19.92 23.3 IBM 22.65 14.48 12.92 15.01 PEP 8.35 10.41 9.31 10.86 AAPL 45 16.89 15.06 17.44 PG 7.38 7.53 6.75 7.79 ABT 6.31 9.59 8.58 10.11 PFE 14.45 13.23 11.82 14.09 JNJ 4.99 9.5 8.5 10.04 OXY 14.75 19.55 17.41 20.36 WFC 8.69 24.04 21.37 24.97 MCD 29.41 6.75 6.05 7.03 WMT 9.18 8 7.17 8.33 INTC 18.57 18.76 16.71 19.42 CSCO -6.15 20.92 18.62 21.75 QCOM 16.09 17.68 15.76 18.34 AMZN 22.06 17.99 16.03 18.6 Min -6.15 6.75 6.05 7.03 Max 45 24.04 21.37 24.97 Mean 14.89 14.89 13.29 15.48 Table 2: Expected return estimates. In the two last columns of table 2, we present the annualized expected returns for the two views. In the
  • 217.
    rst case, weobserve than all values and thus both the min, the max and the mean are lower as expected. In the sec-ond case, we also observe that the health sec-tor's stocks have a greater return as expected, but that all other stocks follow. This can be explained by the large average correlation of 0:525 between the weekly returns in this sam-ple: a bullish view on a few stocks tends to pull up all the others. Furthermore, as the con
  • 218.
  • 219.
    rst view islarger, we observe in the table that the expected return in the
  • 220.
    rst case isquite close to the view. However, as the con
  • 221.
    dence in thesecond view is an order of magnitude lower, the tilt toward the view is less eective and the expected return (fore-cast) of the health sector in this case is only 11:6%. In
  • 222.
    gure 8, weshow portfolios optimized with the original market risk aversion along with the market portfolio. As the expected returns and covariance matrix have been updated by the views, we observe that the optimizer re-turns fairly dierent portfolios. In the
  • 223.
    rst case, tiltsare obtained by selling short (or in the long-only case by simply not allocating) the securities with smaller expected return, to buy more of the others. This can be explained by the original market risk-aversion of 5:04 that we fed in the optimizer which is bullish in our new
  • 224.
    32 Views Integrationin Quantitative Portfolio Allocation Figure 8: Market (in blue), unconstrained (in red) and constrained (in green) optimal portfolios. market, whose implied risk-aversion (i.e. the new market risk-aversion de
  • 225.
    ned with updated expected returns and covariance matrix) is 7:48. In the second case, the new market implied risk aversion is 6:61, so the original risk-aversion of 5:04 is small again and we adjust the portfolio positions mostly by buying more of the health stocks. It should be noted that in the constrained case, one would not hold ABT even though he is one of the three health stocks. It can be ex-plained by the fact that its updated expected return is one of the smallest among the considered stocks, even with the bullish view. The literature on the Black-Litterman model is rich and many extensions can be found. In the next subsection, we describe one of particular relevance in the context, as it extends the model to views on exogenous factors, while keeping everything else unchanged. Furthermore, given the similarity between the new results and the original model, many extensions developed in the literature (such as the market formulation for elliptical distributions) could then also be applied to the Augmented Black-Litterman model [20, 18, 19]. 3.4 The Augmented Black-Litterman model Given the popularity of factor models to construct portfolios, the possibility of inputting views on exogenous risk-factors such as fundamental (e.g. the Fama-French factors), technical (e.g. momentum eects35) or macro-economic (e.g. oil prices for airlines, or FX rates for exporting
  • 226.
    rms or measures)proved to be of utmost importance in practical applications. In line with this observation, Cheung proposes an Augmented Black-Litterman model in [20, 18, 19] where he elegantly extends the original Black-Litterman model to linear factor models while keeping the 35The eect can be summarized by winner stocks keeps winning and looser stocks keeps loosing.
  • 227.
    The Black-Litterman modeland extensions 33 Gaussian assumption, a market equilibrium prior, and Bayesian update to obtain the posterior distribution. Starting from the linear factor model described by equation (20), we use the n 1 vector of factors xt of security returns and the L1 vector of factors yt, as well as a the intercept and B the matrix of exposures. Then we de
  • 228.
    ne the (2n+ L) 1 augmented view universe vt and the (n + L) 1 analytical view universe at 36 as vt = 0 B@ xt yt t 1 CA and at = xt yt ! : (37) The view universe corresponds to the three parts (the securities themselves, the factors, and the residuals, that is the idiosyncratic returns) on which an investor can input views, whereas the analytical universe is the one on which the (Bayesian) analysis is based. Following what we emphasized at the end of the preceding subsection, we work on the distribution of the vector of expectations instead of the distribution of the analytical universe, that is at+1jIt N(a tjIt ;b a t ) ! a tjIt N(b at ; b a t ); (38) where b at = 0 BBB@ b xt |{z} n1 y |{zt} L1 b 1 CCCA = 0 BBB@ b y |{zt} nn b y t B | {z } Ln 1 CCCA |w{mz;}t n1 and b a t = 0 BBB@ b x |{zt} nn Bb y | {z t} nL b y t B | {z } Ln b y |{zt} LL 1 CCCA ; (39) with = bE m;t is the market implied Sharpe ratio divided by its volatility, b (rm;t+1) =b2 x t = Bb y t B + b t , coming from the assumption of residuals uncorrelated to factors (which is the case if the exposure matrix is estimated via an OLS), b y t and b t the covariance matrix estimators for the factors and the residuals. As with Black-Litterman, we can use CAPM prior estimates, but the results we present in what follows also hold for any prior estimates. Again, the framework extending the public information It to include private information Jt consists of three distinct elements. The focus selects K1 securities, K2 factors and K3 idiosyncratic returns on which one has views. With K = K1 + K2 + K3, it represents a K (2n + L) augmented pick matrix bQ v t . In Cheung's approach, bQ v t is supposed to be block-diagonal with blocks of size K1n, K2 L and K3 n: this means that one can input views on linear combinations of the 36The terms augmented view universe and analytical view universe are borrowed from Cheung.
  • 229.
    34 Views Integrationin Quantitative Portfolio Allocation securities (i.e. portfolios), factors, or idiosyncratic returns, but for simplicity no cross-type is admitted (i.e. views mixing the three types). The views is a K 1 vector of random variables qv tjIt;Jt , de
  • 230.
    ned as qtjIt;Jtin the original Black-Litterman approach (i.e. embedding the expectations of the focus) but with three distinct parts. The con
  • 231.
    dences represent augmentedview-estimation errors: a K K block diagonal (because of the no cross-type view restriction) matrix b t 37. qv tjIt;Jt = 0 BB@ qx tjIt;Jt qy tjIt;Jt q tjIt;Jt 1 CCA , bQ v t = 0 BBBBBBBB@ bQ x |{zt} K1n 0 ... bQ y |{zt} K2L ... 0 bQ |{zt} K3n 1 CCCCCCCCA , b t = 0 BBBBBBBB@ b x |{zt} K1n 0 ... b y |{zt} K2L ... 0 b |{zt} K3n 1 CCCCCCCCA (40) For the new random variable v tjIt;Jt = E[xt+1jIt;Jt] ; E yt+1jIt;Jt ; E[t+1jIt;Jt] , it is assumed that bQ v tv tjIt;Jt = qv tjIt;Jt + v tjIt;Jt ; (41) where v tjIt;Jt N(0;b t). Equivalently, it it possible to write equation (41) directly on the analytical universe as bQ a t a tjIt;Jt = qa tjIt;Jt + a tjIt;Jt ; (42) with qa tjIt;Jt = qv tjIt;Jt +bc t 38 and a tjIt;Jt = E[xt+1jIt;Jt] E yt+1jIt;Jt ! , bQ a t = 0 BBBBBBBB@ bQ x |{zt} K1n |{0z} K1L |{0z} K2n bQ y |{zt} K2L |{0z} K3n bQ tB | {z } K3L 1 CCCCCCCCA andbc t = 0 BBBBBBB@ |{0z} K11 |{0z} K21 bQ t a |{z} K31 1 CCCCCCCA . (43) 37In fact, as in the original Black-Litterman model, the blocks themselves are often chosen diagonal for the user's convenience, meaning that the con
  • 232.
    dences in thedierent views are uncorrelated. 38Here we assume that the vector a coming from equation (20) is known for sure, that is we leave aside the error coming from the estimation of the factor model.
  • 233.
    The Black-Litterman modeland extensions 35 Therefore, conditional on a tjIt;Jt , we can write qa tjat ;It;Jt N(bQ a t a tjIt;Jt a t ) = N(bQ ;b v tv tjIt;Jt + t;b t). Supposing now our best estimate of qv tjvt bc ;It;Jt is bqvt , then that of qa tjat ;It;Jt is bqvt +bc t. Thus, it is possible to obtain an analytical formula similar to the original Black-Litterman in equation (38), that is a tjIt;Jt N(e at ;e a t ); (44) where e a t b a t 1 + bQ a t b a t 1 bQ a t 1 and e at e a t b a t 1 b at + bQ a t b a t 1 (bqvt +bc : (45) t) bE The proof, which relies on that of the Black-Litterman model, can be found in [20]. As for the original Black-Litterman model, an interesting intuition can be obtained by considering the (completely) unconstrained solution of the mean-variance equation using the market implied risk-aversion = (rm;t+1) =b2 m;t. In this case, we can write the updated unconstrained weights with positions modi
  • 234.
    ed from thesolution presented in equation (30) to w p;t = 1 wm;t + bQ x t b x t 1 bqxt + cM bQ y t b y t 1 bqy t + 1 BcM bQ t b t 1 bqt ; (46) where we de
  • 235.
    ne cM = e x t 1 Be y t ; (47) e x t = Be y t B + e t ; e y t = b y t 1 + bQ y t b y t 1 bQ y t 1 ; and e t = b t 1 + bQ t b t 1 bQ t 1 : In equation (47), the interpretation of the parameters is straightforward: e x t is the covariance matrix of securities updated by factor and idiosyncratic views only, e y t is the covariance matrix of factors updated by factor views only and e y t is the covariance matrix of idiosyncratic returns updated by idiosyncratic views only. Going back to the right-hand side of equation (46), we can interpret the two
  • 236.
    rst terms exactlyas in the original BL model, while the third and fourth
  • 237.
