SlideShare a Scribd company logo
1 of 48
BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH
Trần Minh Đức
MỘT SỐ TÍNH CHẤT CỦA MÔĐUN
ĐỐI ĐỒNG ĐIỀU ĐỊA PHƯƠNG
THEO MỘT CẶP IĐÊAN
LUẬN VĂN THẠC SĨ TOÁN HỌC
Thành phố Hồ Chí Minh - 2012
BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH
Trần Minh Đức
MỘT SỐ TÍNH CHẤT CỦA MÔĐUN
ĐỐI ĐỒNG ĐIỀU ĐỊA PHƯƠNG
THEO MỘT CẶP IĐÊAN
Chuyên ngành : Đại số và Lý thuyết số
Mã số : 60 46 05
LUẬN VĂN THẠC SĨ TOÁN HỌC
NGƯỜI HƯỚNG DẪN KHOA HỌC:
PGS.TS. TRẦN TUẤN NAM
Thành phố Hồ Chí Minh - 2012
LỜI CẢM ƠN
Để hoàn thành chương trình cao học và viết luận văn này, tôi đã nhận được
sự hướng dẫn nhiệt tình của quý thầy cô trường Đại học Sư Phạm Thành phố Hồ
Chí Minh, sự động viên và giúp đỡ từ gia đình và bạn bè.
Trước hết, Tôi xin gửi lời biết ơn sâu sắc đến PGS. TS. Trần Tuấn Nam.
Thầy đã quan tâm sâu sắc, dành nhiều thời gian và công sức hướng dẫn để giúp
tôi hoàn thành luận văn thạc sĩ. Thầy đã hướng dẫn tôi từ khi làm luận văn Đại
học, nhiệt tình giúp đỡ và hướng dẫn tôi trong suốt thời gian học cao học và
hoàn thành luận văn Thạc sĩ này
Tôi xin chân thành cảm ơn các thầy cô đã dạy bảo tôi trong suốt quá trình
học tập. Tôi xin cảm ơn thầy Mỵ Vinh Quang, thầy Trần Huyên, thầy Bùi
Tường Trí, thầy Bùi Xuân Hải đã tận tình dạy bảo và cho tôi nhiều kiến thức về
Đại Số cũng như kiến thức về học tập.
Xin cảm ơn các bạn học trong lớp Đại số K21 cũng như các bạn bè và người
thân đã động viên giúp đỡ tôi trong suốt quá trình học tập và làm luận văn.
Cuối cùng, xin cảm ơn gia đình tôi. Gia đình tôi luôn là nguồn động viên tinh
thần to lớn giúp tôi hoàn thành khóa học và luận văn này.
Thành phố Hồ Chí Minh, tháng 8 năm 2012
TRẦN MINH ĐỨC
MỤC LỤC
Trang phụ bìa
Lời cảm ơn
Mục lục
MỞ ĐẦU ....................................................................................................................... 1
Chương 1: KIẾN THỨC CHUẨN BỊ ........................................................................ 3
1.1. Một số bổ đề và định nghĩa ................................................................................. 3
1.2. Bao nội xạ và phép giải nội xạ tối tiểu................................................................ 4
1.3. Dãy chính quy – độ sâu....................................................................................... 5
1.4. Số chiều – hệ tham số.......................................................................................... 6
1.5 . Giới hạn thuận .................................................................................................... 7
1.6. Hàm tử dẫn xuất phải .......................................................................................... 9
1.7. Dãy phổ ............................................................................................................. 10
1.8. Môđun đối đồng điều địa phương ..................................................................... 13
Chương 2: MÔĐUN ĐỐI ĐỒNG ĐIỀU ĐỊA PHƯƠNG THEO MỘT CẶP
IĐÊAN......................................................................................................................... 16
2.1. Hàm tử đối đồng điều địa phương theo một cặp Iđêan..................................... 16
2.2. Môđun đối đồng điều địa phương theo một cặp Iđêan và phức Cech............... 27
2.3. Liên hệ giữa môđun đối đồng điều địa phương theo một cặp Iđêan và môđun
đối đồng điều địa phương......................................................................................... 34
2.4. Tính chất triệt tiêu và không triệt tiêu của môđun đối đồng điều địa phương
theo một cặp Iđêan ................................................................................................... 38
KẾT LUẬN................................................................................................................. 43
TÀI LIỆU THAM KHẢO ......................................................................................... 44
1
MỞ ĐẦU
Đối đồng điều địa phương là lý thuyết tối cần thiết và là một công cụ quan
trọng trong đại số giao hoán và hình học đại số. Trong luận văn này, tôi sẽ trình
bày định nghĩa và các tính chất của môđun đối đồng điều địa phương theo một
cặp iđêan (I, J), đây là một khái niệm tổng quát hơn khái niệm môđun đối đồng
điều địa phương theo một iđêan I.
Trong cả luận văn này, ta giả thiết R là vành Nơte giao hoán và cho I, J là hai
iđêan của R. Ta định nghĩa được hàm tử (I, J)-xoắn , : Mod ModI J R RΓ → là mở
rộng của hàm tử I-xoắn IΓ . Hơn nữa vì tính khớp trái của hàm tử ,I JΓ (Bổ đề
(2.1.3)), với mọi số tự nhiên i ta lấy dãy hàm tử dẫn xuất phải thứ i của ,I JΓ
chính là ,
i
I JH - đây chính là hàm tử đối đồng điều địa phương thứ i theo cặp
iđêan (I, J).
Một khái niệm quan trọng được xem xét trong luận văn chính là tập:
{ }W( , ) ( ) , 1n
I J Spec R I J n=∈ ⊆ p | p+
đây là tập hợp con của ( )Spec R (xem định nghĩa (2.1.6)), mệnh đề (2.1.8) chỉ ra
rằng một R-môđun M là (I, J)-xoắn khi và chỉ khi Supp W( , )M I J⊆ . Ta cũng
lưu ý rằng khi 0J = thì hàm tử ,
i
I JH lại trở thành hàm tử đối đồng điều địa
phương i
IH và tập W( , )I J lại trở thành tập ( )V I , nên có thể thấy W( , )I J là mở
rộng của ( )V I tương ứng theo một cặp iđêan (I, J).
Luận văn được trình bày thành hai chương. Trong chương một tôi sẽ trình
bày mà không chứng minh một số kiến thức về đại số giao hoán, đối đồng điều
địa phương theo một iđêan để chuẩn bị cho độc giả đọc chương hai. Độc giả có
thể bỏ qua chương một để đọc thẳng chương hai, phần chính của luận văn, trình
2
bày tính chất của môđun đối đồng điều địa phương theo một cặp iđêan. Cụ thể
như sau:
Trong phần (2.1) của chương hai tôi sẽ trình bày định nghĩa môđun đối đồng
điều địa phương theo một cặp iđêan, định nghĩa tập W( , )I J và đưa ra một số
tính chất của môđun đối đồng điều địa phương theo một cặp iđêan.
Phần (2.2) trình bày phức Cech suy rộng và đưa ra định nghĩa tương đương
của môđun đối đồng điều địa phương theo một cặp iđêan qua phức Cech suy
rộng (định lý (2.2.4)). Từ đây suy ra được một số hệ quả và tính chất quan trọng
của môđun đối đồng điều địa phương theo một cặp iđêan.
Tới phần (2.3) sẽ là sự liên hệ giữa môđun đối đồng điều địa phương theo
một cặp iđêan và môđun đối đồng điều địa phương theo một iđêan. Định lý
(2.3.2) cho ta thấy một môđun đối đồng điều địa phương theo một cặp iđêan
chính là một giới hạn thuận của những môđun đối đồng điều địa phương theo
một iđêan trong tập W( , )I J . Còn nếu ( , )R m là vành địa phương thì ta có
,
W( , )
( ) lim ( )I J
J I
M M
∈
Γ = Γ

 m
m
.
Và phần (2.4) chính là phần trung tâm của luận văn, sẽ trình bày các định lý
về sự triệt tiêu và không triệt tiêu của môđun đối đồng điều địa phương theo một
cặp iđêan. Đặc biệt định lý (2.4.1) cho ta đẳng thức:
,inf { | ( ) 0} inf {depth | W( , )}i
I Ji H M M I J≠= ∈p p
đây chính là mở rộng của định lý triệt tiêu và không triệt tiêu của Grothendieck
trong trường hợp M là môđun hữu hạn sinh.
Mặc dù có nhiều cố gắng trong quá trình làm luận văn nhưng do sự hạn hẹp
trong kiến thức và thời gian nên có thể trong luận văn còn nhiều sai sót, rất
mong được sự nhận xét và phản hồi của quý thầy cô và các bạn.
3
CHƯƠNG 1: KIẾN THỨC CHUẨN BỊ
Trong chương này cũng như là trong toàn bộ luận văn khi ta nói đến vành R
thì R chính là vành Nơte giao hoán có đơn vị.
1.1. Một số bổ đề và định nghĩa
Bổ đề 1.1.1.(Nakayama) Cho R là một vành, M là một R-môđun hữu hạn sinh, I
là một iđêan của R. Giả sử IM M= , khi đó tồn tại x I∈ sao cho (1 ) 0x M+ =.
Nếu R là vành địa phương và I là iđêan thực sự thì ta suy ra 0M = .
Bổ đề 1.1.2. (Artin-Rees) Cho R là một vành, M là một R-môđun hữu hạn sinh, I
là một iđêan của R và N là R-môđun con của M. Khi đó tồn tại số tự nhiên 0n đủ
lớn sao cho: 0 0
( )n n nn
I M N I I M N−
∩= ∩ với mọi 0n n≥ .
Định nghĩa 1.1.3. Cho M là một R-môđun. Ta định nghĩa các tập hợp con của
tập ( )Spec R các iđêan nguyên tố của R sau:
Supp { ( ) | 0}
As { ( ) | : Ann( )}
Min { ( ) | Supp : }
M Spec R M
s M Spec R x M x
M Spec R M
=∈ ≠
= ∈ ∃ ∈ =
= ∈ ∀ ∈ ⊆ ⇒
pp
p p
p q q p q = p
Tập Supp M được gọi là giá của M, tập Ass M được gọi là tập các iđêan
nguyên tố liên kết của M. Tập Min M chính là tập hợp các phần tử tối tiểu của
tập Supp M .
Mệnh đề 1.1.4. Với mọi R-môđun M ta có bao hàm thức sau:
Min As SuppM s M M⊆ ⊆
Định nghĩa 1.1.5. Cho I là một iđêan của R. Ta đặt:
( ) { ( ) | }V I Spec R I=∈ ⊆p p
4
Mệnh đề 1.1.6. Nếu M, N là các R-môđun hữu hạn sinh thì ta có:
Supp ( ( ))
Supp Supp Supp
M V Ann M
M N M N
=
⊗= ∩
Mệnh đề 1.1.7. Cho dãy khớp các R-đồng cấu: 0 0L M N→ → → →
Thì ta có:
As As As
Supp Supp Supp
s M s L s N
M L N
⊆ ∪
= ∪
1.2. Bao nội xạ và phép giải nội xạ tối tiểu
Định nghĩa 1.2.1. Cho 0 M N≠ ⊆ là các R-môđun. Môđun N được gọi là mở
rộng thiết yếu của M nếu với mọi môđun 0 'N N≠ ⊆ ta đều có: ' 0N M∩ ≠ .
Định lý-Định nghĩa 1.2.2. Cho M là một R-môđun. Khi đó tồn tại duy nhất (sai
khác một đẳng cấu) R-môđun nội xạ E là mở rộng thiết yếu của M. Ta gọi E là
bao nội xạ của M và ký hiệu ( )E E M= .
Định nghĩa 1.2.3. Một R-môđun 0M ≠ được gọi là môđun không phân tích
được nếu M không là tổng trực tiếp của hai môđun con thực sự.
Định lý 1.2.4. (Matlis) Cho E là một R-môđun nội xạ thì ta có:
i. Tồn tại duy nhất một cách phân tích: i
i I
E E
∈
= ⊕ trong đó mỗi iE là môđun nội
xạ không phân tích được.
ii. Nếu E là môđun nội xạ không phân tích được thì tồn tại ( )Spec R∈p sao cho
( / )E E R= p . Ngược lại ( / )E R p là môđun nội xạ không phân tích được với mọi
( )Spec R∈p .
Mệnh đề 1.2.5. Cho vành R, p là một iđêan nguyên tố của R, M là một R-
môđun. Khi đó ta có:
5
i. ( / )E R p là hạng tử trực tiếp của ( )E M khi và chỉ khi As ( )s M∈p .
ii. { }As ( ( / ))s E R =p p .
Định nghĩa 1.2.6. Cho M là một R-môđun, phép giải nội xạ tối tiểu của M là
một phép giải nội xạ của M:
0 1
0 1 2
0 .....d d
M E E Eε
→ → → → →
trong đó 0 1 2 1
( ), (coker ), (coker ),....E E M E E E E dε= = =
Mỗi phép giải nội xạ tối tiểu là duy nhất (sai khác nhau một đẳng cấu). Theo
định lý về phân tích môđun nội xạ ta có:
( , )
( )
( / ) i Mi
Spec R
E E R µ
∈
= ⊕ p
p
p
Trong đó ( , )i Mµ p là số bản sao của ( / )E R p trong tổng trực tiếp, ta gọi
( , )i Mµ p là số Bass thứ i của M theo p.
Định lý 1.2.7.(Bass) Cho ( )Spec R∈p , ( )
R
k
R
= p
p
p
p
và M là một R-môđun. Khi
đó ta có:
( ) ( )( , ) dim Ext ( ( ), ) dim (Ext ( / , ))i i
i k R k RM k M R Mµ= =pp p p pp p p
1.3. Dãy chính quy – độ sâu
Định nghĩa 1.3.1. Cho M là một R-môđun. Dãy các phần tử 1 2, ,...., nx x x trong R
được gọi là dãy M- chính quy nếu 1 2( , ,...., )nx x x M M≠ và ix không là ước của
không trong
1 2 1( , ,...., )i
M
x x x M−
với mọi 1,2,...i n= .
Định nghĩa 1.3.2. Cho M là một R-môđun và I là một iđêan của Rthỏa mãn
IM M≠ . Ta định nghĩa độ sâu của M trong I là:
6
{ }1depth ( , ) sup | ( ,..., )R nI M n x x M I= laø daõy -chính quy trong
Nếu ( , )R m là vành địa phương thì ta ký hiệu: depth : depth ( , )R RM M= m
Định lý 1.3.3. Cho M là một R-môđun hữu hạn sinh và I là một iđêan của R
thỏa mãn IM M≠ . Ta có:
depth ( , ) inf{ | Ext ( / , ) 0}
inf{depth | ( )}
i
R R
R
I M i R I M
M V I
= ≠
= ∈p p p
Mệnh đề 1.3.4. Cho M là một R-môđun hữu hạn sinh và I là một iđêan của R
thỏa mãn IM M≠ . Ta có: depth inf{ | ( , ) 0}R iM i Mµ= ≠p p p .
1.4. Số chiều – hệ tham số
Định nghĩa 1.4.1. Cho vành R. Số chiều của R, ký hiệu dim(R) chính là
supremum của độ dài những dây chuyền (nghiêm ngặt) các iđêan nguyên tố
trong R:
0 1dim sup{ | .... , ( ) 0,1,..., }n iR n Spec R i n= ∃ ⊂ ⊂ ⊂ ∈ ∀=p p p p
Cho M là một R-môđun thì số chiều của M chính là supremum của độ dài
những dây chuyền (nghiêm ngặt) các iđêan nguyên tố trong Supp(M):
0 1dim sup{ | .... , Supp(M), 0,1,..., }n iM n i n= ∃ ⊂ ⊂ ⊂ ∈ ∀=p p p p
Nếu M = 0 ta đặt dim M= –1.
Mệnh đề 1.4.2. Cho M, N là các R-môđun hữu hạn sinh.Ta có
dim dim( / Ann( ))
dim( ) dim / (Ann( ) Ann( ))
M R M
M N R M N
=
⊗= +
Định nghĩa 1.4.3. Cho ( , )R m là vành địa phương, M là một R-môđun hữu hạn
sinh. Đặt 1 2 1d inf{ | , ,...., : ( / ( ,..., ) ) { }},n nn x x x Supp M x x M= ∃ ∈ =m m dãy
7
1 2, ,...., dx x x ngắn nhất các phần tử trong m thỏa 1( / ( ,..., ) ) { }dSupp M x x M = m
được gọi là một hệ tham số của M.
Mệnh đề 1.4.4. Cho ( , )R m là vành địa phương, M là một R-môđun hữu hạn
sinh. Dãy 1 2, ,...., dx x x là một hệ tham số của M khi và chỉ khi nó là dãy ngắn
nhất các phần tử trong m thỏa mãn 1 2( , ,...., ) Ann( )dx x x M+ là iđêan m -nguyên
sơ.
Định lý 1.4.5. Cho ( , )R m là vành địa phương, 0M ≠ là R-môđun hữu hạn sinh,
d( )M là độ dài của hệ tham số của M. Khi đó ta có:
d( ) dimM M=
Mệnh đề 1.4.6. Cho( , )R m là vành địa phương, M là R-môđun hữu hạn sinh.
Một dãy M-chính quy có thể mở rộng thànhmột hệ tham số của M. Từ đây ta suy
radepth dimM M≤ .
Mệnh đề 1.4.7. Cho ( , )R m là vành địa phương và 1 2, ,...., nx x x là một dãy trong
m , M là một R-môđun hữu hạn sinh. Khi đó ta có:
1
dim dim
( ,.., )n
M M n
x x M
≥ − .
dấu bằng xảy ra khi và chỉ khi 1 2, ,...., nx x x là một bộ phận của hệ tham số của M.
1.5 . Giới hạn thuận
Định nghĩa 1.5.1. Cho R là một vành, ( , )I ≤ là một tập được sắp thứ tự bộ phận.
Một hệ thuận trong phạm trù các R-môđun là: (( ) ,( ) )i
i i I j i jM ψ∈ ≤ , trong đó ( )i i IM ∈
là một họ các R-môđun, ( : )i
j i j i jM Mψ ≤→ là họ các R-đồng cấu sao cho
Id i
i
i Mψ = với mọi i I∈ và biểu đồ sau đây là giao hoán với mọi i j k≤ ≤ .
8
i
j
i j
k k
i j
k
M M
M
ψ
ψ ψ
→
Định nghĩa 1.5.2. Cho (( ) ,( ) )i
i i I j i jM ψ∈ ≤ là một hệ thuận trong phạm trù các R-
môđun. Khi đó tồn tại một R-môđun lim i
i I
M
∈
 và họ các đồng cấu
( : lim )i i i i I
i I
M Mα ∈
∈
→  sao cho:
i. i
j j iα ψ α= với mọi i j≤ .
ii. Cho N là một R-môđun, và họ các đồng cấu :i if M N→ thỏa mãn i
j j if fψ =
với mọi i j≤ . Khi đó tồn tại duy nhất đồng cấu :lim i
i I
M Nθ
∈
→ sao cho biểu đồ
sau là giao hoán với mọi i I∈ :
lim
i
i
f
i
i
i I
M N
M
α θ
∈
→

lim i
i I
M
∈
 được gọi là giới hạn thuận của hệ thuận (( ) ,( ) )i
i I j i jM ϕ∈ ≤ .
Định nghĩa 1.5.3. Tập sắp thứ tự ( , )I ≤ được gọi là tập trực tiếp nếu với mọi
,i j I∈ tồn tại k I∈ sao cho i k≤ và j k≤ .
Mệnh đề 1.5.4. Cho (( ) ,( ) )i
i i I j i jM ψ∈ ≤ là một hệ thuận trong phạm trù các R-
môđun, ( , )I ≤ là tập trực tiếp, :i
j i jM Mψ → là các phép nhúng với mọi i j≤ . Nếu
ta đặt: ii I
M M∈
=  và xét họ các ánh xạ nhúng ( : )i i i IM Mα ∈→ . Khi đó M
chính là giới hạn thuận của (( ) ,( ) )i
i I j i jM ψ∈ ≤ .
9
Định lý 1.5.5. Giới hạn thuận là giao hoán với tích tenxơ. Nếu(( ) ,( ) )i
i i I j i jM ψ∈ ≤ là
một hệ thuận, N là một R-môđun thì ta có đẳng cấu tự nhiên sau:
(lim ) lim( )i i
i I i I
M N M N
∈ ∈
⊗ ≅ ⊗ 
Mệnh đề 1.5.6. Giới hạn thuận là bảo toàn tính khớp. Cụ thể, nếu I là tập trực
tiếp và { , }i
i jL α , { , }i
i jM β ,{ , }i
i jN γ là các hệ thuận các R-môđun trên I. Xét họ các
đồng cấu ( : )i i ir L M→ và ( : )i i is M N→ sao cho với mỗi i I∈ thì dãy sau đây là
dãy khớp:
0 0i i iL N M→ → → →
Thì ta sẽ có dãy khớp sau đây:
0 lim lim lim 0i i i
i I i I i I
L N M
∈ ∈ ∈
→ → → →  
Mệnh đề 1.5.7.Trên vành Nơte, giới hạn thuận của những môđun nội xạ là một
môđun nội xạ.
1.6. Hàm tử dẫn xuất phải
Định nghĩa 1.6.1. Cho :T →  là hàm tử cộng tính hiệp biến,  và  là hai
phạm trù Abel trong đó  là đủ nội xạ. Ta định nghĩa hàm tử dẫn xuất phải
:n
R T → với mỗi 0n ≥ như sau:
Với mỗi vật B ta chọn một phép giải nội xạ ( )B•
E :
0 1
0 1 2
0 ....d d
E E E→ → → →
Tác động hàm tử T vào phép giải, sau đó lấy đối đồng điều thứ n:
1
Ker
( ) : ( ( ( ))
Im
n
n n
n
Td
R T B H T B
Td
•
−
= =E
10
Định nghĩa này là tốt, không phụ thuộc vào cách chọn phép giải nội xạ.
Định lý 1.6.2. Cho :T →  là hàm tử cộng tính hiệp biến và khớp trái,  và
 là hai phạm trù Abel trong đó  là đủ nội xạ. Dãy 0( )n
nR T ≥ là dãy hàm tử dẫn
xuất phải của T khi và chỉ khi thỏa mãn:
i. Có đẳng cấu tự nhiên giữa hai hàm tử: 0
R T T≅ .
ii. Với mọi E là vật nội xạ trong  , ta đều có: ( ) 0n
R T E = với mọi 1n ≥ .
iii. Với mọi dãy khớp trong  :0 0L M N→ → → → ta có dãy khớp dài với
đồng cấu nối tự nhiên:
0 0 0 1 1
1 1
0 ( ) ( ) ( ) ( ) ( ) ....
.... ( ) ( ) ( ) ( ) ( ) ....n n n n n
R T L R T M R T N R T L R T M
R T N R T L R T M R T N R T L− +
→ → → → → →
→ → → → → →
1.7. Dãy phổ
Định nghĩa 1.7.1. Một môđun song phân bậc là một họ các R-môđun:
( ), ( , )p q p q
M M
∈ ×
=
 