    36 Views Integrationin Quantitative Portfolio Allocation terms represent tilts induced by factor and idiosyncratic views. The proof of this transparent allocation using the Augmented Black-Litterman model can be found in [18]. We have seen that the Black-Litterman model and its extensions provide a uni
  • 238.
    ed Bayesian allocationframework. First, it addresses a major issue of the mean-variance allocation by using a concept of market equilibrium for the prior view. Second, it gives the possibility to input views on expected returns in a mathematically sound way. Finally, an augmented extension exists, that provides investors with endogenous techniques to combine strategies, mimic exogenous factors or make stock-speci
  • 239.
    c bets. However,it is well known that the distribution of returns for most
  • 240.
    nancial assets exhibitsexcess kurtosis and negative skewness, and thus the Gaussian hypothesis is most often rejected. Furthermore, a la Black-Litterman models (and extensions to elliptical distributions as in [61]) based on Gaussian distributions do not allow the user to input views on anything else than the
  • 241.
    rst moment ofthe return distribution, which has limited applications. In practice, one may want to express a view on many other features of the distribution, as discussed in 2.2. In what follows, we describe how this can be achieved using Monte-Carlo simulations and a scenario-based approach. 4 The scenario-based approach When leaving the Gaussian world and its handy analytical formulas, we open ourselves to scenario-based methods. Within this new framework, it becomes possible to input non-linear views on non-linear focuses and in non-Gaussian markets. In this chapter, we present one of the alternative approaches, namely the Entropy Pooling, with completely dierent theoretical grounds39. InFully exible views: theory and practicepublished in 2008, Meucci suggests to use an information theoretic concept for inference. The central idea is that the posterior distribution e Fxt+1jIt;Jt incorporating private information should at the same time satisfy the market views and be as close as possible to the prior distribution Fxt+1jIt inferred from the publicly available in-formation. It is based on the idea of minimizing informational discrepancy between distributions through relative entropy minimization, which is a widely studied subject and
  • 242.
  • 243.
    elds of scienceand engineering [40]. In
  • 244.
    nance, it ismainly used for option pricing in [15, 4, 3] and views integration in [47, 51, 49, 52]. As changing of probability measure (from the real-world to the risk-neutral in option pricing or view-based in portfolio allocation) is the central concept in both applications, they need as input enough scenarios for the risk-factors to approximate and calibrate continuous distribution of interest. In portfolio allocation, when 39It should also be noted that a scenario-based extension of the Bayesian framework is also proposed in [16], using the concept of importance sampling.
  • 245.
    The scenario-based approach37 one thinks about newly-issued securities or especially if one considers re-balancing at a weekly or monthly frequency, the required scenarios cannot be found in historical data. Moreover, it may not always be wise to use data from a much distant past40. Thus, one often needs a market model to generate the required scenarios, hence the one we also present and use in this chapter. 4.1 Learning from disorder We start by considering a discrete random variable x with possible outcomes x = fx1; ; xng. For p a discrete probability distribution41 on x, Shannon's entropy S (p) is de
  • 246.
    ned as S(p) = Xn i=1 p (xi) log p (xi) : (48) Furthermore, considering a new probability distribution ep6= p, the relative entropy D(ep; p) is de
  • 247.
    ned as D(ep;p) = Xn i=1 ep (xi) log ep (xi) p (xi) : (49) While the
  • 248.
    rst is ameasure of the uncertainty contained in a probability distribution, reaching its maximum if no outcome is more likely than another, the latter is an asymmetric measure of distortion between probability distributions, reaching its minimum when the distributions are equivalent. We can give an intuition using a classical example: let us consider a coin c with two possible outcomes, that is c = fh; tg with h for heads and t for tails and p(h) = 1 p(t). Sup-pose moreover that the coin is biased towards heads, that is p(h) 0:5 p(t). If we ip it, there is less uncertainty about the outcome than if the coin was fair, hence a smaller en-tropy. This is illustrated by the black curve in
  • 249.
    gure 9, wherep(h) is represented on the horizontal axis and the entropy S(p) = P ci2fh;tg p (ci) log p (ci) on the vertical axis. We ob-serve that the maximal biases with lim p(h) ! f0; 1g (i.e. no uncertainty about the outcome) yield the two entropic minimas. Conversely, the fair coin with p(h) = 1=2 (i.e. maximal un-certainty about the outcome) corresponds to maximal P entropy and it is straightforward to un-derstand that the relative entropy D(ep; p) = ci2fh;tg ep (ci) log 2ep (ci) between a biased coin 40Does the market really show the same characteristics today as it did twenty years ago? 41We de
  • 250.
    ne p Pon x with p(xi) being the probability associated with the event xi, that is p(xi) 0 8i 2 f1; ; ng and n i=1 p(xi) = 1.
  • 251.
    38 Views Integrationin Quantitative Portfolio Allocation (with ep(h) 2 ]0; 1[) and a fair coin mirrors the entropy with a downward shift by log 2, rep-resented by the blue curve in
  • 252.
    gure 9. Furthermore,we show with the red curve in
  • 253.
    gure 9 (therelative entropy D(p; ep) between a fair coin and a biased coin), that this quantity is not symmetric as previously emphasized. Finally, we observe that both D(ep; p) and D(p; ep) are either concave or convex (and zero for ep p), an important property we will use later. 0.0 0.2 0.4 0.6 0.8 1.0 −4 −3 −2 −1 0 Figure 9: Coin ip's entropy S (p) (black) and rel- ative entropies D(ep; p) (blue) and D(p; ep) (red) Let us go back to the continuous case with the risk-factor distribution Fxt+1jFt . From now on, and until we present our market model in sub-section 4.5, we drop index t to avoid cumber-some notations. The distribution of possible outcomes over the next investment period is denoted FxjF instead of Fxt+1jFt . We denote P x;F the set of all probability measures on ( x;F) and have FxjI 2 P x;F for I F, that is the probability measure inferred from publicly available information is included in the set of all probability measures on the mar-ket. We use P x;F FxjI to denote the set of probability measures absolutely continuous with respect to the probability measure FxjI , that is F e 2 P x;F FxjI if for all subsets x such that FxjI = 0 implies e F = 0. For all e F 2 P x;F FxjI , if log d e F dFxjI is integrable, the Kullback-Leibler's divergence, or relative entropy, is de
  • 254.
    ned as DKL e F; FxjI = x log d e F dFxjI ! d e F; = x log e f (x) fxjI (x) ! e f (x) dx; (50) where d e F dFxjI is the Radon-Nikodym density of e F with respect to FxjI . In the second equality, we simply rewrote the expression in terms of the probability densities. The Kullback Leibler's divergence is a member of the f-divergences (Csiszar [22] and Ali Silvey [2]), a family of distortion measures between probability distributions. For all F e 2 P x;F FxjI , members of this family are characterized by a convex generator function f : ! R on domf =
  • 255.
    The scenario-based approach39 R, such that f (1) = 0 and the f-divergence equals Df e F; FxjI = x f d e F dFxjI ! dFxjI = x f e f (x) fxjI (x) ! f (x) dx: (51) In the table below, we present two generator functions and their associated divergences: Symb Name f(t) Divergence DKL Kullback-Leibler tlog t (t 1) x h log d e F dFxjI d e F + dFxjI d e F i DJS Jensen-Shannon tlog 2t t+1 log t+1 2 DKL e F; FxjI+ e F 2 +DKL FxjI ; FxjI+ e F 2 Table 3: Entropy based f-divergences: it should be noted that we present here a slightly modi
  • 256.
    ed version ofthe Jensen-Shannon divergence, that is 2DJS, and we give the reason for this choice in subsection 4.4. As explained in the introduction of this chapter, Meucci's idea is to de
  • 257.
    ne the posteriordistri-bution e FxjI;J by incorporating private information and being as close as possible to the prior distribution FxjI inferred from the publicly available information (in terms of informational dis-crepancy). In [47], Meucci suggests a procedure that is called entropy pooling, in order to de
  • 258.
    ne e FxjI;J argmin e F2V DKL e F; FxjI ; (52) where e F 2 V P x;F FxjI stands for all the distributions which satisfy the views and are at the same time absolutely continuous with respect to FxjI . With our formalism, the null view J I implies V = P x;F FxjI , or equivalently FxjI;J e t FxjI . Within this framework, views are formulated as a set of K1 equality and K2 inequality constraints e F 2 V () 8 : e F 2 P x;F FxjI ; x Hid e F = x Hi (x) e f (x) dx = hi 8i = 1; ;K1; x Gjd e F = x Gi (x) e f (x) dx gj 8j = 1; ;K2: (53) For example, let us come back to the investor forecasting a large positive jump in the price of stock i over the next investment period, who expressed his belief on the expected return of stock i as eE [rijI;J ] = hi (i.e. a constraint on the
  • 259.
    rst moment ofthe distribution). The posterior e FxjI;J 2 P x;F FxjI is then chosen such that
  • 260.
    40 Views Integrationin Quantitative Portfolio Allocation it minimizes the Kullback-Leibler's divergence, that is the distortion with respect to the probability measure inferred from the publicly available information, and it incorporates private information, that is x xi e f (x) dx = xi xi e fi (xi) dxi = hi with xi ri. If the investor's belief is formulated as an interval with lower and upper bounds li and ui, he can simply specify li xi xi e fi (xi) dxi ui. Furthermore, Meucci suggests a way to input con
  • 261.
    dence exogenously inthis model by considering a shrinkage between the prior and posterior densities as e fxjc;I;J = (1 c) fxjI + c e fxjI;J ; where c 2 [0; 1] represents the con
  • 262.
    dence in theviews. This shrinkage a posteriori is called opinion pooling and can be used for example to pool the opinions of dierent managers. It has deep implications and is very dierent from the endogenous way of inputing con
  • 263.
    dence in the Black-Litterman model, as we show in the next subsection with an analytical example where the entropy pooling is applied to Gaussian markets and views a la Black-Litterman. 4.2 Analytical example It starts by considering the n risk-factors distributed as a multivariate normal as in Black- Litterman, that is we assume our prior to be xjI N (;) : (54) Suppose one wants to express K1 views as in Black-Litterman with a K1 n pick-matrix Q and the K1 1 vector of expectations e Q for the K1 1 focus QxjI;J , but also K2 views on the variances/covariances with a K2 n pick-matrix G and the K2 K2 covariance matrix e G for the K21 focus GxjI;J . Following the precedent subsection, the posterior distribution e F, whose density can be written e f (x) = 1 n=2dete (2) exp h 1 2 (x e) e 1 (x e) i , should satisfy e F 2 V () 8 : x (Gx)i e f (x) dx = G;i; 8i = 1; ;K2; x (Gx)i (Gx)j e f (x) dx = 2G ;i;j 8i = 1; ;K2 and 8j = i; ;K2; x (Qx)i e f (x) dx = e Q i 8i = 1; ;K1; 2G ;i;j G;iG;j = e G i;j 8i = 1; ;K2 and 8j = i; ;K2: (55)
  • 264.
    The scenario-based approach41 For two multivariate normal distributions N (;) and N e of dimension n, the Kullback- ;e Leibler's divergence reads DKL e F; F = 1 2 tr 1e + ( e) 1 ( e) log dete det ! n ! ; (56) where tr and det represent respectively the trace and the determinant of a matrix. Taking the minimum of this expression under the constraints given in equation (55) yields the posterior distribution xjI;J N ; (57) e;e where e + G h Me GM M i G and e + Q QQ 1 e ; (58) Q Q with M = GG1 . The full proof can be found in [47]. We consider two assets to give an intuition on this model and show the dierence with the Black-Litterman formula. We represent these assets with a 2 1 random vector x = (x1; x2) with x1 N(0; 1), x2 N(0; 1) and Cov (x1; x2) = 0:6, and show the prior (standard normal) marginals as the black curves of
  • 265.
    gure 10. Thenwe input the two following views: −4 −2 0 2 4 0.0 0.1 0.2 0.3 0.4 0.5 0.6 x1 Density −4 −2 0 2 4 0.0 0.1 0.2 0.3 0.4 0.5 0.6 x2 Density Figure 10: First asset on the left and second on the right with prior (black) distribution, full-con
  • 266.