Nếu M, N là các môđun song phân bậc, một đồng cấu song phân bậc
:f M N→ có bậc là (a, b) là một họ các đồng cấu: , , ,( : )p q p q p a q bf f M M + += → .
Bậc của f được ký hiệu là: deg( ) ( , )f a b= .
Nếu ta có đồng cấu song phân bậc :f M N→ với deg( ) ( , )f a b= thì ta định
nghĩa , ,Im (Im ) ( )p a q b p qf f N− −= ⊆ , , ,er ( er ) ( )p q p qK f K f M= ⊆
Cho dãy các đồng cấu song phân bậc f g
M N P→ → , dãy này được gọi là
khớp nếu Im f Ker g= .
Từ đây, nếu loại bỏ q thì ta định nghĩa được môđun phân bậc và đồng cấu
phân bậc một cách tương tự.
11
Định nghĩa 1.7.2. Một lọc của một R-môđun M là một họ ( )p pM ∈ các R-môđun
con của M thỏa mãn 1p pM M +⊆ với mọi p:
1 1... ...p p pM M M− +⊆ ⊆ ⊆ ⊆
Cho C là một phức, một lọc của Clà họ các phức con ( )p pF ∈C  của C thỏa
mãn 1p pF F +⊆C C với mọi p:
1 1... ...p p pF F F− +⊆ ⊆ ⊆ ⊆C C C
Định nghĩa 1.7.3. Cho ( , )M d , trong đó M là một môđun song phân bậc, d là
một đồng cấu song phân bậc có bậc là (a, b) thỏa mãn . 0d d = . Khi đó ta định
nghĩa được đồng điều ( , )H M d là một môđun song phân bậc với:
,
,
,
er
( , )
Im
p q
p q
p a q b
K d
H M d
d − −
=
Định nghĩa 1.7.4. Một dãy phổ là một dãy 1( , )r r
rE d ≥ trong đó r
E là các môđun
song phân bậc, thỏa mãn 0r r
d d = và 1
( )r r
E H E+
= với mọi 1r ≥ .
Nếu 1( , )r r
rE d ≥ là một dãy phổ, ta có 2 1 1 2 2
( , ) /E H E d Z B= = trong đó 2
Z là
chu trình và 2
B là bờ với 2 2 1
B Z E⊆ ⊆ . Lại có
3 3 2 3 2 2 2 2
( / ) / ( / ) ( / , )E Z B B B H Z B d= = (ta có thể xem 3 3 3
/E Z B= ) với
2 3 3 2 1
B B Z Z E⊆ ⊆ ⊆ ⊆ . Vậy nếu ta quy nạp theo r thì ta có /r r r
E Z B= với:
2 3 3 2 1
... .....r r
B B B Z Z Z E⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ (*)
Định nghĩa 1.7.5. Cho 1( , )r r
rE d ≥ là một dãy phổ, họ 1( , )r r
rZ B ≥ được cho như
trên thỏa mãn (*), đặt 1
r
r
Z Z∞
≥
=  và 1
r
r
B B∞
≥
=  . Ta định nghĩa giới hạn của
dãy phổ là môđun song phân bậc E∞
được định nghĩa bởi:
, , ,/p q p q p qE Z B∞ ∞ ∞
=
12
Định nghĩa 1.7.6. Cho ( )p
pF ∈C  là lọc của phức Cvà họ phép nhúng
:p p
i F → C . Từ đây cảm sinh ra * : ( ) ( )p p
i H F H• •→ C . Ta định nghĩa lọc cảm
sinh của ( )nH C :
*( ) Imp p
nH iΦ =C
Nếu với mỗi n tồn tại svà t sao cho {0}s
nHΦ =và t
n nH HΦ = thì ta nói lọc
( )p
nHΦ là bị chặn. Khi đó ta có dây chuyền sau với mỗi n.
1
{0}= ......s s t
n n n nH H H H+
Φ ⊆ Φ ⊆ ⊆ Φ =
Định nghĩa 1.7.7. Một dãy phổ 1( , )r r
rE d ≥ được gọi là hội tụ đến một môđun
phân bậc H:
2
,p q p qE H +⇒
nếu có một lọc bị chặn ( )p
p qH +Φ của H sao cho: 1.
p
p q
pp q
p q
H
E
H
∞ +
−
+
Φ
≅
Φ
.
Định nghĩa 1.7.8. Dãy phổ 1( , )r r
rE d ≥ được gọi là suy biến theo trục p nếu
2
, {0}p qE = với mọi 0q ≠ . Dãy phổ 1( , )r r
rE d ≥ được gọi là suy biến theo trục q
nếu 2
, {0}p qE = với mọi 0p ≠ .
Định nghĩa 1.7.9: Dãy phổ 1( , )r r rE d ≥ được gọi là dãy phổ góc phần tư thứ ba
nếu ,
{0}p q
rE = với mọi 0p > hoặc 0q > .
Mệnh đề 1.7.10.Cho dãy phổ 1( , )r r rE d ≥ góc phần tư thứ ba hội tụ ,
2
p q p q
E H +
⇒ .
i. Nếu dãy phổ suy biến theo trục p, ta có: ,0
2
n n
H E≅ .
ii. Nếu dãy phổ suy biến theo trục q, ta có: 0,
2
n n
H E≅ .
13
Định nghĩa 1.7.11. Cho  là một phạm trù Abel đủ nội xạ, :F b→  là
hàm tử cộng tính. Một vật B của  được gọi là F-tuần hoàn phải nếu
( ) {0}p
R F B = với mọi 1p ≥ .
Định lý 1.7.12.(Grothendieck) Cho G F
→ →   là các hàm tử hiệp biến,
cộng tính , ,   là các phạm trù Abel đủ nội xạ. Giả sử F là khớp trái và GE là
tuần hoàn phải với mọi vật nội xạ E trong  . Khi đó với mọi vật A trong  , ta
có dãy phổ góc phần tư thứ ba sau:
,
2 ( )( ) ( )p q p q p q
E R F R G A R FG A+
= ⇒
1.8. Môđun đối đồng điều địa phương
Định nghĩa 1.8.1. Cho R là vành, I là một iđêan của R, M là một R-môđun.
Đặt
( ) { | 0, 1}n
I M x M I x nΓ =∈ = 
Ta thấy ( )I MΓ là một R-môđun con của M. Mặt khác với mọi R-đồng cấu
:f M N→ thì ( ( )) ( )I If M NΓ ⊆ Γ nên ta định nghĩa được ( ): ( ) ( )I I If M NΓ Γ → Γ
là thu hẹp của f lên ( )I MΓ .
Với định nghĩa như trên có thể chứng minh được IΓ là một hàm tử cộng
tính, R-tuyến tính và khớp trái. Hàm tử IΓ được gọi là hàm tử I-xoắn.
R-môđun M được gọi là môđun I-xoắn nếu ( )I M MΓ =. R-môđun M được
gọi là môđun I-không xoắn nếu ( ) 0I MΓ =.
Bây giờ ta xét các hàm tử dẫn xuất phải của hàm tử khớp trái IΓ với mọi
0i ≥ và ta gọi đây là hàm tử đối đồng điều địa phương thứ i theo iđêan I:
:i i
I IH R= Γ
14
Môđun ( )i
IH M được gọi là môđun đối đồng điều địa phương thứ i theo iđêan
I.
Mệnh đề 1.8.2. Cho M là một R-môđun. Ta có ( ) Supp( ) ( )I M M M V IΓ = ⇔ ⊆ .
Đối đồng điều địa phương có nhiều cách định nghĩa tương đương. Sau đây là
định nghĩa theo giới hạn thuận của hàm tử Ext và định nghĩa theo phức Cech.
Định lý 1.8.3. Cho M là một R-môđun, I là một iđêan của R. Ta có đẳng cấu tự
nhiên sau với mọi 0i ≥ :
( ) limExt ( / , )i i n
I R
n
H M R I M
∈
≅


Định nghĩa 1.8.4. Cho vành R, phần tử a thuộc R. Ta định nghĩa:
{ | }n
aS a n= ∈
Ta thấy aS là một tập con nhân của R. Do đó với mỗi R-môđun M ta định
nghĩa môđun các thương của M:
1
a aM S M−
=
Ta định nghĩa phức Cech theo một phần tử a thuộc R là:
1
(0 0)aS
a aC R R
−
•
= → → →
Với 1,..., na a=a là một dãy các phần tử trong R. Ta định nghĩa phức Cech
theo 1,..., na a=a là:
1
1
(0 ( ) ....)
i
i i j
s
a
i
s
a a a
i i j
C C
R R R
• •
=
= <
= ⊗
= → → → →∏ ∏
a
15
Do vành ta đang xét là vành Nơte, nên mỗi iđêan I của R là hữu hạn sinh. Từ
đây ta có định nghĩa đối đồng điều địa phương thông qua phức Cech.
Định lý 1.8.5. Cho R là vành, 1 2( ) ( , ,..., )nI a a a= =a là iđêan của R, M là một R-
môđun. Ta có đẳng cấu tự nhiên sau với mọi 0i ≥ :
( ) ( )i i
IH M H M C•
≅ ⊗ a
Sau đây là định lý triệt tiêu và không triệt tiêu nổi tiếng của Grothendieck
Định lý 1.8.6. (Grothendieck) Cho M là một R-môđun, I là một iđêan của R.
Ta có:
( ) 0i
IH M = với mọi dimi M>
Định lý 1.8.7. (Grothendieck) Cho( , )R m là một vành địa phương, M là một R-
môđun hữu hạn sinh, I là một iđêan của R. Ta có:
( ) 0n
H M ≠m với dimn M=
Định lý 1.8.8. Cho M là một R-môđun hữu hạn sinh, I là một iđêan của R. Khi
đó ta có:
inf{ | ( ) 0} depth ( , ) inf{depth | ( )}i
I Ri H M I M M V I≠= = ∈p p
16
Chương 2: MÔĐUN ĐỐI ĐỒNG ĐIỀU ĐỊA PHƯƠNG
THEO MỘT CẶP IĐÊAN
Trong chương này ta cũng luôn giả thiết R là vành Nơte giao hoán có đơn vị.
2.1. Hàm tử đối đồng điều địa phương theo một cặp Iđêan
Định nghĩa 2.1.1.Cho M là một R-môđun; I, J là hai iđêan của R, ta định nghĩa
tập:
{ }, ( ) | , 1n
I J M x M I x Jx nΓ =∈ ⊆ 
ta thấy ( )n n
I x Jx I Ann x J⊆ ⇔ ⊆ + do đó { }, ( ) | ( ) , 1n
I J M x M I Ann x J nΓ =∈ ⊆ + 
từ đây ta có thể chứng minh được , ( )I J MΓ là một R-môđun con của M.
Cho :f M N→ là một đồng cấu R-môđun. Ta có , ,( ( )) ( )I J I Jf M NΓ ⊆ Γ và
do đó ta định nghĩa R-đồng cấu , , ,( ) : ( ) ( )I J I J I Jf M NΓ Γ → Γ chính là thu hẹp của
f trên , ( )I J MΓ . Từ đây ta định nghĩa được hàm tử , ( )I JΓ −
Định nghĩa 2.1.2.Hàm tử , :I J R RMod ModΓ → là một hàm tử hiệp biến cộng
tính, ta gọi đây là hàm tử (I,J)-xoắn.
Với M là một R-môđun ta định nghĩa , ( )I J MΓ là môđun (I, J)-xoắn của M.
Nếu , ( )I J M MΓ =ta nói M là môđun (I, J)-xoắn, nếu , ( ) 0I J MΓ =ta nói M là
môđun (I, J)-không xoắn.
Nhận xét rằng khi J = 0 thì ,I J IΓ ≡ Γ là hàm tử I-xoắn quen thuộc trong đối
đồng điều địa phương.
Bổ đề 2.1.3.Hàm tử (I,J)-xoắn , ( )I JΓ − là hàm tử khớp trái.
17
Chứng minh.
Cho dãy khớp các R-môđun: 0 0
f g
L M N→ → → → ta cần chứng minh dãy:
, ,( ) ( )
, , ,0
I J I Jf g
I J I J I JL M N
Γ Γ
→ Γ → Γ → Γ là khớp.
Do , ( )I J fΓ là thu hẹp của fnên , ( )I J fΓ là đơn cấu. Hơn nữa vì , ( )I J gΓ là thu
hẹp của g và . 0g f = ta suy ra , ,( ). ( ) 0I J I Jg fΓ Γ =do đó , ,Im ( ) ( )I J I Jf Ker gΓ ⊆ Γ
Ta chỉ cần chứng minh , ,Im ( ) ( )I J I Jf Ker gΓ ⊇ Γ .
, ( )I Jx Ker g∀ ∈ Γ , ta có ( ) 0g x = và , ( )I Jx M∈Γ . Do đó có 1n ≥ sao cho
( )n
I Ann x J⊆ + và tồn tại : ( )y L f y x∈ =, do f là đơn cấu nên ta có:
( ) ( ( )) ( )n
I Ann x J Ann f y J Ann y J⊆ += += +
Vậy , ,( ) Im ( )I J I Jy L x f∈Γ ⇒ ∈ Γ suy ra , ,Im ( ) ( )I J I Jf Ker gΓ ⊇ Γ ta có điều
phải chứng minh.

Định nghĩa 2.1.4. Với i là số tự nhiên, ta định nghĩa hàm tử dẫn xuất phải thứ i
của ,I JΓ là hàm tử ,
i
I JH : hàm tử đối đồng điều địa phương thứ i theo cặp iđêan
I,J.
Với M là một R-môđun ta định nghĩa , ( )i
I JH M là môđun đối đồng điều địa
phương thứ i của M theo (I,J).
Nhận xét rằng nếu J = 0 thì ,0I IΓ ≡ Γ nên suy ra ,0
i i
I IH H≡ , hàm tử đối đồng
điều địa phương theo một cặp iđêan chính là mở rộng của hàm tử đối đồng điều
địa phương quen thuộc.
18
Sau đây là một số tính chất cơ bản của môđun đối đồng điều địa phương theo
cặp iđêan (I, J).
Mệnh đề 2.1.5.Cho I, I’, J, J’ là các iđêan của vành R; i là số tự nhiên bất kỳ và
M là một R-môđun. Ta có:
i. , ', ' ', ' ,( ( )) ( ( ))I J I J I J I JM MΓ Γ =Γ Γ .
ii. Nếu 'I I⊆ thì , ',( ) ( )I J I JM MΓ ⊇ Γ .
iii. Nếu 'J J⊆ thì , , '( ) ( )I J I JM MΓ ⊆ Γ .
iv. , ', ',( ( )) ( )I J I J I I JM M+Γ Γ =Γ .
v. , , ' , ' , '( ( )) ( ) ( )I J I J I JJ I J JM M M∩Γ Γ =Γ =Γ .
vi. , ,( ) ( )i i
I J J I JH M H M+ = .
vii. , ,
( ) ( )i i
I J I J
H M H M= .
viii. , ,
( ) ( )i i
I J I J
H M H M= .
Chứng minh. Các tính chất này đều được suy ra từ định nghĩa và chứng minh
khá dễ dàng. Sau đây là chứng minh của phần (vii).
Đầu tiên ta chứng minh tính chất này cho hàm tử (I, J)-xoắn.
( )⊇ Lấy ,
( )i
I J
x M∈Γ thì tồn tại n∈ sao cho: ( )
n
I Ann x J⊆ + , ta suy ra:
( )
n
n
I I Ann x J⊆ ⊆ + , từ đây suy ra , ( )i
I Jx M∈Γ .
( )⊆ Ngược lại lấy , ( )i
I Jx M∈Γ thì tồn tại n∈ sao cho: ( )n
I Ann x J⊆ + , do
R là vành Nơte nên tồn tại m∈ sao cho
m
I I⊆ do đó
.
( )
m n
n
I I Ann x J⊆ ⊆ +
nên suy ra ,
( )i
I J
x M∈Γ .
19
Vậy ta có: , ,I J I J
Γ ≡ Γ mà do hàm tử dẫn xuất phải là duy nhất nên ta có điều
phải chứng minh.

Ta biết rằng tính chất của môđun đối đồng điều địa phương ( )i
IH M có liên hệ
chặt chẽ đến tập hợp { }( ) ( )V I Spec R I=∈ ⊆p | p . Và khi ta mở rộng lên thành
môđun đối đồng điều địa phương theo một cặp iđêan thì ta có tập hợp sau.
Định nghĩa 2.1.6. Cho I, J là hai iđêan của R. Ta định nghĩa tập hợp sau:
{ }W( , ) ( ) , 1n
I J Spec R I J n=∈ ⊆ p | p+
nhận xét rằng khi J = 0 thì W( , ) ( )I J V I= lại đưa về định nghĩa quen thuộc.
Sau đây là một số tính chất cơ bản của tập W( , )I J .
Mệnh đề 2.1.7.Cho I, I’, J, J’ là các iđêan của vành R. Ta có:
i. Nếu 'I I⊆ thì W( , ) W( ', )I J I J⊇ .
ii. Nếu 'J J⊆ thì W( , ) W( , ')I J I J⊆ .
iii. W( ', ) W( , ) W( ', )I I J I J I J+ = ∩ .
iv. W( , ') W( , ') W( , ) W( , ')I JJ I J J I J I J= ∩ = ∩ .
v. W( , ) W( , ) W( , )I J I J I J= = .
vi. Nếu ( , )R m là vành địa phương, I là iđêan thực sự không là m - nguyên sơ thì:
{ }W( , ) W( , ) ( ) |
I J
I J Spec R I
⊂
 
= ∈ ⊄ 
 
m m p p
vii. ( ) ( )
( ) W( , ) W( , )J J Spec R V I
V I I J I J∈
= = 
20
Chứng minh.
Từ (i) đến (v) chứng minh dễ dàng, sau đây là chứng minh của phần (vi) và
(vii)
(vi) Với ∈ ⇔ ∃ ≥ ⊆ + ⇔ +p m m p p m -W( , ) 0 : laø nguyeânsôn
I n I I hoặc + =p RI
. Nếu ⊂I J thì +J m cũng là m - nguyên sơ hoặc + =m RJ nên W( , )∈ Jp m .
Mặt khác I không là iđêan m - nguyên sơ nên I⊄p ( nếu ⊆p I thì + =pI I là
iđêan m - nguyên sơ (!)).
Ngược lại, với mọi { }W( , ) ( ) |
⊂
 
∈ ∈ ⊄ 
 
I J
J Spec R Ip m p p . Đặt = +J I p thì
⊂I J , do đó ta được W( , ) W( , )∈ = +J Ip m m p . Từ đó suy ra +I p là iđêan m -
nguyên sơ hoặc + =p RI , ta được điều phải chứng minh.
(vii) Dễ dàng thấy rằng ( ) ( )
( ) W( , ) W( , )∈
⊆ ⊆ J J Spec R V I
V I I J I J , ta cần chứng
minh ( ) ( )
W( , ) ( )∈
⊆J Spec R V I
I J V I . Giả sử ( )∉V Ip , ta có ( )  ( )∈Spec R V Ip và
W( , )∉ Ip p . Suy ra ( ) ( )
W( , )∈
∉J Spec R V I
I Jp . Ta có điều phải chứng minh.

Theo mệnh đề (1.8.2) nếu ( ) ( )⊆Supp M V I thì ( )Γ =I M M , sau đây là mở
rộng của mệnh đề này trong đối đồng điều địa phương theo một cặp iđêan.
Mệnh đề 2.1.8. Cho M là một R-môđun, các mệnh đề sau là tương đương.
i. M là môđun (I, J)-xoắn.
ii. ( ) W( , )⊆Min M I J
iii. As ( ) W( , )⊆s M I J
iv. ( ) W( , )⊆Supp M I J
21
Chứng minh.
Do ( ) As ( ) ( )⊆ ⊆Min M s M Supp M nên ( ) ( ) ( )⇒ ⇒iv iii ii là hiển nhiên.
( ) ( )⇒ii iv : Với ( )∈Supp Mp , tồn tại ( )∈Min Mq sao cho ⊆q p. Vì W( , )∈ I Jq
nên tồn tại 0≥n sao cho ⊆ + ⊆ +n
I J Jq p . Vậy W( , )∈ I Jp .
( ) ( )⇒i iii : Nếu As ( )∈ s Mp thì tồn tại ∈x M sao cho ( )= Ann xp . Vì M là môđun
(I, J)-xoắn nên tồn tại số tự nhiên n sao cho ( )⊆ + ⊆ +n
I J Ann x J p . Do đó
W( , )∈ I Jp .
( ) ( )⇒iv i : Ta cần chứng minh rằng , ( )Γ ⊇I J M M . Với mọi ∈x M , do Rx là
môđun hữu hạn sinh nên tập ( )Min Rx là hữu hạn.Ta đặt tập { }1 2( ) , ...= sMin Rx p p p
. Vì ( ) ( ) ( ) W( , )⊆ ⊆ ⊆Min Rx Supp Rx Supp M I J , nên với mỗi 1≤ ≤i s đều tồn tại
0≥in sao cho ⊆ +in
iI J p . Chọn
1
max( )
≤ ≤
= i
i s
n n thì ⊆ +n
iI J p với mọi 1≤ ≤i s , suy
ra 1 2 1 2( ... ) ...⊆ + ⊆ + ∩ ∩ ∩ns
s sI J Jp p p p p p
Mặt khác 1 2
Supp(R ) Min(R )
( ) (R ) ... s
x x
Ann x Ann x
∈ ∈
= = = ∩ ∩ ∩ p p
= p p p p p , mà R
là vành Noether nên tồn tại 0≥m sao cho ( )1 2 ... ( )∩ ∩ ∩ ⊆
m
s Ann xp p p . Kết hợp
với bên trên ta có: ( )⊆ +mns
I J Ann x , từ đây suy ra , ( )∈ΓI Jx M .

Hệ quả 2.1.9.
1. Các mệnh đề sau đây là tương đương cho phần tử ∈x M .
i. , ( )∈ΓI Jx M
ii. ( ) W( , )⊆Supp Rx I J
22
2. Cho dãy khớp các R-môđun: (*) 0 0→ → → →L M N . Khi đó M là R-môđun
(I,J)-xoắn khi và chỉ khi L và N cũng là R-môđun (I, J)-xoắn.
Chứng minh.
1. ( ) ( )⇒i ii Với , ( )∈ΓI Jx M thì tồn tại 0≥n sao cho
( ) ( )⊆ += +n
I Ann x J Ann Rx J , do đó , ( )Γ =I J Rx Rx nên theo mệnh đề (2.1.8) ta
có ( ) W( , )⊆Supp Rx I J .
( ) ( )⇒ii i Nếu ( ) W( , )⊆Supp Rx I J thì theo mệnh đề (2.1.8) ta có , ( )Γ =I J Rx Rx
nên suy ra , ,( ) ( )∈Γ ⊆ ΓI J I Jx Rx M .
2. Do (*) là dãy khớp nên ta có đẳng thức ( ) ( ) ( )= ∪Supp M Supp N Supp L .
Do đó theo mệnh đề (2.1.8) ta có:
( )
,
,
,
( ) ( ) ( ) W( , )
( ) ( ) W( , )
( ) W( , )
( ) W( , )
( )
( )
I J
I J
I J
M M Supp M I J
Supp N Supp L I J
Supp N I J
Supp L I J
N N
L L
Γ = ⇔ ⊆
⇔ ∪ ⊆
⊆
⇔ 
⊆
Γ =
⇔ 
Γ =
Ta có điều phải chứng minh.

Mệnh đề tiếp theo sẽ chỉ ra mối liên hệ giữa môđun (I,J)-xoắn và môđun I-
xoắn.
Mệnh đề 2.1.10. Nếu M là R-môđun (I,J)-xoắn thì M/JM là I-xoắn. Ta có chiều
ngược lại nếu M là môđun hữu hạn sinh.
Chứng minh. Theo mệnh đề (2.1.8) ta có M là môđun (I,J)-xoắn khi và chỉ khi
( ) W( , )⊆Supp M I J .
23
Áp dụng mệnh đề (1.8.2) thì ta có M/JM là môđun I-xoắn khi và chỉ khi
( / ) ( )⊆Supp M JM V I
( )⇒ Ta có ( / ) ( / ) ( ) ( ) W( , ) ( )Supp M JM Supp M R J Supp M V J I J V J= ⊗ ⊆ ∩ ⊆ ∩ ⊆
( )V I , do đó M/JM là môđun I-xoắn.
( )⇐ Nếu M là môđun hữu hạn sinh và M/JM là môđun I-xoắn, ta cần chứng
minh M là môđun (I,J)-xoắn.
Cho x M∈ . Theo bổ đề Artin-Rees ta có 1n ≥ thỏa
1
( )n n
J M Rx J J M Rx−
∩ ⊆ ∩ ( )J Rx Jx⊆ ⊆
Mặt khác do M/JM là I-xoắn nên ta có:
( / ) ( / )
( ) ( )
( ) ( )
( / ) ( )
n n
n
Supp M J M Supp M R J
Supp M V J
Supp M V J
Supp M JM V I
= ⊗
= ∩
= ∩
= ⊆
Từ đó suy ra / n
M J M cũng là R-môđun I-xoắn.
Do đó tồn tại 0m ≥ sao cho: m n
I x J M⊆
Suy ra m n
I x J M Rx Jx⊆ ∩ ⊆ nên ,I Jx M∈Γ . Ta có điều phải chứng minh.

Mệnh đề 2.1.11.Cho M là một R-môđun, ta có đẳng thức:
,As ( ( )) As ( ) W( , )I Js M s M I JΓ = ∩
Từ đây ta có , ( ) 0 As ( ) W( , )I J M s M I JΓ ≠ ⇔ ∩ ≠ ∅ .
Chứng minh.
24
( )⊆ Vì ,I J MΓ là môđun (I,J)-xoắn nên theo (2.1.8) ta có ,As ( ) W( , )I Js M I JΓ ⊆ ,
mà ,I J M MΓ ⊆ nên ,As ( ) As ( )I Js M s MΓ ⊆ .
( )⊇ Với mọi As ( ) W( , )s M I J∈ ∩p . Tồn tại { } 0x M∈ sao cho ( )Ann xp = và
tồn tại 0: n
n I J≥ ⊆ + p. Do đó ta có ,( )n
I JI J Ann x x M⊆ + ⇒ ∈Γ .Mặt khác
( )Ann xp = nên ta được ,As ( )I Js M∈ Γp .

Mệnh đề 2.1.12.Cho ( )Spec R∈p , khi đó ta có:
i. W( , )I J∈p thì ( / )E R p là môđun (I, J)-xoắn
ii. W( , )I J∉p thì ( / )E R p là môđun (I, J)-không xoắn
Chứng minh.
i. Với W( , )I J∈p thì ( ) { }As ( / ) W( , )s E R I J= ⊆p p nên ( / )E R p là môđun (I, J)-
xoắn.
ii. Với W( , )I J∉p thì ta có:
( ) { }As ( / ) W( , ) W( , )s E R I J I J∩ =∩ =∅p p
Do đó ( ), ( / ) 0I J E RΓ =p . Ta có điều phải chứng minh.

Mệnh đề 2.1.13. Cho M là R-môđun (I, J)-xoắn. Khi đó tồn tại một phép giải
nội xạ của M sao cho mỗi phần tử đều là R-môđun (I, J)-xoắn.
Chứng minh.
Nhận xét rằng 0
( )E E M= là R-môđun (I, J)-xoắn. Vì 0
As ( ) As ( )s E s M= ⊆
W( , )I J nên theo mệnh đề (2.1.8) thì 0
E là R-môđun (I, J)-xoắn.
25
Do vậy, một R-môđun (I, J)-xoắn có thể nhúng vào một R-môđun (I, J)-xoắn
nội xạ 0
E .
Ta chứng minh quy nạp, giả sử có dãy khớp các R-môđun:
1
0 1
0 ......
n
dn n
M E E E
−
−
→ → → → →
với 0 1
, ..., n
E E E là các R-môđun (I, J)-xoắn và nội xạ.
Đặt 1 1
/ Imn n n
C Coker d E d− −
= = , do đó theo mệnh đề (2.1.9) phần (2) thì C là
R-môđun (I, J)-xoắn. Theo phần đầu của chứng minh ta có thể nhúng C vào một
R-môđun (I, J)-xoắn nội xạ 1n
E +
.
Do cách đặt C và nhúng C vào 1n
E +
ta có hai dãy khớp sau:
1
0 1
1
0 ....
0
n
dn n
n
M E E E C
C E
−
−
+
→ → → → → →
→ →
Vậy ta có dãy khớp:
0 1 1
0 .... n n n
M E E E E− +
→ → → → → →
Ta được điều phải chứng minh.

Hệ quả 2.1.14. Cho M là một R-môđun. Ta có những điều sau:
i. Nếu M là môđun (I, J)-xoắn thì , ( ) 0i
I JH M = , 0i∀ > .
ii. , ,( ( )) 0i
I J I JH MΓ =, 0i∀ > .
iii. ,/ I JM MΓ là R-môđun (I, J)-không xoắn.
iv. , , ,( ) ( / ( ))i i
I J I J I JH M H M M≅ Γ , 0i∀ > .
v. , ( )i
I JH M là (I, J)-xoắn với mọi 0i ≥ .
26
Chứng minh.
i. Theo mệnh đề (2.1.13) ta có phép giải nội xạ của M mà các phần tử đều là R-
môđun (I, J)-xoắn và nội xạ.
0 1
0 .... ....
i
di i
E E E +
→ → → → →
Do đó ta có , ( )i i
I J d dΓ =, 0i∀ ≥ . Từ đây suy ra:
1 1
, , ,( ) er ( ) / Im ( ) er( ) / Im( ) 0i i i i i
I J I J I JH M K d d K d d− −
=Γ Γ = =, 0i∀ > .
Chiều ngược lại của mệnh đề này là đúng nếu như M là R-môđun hữu hạn
sinh. Ta sẽ chứng minh trong hệ quả (2.4.2).
ii. Do ,I J MΓ là R-môđun (I, J)-xoắn nên theo (i) ta có đpcm.
iii. Ta có dãy khớp:
, ,0 ( ) / ( ) 0I J I JM M M M→Γ → → Γ → (*)
Từ đây ta suy ra dãy khớp:
( ) ( ) ( )1
, , , , , , ,0 ( ) / ( ) ( )I J I J I J I J I J I J I JM M M M H M→Γ Γ →Γ →Γ Γ → Γ
Mà ( )1
, , ( ) 0I J I JH MΓ =do (ii) nên ta có:
( ) ( ) ( ) ( ) ( ), , , , , , ,/ ( ) / ( ) / 0I J I J I J I J I J I J I JM M M M M MΓ Γ ≅ Γ Γ Γ =Γ Γ =(đpcm)
iv. Từ dãy khớp (*) ta có dãy khớp dài
( ) ( ) ( )
( ) ( ) ( ) ( )
1
, , , , , , ,
1
, , , , , , ,
0 ( ) / ( ) ( )
.... ( ) / ( ) ( ) ....
I J I J I J I J I J I J I J
i i i i
I J I J I J I J I J I J I J
M M M M H M
H M H M H M M H M+
→ Γ Γ → Γ → Γ Γ → Γ
→ → Γ → → Γ → Γ →
Do ( ), , ( ) 0i
I J I JH MΓ =, 0i∀ > do (ii) nên ta có đẳng cấu:
27
, , ,( ) ( / )i i
I J I J I JH M H M M≅ Γ
v. Lấy một phép giải nội xạ của M:
0 1 1
0 ..... ....
i
di i
E E E E +
→ → → → → →
Với mọi 0i ≥ theo định nghĩa ta có: 1
, , ,( ) er ( ) / Im ( )i i i
I J I J I JH M K d d −
=Γ Γ
mà , ,er ( ) ( )i i
I J I JK d EΓ ⊆ Γ là R-môđun (I, J)-xoắn nên theo mệnh đề (2.1.9) phần
(2) ta có điều phải chứng minh.

2.2. Môđun đối đồng điều địa phương theo một cặp Iđêan và phức
Cech.
Định nghĩa 2.2.1.Cho R là vành, J là một iđêan của R, với mỗi phần tử a R∈ ta
định nghĩa ,a JS là tập con của R chứa tất cả các phần tử có dạng n
a j+ với n∈
và j J∈ .
{ }, | ,n
a JS a j n j J= + ∈ ∈
Nhận xét rằng ,a JS là một tập con nhân của R. Với mỗi R-môđun M, ta ký
hiệu ,a JM là môđun các thương của M theo ,a JS :
1
, ,a J a JM S M−
=
Định nghĩa 2.2.2.Với mỗi phần tử a R∈ , ta định nghĩa phức ,a JC•
như sau:
( )
1
,
, ,0 0a JS
a J a JC R R
−
•
= → → →
trong đó R ở vị trí thứ 0 và ,a JR ở vị trí thứ nhất trong phức. Với một dãy 1,a=a
2 ,... sa a các phần tử trong R, ta định nghĩa phức ,JC•
a như sau:
28
( ) ( )( )1
, ,
1
, , ,, ,
1
0 ... ... ... 0
i
i i
j s
s
J a J
i
s s
a J a J a Ja J a j
i i j
C C
R R R R
• •
=
= <
= ⊗
 
= → → → → → → 
 
∏ ∏
a
Ta thấy rằng nếu 0J = thì phức ,JC•
a sẽ trở thành phức Cech quen thuộc C•
a
trong định nghĩa (1.8.4) theo 1 2, ,... sa a a=a , nên định nghĩa ở trên chính là phức
Cech suy rộng.
Sau đây là một vài tính chất cơ bản của phức Cech suy rộng.
Tính chất 2.2.3. Cho a R∈ ; I,J là hai iđêan của R,khi đó ta có:
i. ,a JS chứa 0 khi và chỉ khi a J∈ .
ii. Nếu a J∈ , thì ta có đẳng cấu giữa các phức aC R•
≅ .
iii. Một iđêan nguyên tố W( , )I J∈p khi và chỉ khi ,a JS∩ ≠ ∅p với mọi a I∈ .
iv. Nếu a I∈ thì ta có ( ), , 0i
I J a JH M = với mọi 0i ≥ .
v. Nếu 1 2( , ,...., )sI a a a= thì ta có dãy khớp sau:
, ,
1
0 ( ) i
s
I J a J
i
M M M
=
→ Γ → → ∏
Chứng minh.
i. Nếu ,0 a JS∈ thì tồn tại 0, :0 n
n j J a j≥ ∈ = + . Ta suy ra n
a j J a J=− ∈ ⇒ ∈ .
Ngược lại nếu a J∈ thì tồn tại ,0: 0n n
a Jn a j J a j S≥ = ∈ ⇒ = − ∈ .
ii. Giả sử rằng a J∈ thì theo (i) ta có ,0 a JS∈ . Từ đây ta suy ra 1
, , 0a J a JR S R−
= =
nên theo định nghĩa thì ( ), 0 0a JC R R•
= → → ≅ .
29
iii. ( )⇒ Với W( , )I J∈p và a I∈ . Khi đó tồn tại 0: n
n I J≥ ⊆ + p. Vì
n n
a I J∈ ⊆ + p nên tồn tại , : n
j J c a j c∈ ∈ =+p . Vậy ,
n
a Jc a j S= − ∈ ∩p nên
,a JS∩ ≠ ∅p .
( )⇐ Giả sử ,a JS∩ ≠ ∅p với mọi a I∈ . Với mỗi a I∈ ta chọn một phần tử
,( ) a Jc a S∈ ∩p , phần tử này có dạng ( )
( ) ( )n a
c a a j a= + với ( ) , ( )n a j a J∈ ∈ . Do
đó ( )
( ) ( )n a
a j a c a J=− + ∈ + p. Mà do R là vành Nơte nên 1 2( , ,..., )sI a a a= ,như
vậy ta chọn được 1 2( ), ( ),.... ( )sn a n a n a sao cho ( )in a
ia J∈ + p với mọi 1 i s≤ ≤ . Đặt
1
( )
s
i
i
n n a
=
= ∑ thì ta được W( , )n
I J I J⊆ + ⇒ ∈p p .
iv. Với a I∈ . Ta chọn E•
là một phép giải nội xạ tối tiểu của M, khi đó ( ) ,a J
E•
là một R-phép giải nội xạ của ,a JM . Do đó ta được ( ) ( ), , , ,( )i i
I J a J I J a JH M H E•
= Γ .
Biểu diễn mỗi i
E thành tổng trực tiếp của các môđun nội xạ
( , )
( )
( / ) i Mi
R
Spec R
E E R µ
∈
= ⊕ p
p
p ta có:
( ) ( ) ,
( , ) ( , )
, ,, ,( ) ( )
( / ) ( / )i i
a J
M Mi
R R a J a Ja J a JSpec R Spec R
E E R E R Rµ µ
∈ ∈
=⊕ =⊕p p
p p
p p
Do đó dựa vào (iii) và giả thiết a I∈ ta được:
( ) ( ),
( , )
, , , , ,
W( , )
( ) ( / ) 0i
a J
Mi
I J a J I J R a J a J
I J
E E R R µ
∈
Γ = ⊕ Γ =p
p
p
Từ đây ta suy ra ( ), , 0i
I J a JH M = với mọi 0i ≥ .
v. Ta chỉ cần chứng minh , ( )I Jx M∈Γ khi và chỉ khi ,
1
er i
s
a J
i
x K M M
=
 
∈ → 
 
∏ .
30
( )⇒ Với , ( )I Jx M∈Γ thì tồn tại số tự nhiên 0n ≥ sao cho n
ia x Jx∈ với mọi
1 i s≤ ≤ . Do đó với mỗi 1 i s≤ ≤ thì tồn tại ib J∈ sao cho ( ) 0n
i ia b x− =và ta cũng
dễ thấy rằng ,( )n
i i a Ja b S− ∈ . Vậy ta suy ra ,
1
er i
s
a J
i
x K M M
=
 
∈ → 
 
∏ .
( )⇐ Với ,
1
er i
s
a J
i
x K M M
=
 
∈ → 
 
∏ Thì với mọi i đều tồn tại ,
in
i a Ja b S+ ∈ sao cho
( ) 0in
ia b x+ =từ đây suy ra n
ia x bx Jx=− ∈ . Do đó tồn tại số n đủ lớn sao cho
, ( )n
I JI x Jx x M⊆ ⇒ ∈Γ .

Định lý 2.2.4. Cho M là một R-môđun, và 1 2( ) ( , ,... )sI a a a= =a là một iđêan của
R. Khi đó với mọi 0i ≥ ta có đẳng cấu tự nhiên sau: ( ), ,( )i i
I J J RH M H C M•
≅ ⊗a .
Chứng minh. Từ mệnh đề (2.2.3) phần (v) ta đã có đẳng cấu tự nhiên:
( )0
, , ( )J I JH C M M•
⊗ ≅ Γa
Với một dãy khớp bất kỳ các R-môđun 0 0L M N→ → → → . Do mỗi phần
tử trong phức ,JC•
a đều là R-môđun phẳng ( vì 1
S M−
là phẳng nếu M là môđun
phẳng) nên ta có dãy khớp của các phức , , ,0 0J J JC L C M C N• • •
→ ⊗ → ⊗ → ⊗ →a a a
. Từ đây ta có được dãy khớp dài:
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
0 0 0 1
, , , ,
1 1
, , , , ,
0 ....
...
J J J J
i i i i i
J J J J J
H C L H C M H C N H C L
H C N H C L H C M H C N H C L
• • • •
− • • • • + •
→ ⊗ → ⊗ → ⊗ → ⊗ →
→ ⊗ → ⊗ → ⊗ → ⊗ → ⊗ →
a a a a
a a a a a
Vậy ta chỉ cần chứng minh ( ), 0i
JH C E•
⊗ =a với mọi R-môđun nội xạ E và
với mọi 0i > . Do sự phân tích thành tổng trực tiếp của môđun nội xạ nên ta chỉ
31
cần chứng minh ( ), ( / ) 0i
JH C E R⊗ =pa với mỗi p là iđêan nguyên tố của R. Ta
sẽ chứng minh bằng quy nạp theo s là độ dài của a .
Nếu 1s = , ta có:
( )1, ,0 ( / ) ( / ) 0J R R a JC E E R E R•
⊗ = → → →p pa
trong đó 1 ,( / )R a JE R p đẳng cấu với ( / )RE R p nếu 1W(( ), )a J∉p và bằng 0 nếu
1W(( ), )a J∈p . Trong cả hai trường hợp này thì ta đều có ( )1
, ( / ) 0JH C E R⊗ =pa .
Bây giờ ta giả sử 1s > , và đặt 2 3' , ,...., sa a a=a . Khi đó ta có đẳng thức
1, , ,J a J JC C C• • •
= ⊗a a' . Do đó theo định lý (1.7.12) ta có dãy phổ góc phần tư thứ ba:
( )( ) ( )1
,
2 , , ,( / ) ( / )p q p q p q
a J J JE H C H C E R H C E R• • + •
= ⊗ ⊗ ⇒ ⊗p pa' a
Theo giả thiết quy nạp thì ta có ( ), ( / ) 0q
JH C E R•
⊗ =pa' với mọi 0q > . Do đó
dãy phổ là suy biến theo trục p, và ta có đẳng cấu:
( ) ( )( )
( )
( )( )
1
1
1
0
, , ,
, ,
, , ,
( / ) ( / )
( ( / ))
0 ( ( / )) ( ( / )) 0
n n
J a J J
n
a J J
n
J J a J
H C E R H C H C E R
H C E R
H E R E R
• • •
•
⊗ = ⊗ ⊗
= ⊗Γ
= → Γ → Γ →
p p
p
p p
a a'
a'
a' a'
Từ đây ta thấy rằng ( ), ( / ) 0n
JH C E R•
⊗ =pa với mọi 2n ≥ . Theo mệnh đề
(2.1.12) thì , ( ( / ))J E RΓ pa' hoặc là bằng 0 hoặc là bằng ( / )E R p . Vậy ta chỉ còn
cần chứng minh rằng ( )( )1
1
,
0 ( / ) ( / ) 0 0a J
H E R E R→ → → =p p nhưng điều này ta
đã chứng minh trong trường hợp 1s = .
Vậy ta có điều phải chứng minh.

32
Hệ quả 2.2.5. Cho M là một R-môđun J-xoắn, 1 2 3, , ,...., sa a a a=a là một dãy các
phần tử của R và iđêan ( )I = a . Khi đó ta có đẳng cấu tự nhiên
,J R RC M C M• •
⊗ ≅ ⊗a a . Từ đó suy ra , ( ) ( )i i
I J IH M H M≅ với mọi số tự nhiên i.
Chứng minh.Với a I∈ , ta có đồng cấu tự nhiên ,: a a JM Mϕ → xác định như sau
( / ) /n n
z a z aϕ = . Đầu tiên chúng ta sẽ chứng minh ϕ là một đẳng cấu.
Giả sử rằng ,( / ) 0n
a Jz a Mϕ = ∈ . Khi đó tồn tại ,m b J∈ ∈ sao cho
( ) 0m
a b z− =. Vì 2 2
( )
l l
m
a b− chia hết cho ( )m
a b− với mọi l ∈ nên
2 2
( ) 0
l l
m
a b z− =. Mặt khác do M là môđun J-xoắn nên tồn tại số tự nhiênl đủ lớn
thì 2
0
l
b z = . Từ đây ta suy ra 2
0
l
m
a z = nên / 0n
az a M= ∈ . Vậy ta chứng minh
được ϕ là đơn cấu.
Để chứng minh ϕ là toàn cấu ta lấy ,w / ( )n
a Jz a b M= − ∈ với z M∈ và b J∈
. Vì Mlà J-xoắn nên tồn tạil đủ lớn sao cho 2
0
l
b z = . Ta viết
2 2
( ) .( )
l l
m m
a b c a b− = − với c R∈ , thì 2
( )
l
m m
a z c a b z= − trong M. Vậy
2 2
w / ( ) / ( / )
l l
n m m
z a b cz a cz aϕ= −= = nên ϕ là toàn cấu.
Do ϕ là một đẳng cấu nên ta có ,a a JM M≅ với mọi a I∈ . Từ đây ta có
,a J R a RC M C M• •
⊗ ≅ ⊗ với mọi a I∈ . Và do đó ta có được đẳng cấu giữa các
phức:
1 2
1 2
, , , ,....
....
s
s
J R a J a J a J
a a a
R
C M C C C M
C C C M
C M
• • • •
• • •
•
⊗ = ⊗ ⊗ ⊗ ⊗
≅ ⊗ ⊗ ⊗ ⊗
= ⊗
a
a
Áp dụng định lý (2.2.4) và định lý (1.8.5) ta được:
33
, ,( ) ( ) ( ) ( )i i i i
I J J R R IH M H C M H C M H M• •
= ⊗ ≅ ⊗ =a a

Mệnh đề 2.2.6. Hàm tử , ( 0)i
I JH i ≥ là giao hoán với giới hạn thuận. Tức là: nếu
{ }|M Iλ λ ∈ là một hệ thuận thì ta sẽ có đẳng cấu tự nhiên:
, ,(lim ) lim( ( ))i i
I J I JH M H Mλ λ
λ λ
≅ 
Chứng minh. Gọi 1 2, ,... sa a a=a là một dãy các phần tử trong R sinh ra I . Theo
định lý (2.2.4) và tính giao hoán của tích tenxơ và hàm tử đối đồng điều với giới
hạn thuận, ta có:
( )
, , ,
, ,
(lim ) lim lim( )
lim ( ) lim( ( ))
i i i
I J J R J R
i i
J R I J
H M H C M H C M
H C M H M
λ λ λ
λ λ λ
λ λ
λ λ
• •
•
   ≅ ⊗ ≅ ⊗   
   
≅ ⊗ ≅
  
 
a a
a

Định lý 2.2.7. Cho I và J là hai iđêan của R, M’ là một R-môđun, : 'R Rϕ → là
một đồng cấu vành thỏa mãn tính chất ( ) . 'J J Rϕ = . Ta có đẳng cấu tự nhiên
giữa hai R’-môđun sau: , ', '( ') ( ')i i
I J IR JRH M H M≅ với mọi số tự nhiên i .
Chứng minh. Đặt 1 2, ,... sa a a=a là dãy các phần tử trong vành R sinh ra iđêan I,
đặt 1 2( ) ( ), ( ),... ( )sa a aϕ ϕ ϕ ϕ=a . Từ giả thiết ta có đẳng thức của hai tập con nhân
trong R’: , ( ), '( )i ia J a JRS Sϕϕ = với mọi 1 i s≤ ≤ . Do đó ta có:
, , ( ), ' ', '( ') ( ') ( ') ( ')i i i i
I J J R J R IR JRH M H C M H C M H Mϕ
• •
≅ ⊗ ≅ ⊗ ≅a a
Ta được điều phải chứng minh.

34
2.3. Liên hệ giữa môđun đối đồng điều địa phương theo một cặp Iđêan
và môđun đối đồng điều địa phương
Định nghĩa 2.3.1. Ta định nghĩa W( , )I J là tập các iđêan a của R sao cho tồn tại
0: n
n I J≥ ⊆ +a . Sau đó ta trang bị cho W( , )I J một quan hệ thứ tự bộ phận ≤
như sau: ≤ ⇔ ⊇a b a b . Khi đó với mọi R-môđun M ta có ( ) ( )M MΓ ⊆ Γa b .
Như vậy ( )W( , ),I J ≤ và các đồng cấu nhúng đi từ ( ) ( )M MΓ → Γa b nếu
≤a b tạo thành một hệ thống thuận (direct system): { } W( , )
( ) I J
M ∈
Γ a a
.
Định lý 2.3.2. Cho M là một R-môđun, I và J là hai iđêan của vành R. Ta có
đẳng cấu tự nhiên sau đây:
,
W( , )
( ) lim ( )i i
I J
I J
H M H M
∈
≅

 a
a
Chứng minh: Trước tiên ta chứng minh cho i = 0, hay:
,
W( , )
( ) lim ( )I J
I J
M M
∈
Γ ≅ Γ

 a
a
Theo mệnh đề (1.5.4) ta có: W( , )
W( , )
( ) lim ( )I J
I J
M M∈
∈
Γ ≅ Γ

 a aa
a
nên ta chỉ cần chứng
minh , W( , )
( ) ( )I J I J
M M∈
Γ = Γ aa
.
( )⊆ Với , ( )I Jx M∈Γ thì tồn tại 0n ≥ sao cho ( )n
I Ann x J⊆ + . Đặt ( )Ann x=a , ta
có: W( , )I J∈ a và ( )x M∈Γa nên W( , )
( )I J
x M∈
∈ Γ aa
( )⊇ Với W( , )
( )I J
x M∈
∈ Γ aa
thì ta có W( , )I J∈ a và ( )x M∈Γa . Do đó tồn tại
, 0m n ≥ sao cho m
I J⊆ +a và 0n
x =a . Vì ( ). nm n n
I J J⊆ + ⊆ +a a nên suy ra
.
, ( )m n
I JI x Jx x M⊆ ⇒ ∈Γ
Với 0 0L M N→ → → → là một dãy khớp các R-môđun. Ta có dãy khớp dài
sau với mỗi W( , )I J∈ a :
35
1 1 1
0 ( ) ( ) ( ) ( ) ( ) ( ) ....L M N H L H M H N→ Γ → Γ → Γ → → → →a a a a a a
Vì giới hạn thuận là hàm tử khớp, ta có dãy khớp dài sau:
1
W( , ) W( , ) W( , ) W( , )
1 1
W( , ) W( , )
0 lim ( ) lim ( ) lim ( ) lim ( )
lim ( ) lim ( ) ... (**)
I J I J I J I J
I J I J
L M N H L
H M H N
∈ ∈ ∈ ∈
∈ ∈
→ Γ → Γ → Γ →
→ → →
   
 
   
 
a a a a
a a a a
a a
a a
Mặt khác với E là một R-môđun nội xạ và 0i > ta có ( ) 0i
H E =a với mọi a .
Do đó:
W( , )
lim ( ) 0i
I J
H E
∈
=

 a
a
(***)
Từ (*), (**) và (***) ta chứng minh được
W( , )
lim / 0,1,2,3....i
I J
H i
∈
 
= 
 
 a
a
là một
hệ thống các hàm tử dẫn xuất phải của ,I JΓ nên ta suy ra điều phải chứng minh.