  • 267.
    dence (red) updatedposterior distributions for the analytical entropy pooling. Q = (1; 0) with e Q = 0:5, that is we increase the expected value of the
  • 268.
    rst asset to0:5. G = (1; 0) with e G = 0:92, that is we decrease the volatility of the
  • 269.
  • 270.
    42 Views Integrationin Quantitative Portfolio Allocation We show the updated marginals (blue curves) in
  • 271.
    gure 10 andobserve that the expected value of the second asset has decreased to 0:3 as both assets were originally anti-correlated. To show the eect of the con
  • 272.
    dence, we representthe half-con
  • 273.
    dence (c =0:5) marginals with red curves in
  • 274.
    gure 10, andobserve the shrinkage of the prior towards the view. It is interesting to compare this formula with the market formulation of BL, considering the same focus for expectations and covariances, that is G Q, and e G 0 with 0 the K1 K1 matrix of zeros. Doing this, the full-con
  • 275.
    dence updated expectationsand covariances in equation (58) are the same as those of equation (35), without view estimation error (i.e. b t 0). −4 −2 0 2 4 6 0.0 0.2 0.4 0.6 0.8 x1 Density Prior View EP posterior BL posterior Figure 11: Dierence between Bayesian blend- ing and opinion pooling. There is nonetheless a fundamental dierence be-tween the Bayesian view blending and the entropy pooling, which lies in the con
  • 276.
    dence input. We illustrate this with an extreme view on the ex-pectation of the
  • 277.
    rst asset, forinstance e Q = 3, and use the original Black-Litterman updated pos-teriors from equation (34) with = 1, that is the formulas we used in the example of subsection 3.1. If we set b t 1 and c = 0:5, we have the same updated expectations for the
  • 278.
    rst asset, thatis e1 = e1 = 1:5. However, as shown in
  • 279.
    gure 11, thetwo resulting distributions are signi
  • 280.
    cantly dif-ferent, andthis divergence increases with the dif-ference between prior and view. 4.3 Fully flexible probabilities As discussed in the introduction of the chapter, our goal here is to input views on non-linear combinations of non-Gaussian risk-factors. This is why Meucci proposes in [47] a non-parametric version of his framework, the so-called fully exible probabilities, in which he uses the discrete version of the relative entropy. This time we consider l samples of an arbitrary market model for the risk factors42 and assign a vector pxjI = (p1; ; pl) of probabilities for the scenarios43. In fact, any vector of probabilities ep = (ep1; ; epl) such that 0 epi 1 8i 2 f1; ; lg and Pl i=1 epi = 1 de
  • 281.
    nes a newprobability measure e F 2 P FxjI , and we write the Kullback-Leibler's 42We describe an example of model in the next subsections, following a copula approach. 43In those scenarios are obtained with classical Monte-Carlo simulations, they can for instance be set as uniform probabilities, that is pi xjI = 1=l 8i 2 f1; ; lg.
  • 282.
    The scenario-based approach43 and Jensen-Shannon's divergences as DKL e F; FxjI = x log d e F dFxjI ! d e F DJS e F; FxjI = DKL e F; FxjI + e F 2 ! + DKL FxjI ; FxjI + e F 2 ! m (59) bD KL ep; pxjI =ep log ep log pxjI ; bD JS ep; pxjI = DKL ep ; ep + pxjI 2 + DKL pxjI ; ep + pxjI 2 where 1 is a vector of ones (same size as ep and pxjI). As for samples of the market, the joint realizations are represented by an l N panel44 X of scenarios with probabilities pxjI , whereas the focus of the views described in subsection 2.2, becomes a l K panel V of scenarios with the same probabilities, that is x fxjI )X 0 BB@ x1 ... xl 1 CCA = 0 BB@ x1;1 x1;N ... . . . ... xl;1 xl;N 1 CCA ; pxjI 2 p1 664 ... pl 3 775 ; (60) v fvjI )V 0 BB@ v (x1) ... v (xl) 1 CCA = 0 BB@ v1 (x1) vK (x1) ... . . . ... v1 (xl) vK (xl) 1 CCA ; pxjI 2 p1 664 ... pl 3 775 : (61) Within this framework, it is possible to represent most beliefs on the focus distribution conditional on the private information set J as linear constraints on the new probabilities ep. For example, views on expectations such as eE (vkjI;J ) S mk can take the form ep V ;k Xl j=1 ~pjVj;k S mk; eE eE eE where the investor speci
  • 283.
    es his belieffor mk. It is also possible to input qualitative views, as ordered information like (v1jI;J ) (v2jI;J ) (vKjI;J ), represented by the 44Here, we have N = n + 3 for our three factors and n individual securities.
  • 284.
    44 Views Integrationin Quantitative Portfolio Allocation constraint ep (V ;k V ;k+1) Xl j=1 ~pj (Vj;k Vj;k+1) 0; for all k 2 f1; ;K 1g. A complete non-parametric speci
  • 285.
    cation for viewson volatilities, cor-relations, lower/upper tail behavior and/or co-dependence, on the copula/marginal distributions or even the complete joint distribution can be found in Meucci [47]. Furthermore, it is possible to input views on scenario relevance (that is to give more weight to particular scenarios) through the concepts of kernel mixing and fuzzy membership as in [51]. Without loss of generality, we summarize K1 equality and K2 inequality views using the formalism described above as a K1 l matrix = V f1; ;K1g;, a K1 1 vector , a K2 l matrix = V fK1+1; ;Kg; and a K2 1 vector . Then the full-con
  • 286.
    dence posterior ep xjI;J is de
  • 287.
    ned as ep xjI;J argmin ep 2C n bD s ep ; pxjI o ; (62) where s 2 fKL; JSg and ep 2 C stands for probability measures satisfying the constraints, that is C ( ep ep = : (63) 4.4 Relative entropy minimization The relative entropy minimization (62) under linear constraints (63) is a standard problem in computer sciences that can be solved eciently by expressing it into the dual space. Because of the convexity of the f-divergences and as we input only linear equality and inequality con-straints, the non-linear programming problem satis
  • 288.
    es the K.K.T.conditions45. Hence, the duality gap of this optimization problem is zero, or equivalently there is no dierence between the primal and dual optimal solutions. Thus the optimization only acts on a limited number of Lagrange multipliers, equal to the number of constraints (or views), and can be solved e- ciently even for a very large number of scenarios. In [47], Meucci recalls this solution for the Kullback-Leibler's divergence. In appendix B, we extend this result to the symmetric Jensen- Shannon's divergence. There is a close link between the Jensen-Shannon's divergence under K 45In non-linear programming, the Karush-Kuhn-Tucker conditions are the
  • 289.
    rst-order necessary conditionsfor a solution to be optimal, at least locally. In our case, the
  • 290.
    rst-order conditions areeven sucient (that is we do not need to verify additional second-order conditions) and the solution of a programming problem with convex objective and linear constraints is globally optimal.
  • 291.
    The scenario-based approach45 Lagrangian L KL ep (log ep 1 + ep log p) + p1 ep JS ep log ep log p+ep 2 + p log p log p+ep 2 + ep First order condition @L/@ epi = 0 8i 2 f1; ; lg KL PJ j=1 j;ij + log epi pi = 0 JS PJ j=1 j;ij + log 2epi epi + pi = 0 Statistics KL epi = pie XJ j=1 j;ij =) Maxwell-Boltzmann JS epi = pi e XJ j=1 j;ij 2 e XJ j=1 j;ij =) Bose-Einstein Table 4: Link between f-divergences and statistical mechanics, with a modi
  • 292.
    ed Bose-Einstein statistics whose condensation is shifted in log (1=2) for convenience in the numerical minimization. liner constraints (k;ep = k, for k 2 f1; ;Kg) and the Bose-Einstein's statistics (whereas the Kullback-Leibler's divergence under the same constraints yields the Maxwell-Boltzmann's statistics), which oers a physical rationale for views integration. We summarize this analogy in table 4, where we derive both statistics from the minimization of the f-divergences (using p pxjI for notational simplicity). Importantly, we modi
  • 293.
    ed slightly theJensen-Shannon's PJ divergence so that it retrieves the Kullback-Leibler's divergence if j;ij 0, which corre-sponds j=1 to views that do not alter much the initial probability measure. This means in fact that the Kullback-Leibler's divergence is appropriate for common real-world applications when one considers a market at equilibrium, in which case both minimizations yield (almost) the same results46. In the case where one wishes to input views too far from Gaussian on the marginals, the exponential twist provided by the two statistics derived from the classical entropy is insuf-
  • 294.
    cient, as ithas been shown in [23]. In the same paper, the authors provide a mathematical 46We veri
  • 295.
    ed numerically thatfor most market views, then ep JS ep KL.
  • 296.
    46 Views Integrationin Quantitative Portfolio Allocation framework based on the
  • 297.
    -Polynomial divergence47, closelyrelated to the Tsallis entropy48, that is appropriate for non-equilibrium systems. Furthermore, its dual formulation for the numerical minimization and integration of market views is straightforward to compute (even though this is not the author's preoccupation). However, these non-equilibrium systems are never observed in practice, and most classical and neoclassical Economics and
  • 298.
    nance theories (theCAPM we cited is only an example) are concerned with market (at least) locally at equilibrium. This is why we choose to use the Kullback-Leibler's divergence in the remainder of this thesis, keeping in mind that some views may be inconsistent in the sense that no probability measure ep can satisfy the constraints in equation (63). Although this issue can be addressed by modifying the constraints using a common linear programming correction procedure, this limitation has im-portant theoretical consequences to which we will return later. As the sophisticated method we introduced in the last few subsections is a numerical change of measure, we still need a exible way of modeling a market that we can then use to generate the required scenarios to numerically bend the probabilities according to the investors views. This is why we set in what follows the theoretical basics for a market model in order to perform the required Monte-Carlo simulations. 4.5 Copulas and flexible market models Factor models allow one to concentrate on the marginal and joint modeling of less random vari-ables than in the original problem (recalling that usually the number of factors L is smaller than the number of risk-factors N). To model the dependence between factors, a realistic approach is to use copulas: it corresponds to modelling separately the marginals and the dependence struc-ture. Mathematically, a L-dimensional copula is a function C : [0; 1]L ! [0; 1] such that, for u = (u1; ; uL) 2 [0; 1]L: 1. C (u) is increasing in each one of its components ui 8i 2 f1; ;Lg. 2. C (1; ; ui; ; 1) = ui and C (u) = 0 if at least one of the ui equals zero 8i 2 f1; ;Lg. 3. For all u1 = (u1;1; ; u1;L) 2 [0; 1]L and u2 = (u2;1; ; ; u2d) 2 [0; 1]d , u1;i u2;i 8i 2 f1; ;Lg, then P2 j1=1 P2 jL=1 (1)j1++jL C (uj1;1; ; ujL;1) 0. 47Using the generator f(t) = t
  • 299.