Hệ quả 2.3.3. Cho E là một R-môđun nội xạ; I, J là hai iđêan của R. Khi đó ta
có:
i. , ( )I J EΓ là R-môđun nội xạ.
ii. , ( ) 0i
I JH E = với mọi 1i ≥ .
Chứng minh.
Ta thấy rằng (ii) là dễ dàng có được do , ( )i
I JH − là hàm tử dẫn xuất phải của
hàm tử , ( )I JΓ − . Vậy ta chỉ cần chứng minh (i). Theo định lý (2.3.2) ta có đẳng
cấu sau:
,
W( , )
( ) lim ( )I J
I J
E E
∈
Γ ≅ Γ

 a
a
36
Theo tính chất của hàm tử đối đồng điều địa phương thì ta có ( )EΓa là R-
môđun nội xạ với mọi iđêan a của R. Do đó theo mệnh đề (1.5.7) ta suy ra điều
phải chứng minh.

Bổ đề 2.3.4. Cho R là vành địa phương với iđêan tối đại m ,ta có:
W( , ) W( , )
( ) W( , ) W( , )I J J
V J I∈ ∈
= = m p m
m m p
Chứng minh.
Với ( )V J∈p , W( , )I J∈  m thì tồn tại 0n ≥ sao cho n
I J I⊆ + ⊆ +m p suy ra
W( , )I∈p m .Do đó ta có W( , )
( ) W( , )I J
V J I∈
⊆  m
m . Mặt khác do
W( , ) W( , )J J⊇ m m nên ta có W( , ) W( , )
W( , ) W( , )I J J
I∈ ∈
⊆ m p m
m m p .
Vậy ta chỉ cần chứng minh W( , )
W( , ) ( )J
V J∈
⊆p m
m p . Ta chứng minh phản
chứng, giả sử tồn tại W( , )
W( , )J∈
∈p m
q m p mà ( )V J J∉ ⇒ ⊄q q .
Lấy x J∈ q và ta đặt dim /r R= q.Do x là phần tử /R q -chính quy nên suy ra
dim 1
( )
R r
x
= −
+q
. Do đó tồn tại 1 2 3 1, , ..., ry y y y − ∈m sao cho 1 2 3 1, , ..., ry y y y − là
một hệ tham số của của ( )
R
x+q
. Theo tính chất của hệ tham số thì ta suy ra
1 2 1( , , ..., )rx y y y −+q là m -nguyên sơ còn 1 2 1( , ..., )ry y y −+q thì không phải là iđêan
m -nguyên sơ. Do đó ta tìm được ( )Spec R∈p sao cho:
1 2 1( , ..., ) (*)ry y y −+ ⊆ ⊂q p m
Mặt khác vì 1 2 1( , , ..., ) ( )rx y y y x J−+ ⊆ + ⊂ +q p p nên J + p cũng là iđêan m -
nguyên sơ. Từ đó ta suy ra W( , )J∈p m mà W( , )
W( , )J∈
∈p m
q m p nên suy ra
W( , )∈q m p , suy ra p = p+q là iđêan m -nguyên sơ! Mâu thuẫn với (*), nên ta
37
có điều phải chứng minh.

Nhớ lại rằng tập W( , )I J là tập sắp thứ tự bộ phận, trong đó ≤ ⇔ ⊇a b a b,
để ý rằng nếu ≤a b thì ta suy ra , ,( ) ( )I IM MΓ ⊇ Γa b , từ đây ta có được một hệ
thống nghịch { }, W( , )
( )I I J
M ∈
Γ a a
.
Mệnh đề 2.3.5. Cho vành địa phương ( , )R m , M là R-môđun.Ta có đẳng cấu tự
nhiên sau : ,
W( , )
( ) lim ( )I J
J I
M M
∈
Γ = Γ

 m
m
Chứng minh.
Ta chỉ cần chứng minh rằng ,W( , )
( ) ( )I JJ I
M M∈
Γ = Γ mm
.
( )⊆ Lấy ( )Ix M∈Γ , W( , )J I∈  m thì tồn tại , 0m n ≥ sao cho 0m
I x = và
n
I J⊆ +m . Từ đây ta suy ra .
, ( )m n
Jx Jx x M⊆ ⇒ ∈Γmm . Vậy
,W( , )
( ) ( )I JJ I
M M∈
Γ ⊆ Γ mm
.
( )⊇ Lấy ,W( , )
( )JJ I
x M∈
∈ Γ mm
Với mọi W( , )J I∈  m , tồn tại 0n ≥ sao cho
( ) W( , ( ))n
Ann x J J Ann x⊆ + ⇒ ∈ m m . Vậy ta có W( , ) W( , ( ))I Ann x⊆ m m . Bây
giờ, áp dụng bổ đề (2.3.4) ta có:
W( , ( )) W( , )
( ( )) W( , ) W( , ) ( )
J Ann x J I
V Ann x J J V I
∈ ∈
= ⊆ =
 
 m m
m m
Từ đây suy ra ( ) ( )II Ann x x M⊆ ⇒ ∈Γ , ta có điều phải chứng minh.

38
2.4. Tính chất triệt tiêu và không triệt tiêu của môđun đối đồng điều
địa phương theo một cặp Iđêan
Định lý 2.4.1. Cho M là R-môđun hữu hạn sinh, đặt
{ }inf W( , )n depth M I J= ∈p |p thì ta có:
i. , ( ) 0i
I JH M = với mọi 0 i n≤ < .
ii. , ( ) 0n
I JH M ≠
Chứng minh.
Lấy ( )E M•
là phép giải nội xạ tối tiểu của M. Thì
( )
( )
( ) ( / i Mi
Spec R
E M E R µ
∈
= ⊕ p,
p
p) với mọi 0 i≤ trong đó ( )i Mµ p, là số Bass thứ i của
M theo p.
Áp dụng mệnh đề (2.1.12) ta có:
( )
, ,
( )
( ) ( )
, ,
W( , ) W( , )
( )
,
W( , )
( )
W( , )
( ( )) ( ( / )
( ( / ) ( ( / )
( ( / )
( / (*)
i
i i
i
i
Mi
I J I J
Spec R
M M
I J I J
I J I J
M
I J
I J
M
I J
E M E R
E R E R
E R
E R
µ
µ µ
µ
µ
∈
∈ ∉
∈
∈
Γ =Γ ⊕
=Γ ⊕ ⊕ Γ ⊕
=Γ ⊕
= ⊕
p,
p
p, p,
p p
p,
p
p,
p
p)
p) p)
p)
p)
Mặt khác nếu W( , )I J∈p thì ta có { }inf | ( ) 0in depth M i Mµ≤ = ≠p p, nên ta
được , ,( ( )) 0 ( ) 0, 0i i
I J I JE M H M i nΓ = ⇒ = ∀ ≤ < .
Bây giờ ta cần chứng minh , ( ) 0n
I JH M ≠ . Từ (*) ta thấy rằng , ( ( )) 0n
I J E MΓ ≠ ,
do đó phức ( ), ( )I J E M•
Γ chỉ xuất phát từ phần tử thứ n. Ta có biểu đồ giao hoán
sau:
1
1
, , ,
1 1
0 ( ) ( ( )) ( ( ))
( ) ( ) ( )
n n
n n n
I J I J I J
d dn n n
H M E M E M
E M E M E M
−
+
− +
→ →Γ →Γ
→ →
trong đó hai dòng là khớp, hai mũi tên cột là phép nhúng tự nhiên.
Vì 1
er Im ( )n n n
K d d E M−
= ⊆ là mở rộng thiết yếu, nên ta có:
1
, ,( ) ( ( )) er 0n i n n
I J I JH M E M K d −
=Γ ∩ ≠
39
Vậy ta được điều phải chứng minh.

Nhận thấy rằng định lý (2.4.1) này chính là mở rộng của định lý (1.8.8) quen
thuộc trong đối đồng điều địa phương.
Hệ quả 2.4.2. Cho ( ,R m) là vành địa phương, M là R-môđun hữu hạn sinh. Khi
đó các mệnh đề sau là tương đương.
i. M là môđun (I,J)-xoắn.
ii. , ( ) 0i
I JH M = với mọi i>0.
Chứng minh.
( ) ( )i ii⇒ đã chứng minh trong phần (i) mệnh đề (2.1.14)
( ) ( )ii i⇒ Vì , ( )I J M MΓ ⊆ nên ta đặt
, ( )I J
MN
M
=
Γ
và ta cần chứng minh N =
0.
Giả sử 0N ≠ .Theo phần (iv) của mệnh đề (2.1.15) ta có:
, ,
,
, , ,
,
( ) 0
( )
( ) ( ), 0
( )
I J I J
I J
i i i
I J I J I J
I J
MN
M
MH N H H M i
M
 
Γ =Γ = Γ 
 
= ≅ ∀ > Γ 
Mặt khác W( , )I J∈m nên { }inf / W( , )depth N I J depth N depth N∈ ≤ ≤ < ∞p mp
.
Theo định lý (2.4.1) thì với số { }inf / W( , )i depth N I J= ∈p p ta có ( ), 0i
I JH N ≠
(vô lý)
Vậy ta có điều phải chứng minh.
Định lý 2.4.3. Cho ( ,R m)là vành địa phương, M là R-môđun hữu hạn sinh. Giả
sử J R≠ khi đó ta có:
, ( ) 0, dimi
I J
MH M i
JM
= ∀ >
Chứng minh. Ta chứng minh bằng quy nạp theo dim Mr
JM
= .
40
Với 1r = − , khi đó 0M
JM
= nên theo bổ đề Nakayama ta được 0M = suy ra
, ( ) 0i
I JH M = với mọi số tự nhiên i.
Giả sử 0r ≥ , ta có một lọc hữu hạn sau 0 10 .... sM M M M= ⊂ ⊂ ⊂ = sao cho
1/ /j j jM M R− ≅ p , với ( )j Supp M∈p và 0,1,...j s=
Do đó ta có dãy khớp sau với mỗi 0,1,...j s= :
10 / 0j j jM M R−→ → → →p
Từ đây ta suy ra dãy khớp với mỗi 0,1,...,j s= :
, 1 , ,( ) ( ) ( / )i i i
I J j I J j I J jH M H M H R− → → p
Lưu ý rằng: dim / ( ) dim / ( ( ) ) dim /jR J R Ann M J M JM r+ ≤ += =p
Do đó ta có thể giả sử /M R= p với ( )Spec R∈p .
Theo định lý (2.2.7) ta có , ( / ), ( / )( / ) ( / )i i
I J I R J RH R H R≅ p pp p . Do đó nếu thay R
bởi( / )R p , ta có thể giả sử rằng R là một miền nguyên và M R= .
Bây giờ ta giả sử rằng tồn lại l r> sao cho , ( ) 0l
I JH R ≠ , ta cần chỉ ra điều vô
lý. Để ý rằng lúc này ta có ,As ( ( ))l
I Js H R ≠ ∅ .
Đầu tiên ta giả sử rằng ,As ( ( ))l
I Js H R chứa một iđêan nguyên tố (0)≠q . Khi
đó chọn một phần tử 0x ≠ thuộc vào q . Dãy khớp
0 0
( )
x RR R
x
→ → → → , cho ta thu được dãy khớp:
1
, , ,( ) ( ) ( )
( )
xl l l
I J I J I J
RH H R H R
x
−
→ →
Lưu ý rằng dim 1 1
( )
R r l
J x
= − < −
+
nên theo giả thiết quy nạp ta suy ra được
1
, ( ) 0
( )
l
I J
RH
x
−
= . Điều này chứng tỏ rằngx là , ( )l
I JH R -chính quy. Nhưng x lại nằm
trong iđêan nguyên tố liên kết q của , ( )l
I JH R , nên x là ước của không trong
, ( )l
I JH R (!).
Điều vô lý ở trên dẫn đến { },As ( ( )) (0)l
I Js H R = . Dựa theo mệnh đề (2.1.8) và
(2.1.14) phần (v) ta có rằng ,As ( ( )) W( , )l
I Js H R I J⊆ , suy ra (0) W( , )I J∈ . Do đó
tồn tại 0: n
n I J≥ ⊆ , suy ra rằng với mọi x thuộc R ta đều có
41
,( ) ( )n
I JI Ann x J x R⊆ + ⇒ ∈Γ . Điều này suy ra R là một R-môđun (I,J)-xoắn do
đó , ( ) 0l
I JH R = (mâu thuẫn!).
Vậy ta có điều phải chứng minh.

Hệ quả 2.4.4. Cho R là một vành địa phương và M là một R-môđun (không cần
thiết phải hữu hạn sinh). Thì ta có , ( ) 0i
I JH M = với mọi dim /i R J> .
Chứng minh.
Do một R-môđun là giới hạn thuận của những môđun con hữu hạn sinh, ta có
thể viết limM Mλ
λ
=  trong đó mỗi Mλ là một R-môđun hữu hạn sinh. Để ý rằng
dim / dim dim
( ( ))
MRR J
J Ann M JM
λ
λ λ
≥ =
+
. Do đó với
dim / dim
M
i R J
JM
λ
λ
> ≥ thì theo mệnh đề (2.2.6), ta có:
, ,( ) lim ( ) 0i i
I J I JH M H Mλ
λ
= =

Định lý 2.4.5. Cho M là một môđun hữu hạn sinh trên vành địa phương ( , )R m .
Giả sử I J+ là iđêan m -nguyên sơ. Khi đó ta có đẳng thức:
{ },sup | ( ) 0 dim /i
I Ji H M M JM≠ =
Chứng minh.
Nhờ định lý (2.4.3) ta chỉ cần chứng minh rằng , ( ) 0r
I JH M ≠ với
dim /r M JM= . Vì I J+ là iđêan m -nguyên sơ nên theo mệnh đề (2.1.5)thì
, ,( ) ( )i i
I J JH M H M= m với mọi số tự nhiên i. Do đó ta có thể giả sử I = m .
Từ dãy khớp 0 0MJM M
JM
→ → → → ta suy ra được dãy khớp:
1
, , ,( ) ( ) ( )r r r
J J J
MH M H H JM
JM
+
→ →m m m (*)
Theo định lý (2.4.3) ta có 1
, ( ) 0r
JH JM+
=m vì 2 2dim( ) dim( )JM M
J M J M
≤
dim( )M r
JM
= = . Hơn nữa, theo mệnh đề (2.2.5) và định lý không triệt tiêu của
Grothendieck (1.8.7) ta có:
42
, ( ) ( ) 0r r
J
M MH H
JM JM
= ≠m m
Do đó từ dãy khớp (*) ta suy ra được , ( ) 0r
I JH M ≠ (điều phải chứng minh).

Định lý 2.4.6. Cho M là một R-môđun hữu hạn sinh, ta có:
i. , ( ) 0i
I JH M = với mọi dimi M> .
ii. , ( ) 0i
I JH M = với mọi dim 1Mi
JM
> + .
Chứng minh.
i. Theo định lý (2.3.2) và định lý triệt tiêu của Grothendieck (1.8.6) ta có:
,
W( , )
( ) lim ( ) 0i i
I J
I J
H M H M
∈
≅ =

 a
a
với mọi dimi M> .
ii. Ta chứng minh bằng quy nạp theo dim( )Mr
JM
= .
Khi 1r = − thì theo bổ đề Nakayama ta có a J∈ sao cho (1 ) 0a M+ =. Do đó
với mọi x M∈ thì x ax Jx=− ∈ nên Rx Jx= . Từ đây ta suy ra Mlà R-môđun (I,J)-
xoắn. Mệnh đề(2.1.14) cho chúng ta , ( ) 0, 0 1i
I JH M i r= ∀ > = + .
Khi 0r ≥ sử dụng kỹ thuật chứng minh tương tự như định lý (2.4.3) ta sẽ có
điều phải chứng minh.

43
KẾT LUẬN
Trong luận văn này tôi đã làm được những điều sau đây:
• Đưa ra định nghĩa môđun , ( )I J MΓ , môđun , ( )i
I JH M và một số tính chất
cơ bản (trong phần 2.1), và tập W( , )I J có một vai trò quan trọng
trong việc nghiên cứu các tính chất này.
• Đưa ra định nghĩa phức Cech suy rộng tương ứng với môđun đối đồng
điều địa phương theo một cặp iđêan, và định lý (2.2.4) chỉ ra đẳng cấu
tự nhiên của môđun đối đồng điều địa phương theo một cặp iđêan và
phức Cech suy rộng.
• Môđun , ( )i
I JH M là giới hạn thuận của một hệ thuận các môđun đối
đồng điều địa phương, và mệnh đề (2.3.5) ta có
,
W( , )
( ) lim ( )I J
J I
M M
∈
Γ = Γ

 m
m
trong trường hợp (R, )m là vành địa phương.
• Một số định lý về tính triệt tiêu và không triệt tiêu trong phần (2.4).
Đối đồng điều địa phương theo một cặp iđêan là một vấn đề khá mới mẻ và
còn nhiều bài toán mở để nghiên cứu. Chẳng hạn như về tính Artin của môđun
đối đồng điều địa phương theo một cặp iđêan, tập các iđêan nguyên tố liên kết,
đối ngẫu Matlis hoặc biến đối iđêan…
44
TÀI LIỆU THAM KHẢO
[1] M. P. Brodman and R. Y. Sharp, Local cohomology: An Algebraic
Introduction with Geometric Application, Cambridge University Press,
Cambridge, 1998.
[2] R. Takahashi, Y. Yoshino and T. Yoshizawa, Local cohomology based on
a nonclosed support define by a pair of ideals, J. Pure Appl. Algebra 213
(2009), 582-600.
[3] L. Chu and Q. Wang, Some results on local cohomology modules define by
a pair of ideals, J. Math. Kyoto Univ. 49 (2009), no. 1, 59-72.
[4] H. Matsumura, Commutative ring theory, Cambridge University Press,
1986.
[5] A. Grothendieck, Local cohomology, Lecture Notes in Mathematics 41,
Springer, 1967.
[6] L. Chu, Top local cohomology modules with respect to a pair of ideals,
Proc. Amer. Math. Soc, 139: 777-782, 2011.
[7] J. R. Strooker, Homological question in Local Algebra, Cambridge
University Press, Cambridge, 1990.
[8] D. G. Northcott, An introduction to Homological Algebra, Cambridge
University Press, Cambridge, 1960.
[9] J. J. Rotman, An introduction to Homological Algebra, Springer Press,
2009.
[10] D. Eisenbud, Comutative Algebra with a view toward Algebraic Geometry,
Springer Press, 1995.

More Related Content

What's hot

Bai Tap Hinh Hoc Vi Phan (CoLoiGiai)
Bai Tap Hinh Hoc Vi Phan (CoLoiGiai)Bai Tap Hinh Hoc Vi Phan (CoLoiGiai)
Bai Tap Hinh Hoc Vi Phan (CoLoiGiai)Bui Loi
 
đại số tuyến tính 2 ( không gian eculid )
đại số tuyến tính 2 ( không gian eculid )đại số tuyến tính 2 ( không gian eculid )
đại số tuyến tính 2 ( không gian eculid )Bui Loi
 
Một số tính chất của vành giao hoán artin
Một số tính chất của vành giao hoán artinMột số tính chất của vành giao hoán artin
Một số tính chất của vành giao hoán artinNOT
 
Phương pháp số và lập trình - Nội suy, Đạo hàm, Tích phân
Phương pháp số và lập trình - Nội suy, Đạo hàm, Tích phânPhương pháp số và lập trình - Nội suy, Đạo hàm, Tích phân
Phương pháp số và lập trình - Nội suy, Đạo hàm, Tích phânHajunior9x
 
13 ki-thuat-giai-phuong-trinh-ham (1)
13 ki-thuat-giai-phuong-trinh-ham (1)13 ki-thuat-giai-phuong-trinh-ham (1)
13 ki-thuat-giai-phuong-trinh-ham (1)ljmonking
 
Bai7 khai trien_taylor
Bai7 khai trien_taylorBai7 khai trien_taylor
Bai7 khai trien_taylorljmonking
 
kỹ thuật giải phương trình hàm
kỹ thuật giải phương trình hàmkỹ thuật giải phương trình hàm
kỹ thuật giải phương trình hàmljmonking
 
Phương pháp Toán Lý (phương trình truyền nhiệt và phương trình Laplace)
Phương pháp Toán Lý (phương trình truyền nhiệt và phương trình Laplace)Phương pháp Toán Lý (phương trình truyền nhiệt và phương trình Laplace)
Phương pháp Toán Lý (phương trình truyền nhiệt và phương trình Laplace)Lee Ein
 
Tính toán khoa học - Chương 7: Các phương pháp cực tiểu hóa không ràng buộc
Tính toán khoa học - Chương 7: Các phương pháp cực tiểu hóa không ràng buộcTính toán khoa học - Chương 7: Các phương pháp cực tiểu hóa không ràng buộc
Tính toán khoa học - Chương 7: Các phương pháp cực tiểu hóa không ràng buộcChien Dang
 
Anh Xa Lien Tuc Tren Khong Gian Topo
Anh Xa Lien Tuc Tren Khong Gian TopoAnh Xa Lien Tuc Tren Khong Gian Topo
Anh Xa Lien Tuc Tren Khong Gian Topoipaper
 
19 phương phap chứng minh bất đẳng thức
19 phương phap chứng minh bất đẳng thức19 phương phap chứng minh bất đẳng thức
19 phương phap chứng minh bất đẳng thứcThế Giới Tinh Hoa
 
45099385 bai-tap-do-do-tich-phan (1)
45099385 bai-tap-do-do-tich-phan (1)45099385 bai-tap-do-do-tich-phan (1)
45099385 bai-tap-do-do-tich-phan (1)Vinh Phan
 
[Math educare.com] giai tich ham nhieu bien-phep tinh vi phan ham nhieu bien_...
[Math educare.com] giai tich ham nhieu bien-phep tinh vi phan ham nhieu bien_...[Math educare.com] giai tich ham nhieu bien-phep tinh vi phan ham nhieu bien_...
[Math educare.com] giai tich ham nhieu bien-phep tinh vi phan ham nhieu bien_...Nguyen Vietnam
 

What's hot (20)

Bai Tap Hinh Hoc Vi Phan (CoLoiGiai)
Bai Tap Hinh Hoc Vi Phan (CoLoiGiai)Bai Tap Hinh Hoc Vi Phan (CoLoiGiai)
Bai Tap Hinh Hoc Vi Phan (CoLoiGiai)
 
Đề tài: Dạy học tích hợp chủ đề hàm số bậc hai, HAY
Đề tài: Dạy học tích hợp chủ đề hàm số bậc hai, HAYĐề tài: Dạy học tích hợp chủ đề hàm số bậc hai, HAY
Đề tài: Dạy học tích hợp chủ đề hàm số bậc hai, HAY
 
đại số tuyến tính 2 ( không gian eculid )
đại số tuyến tính 2 ( không gian eculid )đại số tuyến tính 2 ( không gian eculid )
đại số tuyến tính 2 ( không gian eculid )
 
Một số tính chất của vành giao hoán artin
Một số tính chất của vành giao hoán artinMột số tính chất của vành giao hoán artin
Một số tính chất của vành giao hoán artin
 
Phương pháp số và lập trình - Nội suy, Đạo hàm, Tích phân
Phương pháp số và lập trình - Nội suy, Đạo hàm, Tích phânPhương pháp số và lập trình - Nội suy, Đạo hàm, Tích phân
Phương pháp số và lập trình - Nội suy, Đạo hàm, Tích phân
 
13 ki-thuat-giai-phuong-trinh-ham (1)
13 ki-thuat-giai-phuong-trinh-ham (1)13 ki-thuat-giai-phuong-trinh-ham (1)
13 ki-thuat-giai-phuong-trinh-ham (1)
 
Phương trình hàm đa thức
Phương trình hàm đa thứcPhương trình hàm đa thức
Phương trình hàm đa thức
 
Bai7 khai trien_taylor
Bai7 khai trien_taylorBai7 khai trien_taylor
Bai7 khai trien_taylor
 
kỹ thuật giải phương trình hàm
kỹ thuật giải phương trình hàmkỹ thuật giải phương trình hàm
kỹ thuật giải phương trình hàm
 
Phương pháp Toán Lý (phương trình truyền nhiệt và phương trình Laplace)
Phương pháp Toán Lý (phương trình truyền nhiệt và phương trình Laplace)Phương pháp Toán Lý (phương trình truyền nhiệt và phương trình Laplace)
Phương pháp Toán Lý (phương trình truyền nhiệt và phương trình Laplace)
 
Tính toán khoa học - Chương 7: Các phương pháp cực tiểu hóa không ràng buộc
Tính toán khoa học - Chương 7: Các phương pháp cực tiểu hóa không ràng buộcTính toán khoa học - Chương 7: Các phương pháp cực tiểu hóa không ràng buộc
Tính toán khoa học - Chương 7: Các phương pháp cực tiểu hóa không ràng buộc
 
Chuong04
Chuong04Chuong04
Chuong04
 
Anh Xa Lien Tuc Tren Khong Gian Topo
Anh Xa Lien Tuc Tren Khong Gian TopoAnh Xa Lien Tuc Tren Khong Gian Topo
Anh Xa Lien Tuc Tren Khong Gian Topo
 
Luận án: Mở rộng của lớp Môđun giả nội xạ và vành liên quan, HAY
Luận án: Mở rộng của lớp Môđun giả nội xạ và vành liên quan, HAYLuận án: Mở rộng của lớp Môđun giả nội xạ và vành liên quan, HAY
Luận án: Mở rộng của lớp Môđun giả nội xạ và vành liên quan, HAY
 
Xây dựng hệ thống bài tập theo hướng phát triển năng lực tự học, 9đ
Xây dựng hệ thống bài tập theo hướng phát triển năng lực tự học, 9đXây dựng hệ thống bài tập theo hướng phát triển năng lực tự học, 9đ
Xây dựng hệ thống bài tập theo hướng phát triển năng lực tự học, 9đ
 
19 phương phap chứng minh bất đẳng thức
19 phương phap chứng minh bất đẳng thức19 phương phap chứng minh bất đẳng thức
19 phương phap chứng minh bất đẳng thức
 
45099385 bai-tap-do-do-tich-phan (1)
45099385 bai-tap-do-do-tich-phan (1)45099385 bai-tap-do-do-tich-phan (1)
45099385 bai-tap-do-do-tich-phan (1)
 
Chuong5
Chuong5Chuong5
Chuong5
 
Bài tập hàm biến phức
Bài tập hàm biến phứcBài tập hàm biến phức
Bài tập hàm biến phức
 
[Math educare.com] giai tich ham nhieu bien-phep tinh vi phan ham nhieu bien_...
[Math educare.com] giai tich ham nhieu bien-phep tinh vi phan ham nhieu bien_...[Math educare.com] giai tich ham nhieu bien-phep tinh vi phan ham nhieu bien_...
[Math educare.com] giai tich ham nhieu bien-phep tinh vi phan ham nhieu bien_...
 

Similar to Luận văn: Tính chất của môđun đối đồng điều địa phương, HOT

Tich phan choquet_va_dinh_li_choquet_4398
Tich phan choquet_va_dinh_li_choquet_4398Tich phan choquet_va_dinh_li_choquet_4398
Tich phan choquet_va_dinh_li_choquet_4398Garment Space Blog0
 
Luận văn: Tích lũy linh của các giao hoán tử trong vành nguyên tố, HAY
Luận văn: Tích lũy linh của các giao hoán tử trong vành nguyên tố, HAYLuận văn: Tích lũy linh của các giao hoán tử trong vành nguyên tố, HAY
Luận văn: Tích lũy linh của các giao hoán tử trong vành nguyên tố, HAYViết thuê trọn gói ZALO 0934573149
 

Similar to Luận văn: Tính chất của môđun đối đồng điều địa phương, HOT (20)

Đề tài: Về môđun giả BUCHSBAUM, HAY
Đề tài: Về môđun giả BUCHSBAUM, HAYĐề tài: Về môđun giả BUCHSBAUM, HAY
Đề tài: Về môđun giả BUCHSBAUM, HAY
 
Luận văn: Độ sâu lọc của Iđêan, HAY
Luận văn: Độ sâu lọc của Iđêan, HAYLuận văn: Độ sâu lọc của Iđêan, HAY
Luận văn: Độ sâu lọc của Iđêan, HAY
 
Luận văn thạc sĩ: Về phức koszul, HAY, 9đ
Luận văn thạc sĩ: Về phức koszul, HAY, 9đLuận văn thạc sĩ: Về phức koszul, HAY, 9đ
Luận văn thạc sĩ: Về phức koszul, HAY, 9đ
 
Luận văn: Phương pháp xây dựng độ đo và tích phân, HOT, 9đ
Luận văn: Phương pháp xây dựng độ đo và tích phân, HOT, 9đLuận văn: Phương pháp xây dựng độ đo và tích phân, HOT, 9đ
Luận văn: Phương pháp xây dựng độ đo và tích phân, HOT, 9đ
 
Luận văn: Một số phương pháp giải phương trình hàm, HOT, 9đ
Luận văn: Một số phương pháp giải phương trình hàm, HOT, 9đLuận văn: Một số phương pháp giải phương trình hàm, HOT, 9đ
Luận văn: Một số phương pháp giải phương trình hàm, HOT, 9đ
 
Luận văn: Về VEEDEAN nguyên tố liên kết và tính Cofinite của module đối đồng ...
Luận văn: Về VEEDEAN nguyên tố liên kết và tính Cofinite của module đối đồng ...Luận văn: Về VEEDEAN nguyên tố liên kết và tính Cofinite của module đối đồng ...
Luận văn: Về VEEDEAN nguyên tố liên kết và tính Cofinite của module đối đồng ...
 
Luận văn: Ứng dụng của định lý minimax, HAY, 9đ
Luận văn: Ứng dụng của định lý minimax, HAY, 9đLuận văn: Ứng dụng của định lý minimax, HAY, 9đ
Luận văn: Ứng dụng của định lý minimax, HAY, 9đ
 
Luận văn: Kết quả về nghiệm của phương trình Cauchy-Riemann
Luận văn: Kết quả về nghiệm của phương trình Cauchy-RiemannLuận văn: Kết quả về nghiệm của phương trình Cauchy-Riemann
Luận văn: Kết quả về nghiệm của phương trình Cauchy-Riemann
 
Tich phan choquet_va_dinh_li_choquet_4398
Tich phan choquet_va_dinh_li_choquet_4398Tich phan choquet_va_dinh_li_choquet_4398
Tich phan choquet_va_dinh_li_choquet_4398
 
Luận văn: Tích lũy linh của các giao hoán tử trong vành nguyên tố, HAY
Luận văn: Tích lũy linh của các giao hoán tử trong vành nguyên tố, HAYLuận văn: Tích lũy linh của các giao hoán tử trong vành nguyên tố, HAY
Luận văn: Tích lũy linh của các giao hoán tử trong vành nguyên tố, HAY
 
Luận văn: Mặt cực tiểu kiểu đồ thị trong không gian R ×ω R 2, HAY
Luận văn: Mặt cực tiểu kiểu đồ thị trong không gian R ×ω R 2, HAYLuận văn: Mặt cực tiểu kiểu đồ thị trong không gian R ×ω R 2, HAY
Luận văn: Mặt cực tiểu kiểu đồ thị trong không gian R ×ω R 2, HAY
 
Luận văn: Sự hội tụ của các độ đo xác suất và ứng dụng, HOT, 9đ
Luận văn: Sự hội tụ của các độ đo xác suất và ứng dụng, HOT, 9đLuận văn: Sự hội tụ của các độ đo xác suất và ứng dụng, HOT, 9đ
Luận văn: Sự hội tụ của các độ đo xác suất và ứng dụng, HOT, 9đ
 
Luận án: Một số mở rộng của lớp môđun giả nội xạ và vành, HAY
Luận án: Một số mở rộng của lớp môđun giả nội xạ và vành, HAYLuận án: Một số mở rộng của lớp môđun giả nội xạ và vành, HAY
Luận án: Một số mở rộng của lớp môđun giả nội xạ và vành, HAY
 
Luận văn: Giải số phương trình vi phân đại số bằng đa bước, 9đ
Luận văn: Giải số phương trình vi phân đại số bằng đa bước, 9đLuận văn: Giải số phương trình vi phân đại số bằng đa bước, 9đ
Luận văn: Giải số phương trình vi phân đại số bằng đa bước, 9đ
 
Luận văn: Siêu tâm của vành nửa đơn, HAY
Luận văn: Siêu tâm của vành nửa đơn, HAYLuận văn: Siêu tâm của vành nửa đơn, HAY
Luận văn: Siêu tâm của vành nửa đơn, HAY
 
Luận văn: Một số phương pháp giải phương trình hàm, HOT, 9đ
Luận văn: Một số phương pháp giải phương trình hàm, HOT, 9đLuận văn: Một số phương pháp giải phương trình hàm, HOT, 9đ
Luận văn: Một số phương pháp giải phương trình hàm, HOT, 9đ
 
Luận án: Về căn Jacobson, Js-căn và các lớp căn của nửa vành
Luận án: Về căn Jacobson, Js-căn và các lớp căn của nửa vànhLuận án: Về căn Jacobson, Js-căn và các lớp căn của nửa vành
Luận án: Về căn Jacobson, Js-căn và các lớp căn của nửa vành
 
Luận văn: Bổ đề đạo hàm logarit và ứng dụng, HAY, 9đ
Luận văn: Bổ đề đạo hàm logarit và ứng dụng, HAY, 9đLuận văn: Bổ đề đạo hàm logarit và ứng dụng, HAY, 9đ
Luận văn: Bổ đề đạo hàm logarit và ứng dụng, HAY, 9đ
 
Luận văn: Giải bài toán bất đẳng thức biến phân giả đơn điệu, 9đ
Luận văn: Giải bài toán bất đẳng thức biến phân giả đơn điệu, 9đLuận văn: Giải bài toán bất đẳng thức biến phân giả đơn điệu, 9đ
Luận văn: Giải bài toán bất đẳng thức biến phân giả đơn điệu, 9đ
 
Luận văn thạc sĩ: Quy hoạch toàn phương, HAY, 9đ
Luận văn thạc sĩ: Quy hoạch toàn phương, HAY, 9đLuận văn thạc sĩ: Quy hoạch toàn phương, HAY, 9đ
Luận văn thạc sĩ: Quy hoạch toàn phương, HAY, 9đ
 

More from Dịch vụ viết bài trọn gói ZALO 0917193864

Danh sách 200 đề tài luận văn thạc sĩ tài chính ngân hàng, từ sinh viên giỏi
Danh sách 200 đề tài luận văn thạc sĩ tài chính ngân hàng, từ sinh viên giỏiDanh sách 200 đề tài luận văn thạc sĩ tài chính ngân hàng, từ sinh viên giỏi
Danh sách 200 đề tài luận văn thạc sĩ tài chính ngân hàng, từ sinh viên giỏiDịch vụ viết bài trọn gói ZALO 0917193864
 

More from Dịch vụ viết bài trọn gói ZALO 0917193864 (20)

200 de tai khoa luạn tot nghiep nganh tam ly hoc
200 de tai khoa luạn tot nghiep nganh tam ly hoc200 de tai khoa luạn tot nghiep nganh tam ly hoc
200 de tai khoa luạn tot nghiep nganh tam ly hoc
 
Danh sách 200 đề tài luận văn tốt nghiệp ngành khách sạn,10 điểm
Danh sách 200 đề tài luận văn tốt nghiệp ngành khách sạn,10 điểmDanh sách 200 đề tài luận văn tốt nghiệp ngành khách sạn,10 điểm
Danh sách 200 đề tài luận văn tốt nghiệp ngành khách sạn,10 điểm
 
Danh sách 200 đề tài luận văn thạc sĩ ngân hàng, hay nhất
Danh sách 200 đề tài luận văn thạc sĩ ngân hàng, hay nhấtDanh sách 200 đề tài luận văn thạc sĩ ngân hàng, hay nhất
Danh sách 200 đề tài luận văn thạc sĩ ngân hàng, hay nhất
 
Danh sách 200 đề tài luận văn thạc sĩ ngữ văn, hay nhất
Danh sách 200 đề tài luận văn thạc sĩ ngữ văn, hay nhấtDanh sách 200 đề tài luận văn thạc sĩ ngữ văn, hay nhất
Danh sách 200 đề tài luận văn thạc sĩ ngữ văn, hay nhất
 
Danh sách 200 đề tài luận văn thạc sĩ ô tô, 10 điểm
Danh sách 200 đề tài luận văn thạc sĩ ô tô, 10 điểmDanh sách 200 đề tài luận văn thạc sĩ ô tô, 10 điểm
Danh sách 200 đề tài luận văn thạc sĩ ô tô, 10 điểm
 
Danh sách 200 đề tài luận văn thạc sĩ quản lý giáo dục mầm non, mới nhất
Danh sách 200 đề tài luận văn thạc sĩ quản lý giáo dục mầm non, mới nhấtDanh sách 200 đề tài luận văn thạc sĩ quản lý giáo dục mầm non, mới nhất
Danh sách 200 đề tài luận văn thạc sĩ quản lý giáo dục mầm non, mới nhất
 
Danh sách 200 đề tài luận văn thạc sĩ quản trị rủi ro, hay nhất
Danh sách 200 đề tài luận văn thạc sĩ quản trị rủi ro, hay nhấtDanh sách 200 đề tài luận văn thạc sĩ quản trị rủi ro, hay nhất
Danh sách 200 đề tài luận văn thạc sĩ quản trị rủi ro, hay nhất
 
Danh sách 200 đề tài luận văn thạc sĩ tài chính ngân hàng, từ sinh viên giỏi
Danh sách 200 đề tài luận văn thạc sĩ tài chính ngân hàng, từ sinh viên giỏiDanh sách 200 đề tài luận văn thạc sĩ tài chính ngân hàng, từ sinh viên giỏi
Danh sách 200 đề tài luận văn thạc sĩ tài chính ngân hàng, từ sinh viên giỏi
 
Danh sách 200 đề tài luận văn thạc sĩ tiêm chủng mở rộng, 10 điểm
Danh sách 200 đề tài luận văn thạc sĩ tiêm chủng mở rộng, 10 điểmDanh sách 200 đề tài luận văn thạc sĩ tiêm chủng mở rộng, 10 điểm
Danh sách 200 đề tài luận văn thạc sĩ tiêm chủng mở rộng, 10 điểm
 
danh sach 200 de tai luan van thac si ve rac nhua
danh sach 200 de tai luan van thac si ve rac nhuadanh sach 200 de tai luan van thac si ve rac nhua
danh sach 200 de tai luan van thac si ve rac nhua
 
Kinh Nghiệm Chọn 200 Đề Tài Tiểu Luận Chuyên Viên Chính Trị Hay Nhất
Kinh Nghiệm Chọn 200 Đề Tài Tiểu Luận Chuyên Viên Chính Trị Hay NhấtKinh Nghiệm Chọn 200 Đề Tài Tiểu Luận Chuyên Viên Chính Trị Hay Nhất
Kinh Nghiệm Chọn 200 Đề Tài Tiểu Luận Chuyên Viên Chính Trị Hay Nhất
 
Kho 200 Đề Tài Bài Luận Văn Tốt Nghiệp Ngành Kế Toán, 9 điểm
Kho 200 Đề Tài Bài Luận Văn Tốt Nghiệp Ngành Kế Toán, 9 điểmKho 200 Đề Tài Bài Luận Văn Tốt Nghiệp Ngành Kế Toán, 9 điểm
Kho 200 Đề Tài Bài Luận Văn Tốt Nghiệp Ngành Kế Toán, 9 điểm
 
Kho 200 Đề Tài Luận Văn Ngành Thủy Sản, từ các trường đại học
Kho 200 Đề Tài Luận Văn Ngành Thủy Sản, từ các trường đại họcKho 200 Đề Tài Luận Văn Ngành Thủy Sản, từ các trường đại học
Kho 200 Đề Tài Luận Văn Ngành Thủy Sản, từ các trường đại học
 
Kho 200 đề tài luận văn ngành thương mại điện tử
Kho 200 đề tài luận văn ngành thương mại điện tửKho 200 đề tài luận văn ngành thương mại điện tử
Kho 200 đề tài luận văn ngành thương mại điện tử
 
Kho 200 đề tài luận văn tốt nghiệp ngành điện tử viễn thông, 9 điểm
Kho 200 đề tài luận văn tốt nghiệp ngành điện tử viễn thông, 9 điểmKho 200 đề tài luận văn tốt nghiệp ngành điện tử viễn thông, 9 điểm
Kho 200 đề tài luận văn tốt nghiệp ngành điện tử viễn thông, 9 điểm
 
Kho 200 Đề Tài Luận Văn Tốt Nghiệp Ngành Giáo Dục Tiểu Học
Kho 200 Đề Tài Luận Văn Tốt Nghiệp Ngành Giáo Dục Tiểu HọcKho 200 Đề Tài Luận Văn Tốt Nghiệp Ngành Giáo Dục Tiểu Học
Kho 200 Đề Tài Luận Văn Tốt Nghiệp Ngành Giáo Dục Tiểu Học
 
Kho 200 đề tài luận văn tốt nghiệp ngành luật, hay nhất
Kho 200 đề tài luận văn tốt nghiệp ngành luật, hay nhấtKho 200 đề tài luận văn tốt nghiệp ngành luật, hay nhất
Kho 200 đề tài luận văn tốt nghiệp ngành luật, hay nhất
 
Kho 200 đề tài luận văn tốt nghiệp ngành quản trị văn phòng, 9 điểm
Kho 200 đề tài luận văn tốt nghiệp ngành quản trị văn phòng, 9 điểmKho 200 đề tài luận văn tốt nghiệp ngành quản trị văn phòng, 9 điểm
Kho 200 đề tài luận văn tốt nghiệp ngành quản trị văn phòng, 9 điểm
 
Kho 200 Đề Tài Luận Văn Tốt Nghiệp Ngành Sư Phạm Tin Học
Kho 200 Đề Tài Luận Văn Tốt Nghiệp Ngành Sư Phạm Tin HọcKho 200 Đề Tài Luận Văn Tốt Nghiệp Ngành Sư Phạm Tin Học
Kho 200 Đề Tài Luận Văn Tốt Nghiệp Ngành Sư Phạm Tin Học
 
Kho 200 Đề Tài Luận Văn Tốt Nghiệp Ngành Xuất Nhập Khẩu
Kho 200 Đề Tài Luận Văn Tốt Nghiệp Ngành Xuất Nhập KhẩuKho 200 Đề Tài Luận Văn Tốt Nghiệp Ngành Xuất Nhập Khẩu
Kho 200 Đề Tài Luận Văn Tốt Nghiệp Ngành Xuất Nhập Khẩu
 

Recently uploaded

Campbell _2011_ - Sinh học - Tế bào - Ref.pdf
Campbell _2011_ - Sinh học - Tế bào - Ref.pdfCampbell _2011_ - Sinh học - Tế bào - Ref.pdf
Campbell _2011_ - Sinh học - Tế bào - Ref.pdfTrnHoa46
 
SLIDE - Tu van, huong dan cong tac tuyen sinh-2024 (đầy đủ chi tiết).pdf
SLIDE - Tu van, huong dan cong tac tuyen sinh-2024 (đầy đủ chi tiết).pdfSLIDE - Tu van, huong dan cong tac tuyen sinh-2024 (đầy đủ chi tiết).pdf
SLIDE - Tu van, huong dan cong tac tuyen sinh-2024 (đầy đủ chi tiết).pdfhoangtuansinh1
 
GNHH và KBHQ - giao nhận hàng hoá và khai báo hải quan
GNHH và KBHQ - giao nhận hàng hoá và khai báo hải quanGNHH và KBHQ - giao nhận hàng hoá và khai báo hải quan
GNHH và KBHQ - giao nhận hàng hoá và khai báo hải quanmyvh40253
 
BỘ LUYỆN NGHE VÀO 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ LỜI - CÓ FILE NGHE.pdf
BỘ LUYỆN NGHE VÀO 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ LỜI - CÓ FILE NGHE.pdfBỘ LUYỆN NGHE VÀO 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ LỜI - CÓ FILE NGHE.pdf
BỘ LUYỆN NGHE VÀO 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ LỜI - CÓ FILE NGHE.pdfNguyen Thanh Tu Collection
 
PHƯƠNG THỨC VẬN TẢI ĐƯỜNG SẮT TRONG VẬN TẢI
PHƯƠNG THỨC VẬN TẢI ĐƯỜNG SẮT TRONG VẬN TẢIPHƯƠNG THỨC VẬN TẢI ĐƯỜNG SẮT TRONG VẬN TẢI
PHƯƠNG THỨC VẬN TẢI ĐƯỜNG SẮT TRONG VẬN TẢImyvh40253
 
cac-cau-noi-tthcm.pdf-cac-cau-noi-tthcm-
cac-cau-noi-tthcm.pdf-cac-cau-noi-tthcm-cac-cau-noi-tthcm.pdf-cac-cau-noi-tthcm-
cac-cau-noi-tthcm.pdf-cac-cau-noi-tthcm-KhnhHuyn546843
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...Nguyen Thanh Tu Collection
 
Đề cương môn giải phẫu......................
Đề cương môn giải phẫu......................Đề cương môn giải phẫu......................
Đề cương môn giải phẫu......................TrnHoa46
 
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI LÝ LUẬN VĂN HỌC NĂM HỌC 2023-2024 - MÔN NGỮ ...
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI LÝ LUẬN VĂN HỌC NĂM HỌC 2023-2024 - MÔN NGỮ ...TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI LÝ LUẬN VĂN HỌC NĂM HỌC 2023-2024 - MÔN NGỮ ...
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI LÝ LUẬN VĂN HỌC NĂM HỌC 2023-2024 - MÔN NGỮ ...Nguyen Thanh Tu Collection
 
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI KỸ NĂNG VIẾT ĐOẠN VĂN NGHỊ LUẬN XÃ HỘI 200 C...
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI KỸ NĂNG VIẾT ĐOẠN VĂN NGHỊ LUẬN XÃ HỘI 200 C...TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI KỸ NĂNG VIẾT ĐOẠN VĂN NGHỊ LUẬN XÃ HỘI 200 C...
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI KỸ NĂNG VIẾT ĐOẠN VĂN NGHỊ LUẬN XÃ HỘI 200 C...Nguyen Thanh Tu Collection
 
Giới thiệu Dự án Sản Phụ Khoa - Y Học Cộng Đồng
Giới thiệu Dự án Sản Phụ Khoa - Y Học Cộng ĐồngGiới thiệu Dự án Sản Phụ Khoa - Y Học Cộng Đồng
Giới thiệu Dự án Sản Phụ Khoa - Y Học Cộng ĐồngYhoccongdong.com
 
ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CÁC TỈNH THÀNH NĂM HỌC 2020 –...
ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CÁC TỈNH THÀNH NĂM HỌC 2020 –...ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CÁC TỈNH THÀNH NĂM HỌC 2020 –...
ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CÁC TỈNH THÀNH NĂM HỌC 2020 –...Nguyen Thanh Tu Collection
 
Các điều kiện bảo hiểm trong bảo hiểm hàng hoá
Các điều kiện bảo hiểm trong bảo hiểm hàng hoáCác điều kiện bảo hiểm trong bảo hiểm hàng hoá
Các điều kiện bảo hiểm trong bảo hiểm hàng hoámyvh40253
 
powerpoint mẫu họp phụ huynh cuối kì 2 học sinh lớp 7 bgs
powerpoint mẫu họp phụ huynh cuối kì 2 học sinh lớp 7 bgspowerpoint mẫu họp phụ huynh cuối kì 2 học sinh lớp 7 bgs
powerpoint mẫu họp phụ huynh cuối kì 2 học sinh lớp 7 bgsNmmeomeo
 
sách sinh học đại cương - Textbook.pdf
sách sinh học đại cương   -   Textbook.pdfsách sinh học đại cương   -   Textbook.pdf
sách sinh học đại cương - Textbook.pdfTrnHoa46
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...Nguyen Thanh Tu Collection
 