  • 300.
    0, it yieldsa divergence D
  • 301.
    P eF; FxjI = x dFe dFxjI
  • 302.
    d e F,which is linked to the Kullback-Leibler's divergence by the relation lim
  • 303.
  • 304.
  • 305.
    = DKL e F; FxjI . 48We de
  • 306.
    ne the relativeTsallis entropy with index
  • 307.
  • 308.
    e F; FxjI = x dfF dFxjI
  • 309.
  • 310.
  • 311.
    The scenario-based approach47 Moreover, if C is the distribution function of the random vector u = (u1; ; uL) 2 [0; 1]L, we call survival copula of C, the distribution function C of the random vector 1 u (with 1 a L 1 vector of ones). Then, for any L-dimensional i.i.d. random vector z with its
  • 312.
    ltered probability space( z;F; Pz) with It Ft 8t, Sklar's theorem guarantees the existence of a copula Czt+1jIt : Ran Ran49 z1;t+1jIt zL;t+1jIt ! [0; 1]and its survival version Czt+1jIt : 1 Ranz1;t+1jIt 1 RanzL;t+1jIt ! [0; 1] such that, for all (z1; ; zL) 2 zt+1jIt , Fzt+1jIt (z1; ; zL) = Czt+1jIt Fz1;t+1jIt(z1); ; FzL;t+1jIt(zL) ; Fzt+1jIt (z1; ; zL) = Czt+1jIt Fz1;t+1jIt(z1); ; FzL;t+1jIt(zL) ; (64) which is unique if the marginals are continuous (which was an assumption in the
  • 313.
    rst chapter). We call Czt+1jIt and Czt+1jIt the copula and survival copula of zt+1 with respect to the information publicly available at time t, which contains in fact all the dependence structure of the random vector zt+1. In practice, it is often handy, as one can model separately the two components of the multivariate distribution:
  • 314.
    rst, one models Fz1;t+1jIt(z1); ; FzL;t+1jIt(zL) 2 [0; 1]L instead of (z1; ; zL) for all (z1; ; zL) 2 zt+1jIt , and then one chooses an appropriate copula for the dependence structure. 4.5.1 Time-varying dynamics It is well known that, additionally to co-dependence, most
  • 315.
    nancial time-series exhibitvolatility clustering and time-varying dynamics (see
  • 316.
    gure 12 abovefor an example), which violates a necessary condition for Sklar's theorem to apply. This is why one usually starts with modeling each factor's dynamics using an appropriate model to retrieve an i.i.d. sample of residuals. For example, one of the most widely used process in Econometrics is the univariate GARCH(p,q) of Bollerslev [12], which is de
  • 317.
    ned as yi;t= i + i;tzi;t; 2 i;t = !i + Xp j=1 j (yi;tj i)2 + Xq j=1
  • 318.
    j2 i;tj ;(65) where zi;t is the i.i.d residual process with zero mean and unit variance that we will model with copulas. In
  • 319.
    gure 13 nextpage, we show that a GARCH(1,1)
  • 320.
    lter is oftensucient to capture the time-varying dynamics. In what follows, we assume that the GARCH(1,1) allowed 49Ranzi;t+1jIt = Fzi;t+1jIt( zi;t+1jIt ) 2 [0; 1] is the range of the marginal distribution for all i 2 f1; ;Lg.
  • 321.
    48 Views Integrationin Quantitative Portfolio Allocation 2000 2002 2004 2006 2008 2010 2012 −0.15 −0.05 0.05 t [week] Return Market factor 0 10 20 30 40 50 0.0 0.2 0.4 0.6 0.8 1.0 Lag [week] ACF of squarred return 2000 2002 2004 2006 2008 2010 2012 −0.06 −0.02 0.02 0.06 t [week] Return SMB factor 0 10 20 30 40 50 0.0 0.2 0.4 0.6 0.8 1.0 Lag [week] ACF of squarred return 2000 2002 2004 2006 2008 2010 2012 −0.05 0.00 0.05 0.10 t [week] Return HML factor 0 10 20 30 40 50 0.0 0.2 0.4 0.6 0.8 1.0 Lag [week] ACF of squarred return Figure 12: As an example, we show the weekly returns on the three factors for our market model. There are periods of high volatility, that is periods with many extreme (both positive and negative) returns, and period of low volatility. Furthermore, as the autocorrelation function of the squared returns (a proxy for the realized volatility) exhibits a slow decay, there is some degree of predictability in the volatility (see [53] for instance). Those features contredicts the i.i.d. assumption of Sklar's theorem and this is why we use model for returns to capture them.
  • 322.
    The scenario-based approach49 0 100 200 300 400 500 600 −4 −2 0 2 t [week] Return Market factor 0 10 20 30 40 50 0.0 0.2 0.4 0.6 0.8 1.0 Lag [week] ACF of squarred return 0 100 200 300 400 500 600 −4 −2 0 2 t [week] Return SMB factor 0 10 20 30 40 50 0.0 0.2 0.4 0.6 0.8 1.0 Lag [week] ACF of squarred return 0 100 200 300 400 500 600 −4 −2 0 2 4 6 8 t [week] Return HML factor 0 10 20 30 40 50 0.0 0.2 0.4 0.6 0.8 1.0 Lag [week] ACF of squarred return Figure 13: As an example, we show the weekly residuals zi;t from the GARCH(1,1) model applied to our three factors. We observe that the residuals do not show volatility clustering, or equivalently that their squared values are not autocorrelated anymore.
  • 323.
    50 Views Integrationin Quantitative Portfolio Allocation Name b b! b b
  • 324.
    Market 2:50 103 2:34 105 1:73 101 8:11 101 SMB 0:73 103 6:34 106 8:86 102 8:76 101 HML 1:01 103 2:95 106 1:02 101 8:87 101 Table 5: Parameters for the GARCH(1,1)
  • 325.
    t: the estimationis performed using quasi-maximum likeli- hood maximization, which assumes normal distribution for the residuals and uses robust standard errors for inference (see Bollerslev [13]). The implementation is provided in the R package fGARCH. us to retrieve (closer to) i.i.d. residual processes50 bzi;k 8i 2 f1; ;Lg and 8k 2 ]t T; t[, a (T + 1) L sample thus satisfying conditions for Skylar's theorem to apply, and show how it is possible to model their multivariate distribution. 4.5.2 Some useful copulas Because the theory about copulas is very rich and goes far beyond the scope of this work, we will give here only a few illustrative examples and will refer for instance to [46] from which we inspired ourselves. The simplest copula (from the fundamental-copulas family) is probably the independence copula, de
  • 326.
    ned trivially byassuming Czt+1jIt Fz1;t+1jIt(z1); ; FzL;t+1jIt(zL) = YL i=1 Fzi;t+1jIt(zi); (66) that is the joint distribution is the product of the independent marginals. As we emphasized in the precedent subsection, this copula may be useful to describe the residuals from the factor model described by equation (20) (after removal of their time-varying dynamics). However, it is most often inadequate for dependent random variables, which is usually the case for the residuals retrieved from the GARCH(1,1)
  • 327.
    t on thefactors themselves. This is why we will present another family of copulas very convenient to use and to understand: the family of implicit-copulas, that is copulas implied by a known parametric multivariate distribution. The most widely used in this family (before the recent crisis) is the Gaussian copula, where we assume a multivariate 50Although they are only closer to i.i.d than the original processes, we will assume that the capture of the volatility clustering is enough. As one should in principle check the autocorrelation for all the moments of the distribution, the i.i.d property is very dicult to verify in practice.
  • 328.
    The scenario-based approach51 normal C 51 with correlation matrix C for the dependence structure, that is Czt+1jIt = C Fz1;t+1jIt(z1); ; FzL;t+1jIt(zL) 1 ; ; 1 Fz1;t+1jIt(z1) FzL;t+1jIt(zL) : (67) As we show in
  • 329.
    gure 14 however,the marginal distributions of our residuals exhibit fat tails that are not present in the multivariate normal. This is why we will also cite here the student copula with degrees of freedom and correlation matrix C, which is de
  • 330.
    ned as theGaussian copula structure as Czt+1jIt = t;C Fz1;t+1jIt(z1); ; FzL;t+1jIt(zL) t1 Fz1;t+1jIt(z1) ; ; t1 FzL;t+1jIt(zL) ; (68) where t and t;C are the univariate and multivariate student distributions. Additionally to fat Figure 14: The quantiles of the residuals are plotted against Gaussian quantiles, showing deviations, the so-called fat-tails, on both negative and positive sides. tailed marginals, extreme events often come at the same time for dependent random variables in the
  • 331.
    nancial context: forinstance, during the recent sub-primes
  • 332.
    nancial crisis, manystocks prices felt at the same time. This concept of extreme co-movements between random variables 51For a bivariate normal random vector x = (x1; x2), with correlation coecient , we de
  • 333.
    ne 1 (u1) ;1 (u2) = P ( (x1) u1;(x2) u2) = 1(u1) 1 1(u2) 1 exp (s21 2s1s2s22 ) 2(12) 2 (1 2)1=2 ds1ds2; with the standard univariate normal distribution function. Then, C is the generalization of for L dimensions.
  • 334.
    52 Views Integrationin Quantitative Portfolio Allocation can be described for instance using the tail dependence parameters. Considering a bivariate random vector x = (x1; x2) with marginals F1 and F2, and copula C and survival copula C, the upper and lower tail dependence parameters are de
  • 335.
    ned as u(x1; x2) = lim q!1 P X2 F1 2 (q)
  • 337.
    X1 F1 1 (q) = lim q!1 P X2 F1 2 (q) ;X1 F1 1 (q) P X1 F1 1 (q) = lim q!1 C (1 q; 1 q) 1 q = lim q!0+ C (q; q) q ; l (x1; x2) = lim q!0+ P X2 F1 2 (q)
  • 339.
    X1 F1 1 (q) = lim q!0+ P X2 F1 2 (q) ;X1 F1 1 (q) P X1 F1 1 (q) = lim q!0+ C (q; q) q ; (69) with u (x1; x2) = l (x1; x2) = (x1; x2) because C = C for radially symmetric copulas52. As elliptical distributions53 are radially symmetric around their mean-vector, both the Gaussian and student copulas also have this property. Furthermore, an application of L'H^opital rule to radially symmetric copulas yields (x1; x2) = lim q!0+ C (q; q) q = lim q!0+ dC (q; q) dq = lim q!0+ P X2 F1
  • 341.
    2 (q) X1= F1 1 (q) + lim q!0+ P X1 F1
  • 343.
    1 (q) X2= F1 2 (q) = 2 lim q!0+ P X2 F1
  • 345.
    2 (q) X1= F1 1 (q) ; (70) where we used @ @q1 C (q1; q2) = lim !0 C(q1+;q2)C(q1;q2) = P (F (X2) q2j F (X1) = q1) for the third equality. In the Gaussian case with a correlation coecient , as we can express the conditional distribution x2jx1=x N x; 1 2 , we have (x1; x2) = 2 lim x!1 x p 1 = p 1 + = 0, that is no asymptotic dependence in the tails. For p the student copula with degrees of freedom, a p similar argument yields (x1; x2) = 2t+1 ( + 1) (1 )= 1 + . We thus observe that, provided 154 and 1, the student distribution is asymptotically dependent in both tails. L if and only if x d= x. 52A random vector x = (x1; ; xL) is said to be radially symmetric around 2 R Thus, a random vector u = (u1; ; uL) 2 [0; 1]L with a copula C as distribution function can only be radially symmetric if and only if u d= 1 u (with 1 a L 1 vector of ones), also implying C = C. 53Elliptical distributions were de
  • 346.
    ned in afootnote of subsection 3.3. 54Otherwise we have lim t . !1
  • 347.
    The scenario-based approach53 4.5.3 Dependence structure estimation For the sample period ]t T; t[ used to estimate the factor model described by equation (20) and the GARCH(1,1) from equation (65), we consider the (assumed) i.i.d sample bz = 0 BB@ bztT;1 bztT;L ... ... ... bzt;1 bzt;L 1 CCA ; (71) where bzi;k denotes the estimated residual from a dynamic model 8i 2 f1; ;Lg and 8k 2 ]t T; t[. With this sample, there exists a fully parametric and a semi-parametric approach to model the dependence structure with parametric copulas. The
  • 348.
  • 349.
    tting marginals bFyi;t+1jIt with suitable parametric models and then using them, one can obtain a sample bu = 0 BB@ butT;1 butT;L ... ... ... but;1 but;L 1 CCA ; (72) where bui;k = b Fyi;t+1jIt(bzi;k) are the so-called pseudo-observations for all i 2 f1; ;Lg and 8k 2 ]t T; t[. The second approach uses directly the empirical marginals to get the sample bu, that is we de
  • 350.
    ne bui;k = PT s=0 1 T+21Ibzi;tsbzi;k (with 1Ix the indicator function taking 1 if x is true and 0 otherwise) for all i 2 f1; ;Lg and 8k 2 ]t T; t[. This last approach is shown −3 −2 −1 0 1 2 0.0 0.2 0.4 0.6 0.8 1.0 conversion to pseudo−observations z u 0.0 0.2 0.4 0.6 0.8 1.0 −3 −2 −1 0 1 2 CMA combination u z Figure 15: conversion to pseudo observations and copula-marginal algorithm combination step on the left-hand side of
  • 351.
    gure 15, wherewe sampled 20 observations from a standard normal
  • 352.
    54 Views Integrationin Quantitative Portfolio Allocation distribution and converted them into pseudo-observations. Our next step, with both approaches, is then to use the sample bu to
  • 353.
    t a parametriccopula. In many cases, the easiest way to cope with low-dimensional problems (which is the case with our three factors) is a maximum likelihood estimation, that is to
  • 354.
    nd the setof parameters b such that b argmax lnL() ; lnL() = XT k=0 lnc (bu1;tk ; buL;tk) ; c (bu1;tk ; buL;tk) = @C (u1; ; uL) @u1 @uL
  • 358.
    bu1;tk ;buL;tk ;(73) where C is the copula one wants to
  • 359.
    t. For moredetails about the so-called inference-functions for margins approach (that is the method where the marginals are
  • 360.
    rst parametrically esti-mated), we refer to Joe [38]. In the following example, we used the so-called pseudo-likelihood Name Residuals Gaussian CI t CI Market/SMB 0:240 0:245 [0:166; 0:326] 0:250 [0:173; 0:323] Market/HML 0:036 0:051 [0:140; 0:042] 0:045 [0:136; 0:048] SMB/HML 0:048 0:060 [0:145; 0:027] 0:090 [0:176;0:002] Table 6: Correlations between the residuals from the GARCH(1,1) and those estimated by
  • 361.
    tting copulas, whoseimplementation is provided in the R package copula. We bootstrapped the estimation using ordinary non-parametric bootstrap provided in the R package boot. Then we applied the Anderson-Darling, Cramer- Von Mises, Kolmogorov-Smirnov and Pearson 2 tests and couldn't reject the normality hypothesis at 95% for the bootstrapped statistics, so we used Gaussian con
  • 362.
    dence intervals. (semi-parametric)approach described for example in [32]. In table 6, we present the correlation parameters. We observe
  • 363.
    rst that, asexpected from their construction, the three factors are not much correlated. In fact, with a noise level at 2= p 672 = 0:077, we see that only the
  • 364.
    rst coecient isreally signi
  • 365.
    cant: when themarket goes well, there is an in ux of capital toward small
  • 366.
    rms which outperformlarge ones (and conversely when the market goes down). Moreover, we observe that both copulas seem to capture the dependence in the residuals, as the original correlations always fall within the bootstrapped con
  • 367.
    dence intervals. Itshould also be noted that the maximized likelihood of the Gaussian copula is 21:86, whereas that of the student copula is more than twice as much with a maximized likelihood of 45:07, and we thus will prefer the student copula. There are two other reasons for this choice:
  • 368.
    rst the fat-tailand asymptotic tail dependence properties we emphasized earlier, and second, even an identity correlation matrix C wouldn't mean independence between the factors, provided that 155, which is the case here 55Otherwise we would have the independence copula for uncorrelated variables.
  • 369.
    The scenario-based approach55 Market 0.0 0.2 0.4 0.6 0.8 1.0 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l 0.0 0.2 0.4 0.6 0.8 1.0 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l 0.0 0.2 0.4 0.6 0.8 1.0 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l SMB l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l 0.0 0.2 0.4 0.6 0.8 1.0 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 HML Original pseudo−observations Market 0.0 0.2 0.4 0.6 0.8 1.0 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l 0.0 0.2 0.4 0.6 0.8 1.0 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l 0.0 0.2 0.4 0.6 0.8 1.0 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l SMB l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l 0.0 0.2 0.4 0.6 0.8 1.0 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 HML Simulated pseudo−observations Figure 16: Original and simulated (from the t copula) pseudo-samples. with an estimated b = 5:45 and b 2 [3:995; 8:411] at 95%. For this parameter, the statistics show a large positive skew and we could reject the normality hypothesis at 95% with the four tests of
  • 370.
    gure 6. Thuswe used adjusted bootstrap percentile (see [24, 25]) whose implementation. To understand the origin of the skew, we
  • 371.
    tted the copulausing a 100-week moving window and observed that there is a 20 30 week window at the peak of the sub-prime crisis where this parameter becomes very unstable (b moves from 5 to more than 120 in less than three weeks). In fact, this period creates instabilities in the parameter estimation and leads to the large positive skews in the bootstrapped statistics. If one think in terms of common-sense, the returns of our three factors may not be much linearly correlated, but they may be tail-dependent. For example during crises, the three factors may exhibit large negative value at the same time as all prices fall. 4.5.4 Closing the model With our estimated copula, Monte Carlo simulations can be performed to obtain a new sample of pseudo-observations of any size (see [46] for details on student copula simulations). In
  • 372.
    gure 16, weshow the original pseudo-sample, as well as a new pseudo-sample bu s = 0 BB@ bus 1;1 bus 1;L ... ... ... busl ;1 busl ;L 1 CCA ; (74) simulated with three times as many pseudo-observations. Finally, a very convenient way to convert the simulated pseudo-samples into a simulated sample of observations is the combination
  • 373.
    56 Views Integrationin Quantitative Portfolio Allocation step of the copula-marginal algorithm of Meucci [50]. It pairs for each factor the observations and pseudo-observations f(bz;1;bu ;1) ; ; (bz;L;bu ;L)g and reverse them to obtain (bu ;i; bz;i) for each i 2 f1; ;Lg. Then it maps bu s ;i into bzs ;i by linear extrapolation using (bu ;i; bz;i) for each i 2 f1; ;Lg to obtain bzs = 0 BB@ bzs 1;1 bzs 1;L ... ... ... bzs l;1 bzs l;L 1 CCA : (75) We show an example of this mapping in the right-hand side of
  • 374.
    gure 15, wherewe simulated 4 Market −4 −2 0 2 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l −4 −2 0 2 l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l −4 −2 0 2 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l SMB l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l −4 −2 0 2 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l ll l l l l ll l l l ll l l l l l l l l l l l ll l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l −4 −2 0 2 4 6 8 −4 −2 0 2 4 6 8 HML original Market −4 −2 0 2 4 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l ll l l ll l ll l l l l l l l l l l l l l l l l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l llll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l lll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l −4 −2 0 2 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l ll l l ll l l ll l ll l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l llll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l ll l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l llll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l ll l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l ll l l l l l l l lll l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l ll l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l ll l l l l l l l l l l l l l l l lll l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l ll l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll lll l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l ll l l l l l l ll l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l lll ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l ll l l l l l l l l l l l ll ll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l −4 −2 0 2 4 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l lll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l SMB l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l ll l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l lll l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l ll l l l l l lll l l l l l l ll l l l l l l l l l l l l l l l l l l l lll l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l ll l l l l ll l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l lll l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l lll l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l ll l l l l lll l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l lll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l ll ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l ll l l l l ll l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l lll l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l −4 −2 0 2 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l lll ll l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l ll l l l l l l l l l ll ll l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l ll l l l l l ll l ll l l l l l l ll l l l ll l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l ll ll l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l ll l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l llll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l llll l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll lll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l ll l l l l l l l l ll l l l l l l ll l l l l lll l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll ll ll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l llll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l ll ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l ll l l l ll l l lll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l lll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l lll l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l lll ll l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l lll l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l lll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l lll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l lll l l l l l l l lll l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l lll l l l ll l l l l l l l l l llll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l llll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l ll l l l l l l l l ll l l l l l l ll l l l ll l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll l l lll ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l ll l ll l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l lll l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l llll l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l ll l l l ll l l l ll l lll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l ll l l l l l l l ll ll l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l ll l l llll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll ll l ll l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l l l l lll l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l lll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l lll l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l llllll l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll ll l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l lll l l l l ll l l ll l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l ll l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l lll l l l ll l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l ll l l l lll l l l l ll l l l l l l l l ll lll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l llll l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l ll l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l lllll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l ll l l l l l l l l l ll l l l l l l l l lll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l ll l l l l l ll l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l ll lllll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l lll l l l ll l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l ll ll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l llll l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l lll l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l lll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l ll l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l ll l l ll l l l l l ll l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l −5 0 5 10 −5 0 5 10 HML linear extrapolation Market −3 −2 −1 0 1 2 3 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l ll l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l llll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l −4 −3 −2 −1 0 1 2 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l −3 −2 −1 0 1 2 3 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l SMB l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l lll l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l lll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l −4 −3 −2 −1 0 1 2 l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l llll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l lll l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l lll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l lll l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l ll l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l lll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l ll l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l lll l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l ll l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l ll l l l l l l l l l l l l l l −2 0 2 4 −2 0 2 4 HML smoothing splines extrapolation Figure 17: Original and simulated samples for the GARCH(1,1) residuals pseudo-observations from a uniform distribution and converted them back to observations using our original 20 observations sample. Following our example, we can now obtain a large sample of residuals (l = 104 here) that we show in the center of
  • 375.
    gure 17 alongwith the original residuals on the left-hand side. As we can observe, the linear interpolation is not robust to outliers and poorly sampled empirical distributions. This is why we improve Meucci's algorithm by simply using smoothing splines for the extrapolation and show this result on the right-hand side of
  • 376.
    gure 17. Withthe model for the dynamics, we can now generate a large sample of factors returns with our modeled distributions for t + 1, that is byt+1 = 0 BB @ by1;1 by1;L ... ... ... bys l;1 bys l;L 1 CC A; (76)
  • 377.