GIÁO TRÌNH KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
GIÁO TRÌNH  KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘIGIÁO TRÌNH  KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
GIÁO TRÌNH KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘIĐiện Lạnh Bách Khoa Hà Nội
 
SÁNG KIẾN ÁP DỤNG CLT (COMMUNICATIVE LANGUAGE TEACHING) VÀO QUÁ TRÌNH DẠY - H...
SÁNG KIẾN ÁP DỤNG CLT (COMMUNICATIVE LANGUAGE TEACHING) VÀO QUÁ TRÌNH DẠY - H...SÁNG KIẾN ÁP DỤNG CLT (COMMUNICATIVE LANGUAGE TEACHING) VÀO QUÁ TRÌNH DẠY - H...
SÁNG KIẾN ÁP DỤNG CLT (COMMUNICATIVE LANGUAGE TEACHING) VÀO QUÁ TRÌNH DẠY - H...Nguyen Thanh Tu Collection
 
Danh sách sinh viên tốt nghiệp Đại học - Cao đẳng Trường Đại học Phú Yên năm ...
Danh sách sinh viên tốt nghiệp Đại học - Cao đẳng Trường Đại học Phú Yên năm ...Danh sách sinh viên tốt nghiệp Đại học - Cao đẳng Trường Đại học Phú Yên năm ...
Danh sách sinh viên tốt nghiệp Đại học - Cao đẳng Trường Đại học Phú Yên năm ...hoangtuansinh1
 

Recently uploaded (20)

Campbell _2011_ - Sinh học - Tế bào - Ref.pdf
Campbell _2011_ - Sinh học - Tế bào - Ref.pdfCampbell _2011_ - Sinh học - Tế bào - Ref.pdf
Campbell _2011_ - Sinh học - Tế bào - Ref.pdf
 
SLIDE - Tu van, huong dan cong tac tuyen sinh-2024 (đầy đủ chi tiết).pdf
SLIDE - Tu van, huong dan cong tac tuyen sinh-2024 (đầy đủ chi tiết).pdfSLIDE - Tu van, huong dan cong tac tuyen sinh-2024 (đầy đủ chi tiết).pdf
SLIDE - Tu van, huong dan cong tac tuyen sinh-2024 (đầy đủ chi tiết).pdf
 
GNHH và KBHQ - giao nhận hàng hoá và khai báo hải quan
GNHH và KBHQ - giao nhận hàng hoá và khai báo hải quanGNHH và KBHQ - giao nhận hàng hoá và khai báo hải quan
GNHH và KBHQ - giao nhận hàng hoá và khai báo hải quan
 
BỘ LUYỆN NGHE VÀO 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ LỜI - CÓ FILE NGHE.pdf
BỘ LUYỆN NGHE VÀO 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ LỜI - CÓ FILE NGHE.pdfBỘ LUYỆN NGHE VÀO 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ LỜI - CÓ FILE NGHE.pdf
BỘ LUYỆN NGHE VÀO 10 TIẾNG ANH DẠNG TRẮC NGHIỆM 4 CÂU TRẢ LỜI - CÓ FILE NGHE.pdf
 
PHƯƠNG THỨC VẬN TẢI ĐƯỜNG SẮT TRONG VẬN TẢI
PHƯƠNG THỨC VẬN TẢI ĐƯỜNG SẮT TRONG VẬN TẢIPHƯƠNG THỨC VẬN TẢI ĐƯỜNG SẮT TRONG VẬN TẢI
PHƯƠNG THỨC VẬN TẢI ĐƯỜNG SẮT TRONG VẬN TẢI
 
cac-cau-noi-tthcm.pdf-cac-cau-noi-tthcm-
cac-cau-noi-tthcm.pdf-cac-cau-noi-tthcm-cac-cau-noi-tthcm.pdf-cac-cau-noi-tthcm-
cac-cau-noi-tthcm.pdf-cac-cau-noi-tthcm-
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 7 GLOBAL SUCCESS (2 CỘ...
 
Đề cương môn giải phẫu......................
Đề cương môn giải phẫu......................Đề cương môn giải phẫu......................
Đề cương môn giải phẫu......................
 
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI LÝ LUẬN VĂN HỌC NĂM HỌC 2023-2024 - MÔN NGỮ ...
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI LÝ LUẬN VĂN HỌC NĂM HỌC 2023-2024 - MÔN NGỮ ...TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI LÝ LUẬN VĂN HỌC NĂM HỌC 2023-2024 - MÔN NGỮ ...
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI LÝ LUẬN VĂN HỌC NĂM HỌC 2023-2024 - MÔN NGỮ ...
 
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI KỸ NĂNG VIẾT ĐOẠN VĂN NGHỊ LUẬN XÃ HỘI 200 C...
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI KỸ NĂNG VIẾT ĐOẠN VĂN NGHỊ LUẬN XÃ HỘI 200 C...TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI KỸ NĂNG VIẾT ĐOẠN VĂN NGHỊ LUẬN XÃ HỘI 200 C...
TÀI LIỆU BỒI DƯỠNG HỌC SINH GIỎI KỸ NĂNG VIẾT ĐOẠN VĂN NGHỊ LUẬN XÃ HỘI 200 C...
 
1 - MÃ LỖI SỬA CHỮA BOARD MẠCH BẾP TỪ.pdf
1 - MÃ LỖI SỬA CHỮA BOARD MẠCH BẾP TỪ.pdf1 - MÃ LỖI SỬA CHỮA BOARD MẠCH BẾP TỪ.pdf
1 - MÃ LỖI SỬA CHỮA BOARD MẠCH BẾP TỪ.pdf
 
Giới thiệu Dự án Sản Phụ Khoa - Y Học Cộng Đồng
Giới thiệu Dự án Sản Phụ Khoa - Y Học Cộng ĐồngGiới thiệu Dự án Sản Phụ Khoa - Y Học Cộng Đồng
Giới thiệu Dự án Sản Phụ Khoa - Y Học Cộng Đồng
 
ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CÁC TỈNH THÀNH NĂM HỌC 2020 –...
ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CÁC TỈNH THÀNH NĂM HỌC 2020 –...ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CÁC TỈNH THÀNH NĂM HỌC 2020 –...
ĐỀ CHÍNH THỨC KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CÁC TỈNH THÀNH NĂM HỌC 2020 –...
 
Các điều kiện bảo hiểm trong bảo hiểm hàng hoá
Các điều kiện bảo hiểm trong bảo hiểm hàng hoáCác điều kiện bảo hiểm trong bảo hiểm hàng hoá
Các điều kiện bảo hiểm trong bảo hiểm hàng hoá
 
powerpoint mẫu họp phụ huynh cuối kì 2 học sinh lớp 7 bgs
powerpoint mẫu họp phụ huynh cuối kì 2 học sinh lớp 7 bgspowerpoint mẫu họp phụ huynh cuối kì 2 học sinh lớp 7 bgs
powerpoint mẫu họp phụ huynh cuối kì 2 học sinh lớp 7 bgs
 
sách sinh học đại cương - Textbook.pdf
sách sinh học đại cương   -   Textbook.pdfsách sinh học đại cương   -   Textbook.pdf
sách sinh học đại cương - Textbook.pdf
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
 
GIÁO TRÌNH KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
GIÁO TRÌNH  KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘIGIÁO TRÌNH  KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
GIÁO TRÌNH KHỐI NGUỒN CÁC LOẠI - ĐIỆN LẠNH BÁCH KHOA HÀ NỘI
 
SÁNG KIẾN ÁP DỤNG CLT (COMMUNICATIVE LANGUAGE TEACHING) VÀO QUÁ TRÌNH DẠY - H...
SÁNG KIẾN ÁP DỤNG CLT (COMMUNICATIVE LANGUAGE TEACHING) VÀO QUÁ TRÌNH DẠY - H...SÁNG KIẾN ÁP DỤNG CLT (COMMUNICATIVE LANGUAGE TEACHING) VÀO QUÁ TRÌNH DẠY - H...
SÁNG KIẾN ÁP DỤNG CLT (COMMUNICATIVE LANGUAGE TEACHING) VÀO QUÁ TRÌNH DẠY - H...
 
Danh sách sinh viên tốt nghiệp Đại học - Cao đẳng Trường Đại học Phú Yên năm ...
Danh sách sinh viên tốt nghiệp Đại học - Cao đẳng Trường Đại học Phú Yên năm ...Danh sách sinh viên tốt nghiệp Đại học - Cao đẳng Trường Đại học Phú Yên năm ...
Danh sách sinh viên tốt nghiệp Đại học - Cao đẳng Trường Đại học Phú Yên năm ...
 