    The scenario-based approach57 with byt+1 ;i = bi + bi;t+1bzs ;i; b2 i;t+1 = b!i + bi (ri;t bi)2 + b
  • 378.
    ib2 i;t; (77) for all i 2 f1; ;Lg. To close the loop, we
  • 379.
    nally use thelinear model described in subsections 1.4 to obtain a sample of arbitrary size l from the modeled distribution of the N-dimensional vector of risk-factors at time t + 1, that is bx t+1 = 0 BB@ bx1;1 bx1;N ... ... ... bxl;1 bxl;N 1 CCA = ba + bB byt+1 + bE t+1 ; (78) where bE t+1 is a l N matrix withbE t+1 ;i simulated as a Gaussian with a variance equal to dV ar [i] from the linear factor model (20). We are now ready to use the entropy pooling to bend probabilities according to market views and show some possible applications in the next two sections. 4.6 Numerical example : portfolio stress testing 4.6.1 Measures of market risk Since the beginning of modern portfolio theory in 1952 with Markovitz, the variance has been a widely accepted and used measure of risk. While it is easy to understand, it has the major drawback of being symmetric: indeed
  • 380.
    nancial institutions areusually more concerned about large losses than about large gains. It is only in 1996 that the amendment to the Basel Accord to incorporate market risks [55] introduced the Value-at-Risk (V aR) as a new industry-wide standard. For a security whose return over the next investment period is represented as the random variable r, the V aR is de
  • 381.
    ned mathematically asthe -quantile of the loss distribution, that is V aR (r) = inf fx 2 R : P (r x) g : (79) It represents the minimal loss in the 1 percent worst cases and one choses typically close to 1. There exists various parametric estimators for the V aR, and it can also be computed directly using past returns or Monte-Carlo simulations. However, it has the drawback of hiding
  • 382.
    58 Views Integrationin Quantitative Portfolio Allocation risk behind a con
  • 383.
    dence interval, asthe actual loss, by de
  • 384.
    nition beyond theV aR, may be in fact much larger than the V aR. Furthermore, it has been stipulated (for instance in [46]) that a coherent risk measure on the space of real-valued random variables should ful
  • 385.
    ll the following properties: 1. Monotonicity: for two random variables x y, then (x) (y). 2. Sub-additivity: for two random variables x and y, then (x + y) (x) + (y). 3. Positive homogeneity: for a random variable x and a scalar 0, then (x) = (x). 4. Translation invariance: for a random variable x and a scalar 2 R, then (+x) = +(x). As it lacks the sub-additivity property, the V aR is not a coherent risk measure in the sense that diversi
  • 386.
    cation does notreduce risk in general. Furthermore, the empirical quantile function to compute the V aR using scenarios (historical or Monte-Carlo) is often non-smooth and non-convex. Thus it yields many problems when one wants to optimize a portfolio using this risk measure, as many local optimizers can be encountered (see [21] for instance). An alternative measure which does not suer from these pitfalls is the conditional Value-at-Risk (CV aR) or expected shortfall (ES). Mathematically, it is the expected losses in the 1 worst cases, that is CV aR (r) = E[r jr V aR (r) ] 1 = 1 1 1 V aR (r) d ; (80) where the second line emphasizes the fact that the CV aR represents the expected loss given that the V aR is crossed. We present a comparison between the V aR and the CV aR for the Gaussian and student distributions in
  • 387.
    gure 18, andwe observe that the CV aR is signi
  • 388.
    cantly higher andthat this dierence increases with the fatness of the distribution's tails. As for the V aR, the CV aR can be computed from parametric estimators or directly using the historical returns or Monte-Carlo simulations, but it is a coherent and convex risk measure.
  • 389.
    The scenario-based approach59 −4 −2 0 2 4 0.0 0.1 0.2 0.3 0.4 x Density(x) Gaussian Gaussian VaR Gaussian CVaR Student t with df=5 Student t VaR Student t CVaR 2 5 10 20 50 100 200 500 0.5 1.0 2.0 5.0 10.0 Degrees of freedom Risk Gaussian −VaR Gaussian −CVaR Gaussian VaR−CVaR Student t −VaR Student t −CVaR Student t VaR−CVaR Figure 18: Gaussian and student V aR and CV aR, as well as the dierence between the two risk measures with respect to the degrees of freedom for the Student t. 4.6.2 Stress testing We now use the market model described in subsection 4.5 to obtain a large sample of l = 105 joint realizations bx t+1 i; = bxt+1 i;1 ; ; bxt+1 i;n ; bxt+1 i;MKT ; bxt+1 i;SMB; bxt+1 i;HML ; (81) for i 2 [1; ; l] from the estimated distribution of returns over the next period with probabilities initially set as pi;t+1 = 1=l 8i 2 [1; ; l]. For the market portfolio with wm;t, one can then compute[V aR (rp;t+1 jIt;Jt ) as the empirical (potentially weighted) quantile function, and CV aR (rp;t+1 jIt;Jt ) = X j2C m;tbx pj;t+1w t+1 j; ; where C stands for indices for which the portfolio loss is larger than the value-at-risk, that is C n j : w t+1 j; [V aR (rp;t+1 jIt;Jt ) m;tbx o : In the
  • 390.
    rst row oftable 7, we show the expected return, the value-at-risk and the expected shortfall for the market portfolio, estimated directly using our simulated model. One may
  • 391.
    rst observe byannualizing the weekly value that the expected return of the portfolio is 5:65%, less than half the 14:89% estimated using historical returns from December 2009 until December 2011 in the Black-Litterman model. In fact, from the original range [6:15%; 45%] for the securities expected return, our sampled distribution yields expected annual returns between 8:83% and 29:90%. To address this issue, we input a
  • 392.
    rst view constrainingthe weekly expected return of the securities at their historical expected value. We observe in the second row of table 7,
  • 393.
    60 Views Integrationin Quantitative Portfolio Allocation bE [rp;t+1 jIt;Jt ] [V aR0:95 (rp;t+1 jIt;Jt ) CV aR0:95 (rp;t+1 jIt;Jt ) No view 0:11% 5:01% 7:44% Factor's
  • 394.
    rst moment 0:25%4:52% 6:98% Stressed factors 0:25% 8:54% 10:80% Table 7: Market portfolio expected performance and risk under views speci
  • 395.
    cations that theexpected return of our portfolio, at 13:30%, is then much closer to the historically estimated value using data from December 2009 until December 2011. In fact, we can compute the distance sum20 j=1 jbj ej j with bj the historical estimator from January 1999 to December 2011 and ej our new estimator, once computed with pi;t+1 = 1=l 8i 2 [1; ; l] and then with pooled probabilities obtained by constraining the
  • 396.
    rst moment offactors. We observe that the distance between the historical estimator of the
  • 397.
    rst moment andthe estimator from our model decreases as expected by the view from 2:87 102 to 4:98 108. Constraining the
  • 398.
    rst moment bybeing more optimistic than our original model also induces an eect on risk, as it can be observed that both [V aR0:95 (rp;t+1 jIt;Jt ) and CV aR0:95 (rp;t+1 jIt;Jt ) decreases. We recall that a desirable feature of a view-integration framework is the possibility of stress-testing portfolios, that is of performing various risk estimations under some pessimistic assumptions. There are several possible speci
  • 399.
    cations for stressed-markets,and we choose here to stress our portfolio by increasing the volatility. Thus we constraint the volatility of the factors to be twice their historically realized volatility, while keeping the
  • 400.
    rst moment ofthe securities constrained. In the third row of table 7, we
  • 401.
    nally observe thatthe expected return of the portfolio hasn't changed, but that the risk has increased as expected. Such application is handy when one wants to understand how his portfolio may react in case of market evolving in a direction one couldn't have inferred from past or present publicly available information. 4.7 Numerical example: mean-variance, market equilibrium and relative entropy In this subsection, we attempt to reconcile the concepts of mean-variance allocation56 and market equilibrium along with our exible model and the entropy pooling framework. As we show on the left-hand side of
  • 402.
    gure 19, mean-varianceportfolios obtained directecly from the sampled market model suer from the same concentration problems we exposed in subsection (3.1), although to a lesser extent. To correct this we implement our
  • 403.
    rst view tocontraint the
  • 404.
    rst moment forthe 56We keep the mean-variance allocation, given there exists many alternative schemes. The mean-CV aR, that we describe in details in appendix (C), and most alternative schemes are not as straightforward to interpret in terms of the Taylor developpement of the utility as the mean-variance. Furthermore, an empirical study (see [54]) showed that real traders are mean-variance on average.
  • 405.
    Conclusion 61 individualsecurities at their equilibrium expected value, de
  • 406.
    ning a CAPMprobability measure ep CAPM. As in BL, it regularizes the problem as we show in the center of
  • 407.
    gure 19. Furthermore, we show with the vertical black line that we fall again on the market portfolio when using the market implied risk-aversion. We choose to observe the eect of a simple view by doubling the market implied expected return of OXY. Thus, we
  • 408.
    nd ep view argmin ep 2C n bD KL (ep;ep o , CAPM) where ep 2 C is a measure of probability (that is P105 i=1 pi = 1 and pi 0 for all i 2 1; ; 105 ) such that ep bx t+1 ;OXY = 0:2%. We show in the right-hand side of
  • 409.
    gure 19 theresulting mean-variance ecient frontier, where we observe that OXY (in light blue) is now held for most risk-aversions. 0 2 4 6 8 10 0 20 40 60 80 100 No view Weight % Risk aversion 0 2 4 6 8 10 0 20 40 60 80 100 CAPM's view Weight % Risk aversion 0 2 4 6 8 10 0 20 40 60 80 100 CAPM bullish on OXY Weight % Risk aversion l l l l l l l l l l l l l l l l l l l l ORCL MSFT KO XOM GE IBM PEP AAPL PG ABT PFE JNJ OXY WFC MCD WMT INTC CSCO QCOM AMZN Figure 19: Mean-variance allocations in the exible market model. 5 Conclusion Empirical views are a key ingredient to the good modeling and validation of view integration techniques into actual portfolio allocation schemes. As often in
  • 410.
    nance, the assumptionsone has to make in order to develop a sound theoretical framework, as the Black-Litterman model and Meucci's entropy pooling, are constraining, sometimes simplifying too drastically real-world situations and behaviors. It becomes therefore crucial to understand and assess the unavoidable discrepancies between actual facts (e.g. trading habits) and model assumptions. While Meucci's practitioner approach is appealing by its exibility and ecient implementation, it still suers from the theoretical drawback that many views one can think of are actually inconsistent, and this problem is linked to the relative entropy rather than the market model. In fact, this issue can only be adressed by either modifying these views or minizing a divergence devoted to non-equilibrium systems (e.g. Tsallis's, see subsection (1.5)).