Luận văn: Tính chất của môđun đối đồng điều địa phương, HOT

  • 1. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Trần Minh Đức MỘT SỐ TÍNH CHẤT CỦA MÔĐUN ĐỐI ĐỒNG ĐIỀU ĐỊA PHƯƠNG THEO MỘT CẶP IĐÊAN LUẬN VĂN THẠC SĨ TOÁN HỌC Thành phố Hồ Chí Minh - 2012
  • 2. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Trần Minh Đức MỘT SỐ TÍNH CHẤT CỦA MÔĐUN ĐỐI ĐỒNG ĐIỀU ĐỊA PHƯƠNG THEO MỘT CẶP IĐÊAN Chuyên ngành : Đại số và Lý thuyết số Mã số : 60 46 05 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS. TRẦN TUẤN NAM Thành phố Hồ Chí Minh - 2012
  • 3. LỜI CẢM ƠN Để hoàn thành chương trình cao học và viết luận văn này, tôi đã nhận được sự hướng dẫn nhiệt tình của quý thầy cô trường Đại học Sư Phạm Thành phố Hồ Chí Minh, sự động viên và giúp đỡ từ gia đình và bạn bè. Trước hết, Tôi xin gửi lời biết ơn sâu sắc đến PGS. TS. Trần Tuấn Nam. Thầy đã quan tâm sâu sắc, dành nhiều thời gian và công sức hướng dẫn để giúp tôi hoàn thành luận văn thạc sĩ. Thầy đã hướng dẫn tôi từ khi làm luận văn Đại học, nhiệt tình giúp đỡ và hướng dẫn tôi trong suốt thời gian học cao học và hoàn thành luận văn Thạc sĩ này Tôi xin chân thành cảm ơn các thầy cô đã dạy bảo tôi trong suốt quá trình học tập. Tôi xin cảm ơn thầy Mỵ Vinh Quang, thầy Trần Huyên, thầy Bùi Tường Trí, thầy Bùi Xuân Hải đã tận tình dạy bảo và cho tôi nhiều kiến thức về Đại Số cũng như kiến thức về học tập. Xin cảm ơn các bạn học trong lớp Đại số K21 cũng như các bạn bè và người thân đã động viên giúp đỡ tôi trong suốt quá trình học tập và làm luận văn. Cuối cùng, xin cảm ơn gia đình tôi. Gia đình tôi luôn là nguồn động viên tinh thần to lớn giúp tôi hoàn thành khóa học và luận văn này. Thành phố Hồ Chí Minh, tháng 8 năm 2012 TRẦN MINH ĐỨC
  • 4. MỤC LỤC Trang phụ bìa Lời cảm ơn Mục lục MỞ ĐẦU ....................................................................................................................... 1 Chương 1: KIẾN THỨC CHUẨN BỊ ........................................................................ 3 1.1. Một số bổ đề và định nghĩa ................................................................................. 3 1.2. Bao nội xạ và phép giải nội xạ tối tiểu................................................................ 4 1.3. Dãy chính quy – độ sâu....................................................................................... 5 1.4. Số chiều – hệ tham số.......................................................................................... 6 1.5 . Giới hạn thuận .................................................................................................... 7 1.6. Hàm tử dẫn xuất phải .......................................................................................... 9 1.7. Dãy phổ ............................................................................................................. 10 1.8. Môđun đối đồng điều địa phương ..................................................................... 13 Chương 2: MÔĐUN ĐỐI ĐỒNG ĐIỀU ĐỊA PHƯƠNG THEO MỘT CẶP IĐÊAN......................................................................................................................... 16 2.1. Hàm tử đối đồng điều địa phương theo một cặp Iđêan..................................... 16 2.2. Môđun đối đồng điều địa phương theo một cặp Iđêan và phức Cech............... 27 2.3. Liên hệ giữa môđun đối đồng điều địa phương theo một cặp Iđêan và môđun đối đồng điều địa phương......................................................................................... 34 2.4. Tính chất triệt tiêu và không triệt tiêu của môđun đối đồng điều địa phương theo một cặp Iđêan ................................................................................................... 38 KẾT LUẬN................................................................................................................. 43 TÀI LIỆU THAM KHẢO ......................................................................................... 44
  • 5. 1 MỞ ĐẦU Đối đồng điều địa phương là lý thuyết tối cần thiết và là một công cụ quan trọng trong đại số giao hoán và hình học đại số. Trong luận văn này, tôi sẽ trình bày định nghĩa và các tính chất của môđun đối đồng điều địa phương theo một cặp iđêan (I, J), đây là một khái niệm tổng quát hơn khái niệm môđun đối đồng điều địa phương theo một iđêan I. Trong cả luận văn này, ta giả thiết R là vành Nơte giao hoán và cho I, J là hai iđêan của R. Ta định nghĩa được hàm tử (I, J)-xoắn , : Mod ModI J R RΓ → là mở rộng của hàm tử I-xoắn IΓ . Hơn nữa vì tính khớp trái của hàm tử ,I JΓ (Bổ đề (2.1.3)), với mọi số tự nhiên i ta lấy dãy hàm tử dẫn xuất phải thứ i của ,I JΓ chính là , i I JH - đây chính là hàm tử đối đồng điều địa phương thứ i theo cặp iđêan (I, J). Một khái niệm quan trọng được xem xét trong luận văn chính là tập: { }W( , ) ( ) , 1n I J Spec R I J n=∈ ⊆ p | p+ đây là tập hợp con của ( )Spec R (xem định nghĩa (2.1.6)), mệnh đề (2.1.8) chỉ ra rằng một R-môđun M là (I, J)-xoắn khi và chỉ khi Supp W( , )M I J⊆ . Ta cũng lưu ý rằng khi 0J = thì hàm tử , i I JH lại trở thành hàm tử đối đồng điều địa phương i IH và tập W( , )I J lại trở thành tập ( )V I , nên có thể thấy W( , )I J là mở rộng của ( )V I tương ứng theo một cặp iđêan (I, J). Luận văn được trình bày thành hai chương. Trong chương một tôi sẽ trình bày mà không chứng minh một số kiến thức về đại số giao hoán, đối đồng điều địa phương theo một iđêan để chuẩn bị cho độc giả đọc chương hai. Độc giả có thể bỏ qua chương một để đọc thẳng chương hai, phần chính của luận văn, trình
  • 6. 2 bày tính chất của môđun đối đồng điều địa phương theo một cặp iđêan. Cụ thể như sau: Trong phần (2.1) của chương hai tôi sẽ trình bày định nghĩa môđun đối đồng điều địa phương theo một cặp iđêan, định nghĩa tập W( , )I J và đưa ra một số tính chất của môđun đối đồng điều địa phương theo một cặp iđêan. Phần (2.2) trình bày phức Cech suy rộng và đưa ra định nghĩa tương đương của môđun đối đồng điều địa phương theo một cặp iđêan qua phức Cech suy rộng (định lý (2.2.4)). Từ đây suy ra được một số hệ quả và tính chất quan trọng của môđun đối đồng điều địa phương theo một cặp iđêan. Tới phần (2.3) sẽ là sự liên hệ giữa môđun đối đồng điều địa phương theo một cặp iđêan và môđun đối đồng điều địa phương theo một iđêan. Định lý (2.3.2) cho ta thấy một môđun đối đồng điều địa phương theo một cặp iđêan chính là một giới hạn thuận của những môđun đối đồng điều địa phương theo một iđêan trong tập W( , )I J . Còn nếu ( , )R m là vành địa phương thì ta có , W( , ) ( ) lim ( )I J J I M M ∈ Γ = Γ   m m . Và phần (2.4) chính là phần trung tâm của luận văn, sẽ trình bày các định lý về sự triệt tiêu và không triệt tiêu của môđun đối đồng điều địa phương theo một cặp iđêan. Đặc biệt định lý (2.4.1) cho ta đẳng thức: ,inf { | ( ) 0} inf {depth | W( , )}i I Ji H M M I J≠= ∈p p đây chính là mở rộng của định lý triệt tiêu và không triệt tiêu của Grothendieck trong trường hợp M là môđun hữu hạn sinh. Mặc dù có nhiều cố gắng trong quá trình làm luận văn nhưng do sự hạn hẹp trong kiến thức và thời gian nên có thể trong luận văn còn nhiều sai sót, rất mong được sự nhận xét và phản hồi của quý thầy cô và các bạn.
  • 7. 3 CHƯƠNG 1: KIẾN THỨC CHUẨN BỊ Trong chương này cũng như là trong toàn bộ luận văn khi ta nói đến vành R thì R chính là vành Nơte giao hoán có đơn vị. 1.1. Một số bổ đề và định nghĩa Bổ đề 1.1.1.(Nakayama) Cho R là một vành, M là một R-môđun hữu hạn sinh, I là một iđêan của R. Giả sử IM M= , khi đó tồn tại x I∈ sao cho (1 ) 0x M+ =. Nếu R là vành địa phương và I là iđêan thực sự thì ta suy ra 0M = . Bổ đề 1.1.2. (Artin-Rees) Cho R là một vành, M là một R-môđun hữu hạn sinh, I là một iđêan của R và N là R-môđun con của M. Khi đó tồn tại số tự nhiên 0n đủ lớn sao cho: 0 0 ( )n n nn I M N I I M N− ∩= ∩ với mọi 0n n≥ . Định nghĩa 1.1.3. Cho M là một R-môđun. Ta định nghĩa các tập hợp con của tập ( )Spec R các iđêan nguyên tố của R sau: Supp { ( ) | 0} As { ( ) | : Ann( )} Min { ( ) | Supp : } M Spec R M s M Spec R x M x M Spec R M =∈ ≠ = ∈ ∃ ∈ = = ∈ ∀ ∈ ⊆ ⇒ pp p p p q q p q = p Tập Supp M được gọi là giá của M, tập Ass M được gọi là tập các iđêan nguyên tố liên kết của M. Tập Min M chính là tập hợp các phần tử tối tiểu của tập Supp M . Mệnh đề 1.1.4. Với mọi R-môđun M ta có bao hàm thức sau: Min As SuppM s M M⊆ ⊆ Định nghĩa 1.1.5. Cho I là một iđêan của R. Ta đặt: ( ) { ( ) | }V I Spec R I=∈ ⊆p p
  • 8. 4 Mệnh đề 1.1.6. Nếu M, N là các R-môđun hữu hạn sinh thì ta có: Supp ( ( )) Supp Supp Supp M V Ann M M N M N = ⊗= ∩ Mệnh đề 1.1.7. Cho dãy khớp các R-đồng cấu: 0 0L M N→ → → → Thì ta có: As As As Supp Supp Supp s M s L s N M L N ⊆ ∪ = ∪ 1.2. Bao nội xạ và phép giải nội xạ tối tiểu Định nghĩa 1.2.1. Cho 0 M N≠ ⊆ là các R-môđun. Môđun N được gọi là mở rộng thiết yếu của M nếu với mọi môđun 0 'N N≠ ⊆ ta đều có: ' 0N M∩ ≠ . Định lý-Định nghĩa 1.2.2. Cho M là một R-môđun. Khi đó tồn tại duy nhất (sai khác một đẳng cấu) R-môđun nội xạ E là mở rộng thiết yếu của M. Ta gọi E là bao nội xạ của M và ký hiệu ( )E E M= . Định nghĩa 1.2.3. Một R-môđun 0M ≠ được gọi là môđun không phân tích được nếu M không là tổng trực tiếp của hai môđun con thực sự. Định lý 1.2.4. (Matlis) Cho E là một R-môđun nội xạ thì ta có: i. Tồn tại duy nhất một cách phân tích: i i I E E ∈ = ⊕ trong đó mỗi iE là môđun nội xạ không phân tích được. ii. Nếu E là môđun nội xạ không phân tích được thì tồn tại ( )Spec R∈p sao cho ( / )E E R= p . Ngược lại ( / )E R p là môđun nội xạ không phân tích được với mọi ( )Spec R∈p . Mệnh đề 1.2.5. Cho vành R, p là một iđêan nguyên tố của R, M là một R- môđun. Khi đó ta có:
  • 9. 5 i. ( / )E R p là hạng tử trực tiếp của ( )E M khi và chỉ khi As ( )s M∈p . ii. { }As ( ( / ))s E R =p p . Định nghĩa 1.2.6. Cho M là một R-môđun, phép giải nội xạ tối tiểu của M là một phép giải nội xạ của M: 0 1 0 1 2 0 .....d d M E E Eε → → → → → trong đó 0 1 2 1 ( ), (coker ), (coker ),....E E M E E E E dε= = = Mỗi phép giải nội xạ tối tiểu là duy nhất (sai khác nhau một đẳng cấu). Theo định lý về phân tích môđun nội xạ ta có: ( , ) ( ) ( / ) i Mi Spec R E E R µ ∈ = ⊕ p p p Trong đó ( , )i Mµ p là số bản sao của ( / )E R p trong tổng trực tiếp, ta gọi ( , )i Mµ p là số Bass thứ i của M theo p. Định lý 1.2.7.(Bass) Cho ( )Spec R∈p , ( ) R k R = p p p p và M là một R-môđun. Khi đó ta có: ( ) ( )( , ) dim Ext ( ( ), ) dim (Ext ( / , ))i i i k R k RM k M R Mµ= =pp p p pp p p 1.3. Dãy chính quy – độ sâu Định nghĩa 1.3.1. Cho M là một R-môđun. Dãy các phần tử 1 2, ,...., nx x x trong R được gọi là dãy M- chính quy nếu 1 2( , ,...., )nx x x M M≠ và ix không là ước của không trong 1 2 1( , ,...., )i M x x x M− với mọi 1,2,...i n= . Định nghĩa 1.3.2. Cho M là một R-môđun và I là một iđêan của Rthỏa mãn IM M≠ . Ta định nghĩa độ sâu của M trong I là:
  • 10. 6 { }1depth ( , ) sup | ( ,..., )R nI M n x x M I= laø daõy -chính quy trong Nếu ( , )R m là vành địa phương thì ta ký hiệu: depth : depth ( , )R RM M= m Định lý 1.3.3. Cho M là một R-môđun hữu hạn sinh và I là một iđêan của R thỏa mãn IM M≠ . Ta có: depth ( , ) inf{ | Ext ( / , ) 0} inf{depth | ( )} i R R R I M i R I M M V I = ≠ = ∈p p p Mệnh đề 1.3.4. Cho M là một R-môđun hữu hạn sinh và I là một iđêan của R thỏa mãn IM M≠ . Ta có: depth inf{ | ( , ) 0}R iM i Mµ= ≠p p p . 1.4. Số chiều – hệ tham số Định nghĩa 1.4.1. Cho vành R. Số chiều của R, ký hiệu dim(R) chính là supremum của độ dài những dây chuyền (nghiêm ngặt) các iđêan nguyên tố trong R: 0 1dim sup{ | .... , ( ) 0,1,..., }n iR n Spec R i n= ∃ ⊂ ⊂ ⊂ ∈ ∀=p p p p Cho M là một R-môđun thì số chiều của M chính là supremum của độ dài những dây chuyền (nghiêm ngặt) các iđêan nguyên tố trong Supp(M): 0 1dim sup{ | .... , Supp(M), 0,1,..., }n iM n i n= ∃ ⊂ ⊂ ⊂ ∈ ∀=p p p p Nếu M = 0 ta đặt dim M= –1. Mệnh đề 1.4.2. Cho M, N là các R-môđun hữu hạn sinh.Ta có dim dim( / Ann( )) dim( ) dim / (Ann( ) Ann( )) M R M M N R M N = ⊗= + Định nghĩa 1.4.3. Cho ( , )R m là vành địa phương, M là một R-môđun hữu hạn sinh. Đặt 1 2 1d inf{ | , ,...., : ( / ( ,..., ) ) { }},n nn x x x Supp M x x M= ∃ ∈ =m m dãy
  • 11. 7 1 2, ,...., dx x x ngắn nhất các phần tử trong m thỏa 1( / ( ,..., ) ) { }dSupp M x x M = m được gọi là một hệ tham số của M. Mệnh đề 1.4.4. Cho ( , )R m là vành địa phương, M là một R-môđun hữu hạn sinh. Dãy 1 2, ,...., dx x x là một hệ tham số của M khi và chỉ khi nó là dãy ngắn nhất các phần tử trong m thỏa mãn 1 2( , ,...., ) Ann( )dx x x M+ là iđêan m -nguyên sơ. Định lý 1.4.5. Cho ( , )R m là vành địa phương, 0M ≠ là R-môđun hữu hạn sinh, d( )M là độ dài của hệ tham số của M. Khi đó ta có: d( ) dimM M= Mệnh đề 1.4.6. Cho( , )R m là vành địa phương, M là R-môđun hữu hạn sinh. Một dãy M-chính quy có thể mở rộng thànhmột hệ tham số của M. Từ đây ta suy radepth dimM M≤ . Mệnh đề 1.4.7. Cho ( , )R m là vành địa phương và 1 2, ,...., nx x x là một dãy trong m , M là một R-môđun hữu hạn sinh. Khi đó ta có: 1 dim dim ( ,.., )n M M n x x M ≥ − . dấu bằng xảy ra khi và chỉ khi 1 2, ,...., nx x x là một bộ phận của hệ tham số của M. 1.5 . Giới hạn thuận Định nghĩa 1.5.1. Cho R là một vành, ( , )I ≤ là một tập được sắp thứ tự bộ phận. Một hệ thuận trong phạm trù các R-môđun là: (( ) ,( ) )i i i I j i jM ψ∈ ≤ , trong đó ( )i i IM ∈ là một họ các R-môđun, ( : )i j i j i jM Mψ ≤→ là họ các R-đồng cấu sao cho Id i i i Mψ = với mọi i I∈ và biểu đồ sau đây là giao hoán với mọi i j k≤ ≤ .
  • 12. 8 i j i j k k i j k M M M ψ ψ ψ → Định nghĩa 1.5.2. Cho (( ) ,( ) )i i i I j i jM ψ∈ ≤ là một hệ thuận trong phạm trù các R- môđun. Khi đó tồn tại một R-môđun lim i i I M ∈  và họ các đồng cấu ( : lim )i i i i I i I M Mα ∈ ∈ →  sao cho: i. i j j iα ψ α= với mọi i j≤ . ii. Cho N là một R-môđun, và họ các đồng cấu :i if M N→ thỏa mãn i j j if fψ = với mọi i j≤ . Khi đó tồn tại duy nhất đồng cấu :lim i i I M Nθ ∈ → sao cho biểu đồ sau là giao hoán với mọi i I∈ : lim i i f i i i I M N M α θ ∈ →  lim i i I M ∈  được gọi là giới hạn thuận của hệ thuận (( ) ,( ) )i i I j i jM ϕ∈ ≤ . Định nghĩa 1.5.3. Tập sắp thứ tự ( , )I ≤ được gọi là tập trực tiếp nếu với mọi ,i j I∈ tồn tại k I∈ sao cho i k≤ và j k≤ . Mệnh đề 1.5.4. Cho (( ) ,( ) )i i i I j i jM ψ∈ ≤ là một hệ thuận trong phạm trù các R- môđun, ( , )I ≤ là tập trực tiếp, :i j i jM Mψ → là các phép nhúng với mọi i j≤ . Nếu ta đặt: ii I M M∈ =  và xét họ các ánh xạ nhúng ( : )i i i IM Mα ∈→ . Khi đó M chính là giới hạn thuận của (( ) ,( ) )i i I j i jM ψ∈ ≤ .
  • 13. 9 Định lý 1.5.5. Giới hạn thuận là giao hoán với tích tenxơ. Nếu(( ) ,( ) )i i i I j i jM ψ∈ ≤ là một hệ thuận, N là một R-môđun thì ta có đẳng cấu tự nhiên sau: (lim ) lim( )i i i I i I M N M N ∈ ∈ ⊗ ≅ ⊗  Mệnh đề 1.5.6. Giới hạn thuận là bảo toàn tính khớp. Cụ thể, nếu I là tập trực tiếp và { , }i i jL α , { , }i i jM β ,{ , }i i jN γ là các hệ thuận các R-môđun trên I. Xét họ các đồng cấu ( : )i i ir L M→ và ( : )i i is M N→ sao cho với mỗi i I∈ thì dãy sau đây là dãy khớp: 0 0i i iL N M→ → → → Thì ta sẽ có dãy khớp sau đây: 0 lim lim lim 0i i i i I i I i I L N M ∈ ∈ ∈ → → → →   Mệnh đề 1.5.7.Trên vành Nơte, giới hạn thuận của những môđun nội xạ là một môđun nội xạ. 1.6. Hàm tử dẫn xuất phải Định nghĩa 1.6.1. Cho :T →  là hàm tử cộng tính hiệp biến,  và  là hai phạm trù Abel trong đó  là đủ nội xạ. Ta định nghĩa hàm tử dẫn xuất phải :n R T → với mỗi 0n ≥ như sau: Với mỗi vật B ta chọn một phép giải nội xạ ( )B• E : 0 1 0 1 2 0 ....d d E E E→ → → → Tác động hàm tử T vào phép giải, sau đó lấy đối đồng điều thứ n: 1 Ker ( ) : ( ( ( )) Im n n n n Td R T B H T B Td • − = =E
  • 14. 10 Định nghĩa này là tốt, không phụ thuộc vào cách chọn phép giải nội xạ. Định lý 1.6.2. Cho :T →  là hàm tử cộng tính hiệp biến và khớp trái,  và  là hai phạm trù Abel trong đó  là đủ nội xạ. Dãy 0( )n nR T ≥ là dãy hàm tử dẫn xuất phải của T khi và chỉ khi thỏa mãn: i. Có đẳng cấu tự nhiên giữa hai hàm tử: 0 R T T≅ . ii. Với mọi E là vật nội xạ trong  , ta đều có: ( ) 0n R T E = với mọi 1n ≥ . iii. Với mọi dãy khớp trong  :0 0L M N→ → → → ta có dãy khớp dài với đồng cấu nối tự nhiên: 0 0 0 1 1 1 1 0 ( ) ( ) ( ) ( ) ( ) .... .... ( ) ( ) ( ) ( ) ( ) ....n n n n n R T L R T M R T N R T L R T M R T N R T L R T M R T N R T L− + → → → → → → → → → → → → 1.7. Dãy phổ Định nghĩa 1.7.1. Một môđun song phân bậc là một họ các R-môđun: ( ), ( , )p q p q M M ∈ × =   Nếu M, N là các môđun song phân bậc, một đồng cấu song phân bậc :f M N→ có bậc là (a, b) là một họ các đồng cấu: , , ,( : )p q p q p a q bf f M M + += → . Bậc của f được ký hiệu là: deg( ) ( , )f a b= . Nếu ta có đồng cấu song phân bậc :f M N→ với deg( ) ( , )f a b= thì ta định nghĩa , ,Im (Im ) ( )p a q b p qf f N− −= ⊆ , , ,er ( er ) ( )p q p qK f K f M= ⊆ Cho dãy các đồng cấu song phân bậc f g M N P→ → , dãy này được gọi là khớp nếu Im f Ker g= . Từ đây, nếu loại bỏ q thì ta định nghĩa được môđun phân bậc và đồng cấu phân bậc một cách tương tự.
  • 15. 11 Định nghĩa 1.7.2. Một lọc của một R-môđun M là một họ ( )p pM ∈ các R-môđun con của M thỏa mãn 1p pM M +⊆ với mọi p: 1 1... ...p p pM M M− +⊆ ⊆ ⊆ ⊆ Cho C là một phức, một lọc của Clà họ các phức con ( )p pF ∈C  của C thỏa mãn 1p pF F +⊆C C với mọi p: 1 1... ...p p pF F F− +⊆ ⊆ ⊆ ⊆C C C Định nghĩa 1.7.3. Cho ( , )M d , trong đó M là một môđun song phân bậc, d là một đồng cấu song phân bậc có bậc là (a, b) thỏa mãn . 0d d = . Khi đó ta định nghĩa được đồng điều ( , )H M d là một môđun song phân bậc với: , , , er ( , ) Im p q p q p a q b K d H M d d − − = Định nghĩa 1.7.4. Một dãy phổ là một dãy 1( , )r r rE d ≥ trong đó r E là các môđun song phân bậc, thỏa mãn 0r r d d = và 1 ( )r r E H E+ = với mọi 1r ≥ . Nếu 1( , )r r rE d ≥ là một dãy phổ, ta có 2 1 1 2 2 ( , ) /E H E d Z B= = trong đó 2 Z là chu trình và 2 B là bờ với 2 2 1 B Z E⊆ ⊆ . Lại có 3 3 2 3 2 2 2 2 ( / ) / ( / ) ( / , )E Z B B B H Z B d= = (ta có thể xem 3 3 3 /E Z B= ) với 2 3 3 2 1 B B Z Z E⊆ ⊆ ⊆ ⊆ . Vậy nếu ta quy nạp theo r thì ta có /r r r E Z B= với: 2 3 3 2 1 ... .....r r B B B Z Z Z E⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ ⊆ (*) Định nghĩa 1.7.5. Cho 1( , )r r rE d ≥ là một dãy phổ, họ 1( , )r r rZ B ≥ được cho như trên thỏa mãn (*), đặt 1 r r Z Z∞ ≥ =  và 1 r r B B∞ ≥ =  . Ta định nghĩa giới hạn của dãy phổ là môđun song phân bậc E∞ được định nghĩa bởi: , , ,/p q p q p qE Z B∞ ∞ ∞ =
  • 16. 12 Định nghĩa 1.7.6. Cho ( )p pF ∈C  là lọc của phức Cvà họ phép nhúng :p p i F → C . Từ đây cảm sinh ra * : ( ) ( )p p i H F H• •→ C . Ta định nghĩa lọc cảm sinh của ( )nH C : *( ) Imp p nH iΦ =C Nếu với mỗi n tồn tại svà t sao cho {0}s nHΦ =và t n nH HΦ = thì ta nói lọc ( )p nHΦ là bị chặn. Khi đó ta có dây chuyền sau với mỗi n. 1 {0}= ......s s t n n n nH H H H+ Φ ⊆ Φ ⊆ ⊆ Φ = Định nghĩa 1.7.7. Một dãy phổ 1( , )r r rE d ≥ được gọi là hội tụ đến một môđun phân bậc H: 2 ,p q p qE H +⇒ nếu có một lọc bị chặn ( )p p qH +Φ của H sao cho: 1. p p q pp q p q H E H ∞ + − + Φ ≅ Φ . Định nghĩa 1.7.8. Dãy phổ 1( , )r r rE d ≥ được gọi là suy biến theo trục p nếu 2 , {0}p qE = với mọi 0q ≠ . Dãy phổ 1( , )r r rE d ≥ được gọi là suy biến theo trục q nếu 2 , {0}p qE = với mọi 0p ≠ . Định nghĩa 1.7.9: Dãy phổ 1( , )r r rE d ≥ được gọi là dãy phổ góc phần tư thứ ba nếu , {0}p q rE = với mọi 0p > hoặc 0q > . Mệnh đề 1.7.10.Cho dãy phổ 1( , )r r rE d ≥ góc phần tư thứ ba hội tụ , 2 p q p q E H + ⇒ . i. Nếu dãy phổ suy biến theo trục p, ta có: ,0 2 n n H E≅ . ii. Nếu dãy phổ suy biến theo trục q, ta có: 0, 2 n n H E≅ .
  • 17. 13 Định nghĩa 1.7.11. Cho  là một phạm trù Abel đủ nội xạ, :F b→  là hàm tử cộng tính. Một vật B của  được gọi là F-tuần hoàn phải nếu ( ) {0}p R F B = với mọi 1p ≥ . Định lý 1.7.12.(Grothendieck) Cho G F → →   là các hàm tử hiệp biến, cộng tính , ,   là các phạm trù Abel đủ nội xạ. Giả sử F là khớp trái và GE là tuần hoàn phải với mọi vật nội xạ E trong  . Khi đó với mọi vật A trong  , ta có dãy phổ góc phần tư thứ ba sau: , 2 ( )( ) ( )p q p q p q E R F R G A R FG A+ = ⇒ 1.8. Môđun đối đồng điều địa phương Định nghĩa 1.8.1. Cho R là vành, I là một iđêan của R, M là một R-môđun. Đặt ( ) { | 0, 1}n I M x M I x nΓ =∈ =  Ta thấy ( )I MΓ là một R-môđun con của M. Mặt khác với mọi R-đồng cấu :f M N→ thì ( ( )) ( )I If M NΓ ⊆ Γ nên ta định nghĩa được ( ): ( ) ( )I I If M NΓ Γ → Γ là thu hẹp của f lên ( )I MΓ . Với định nghĩa như trên có thể chứng minh được IΓ là một hàm tử cộng tính, R-tuyến tính và khớp trái. Hàm tử IΓ được gọi là hàm tử I-xoắn. R-môđun M được gọi là môđun I-xoắn nếu ( )I M MΓ =. R-môđun M được gọi là môđun I-không xoắn nếu ( ) 0I MΓ =. Bây giờ ta xét các hàm tử dẫn xuất phải của hàm tử khớp trái IΓ với mọi 0i ≥ và ta gọi đây là hàm tử đối đồng điều địa phương thứ i theo iđêan I: :i i I IH R= Γ