  • 411.
    62 Views Integrationin Quantitative Portfolio Allocation In what follows we focus on Black-Litterman's extension of the mean-variance allocation. In simple words, the classical Black-Litterman is optimal under the same market assumptions as the mean-variance's, that is essentially a market at equilibrium characterized by the
  • 412.
    rst two moments57.As expected market views should also ful
  • 413.
    ll an associatedassumption of Gaussianity. This comes at no surprise as market views, if realized, turn into actual observations, that is a realized one-day view on the return of an asset becomes the actual one-day return of the asset if it is realized in the prescribed one-day horizon. Hence within a given theoretical frame, one has to require views on returns to exhibit similar statistical and dynamical properties as those assumed for the returns. This requirement is indeed mandatory for the sake of coherence as Gaussian markets may not preserve normality under non-Gaussian views. Obviously, the same line of reasoning applies to views on other quantities constrained by the model to have peculiar statistical and dynamical features e.g. volatility short-memory, negligible excess-kurtosis and risk-skewness, all of which are implicit in Black-Litterman. We argue that limit orders58 can be studied as real-world market views by considering the relative dierence between the limit price and the bid/ask, that is b;t = pb;t pl pb;t and a;t = pl pa;t pa;t ; where t is the time at which the order is placed and we de
  • 414.
    ne the (approximative)price of the security as the midprice (pa;t + pb;t) =2. We can give a simple market view by considering for instance an investor who wishes to sell a stock at pl pa;t within a period of time t, which is the expiration time of the limit order. As the utility of not being matched is zero, the limit order can be seen as a view on the future price pl = (pa;t+t + pb;t+t) =2. This interpretation has an obvious limitation: as for analysts who give recommendation within a given time horizon, the limit order represents a view that can be ful
  • 415.
    lled long beforeits horizon. Furthermore, many limit orders are cancelled manually by investors before their expiration date. However, it is still a proxy for real-world market view to start with. In [62, 14, 56] for instance, authors observe that the distribution of views exhibits fat tails with remarkable regularity, suggesting that the distribution of actual views may depart strongly from the Gaussian assumption implied in the mean-variance and Black-Litterman models, as do the
  • 416.
    nancial markets. Thishowever does not imply that such models are (always) inappropriate, non optimal, or even give an unrealistic description of portfolio allocation practices followed by actual investors. 57Relaxation of this hypothesis has been proposed in the form of a three moments CAPM, described for instance in [44] 58A limit orders are orders to buy or sell a security at a speci
  • 417.
    c price (orbetter), and within a speci
  • 418.
    c time horizon,as opposed to market orders which are orders to buy or sell as soon as possible at any price.
  • 419.
    REFERENCES 63 Itmerely asserts that, assumptions being violated, one cannot ensure that ecient portfolios provide the best investment opportunities for the future. In fact, it has been shown in [54] that real traders are mean-variance on average, taking transaction costs into account. Furthermore in [39], authors considered a generae utility function expanded to fourth order, showing that the resulting allocations are not necessarily dierent from the mean-variance portfolios, except for very high risk aversions in the absence of short selling and of a risk-free asset. In practice, we believe that the impact of non-Gaussian market views in a mean-variance framework is of utmost importance and we tried to give an example in subsection (19). We think that the subject deserves to be the focus of further theoretical and empirical research in order to reconcile the non-Gaussianity consensus about
  • 420.
    nancial markets andviews along with the mean-variance allocation which emerges from the collective behavior of real traders. 6 Acknowledgments I would like to express my gratitude to all those who gave me the possibility to complete this thesis. My
  • 421.
    rst debt ofgratitude must go to Dr. David Morton de Lachapelle to whom theWe I used along the document is mainly dedicated. His patience, thoughtful advices, constant men-toring and remarkable ability to see the big picture have been my biggest source of inspiration and motivation since I started to work with him. I also wish to thank all Swissquote's QAM team members for the six months I spent with them: Damien Ackerer for daily fruitful discus-sions on many topics of
  • 422.
    nance, economics, statistics,mathematics, physics and life in general, Florent Gallien for his absolute mastery of mathematical optimization and dedicated backtesting framework and
  • 423.
    nally Dr. SergeKassibrakis for hiring me and being an understanding leader with researchers working in an industrial environment. Finally, I wish to thank the Prof. Paolo De Los Rios for keeping an open mind and interdisciplinary vision of physics: trusting David to mentor me and giving us complete freedom in a subject he did not fully masterize was an act of faith that I believe has proven successful. References [1] Adda, J., and Cooper, R. W. Dynamic Economics. MIT Press, 2003. [2] Ali, S. M., and Silvey, S. D. A General Class of Coecients of Divergence of One Dis-tribution from Another. Journal of the Royal Statistical Society, Series B (Methodological), Vol. 28, Issue 1 (1966), pp. 131-142 (1966).
  • 424.
    64 Views Integrationin Quantitative Portfolio Allocation [3] Avellaneda, M. Minimum-relative-entropy calibration of asset pricing models. Interna- tional Journal of Theoretical and Applied Finance 1: 447-472 (1998). [4] Avellaneda, M., Friedman, C. A., Holmes, R., and Samperi, D. J. Calibrating volatility surfaces via relative-entropy minimization. Journal of
  • 425.
    nancial and quantitative analysis (1996). [5] Bacon, C. R. Practical portfolio performance measurement and attribution, 2nd Edition. John Wiley Sons, 2008. [6] Barber, B., Lehavy, Reuven adn McNichols, M., and Trueman, B. Can investors pro
  • 426.
    t from theprophets? Security analyst recommendations and stock returns. The Journal of Finance, Vol. 56, No. 2 (2001). [7] Barber, B., Lehavy, Reuven adn McNichols, M., and Trueman, B. Prophets and losses: reassessing the returns to analysts' stock recommendations. [8] Barber, B., Lehavy, Reuven adn McNichols, M., and Trueman, B. Buys, Holds, and Sells: the distribution of investment banks' stock ratings and the implications for the pro
  • 427.
    tability of analysts'recommendations. Journal of Accounting and Economics, Vol. 41: 87-117 (2006). [9] Best, M., and Grauer, R. On the sensitivity of mean-variance-ecient portfolios to changes in asset means: some analytical and comptational results. The Review of Financial Studies, Vol.4, No. 2: 315-342 (1991). [10] Black, F., and Litterman, R. Global Portfolio Optimization. Fixed Income Research, Goldman, Sachs Company, September (1990). [11] Black, F., and Litterman, R. Asset Allocation: Combining Investors Views withMarket Equilibrium. Financial Analysts Journal, pp. 28-43, September/October 1992 (1992). [12] Bollerslev, T. Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31:307-327 (1986). [13] Bollerslev, T., and Wooldridge, J. Quasi-Maximum Likelihood Estimation and Infer-ence in Dynamic Models with Time-Varying Covariance. Econometric Reviews 11, 143-172 (1992). [14] Bouchaud, Jean-Philippe and Mezard, Marc and Potters, Marc. Statistical Properties of Stock Order Books: Empirical Results and Models. Quantitative Finance, Vol. 2: 251-256 .
  • 428.
    REFERENCES 65 [15]Buchen, P. W., and Kelly, M. The Maximum Entropy Distribution of an Asset Inferred from Option Prices. Journal of
  • 429.
    nancial and quantitativeanalysis (1996). [16] Cheung, W. Generalised Factor View Blending: Augmented Black-Litterman in Non- Normal Financial Markets with Non-Linear Instruments. SSRN eLibrary (2009). [17] Cheung, W. The Black-Litterman Model Explained. SSRN eLibrary (2009). [18] Cheung, W. Transparent Augmented Black-Litterman Allocation: Simple and Uni
  • 430.
    ed Framework forStrategy Combination, Factor Mimicking, Hedging, and Stock-Speci
  • 431.
    c Al-phas. SSRNeLibrary (2009). [19] Cheung, W. The intrinsic logic of the augmented Black-Litterman model. SSRN eLibrary (2010). [20] Cheung, W. The Augmented Black-LittermanModel: A Ranking-Free Approach to Factor- Based Portfolio Construction and Beyond. SSRN eLibrary (2011). [21] Cornuejols, G., and Tutuncu, R. Optimization Methods in Finance. Cambridge Uni-versity Press, 2007. [22] Csiszar, I. Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizitat von Markoschen Ketten. Magyar. Tud. Akad. Mat. Kutato Int. Kozl 8: pp. 85-108 (1963). [23] Dey, S., and Juneja, S. Entropy Approach to Incorporate Fat Tailed Constraints in Financial Models. SSRN eLibrary (2010). [24] DiCiccio, T. J., and Efron, B. Bootstrap Con
  • 432.
    dence Intervals. StatisticalScience, Vol. 11: 189-228 (1996). [25] Efron, B. Better Bootstrap Con
  • 433.
    dence Intervals. Journalof the American Statistical Association, Vol. 82, No. 397: 171-185 (1987). [26] Elton, E. J., Gruber, M. J., Brown, S. J., and Goetzmann, W. N. Modern Portfolio Theory and Investment Analysis, 7th Edition. John Wiley Sons, 2007. [27] Fama, E. F. The behavior of stock-market prices. The Journal of Business, Vol. 38, No. 1: 34-105 (1965). [28] Fama, E. F., and French, K. R. The Cross-Section of Expected Stock Returns. The Journal of Finance 47 (2): 427-465 (1992).
  • 434.
    66 Views Integrationin Quantitative Portfolio Allocation [29] Fama, E. F., and French, K. R. Common Risk Factors in the Returns on Stocks and Bonds. Journal of Financial Economics 33 (1): 3-56 (1993). [30] Finnerty, J. E. Insiders and Market Eciency. The Journal of Finance, Vol. 31, No. 4: 1141-1148 (1976). [31] Fisher, I. The theory of interest. New York: The Macmillan Co., 1930. [32] Genest, C., and Rivest, L.-P. Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association, 88, 1034-1043 (1993). [33] Grinold, R. C., and Kahn, R. N. Active Portfolio Management: A Quantitative Ap- proach for Producing Superior Returns and Controlling Risk, 2nd Edition. McGraw-Hill, 1999. [34] Idzorek, T. M. A step-by-step guide to the Black-Litterman model: Incorporating user-speci
  • 435.
  • 436.
    dence levels. [35]Jaffe, J. F. Special Information and Insider Trading. The Journal of Business, Vol. 47, No. 3: 410-428 (1974). [36] Jegadeesh, N., Kim, J., D. Krische, S., and Lee, C. M. Analyzing the analysts: when do recommendations add value? The Journal of Finance, Vol. 59, No. 2 (2004). [37] Jeng, L. A., Zeckhauser, R. J., and Metrick, A. Estimating the returns to insider trading: a performance-evaluation perspective. The Review of Economics and Statistics, 453-471 (2003). [38] Joe, H., and Xu, J. The estimation method of inference function for margins for mul-tivariate models. Technical Report no.166, University of British Columbia, Department of Statistics (1996). [39] Jondeau, Eric and Rockinger, Michael. How Higher Moments Aect the Allocation of Assets. Finance Letters, Vol. 1, No. 2 (2003). [40] Kapur, J. Maximum Entropy Models in Science and Engineering. New Age International Publishers, Wiley series in Telecommunications, 2009, 2009. [41] Lakonishok, J., and Lee, I. Are insider trades informative? Review of Financial Studies, Vol. 14, No. 1 (2001). [42] Ljungqvist, A., Malloy, C. J., and Marston, F. C. Rewriting History. AFA 2007 Chicago Meetings Paper (2008).
  • 437.
    REFERENCES 67 [43]Lorie, J. H., and Niederhoffer, V. Predictive and Statistical Properties of Insider Trading. Journal of Law and Economics, Vol. 11, No. 1: 35-53 (1968). [44] Maillet, Bertrand and Jurczenko, Emmanuel. The Three-moment CAPM: Theoret- ical Foundations and an Asset Pricing Models Comparison in a Uni
  • 438.
    ed Framework. John Wiley and Sons, 2001, pp. 239{273. [45] Markowitz, H. Portfolio Selection. The Journal of Finance, Vol. 7, no. 1, pp. 77-91, March 1952 (1952). [46] McNeil, A. J., Frey, R., and Embrechts, P. Quantitative Risk Management: Con- cepts, Techniques, and Tools. Princeton University Press, 2005. [47] Meucci, A. Fully Flexible Views: Theory and Practice. Risk, Vol. 21, No. 10, pp. 97-102, October 2008 (2008). [48] Meucci, A. The Black-Litterman Approach: Original Model and Extensions. SSRN eLi- brary (2008). [49] Meucci, A. Historical Scenarios with Fully Flexible Probabilities. SSRN eLibrary (2010). [50] Meucci, A. A New Breed of Copulas for Risk and Portfolio Management. Risk, Vol. 24, No. 9, pp. 122-126 (2011). [51] Meucci, A. Mixing Probabilities, Priors and Kernels via Entropy Pooling. GARP Risk Professional, pp. 32-36, December 2011 (2011). [52] Meucci, A. Eective Number of Scenarios in Fully Flexible Probabilities. GARP Risk Professional, pp. 32-35, February 2012 (2012). [53] Morton de Lachapelle, D. Modern Portfolio Theory Revisited : from Real Traders to New Methods. PhD thesis, Doctoral school Physics, 2012. [54] Morton de Lachapelle, David and Challet, Damien. Turnover, account value and diversi
  • 439.
    cation of realtraders: evidence of collective portfolio optimizing behavior. New Journal of Physics, Vol. 12 . [55] on Banking Supervision, B. C. Amendment to the capital accord to incorporate market risks. [56] Potters, Marc and Bouchaud, Jean-Philippe. More statistical properties of order books and price impact. Physica A: Statistical Mechanics and its Applications, Vol .324: 133-140 .
  • 440.
    68 Views Integrationin Quantitative Portfolio Allocation [57] Rockafellar, R., and Uryasev, S. Optimization of Conditional Value-at-Risk. The Journal of Risk. Vol. 2, No. 3, pp. 21-41 (2000). [58] Seyhun, H. N. Insiders' pro
  • 441.
    ts, costs oftrading, and market eciency. Journal of Financial Economics, No. 16: 189-212 (1986). [59] Vitali, S., Glattfelder, J. B., and Battiston, S. The network of global corporate control. PLoS ONE 6(10): e25995. doi:10.1371/journal.pone.0025995 (2011). [60] Walters, J. The factor tau in the Black-Litterman model. SSRN eLibrary (2010). [61] Xiao, Y., and Valdez, E. A. A Black-Litterman asset allocation model under elliptical distributions. SSRN eLibrary (2010). [62] Zovko, Ilija I. and Farmer, J. Doyne. The power of patience: A behavioral regularity in limit order placement. Quantitative Finance, Vol. 2: 387-392 . A The Fama and French factors The description in this appendix is heavily inspired by that one can found on French's website http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/. On his website, French provides port-folios formed on size and book-to-market, as well as the factors we used in the document, which are constructed starting with those portfolios. The portfolios, which are constructed at the end of each June, are the intersections of 2 portfolios formed on size (ME, market equity or market capitalization) and 3 portfolios formed on the ratio of book equity to market equity (BE/ME). The portfolios for July of year t to June of t+1 include all NYSE, AMEX, and NASDAQ stocks for which they have market equity data for December of t1 and June of t, and (positive) book equity data for t 1. The size breakpoint for year t is the median NYSE market equity at the end of June of year t. Book-to-market for June of year t is the book equity for the last
  • 442.
    scal year endin t 1 divided by market equity for December of t 1. The book-to-market breakpoints are the 30th and 70th NYSE percentiles. The Fama and French factors are constructed using those 6 capital weighted portfolios formed on size and book-to-market. SMB (Small Minus Big) is the average return on the three small portfolios minus the average return on the three big portfolios, while HML (High Minus Low) is the average return on the two value portfolios minus
  • 443.
    Jensen-Shannon's divergence minimization69 the average return on the two growth portfolios, that is SMB = 1 3 (Small Value + Small Neutral + Small Growth) 1 3 (Big Value + Big Neutral + Big Growth) ; HML = 1 2 (Small Value + Big Value) 1 2 (Small Growth + Big Growth) : Finally, the return on the market is the capital weighted return on all NYSE, AMEX, and NASDAQ stocks. B Jensen-Shannon’s divergence minimization In this appendix, we extend Meucci's results by providing the dual formulation of a symmetric form of relative entropy. The Jensen-Shannon's divergence is de
  • 444.
    ned as: DJS e F; FxjI = DKL e F; FxjI + e F 2 ! + DKL FxjI ; FxjI + e F 2 ! Also known as information radius or total divergence to the average, it has de
  • 445.
    ned lower and upper bounds and its square root is a metric. We summarize the views using the formalism described in subsection 4.3 as K1 equality constraints in the K1 l matrix and the K1 1 vector and K2 inequality constraints in the K2 l matrix and the K2 1 vector . Then, we de
  • 446.
  • 447.
    dence posterior ep xjI;J as: ep xjI;J argmin ep 2C ep log ep log pxjI +ep 2 + p xjI log pxjI log pxjI +ep 2 (82) C ( ep ep = (83) To solve this problem, using p pxjI for notational convenience, we write the Lagrangian L(ep ;; ) and its
  • 448.
    rst derivative: L(ep;;) =ep logep log p +ep 2 + p logp log p +ep 2 + (ep ) + ( ep ) @L(ep ;; ) @ep = logep log p +ep 2 + +
  • 449.
    70 Views Integrationin Quantitative Portfolio Allocation Setting the gradient to zero yields the Bose-Einstein statistics for ep (; ) that we presented in subsection 4.1 and the dual function G (; ) L(ep (; ) ;; ): ep (; ) = p
  • 450.
    e 2 e G (; ) = p log 2 e Where we used
  • 451.
    for the Hadamardproduct59, the exponential and logarithm are taken element wise, 2 is a vector of ones (same size as p) and with a vector = + and = + . In the dual problem, we optimize over 0 and , that is K = K1 +K2 variables for our K views, and it is straightforward to compute analytically the gradient as @G (; ) @ = ep (; ) ; @G (; ) @ = ep (; ) : Finally, as the dual of a convex optimization problem is concave, one can simply use a quasi- Newton or conjugate gradient based method for the maximization (as opposed to the minization in the primal space) which allows us to
  • 452.
    nally obtain theposterior probabilities: (; ) argmax 0; G (; ) =)ep xjI;J = p
  • 453.
    e + 2 e + C Mean-CV aR optimization In this thesis, we only considered Markowitz's allocation scheme and its extension by Black- Litterman. However, many alternative exist, such as the popular the mean-CV aR proposed by Rockafellar and Uryasev in [57]. They provide a linearization of the CV aR computation, paving the way to the mean-CV aR allocation scheme. Basically, for a basket of n securities which return for the next period is a n 1 random vector r, we consider the function F (w;
  • 454.
  • 455.
    + 1 1 r2]1;1[n f (r) wr
  • 456.
    + dr; (84) 59For two matrices A;B 2 R mn, the Hadamard product H = A
  • 457.
    B2 R mnis such that Hi;j = Ai;jBi;j for all i 2 f1; ;mg and j 2 f1; ; ng.
  • 458.
  • 459.
    2 ]0; 1[is an arbitrary scalar, f (R) the joint density of r = (r1; ; rn), w = (w1; ;wn) is an arbitrary vector of portfolio weights, and x+ = max (x; 0) 8x 2 R . In their paper, Rockafellar and Uryasev show that this function is convex in
  • 460.
  • 461.
  • 462.
  • 463.
    ), we have CV aR (w) = F (w;
  • 464.
    ) , and V aR (w) =
  • 465.
  • 466.
    nitions, let usnow go back to the problem of the time t portfolio p optimization. Let us assume that we know work with the market model described in subsection 4.5, which allowed us to obtain a sample bx t+1 i = bxt+1 1;i ; ; bxt+1 n;i with i 2 [1; ; l] from the estimated distribution of returns over the next period with probabilities initially set as pi;t+1 = 1=l 8i 2 [1; ; l]. Discretization of the integral of equation (84) on this sample yields CV aR (wp;tjIt) = min
  • 467.
    + 1 1 p t+1 w p;tbx t+1
  • 468.
    + (85) Then with x+ = argmin s, we add the slack variables si = 1=l 8i 2 [1; ; l] to obtain sx0;s0 CV aR (wp;tjIt) = min
  • 469.
  • 470.
    + 1 1 p t+1s ; (86) C 8 : p;tbx si + w t+1 i +
  • 471.
    0 8i 2[1; ; l] si 0 8i 2 [1; ; l] Pn i=1 wp i;t = 1 ; (87) In what follows, we consider the mean-CV aR optimization with a
  • 472.
    xed target risktr and we Parameters
  • 473.
    wp 1;t wp n;t s1 sl Objective 0 b1 bn 0 0 CV aR constraint
  • 474.
    0 0 p1 1 pl 1 tr Constraint on s1 1 bxt+1 1;1 bxt+1 n;1 1 0 0 0 ... ... ... . . . ... 0 . . . . . . ... ... ... ... ... . . . ... ... . . . . . . 0 ... Constraint on sl 1 bxt+1 1;l bxt+1 n;l 0 0 1 0 Budget constraint 0 1 1 1 0 0 = 1 summarize the optimization problem to obtain the portfolio weights to hold over the next period
  • 475.
    72 Views Integrationin Quantitative Portfolio Allocation in the table above, omitting the positivity constraint on the slack variables for convenience. We observe that this allocation scheme boils down to a linear programming problem on the space ]0; 1[Rn Rl +. However, it remains slow and impractical when using Monte-Carlo simulations, as one needs to adds a number of variable equal to the number of scenarios. Moreover, without hard coded constraints on the portfolio weights, allocations based on linear objective functions suer from the same concentration problems we exposed in the Black-Litterman chapter.