  • 18. 14 Môđun ( )i IH M được gọi là môđun đối đồng điều địa phương thứ i theo iđêan I. Mệnh đề 1.8.2. Cho M là một R-môđun. Ta có ( ) Supp( ) ( )I M M M V IΓ = ⇔ ⊆ . Đối đồng điều địa phương có nhiều cách định nghĩa tương đương. Sau đây là định nghĩa theo giới hạn thuận của hàm tử Ext và định nghĩa theo phức Cech. Định lý 1.8.3. Cho M là một R-môđun, I là một iđêan của R. Ta có đẳng cấu tự nhiên sau với mọi 0i ≥ : ( ) limExt ( / , )i i n I R n H M R I M ∈ ≅   Định nghĩa 1.8.4. Cho vành R, phần tử a thuộc R. Ta định nghĩa: { | }n aS a n= ∈ Ta thấy aS là một tập con nhân của R. Do đó với mỗi R-môđun M ta định nghĩa môđun các thương của M: 1 a aM S M− = Ta định nghĩa phức Cech theo một phần tử a thuộc R là: 1 (0 0)aS a aC R R − • = → → → Với 1,..., na a=a là một dãy các phần tử trong R. Ta định nghĩa phức Cech theo 1,..., na a=a là: 1 1 (0 ( ) ....) i i i j s a i s a a a i i j C C R R R • • = = < = ⊗ = → → → →∏ ∏ a
  • 19. 15 Do vành ta đang xét là vành Nơte, nên mỗi iđêan I của R là hữu hạn sinh. Từ đây ta có định nghĩa đối đồng điều địa phương thông qua phức Cech. Định lý 1.8.5. Cho R là vành, 1 2( ) ( , ,..., )nI a a a= =a là iđêan của R, M là một R- môđun. Ta có đẳng cấu tự nhiên sau với mọi 0i ≥ : ( ) ( )i i IH M H M C• ≅ ⊗ a Sau đây là định lý triệt tiêu và không triệt tiêu nổi tiếng của Grothendieck Định lý 1.8.6. (Grothendieck) Cho M là một R-môđun, I là một iđêan của R. Ta có: ( ) 0i IH M = với mọi dimi M> Định lý 1.8.7. (Grothendieck) Cho( , )R m là một vành địa phương, M là một R- môđun hữu hạn sinh, I là một iđêan của R. Ta có: ( ) 0n H M ≠m với dimn M= Định lý 1.8.8. Cho M là một R-môđun hữu hạn sinh, I là một iđêan của R. Khi đó ta có: inf{ | ( ) 0} depth ( , ) inf{depth | ( )}i I Ri H M I M M V I≠= = ∈p p
  • 20. 16 Chương 2: MÔĐUN ĐỐI ĐỒNG ĐIỀU ĐỊA PHƯƠNG THEO MỘT CẶP IĐÊAN Trong chương này ta cũng luôn giả thiết R là vành Nơte giao hoán có đơn vị. 2.1. Hàm tử đối đồng điều địa phương theo một cặp Iđêan Định nghĩa 2.1.1.Cho M là một R-môđun; I, J là hai iđêan của R, ta định nghĩa tập: { }, ( ) | , 1n I J M x M I x Jx nΓ =∈ ⊆  ta thấy ( )n n I x Jx I Ann x J⊆ ⇔ ⊆ + do đó { }, ( ) | ( ) , 1n I J M x M I Ann x J nΓ =∈ ⊆ +  từ đây ta có thể chứng minh được , ( )I J MΓ là một R-môđun con của M. Cho :f M N→ là một đồng cấu R-môđun. Ta có , ,( ( )) ( )I J I Jf M NΓ ⊆ Γ và do đó ta định nghĩa R-đồng cấu , , ,( ) : ( ) ( )I J I J I Jf M NΓ Γ → Γ chính là thu hẹp của f trên , ( )I J MΓ . Từ đây ta định nghĩa được hàm tử , ( )I JΓ − Định nghĩa 2.1.2.Hàm tử , :I J R RMod ModΓ → là một hàm tử hiệp biến cộng tính, ta gọi đây là hàm tử (I,J)-xoắn. Với M là một R-môđun ta định nghĩa , ( )I J MΓ là môđun (I, J)-xoắn của M. Nếu , ( )I J M MΓ =ta nói M là môđun (I, J)-xoắn, nếu , ( ) 0I J MΓ =ta nói M là môđun (I, J)-không xoắn. Nhận xét rằng khi J = 0 thì ,I J IΓ ≡ Γ là hàm tử I-xoắn quen thuộc trong đối đồng điều địa phương. Bổ đề 2.1.3.Hàm tử (I,J)-xoắn , ( )I JΓ − là hàm tử khớp trái.
  • 21. 17 Chứng minh. Cho dãy khớp các R-môđun: 0 0 f g L M N→ → → → ta cần chứng minh dãy: , ,( ) ( ) , , ,0 I J I Jf g I J I J I JL M N Γ Γ → Γ → Γ → Γ là khớp. Do , ( )I J fΓ là thu hẹp của fnên , ( )I J fΓ là đơn cấu. Hơn nữa vì , ( )I J gΓ là thu hẹp của g và . 0g f = ta suy ra , ,( ). ( ) 0I J I Jg fΓ Γ =do đó , ,Im ( ) ( )I J I Jf Ker gΓ ⊆ Γ Ta chỉ cần chứng minh , ,Im ( ) ( )I J I Jf Ker gΓ ⊇ Γ . , ( )I Jx Ker g∀ ∈ Γ , ta có ( ) 0g x = và , ( )I Jx M∈Γ . Do đó có 1n ≥ sao cho ( )n I Ann x J⊆ + và tồn tại : ( )y L f y x∈ =, do f là đơn cấu nên ta có: ( ) ( ( )) ( )n I Ann x J Ann f y J Ann y J⊆ += += + Vậy , ,( ) Im ( )I J I Jy L x f∈Γ ⇒ ∈ Γ suy ra , ,Im ( ) ( )I J I Jf Ker gΓ ⊇ Γ ta có điều phải chứng minh.  Định nghĩa 2.1.4. Với i là số tự nhiên, ta định nghĩa hàm tử dẫn xuất phải thứ i của ,I JΓ là hàm tử , i I JH : hàm tử đối đồng điều địa phương thứ i theo cặp iđêan I,J. Với M là một R-môđun ta định nghĩa , ( )i I JH M là môđun đối đồng điều địa phương thứ i của M theo (I,J). Nhận xét rằng nếu J = 0 thì ,0I IΓ ≡ Γ nên suy ra ,0 i i I IH H≡ , hàm tử đối đồng điều địa phương theo một cặp iđêan chính là mở rộng của hàm tử đối đồng điều địa phương quen thuộc.
  • 22. 18 Sau đây là một số tính chất cơ bản của môđun đối đồng điều địa phương theo cặp iđêan (I, J). Mệnh đề 2.1.5.Cho I, I’, J, J’ là các iđêan của vành R; i là số tự nhiên bất kỳ và M là một R-môđun. Ta có: i. , ', ' ', ' ,( ( )) ( ( ))I J I J I J I JM MΓ Γ =Γ Γ . ii. Nếu 'I I⊆ thì , ',( ) ( )I J I JM MΓ ⊇ Γ . iii. Nếu 'J J⊆ thì , , '( ) ( )I J I JM MΓ ⊆ Γ . iv. , ', ',( ( )) ( )I J I J I I JM M+Γ Γ =Γ . v. , , ' , ' , '( ( )) ( ) ( )I J I J I JJ I J JM M M∩Γ Γ =Γ =Γ . vi. , ,( ) ( )i i I J J I JH M H M+ = . vii. , , ( ) ( )i i I J I J H M H M= . viii. , , ( ) ( )i i I J I J H M H M= . Chứng minh. Các tính chất này đều được suy ra từ định nghĩa và chứng minh khá dễ dàng. Sau đây là chứng minh của phần (vii). Đầu tiên ta chứng minh tính chất này cho hàm tử (I, J)-xoắn. ( )⊇ Lấy , ( )i I J x M∈Γ thì tồn tại n∈ sao cho: ( ) n I Ann x J⊆ + , ta suy ra: ( ) n n I I Ann x J⊆ ⊆ + , từ đây suy ra , ( )i I Jx M∈Γ . ( )⊆ Ngược lại lấy , ( )i I Jx M∈Γ thì tồn tại n∈ sao cho: ( )n I Ann x J⊆ + , do R là vành Nơte nên tồn tại m∈ sao cho m I I⊆ do đó . ( ) m n n I I Ann x J⊆ ⊆ + nên suy ra , ( )i I J x M∈Γ .
  • 23. 19 Vậy ta có: , ,I J I J Γ ≡ Γ mà do hàm tử dẫn xuất phải là duy nhất nên ta có điều phải chứng minh.  Ta biết rằng tính chất của môđun đối đồng điều địa phương ( )i IH M có liên hệ chặt chẽ đến tập hợp { }( ) ( )V I Spec R I=∈ ⊆p | p . Và khi ta mở rộng lên thành môđun đối đồng điều địa phương theo một cặp iđêan thì ta có tập hợp sau. Định nghĩa 2.1.6. Cho I, J là hai iđêan của R. Ta định nghĩa tập hợp sau: { }W( , ) ( ) , 1n I J Spec R I J n=∈ ⊆ p | p+ nhận xét rằng khi J = 0 thì W( , ) ( )I J V I= lại đưa về định nghĩa quen thuộc. Sau đây là một số tính chất cơ bản của tập W( , )I J . Mệnh đề 2.1.7.Cho I, I’, J, J’ là các iđêan của vành R. Ta có: i. Nếu 'I I⊆ thì W( , ) W( ', )I J I J⊇ . ii. Nếu 'J J⊆ thì W( , ) W( , ')I J I J⊆ . iii. W( ', ) W( , ) W( ', )I I J I J I J+ = ∩ . iv. W( , ') W( , ') W( , ) W( , ')I JJ I J J I J I J= ∩ = ∩ . v. W( , ) W( , ) W( , )I J I J I J= = . vi. Nếu ( , )R m là vành địa phương, I là iđêan thực sự không là m - nguyên sơ thì: { }W( , ) W( , ) ( ) | I J I J Spec R I ⊂   = ∈ ⊄    m m p p vii. ( ) ( ) ( ) W( , ) W( , )J J Spec R V I V I I J I J∈ = = 
  • 24. 20 Chứng minh. Từ (i) đến (v) chứng minh dễ dàng, sau đây là chứng minh của phần (vi) và (vii) (vi) Với ∈ ⇔ ∃ ≥ ⊆ + ⇔ +p m m p p m -W( , ) 0 : laø nguyeânsôn I n I I hoặc + =p RI . Nếu ⊂I J thì +J m cũng là m - nguyên sơ hoặc + =m RJ nên W( , )∈ Jp m . Mặt khác I không là iđêan m - nguyên sơ nên I⊄p ( nếu ⊆p I thì + =pI I là iđêan m - nguyên sơ (!)). Ngược lại, với mọi { }W( , ) ( ) | ⊂   ∈ ∈ ⊄    I J J Spec R Ip m p p . Đặt = +J I p thì ⊂I J , do đó ta được W( , ) W( , )∈ = +J Ip m m p . Từ đó suy ra +I p là iđêan m - nguyên sơ hoặc + =p RI , ta được điều phải chứng minh. (vii) Dễ dàng thấy rằng ( ) ( ) ( ) W( , ) W( , )∈ ⊆ ⊆ J J Spec R V I V I I J I J , ta cần chứng minh ( ) ( ) W( , ) ( )∈ ⊆J Spec R V I I J V I . Giả sử ( )∉V Ip , ta có ( ) ( )∈Spec R V Ip và W( , )∉ Ip p . Suy ra ( ) ( ) W( , )∈ ∉J Spec R V I I Jp . Ta có điều phải chứng minh.  Theo mệnh đề (1.8.2) nếu ( ) ( )⊆Supp M V I thì ( )Γ =I M M , sau đây là mở rộng của mệnh đề này trong đối đồng điều địa phương theo một cặp iđêan. Mệnh đề 2.1.8. Cho M là một R-môđun, các mệnh đề sau là tương đương. i. M là môđun (I, J)-xoắn. ii. ( ) W( , )⊆Min M I J iii. As ( ) W( , )⊆s M I J iv. ( ) W( , )⊆Supp M I J
  • 25. 21 Chứng minh. Do ( ) As ( ) ( )⊆ ⊆Min M s M Supp M nên ( ) ( ) ( )⇒ ⇒iv iii ii là hiển nhiên. ( ) ( )⇒ii iv : Với ( )∈Supp Mp , tồn tại ( )∈Min Mq sao cho ⊆q p. Vì W( , )∈ I Jq nên tồn tại 0≥n sao cho ⊆ + ⊆ +n I J Jq p . Vậy W( , )∈ I Jp . ( ) ( )⇒i iii : Nếu As ( )∈ s Mp thì tồn tại ∈x M sao cho ( )= Ann xp . Vì M là môđun (I, J)-xoắn nên tồn tại số tự nhiên n sao cho ( )⊆ + ⊆ +n I J Ann x J p . Do đó W( , )∈ I Jp . ( ) ( )⇒iv i : Ta cần chứng minh rằng , ( )Γ ⊇I J M M . Với mọi ∈x M , do Rx là môđun hữu hạn sinh nên tập ( )Min Rx là hữu hạn.Ta đặt tập { }1 2( ) , ...= sMin Rx p p p . Vì ( ) ( ) ( ) W( , )⊆ ⊆ ⊆Min Rx Supp Rx Supp M I J , nên với mỗi 1≤ ≤i s đều tồn tại 0≥in sao cho ⊆ +in iI J p . Chọn 1 max( ) ≤ ≤ = i i s n n thì ⊆ +n iI J p với mọi 1≤ ≤i s , suy ra 1 2 1 2( ... ) ...⊆ + ⊆ + ∩ ∩ ∩ns s sI J Jp p p p p p Mặt khác 1 2 Supp(R ) Min(R ) ( ) (R ) ... s x x Ann x Ann x ∈ ∈ = = = ∩ ∩ ∩ p p = p p p p p , mà R là vành Noether nên tồn tại 0≥m sao cho ( )1 2 ... ( )∩ ∩ ∩ ⊆ m s Ann xp p p . Kết hợp với bên trên ta có: ( )⊆ +mns I J Ann x , từ đây suy ra , ( )∈ΓI Jx M .  Hệ quả 2.1.9. 1. Các mệnh đề sau đây là tương đương cho phần tử ∈x M . i. , ( )∈ΓI Jx M ii. ( ) W( , )⊆Supp Rx I J
  • 26. 22 2. Cho dãy khớp các R-môđun: (*) 0 0→ → → →L M N . Khi đó M là R-môđun (I,J)-xoắn khi và chỉ khi L và N cũng là R-môđun (I, J)-xoắn. Chứng minh. 1. ( ) ( )⇒i ii Với , ( )∈ΓI Jx M thì tồn tại 0≥n sao cho ( ) ( )⊆ += +n I Ann x J Ann Rx J , do đó , ( )Γ =I J Rx Rx nên theo mệnh đề (2.1.8) ta có ( ) W( , )⊆Supp Rx I J . ( ) ( )⇒ii i Nếu ( ) W( , )⊆Supp Rx I J thì theo mệnh đề (2.1.8) ta có , ( )Γ =I J Rx Rx nên suy ra , ,( ) ( )∈Γ ⊆ ΓI J I Jx Rx M . 2. Do (*) là dãy khớp nên ta có đẳng thức ( ) ( ) ( )= ∪Supp M Supp N Supp L . Do đó theo mệnh đề (2.1.8) ta có: ( ) , , , ( ) ( ) ( ) W( , ) ( ) ( ) W( , ) ( ) W( , ) ( ) W( , ) ( ) ( ) I J I J I J M M Supp M I J Supp N Supp L I J Supp N I J Supp L I J N N L L Γ = ⇔ ⊆ ⇔ ∪ ⊆ ⊆ ⇔  ⊆ Γ = ⇔  Γ = Ta có điều phải chứng minh.  Mệnh đề tiếp theo sẽ chỉ ra mối liên hệ giữa môđun (I,J)-xoắn và môđun I- xoắn. Mệnh đề 2.1.10. Nếu M là R-môđun (I,J)-xoắn thì M/JM là I-xoắn. Ta có chiều ngược lại nếu M là môđun hữu hạn sinh. Chứng minh. Theo mệnh đề (2.1.8) ta có M là môđun (I,J)-xoắn khi và chỉ khi ( ) W( , )⊆Supp M I J .
  • 27. 23 Áp dụng mệnh đề (1.8.2) thì ta có M/JM là môđun I-xoắn khi và chỉ khi ( / ) ( )⊆Supp M JM V I ( )⇒ Ta có ( / ) ( / ) ( ) ( ) W( , ) ( )Supp M JM Supp M R J Supp M V J I J V J= ⊗ ⊆ ∩ ⊆ ∩ ⊆ ( )V I , do đó M/JM là môđun I-xoắn. ( )⇐ Nếu M là môđun hữu hạn sinh và M/JM là môđun I-xoắn, ta cần chứng minh M là môđun (I,J)-xoắn. Cho x M∈ . Theo bổ đề Artin-Rees ta có 1n ≥ thỏa 1 ( )n n J M Rx J J M Rx− ∩ ⊆ ∩ ( )J Rx Jx⊆ ⊆ Mặt khác do M/JM là I-xoắn nên ta có: ( / ) ( / ) ( ) ( ) ( ) ( ) ( / ) ( ) n n n Supp M J M Supp M R J Supp M V J Supp M V J Supp M JM V I = ⊗ = ∩ = ∩ = ⊆ Từ đó suy ra / n M J M cũng là R-môđun I-xoắn. Do đó tồn tại 0m ≥ sao cho: m n I x J M⊆ Suy ra m n I x J M Rx Jx⊆ ∩ ⊆ nên ,I Jx M∈Γ . Ta có điều phải chứng minh.  Mệnh đề 2.1.11.Cho M là một R-môđun, ta có đẳng thức: ,As ( ( )) As ( ) W( , )I Js M s M I JΓ = ∩ Từ đây ta có , ( ) 0 As ( ) W( , )I J M s M I JΓ ≠ ⇔ ∩ ≠ ∅ . Chứng minh.
  • 28. 24 ( )⊆ Vì ,I J MΓ là môđun (I,J)-xoắn nên theo (2.1.8) ta có ,As ( ) W( , )I Js M I JΓ ⊆ , mà ,I J M MΓ ⊆ nên ,As ( ) As ( )I Js M s MΓ ⊆ . ( )⊇ Với mọi As ( ) W( , )s M I J∈ ∩p . Tồn tại { } 0x M∈ sao cho ( )Ann xp = và tồn tại 0: n n I J≥ ⊆ + p. Do đó ta có ,( )n I JI J Ann x x M⊆ + ⇒ ∈Γ .Mặt khác ( )Ann xp = nên ta được ,As ( )I Js M∈ Γp .  Mệnh đề 2.1.12.Cho ( )Spec R∈p , khi đó ta có: i. W( , )I J∈p thì ( / )E R p là môđun (I, J)-xoắn ii. W( , )I J∉p thì ( / )E R p là môđun (I, J)-không xoắn Chứng minh. i. Với W( , )I J∈p thì ( ) { }As ( / ) W( , )s E R I J= ⊆p p nên ( / )E R p là môđun (I, J)- xoắn. ii. Với W( , )I J∉p thì ta có: ( ) { }As ( / ) W( , ) W( , )s E R I J I J∩ =∩ =∅p p Do đó ( ), ( / ) 0I J E RΓ =p . Ta có điều phải chứng minh.  Mệnh đề 2.1.13. Cho M là R-môđun (I, J)-xoắn. Khi đó tồn tại một phép giải nội xạ của M sao cho mỗi phần tử đều là R-môđun (I, J)-xoắn. Chứng minh. Nhận xét rằng 0 ( )E E M= là R-môđun (I, J)-xoắn. Vì 0 As ( ) As ( )s E s M= ⊆ W( , )I J nên theo mệnh đề (2.1.8) thì 0 E là R-môđun (I, J)-xoắn.
  • 29. 25 Do vậy, một R-môđun (I, J)-xoắn có thể nhúng vào một R-môđun (I, J)-xoắn nội xạ 0 E . Ta chứng minh quy nạp, giả sử có dãy khớp các R-môđun: 1 0 1 0 ...... n dn n M E E E − − → → → → → với 0 1 , ..., n E E E là các R-môđun (I, J)-xoắn và nội xạ. Đặt 1 1 / Imn n n C Coker d E d− − = = , do đó theo mệnh đề (2.1.9) phần (2) thì C là R-môđun (I, J)-xoắn. Theo phần đầu của chứng minh ta có thể nhúng C vào một R-môđun (I, J)-xoắn nội xạ 1n E + . Do cách đặt C và nhúng C vào 1n E + ta có hai dãy khớp sau: 1 0 1 1 0 .... 0 n dn n n M E E E C C E − − + → → → → → → → → Vậy ta có dãy khớp: 0 1 1 0 .... n n n M E E E E− + → → → → → → Ta được điều phải chứng minh.  Hệ quả 2.1.14. Cho M là một R-môđun. Ta có những điều sau: i. Nếu M là môđun (I, J)-xoắn thì , ( ) 0i I JH M = , 0i∀ > . ii. , ,( ( )) 0i I J I JH MΓ =, 0i∀ > . iii. ,/ I JM MΓ là R-môđun (I, J)-không xoắn. iv. , , ,( ) ( / ( ))i i I J I J I JH M H M M≅ Γ , 0i∀ > . v. , ( )i I JH M là (I, J)-xoắn với mọi 0i ≥ .
  • 30. 26 Chứng minh. i. Theo mệnh đề (2.1.13) ta có phép giải nội xạ của M mà các phần tử đều là R- môđun (I, J)-xoắn và nội xạ. 0 1 0 .... .... i di i E E E + → → → → → Do đó ta có , ( )i i I J d dΓ =, 0i∀ ≥ . Từ đây suy ra: 1 1 , , ,( ) er ( ) / Im ( ) er( ) / Im( ) 0i i i i i I J I J I JH M K d d K d d− − =Γ Γ = =, 0i∀ > . Chiều ngược lại của mệnh đề này là đúng nếu như M là R-môđun hữu hạn sinh. Ta sẽ chứng minh trong hệ quả (2.4.2). ii. Do ,I J MΓ là R-môđun (I, J)-xoắn nên theo (i) ta có đpcm. iii. Ta có dãy khớp: , ,0 ( ) / ( ) 0I J I JM M M M→Γ → → Γ → (*) Từ đây ta suy ra dãy khớp: ( ) ( ) ( )1 , , , , , , ,0 ( ) / ( ) ( )I J I J I J I J I J I J I JM M M M H M→Γ Γ →Γ →Γ Γ → Γ Mà ( )1 , , ( ) 0I J I JH MΓ =do (ii) nên ta có: ( ) ( ) ( ) ( ) ( ), , , , , , ,/ ( ) / ( ) / 0I J I J I J I J I J I J I JM M M M M MΓ Γ ≅ Γ Γ Γ =Γ Γ =(đpcm) iv. Từ dãy khớp (*) ta có dãy khớp dài ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 , , , , , , , 1 , , , , , , , 0 ( ) / ( ) ( ) .... ( ) / ( ) ( ) .... I J I J I J I J I J I J I J i i i i I J I J I J I J I J I J I J M M M M H M H M H M H M M H M+ → Γ Γ → Γ → Γ Γ → Γ → → Γ → → Γ → Γ → Do ( ), , ( ) 0i I J I JH MΓ =, 0i∀ > do (ii) nên ta có đẳng cấu:
  • 31. 27 , , ,( ) ( / )i i I J I J I JH M H M M≅ Γ v. Lấy một phép giải nội xạ của M: 0 1 1 0 ..... .... i di i E E E E + → → → → → → Với mọi 0i ≥ theo định nghĩa ta có: 1 , , ,( ) er ( ) / Im ( )i i i I J I J I JH M K d d − =Γ Γ mà , ,er ( ) ( )i i I J I JK d EΓ ⊆ Γ là R-môđun (I, J)-xoắn nên theo mệnh đề (2.1.9) phần (2) ta có điều phải chứng minh.  2.2. Môđun đối đồng điều địa phương theo một cặp Iđêan và phức Cech. Định nghĩa 2.2.1.Cho R là vành, J là một iđêan của R, với mỗi phần tử a R∈ ta định nghĩa ,a JS là tập con của R chứa tất cả các phần tử có dạng n a j+ với n∈ và j J∈ . { }, | ,n a JS a j n j J= + ∈ ∈ Nhận xét rằng ,a JS là một tập con nhân của R. Với mỗi R-môđun M, ta ký hiệu ,a JM là môđun các thương của M theo ,a JS : 1 , ,a J a JM S M− = Định nghĩa 2.2.2.Với mỗi phần tử a R∈ , ta định nghĩa phức ,a JC• như sau: ( ) 1 , , ,0 0a JS a J a JC R R − • = → → → trong đó R ở vị trí thứ 0 và ,a JR ở vị trí thứ nhất trong phức. Với một dãy 1,a=a 2 ,... sa a các phần tử trong R, ta định nghĩa phức ,JC• a như sau:
  • 32. 28 ( ) ( )( )1 , , 1 , , ,, , 1 0 ... ... ... 0 i i i j s s J a J i s s a J a J a Ja J a j i i j C C R R R R • • = = < = ⊗   = → → → → → →    ∏ ∏ a Ta thấy rằng nếu 0J = thì phức ,JC• a sẽ trở thành phức Cech quen thuộc C• a trong định nghĩa (1.8.4) theo 1 2, ,... sa a a=a , nên định nghĩa ở trên chính là phức Cech suy rộng. Sau đây là một vài tính chất cơ bản của phức Cech suy rộng. Tính chất 2.2.3. Cho a R∈ ; I,J là hai iđêan của R,khi đó ta có: i. ,a JS chứa 0 khi và chỉ khi a J∈ . ii. Nếu a J∈ , thì ta có đẳng cấu giữa các phức aC R• ≅ . iii. Một iđêan nguyên tố W( , )I J∈p khi và chỉ khi ,a JS∩ ≠ ∅p với mọi a I∈ . iv. Nếu a I∈ thì ta có ( ), , 0i I J a JH M = với mọi 0i ≥ . v. Nếu 1 2( , ,...., )sI a a a= thì ta có dãy khớp sau: , , 1 0 ( ) i s I J a J i M M M = → Γ → → ∏ Chứng minh. i. Nếu ,0 a JS∈ thì tồn tại 0, :0 n n j J a j≥ ∈ = + . Ta suy ra n a j J a J=− ∈ ⇒ ∈ . Ngược lại nếu a J∈ thì tồn tại ,0: 0n n a Jn a j J a j S≥ = ∈ ⇒ = − ∈ . ii. Giả sử rằng a J∈ thì theo (i) ta có ,0 a JS∈ . Từ đây ta suy ra 1 , , 0a J a JR S R− = = nên theo định nghĩa thì ( ), 0 0a JC R R• = → → ≅ .
  • 33. 29 iii. ( )⇒ Với W( , )I J∈p và a I∈ . Khi đó tồn tại 0: n n I J≥ ⊆ + p. Vì n n a I J∈ ⊆ + p nên tồn tại , : n j J c a j c∈ ∈ =+p . Vậy , n a Jc a j S= − ∈ ∩p nên ,a JS∩ ≠ ∅p . ( )⇐ Giả sử ,a JS∩ ≠ ∅p với mọi a I∈ . Với mỗi a I∈ ta chọn một phần tử ,( ) a Jc a S∈ ∩p , phần tử này có dạng ( ) ( ) ( )n a c a a j a= + với ( ) , ( )n a j a J∈ ∈ . Do đó ( ) ( ) ( )n a a j a c a J=− + ∈ + p. Mà do R là vành Nơte nên 1 2( , ,..., )sI a a a= ,như vậy ta chọn được 1 2( ), ( ),.... ( )sn a n a n a sao cho ( )in a ia J∈ + p với mọi 1 i s≤ ≤ . Đặt 1 ( ) s i i n n a = = ∑ thì ta được W( , )n I J I J⊆ + ⇒ ∈p p . iv. Với a I∈ . Ta chọn E• là một phép giải nội xạ tối tiểu của M, khi đó ( ) ,a J E• là một R-phép giải nội xạ của ,a JM . Do đó ta được ( ) ( ), , , ,( )i i I J a J I J a JH M H E• = Γ . Biểu diễn mỗi i E thành tổng trực tiếp của các môđun nội xạ ( , ) ( ) ( / ) i Mi R Spec R E E R µ ∈ = ⊕ p p p ta có: ( ) ( ) , ( , ) ( , ) , ,, ,( ) ( ) ( / ) ( / )i i a J M Mi R R a J a Ja J a JSpec R Spec R E E R E R Rµ µ ∈ ∈ =⊕ =⊕p p p p p p Do đó dựa vào (iii) và giả thiết a I∈ ta được: ( ) ( ), ( , ) , , , , , W( , ) ( ) ( / ) 0i a J Mi I J a J I J R a J a J I J E E R R µ ∈ Γ = ⊕ Γ =p p p Từ đây ta suy ra ( ), , 0i I J a JH M = với mọi 0i ≥ . v. Ta chỉ cần chứng minh , ( )I Jx M∈Γ khi và chỉ khi , 1 er i s a J i x K M M =   ∈ →    ∏ .
  • 34. 30 ( )⇒ Với , ( )I Jx M∈Γ thì tồn tại số tự nhiên 0n ≥ sao cho n ia x Jx∈ với mọi 1 i s≤ ≤ . Do đó với mỗi 1 i s≤ ≤ thì tồn tại ib J∈ sao cho ( ) 0n i ia b x− =và ta cũng dễ thấy rằng ,( )n i i a Ja b S− ∈ . Vậy ta suy ra , 1 er i s a J i x K M M =   ∈ →    ∏ . ( )⇐ Với , 1 er i s a J i x K M M =   ∈ →    ∏ Thì với mọi i đều tồn tại , in i a Ja b S+ ∈ sao cho ( ) 0in ia b x+ =từ đây suy ra n ia x bx Jx=− ∈ . Do đó tồn tại số n đủ lớn sao cho , ( )n I JI x Jx x M⊆ ⇒ ∈Γ .  Định lý 2.2.4. Cho M là một R-môđun, và 1 2( ) ( , ,... )sI a a a= =a là một iđêan của R. Khi đó với mọi 0i ≥ ta có đẳng cấu tự nhiên sau: ( ), ,( )i i I J J RH M H C M• ≅ ⊗a . Chứng minh. Từ mệnh đề (2.2.3) phần (v) ta đã có đẳng cấu tự nhiên: ( )0 , , ( )J I JH C M M• ⊗ ≅ Γa Với một dãy khớp bất kỳ các R-môđun 0 0L M N→ → → → . Do mỗi phần tử trong phức ,JC• a đều là R-môđun phẳng ( vì 1 S M− là phẳng nếu M là môđun phẳng) nên ta có dãy khớp của các phức , , ,0 0J J JC L C M C N• • • → ⊗ → ⊗ → ⊗ →a a a . Từ đây ta có được dãy khớp dài: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0 0 0 1 , , , , 1 1 , , , , , 0 .... ... J J J J i i i i i J J J J J H C L H C M H C N H C L H C N H C L H C M H C N H C L • • • • − • • • • + • → ⊗ → ⊗ → ⊗ → ⊗ → → ⊗ → ⊗ → ⊗ → ⊗ → ⊗ → a a a a a a a a a Vậy ta chỉ cần chứng minh ( ), 0i JH C E• ⊗ =a với mọi R-môđun nội xạ E và với mọi 0i > . Do sự phân tích thành tổng trực tiếp của môđun nội xạ nên ta chỉ
  • 35. 31 cần chứng minh ( ), ( / ) 0i JH C E R⊗ =pa với mỗi p là iđêan nguyên tố của R. Ta sẽ chứng minh bằng quy nạp theo s là độ dài của a . Nếu 1s = , ta có: ( )1, ,0 ( / ) ( / ) 0J R R a JC E E R E R• ⊗ = → → →p pa trong đó 1 ,( / )R a JE R p đẳng cấu với ( / )RE R p nếu 1W(( ), )a J∉p và bằng 0 nếu 1W(( ), )a J∈p . Trong cả hai trường hợp này thì ta đều có ( )1 , ( / ) 0JH C E R⊗ =pa . Bây giờ ta giả sử 1s > , và đặt 2 3' , ,...., sa a a=a . Khi đó ta có đẳng thức 1, , ,J a J JC C C• • • = ⊗a a' . Do đó theo định lý (1.7.12) ta có dãy phổ góc phần tư thứ ba: ( )( ) ( )1 , 2 , , ,( / ) ( / )p q p q p q a J J JE H C H C E R H C E R• • + • = ⊗ ⊗ ⇒ ⊗p pa' a Theo giả thiết quy nạp thì ta có ( ), ( / ) 0q JH C E R• ⊗ =pa' với mọi 0q > . Do đó dãy phổ là suy biến theo trục p, và ta có đẳng cấu: ( ) ( )( ) ( ) ( )( ) 1 1 1 0 , , , , , , , , ( / ) ( / ) ( ( / )) 0 ( ( / )) ( ( / )) 0 n n J a J J n a J J n J J a J H C E R H C H C E R H C E R H E R E R • • • • ⊗ = ⊗ ⊗ = ⊗Γ = → Γ → Γ → p p p p p a a' a' a' a' Từ đây ta thấy rằng ( ), ( / ) 0n JH C E R• ⊗ =pa với mọi 2n ≥ . Theo mệnh đề (2.1.12) thì , ( ( / ))J E RΓ pa' hoặc là bằng 0 hoặc là bằng ( / )E R p . Vậy ta chỉ còn cần chứng minh rằng ( )( )1 1 , 0 ( / ) ( / ) 0 0a J H E R E R→ → → =p p nhưng điều này ta đã chứng minh trong trường hợp 1s = . Vậy ta có điều phải chứng minh. 
  • 36. 32 Hệ quả 2.2.5. Cho M là một R-môđun J-xoắn, 1 2 3, , ,...., sa a a a=a là một dãy các phần tử của R và iđêan ( )I = a . Khi đó ta có đẳng cấu tự nhiên ,J R RC M C M• • ⊗ ≅ ⊗a a . Từ đó suy ra , ( ) ( )i i I J IH M H M≅ với mọi số tự nhiên i. Chứng minh.Với a I∈ , ta có đồng cấu tự nhiên ,: a a JM Mϕ → xác định như sau ( / ) /n n z a z aϕ = . Đầu tiên chúng ta sẽ chứng minh ϕ là một đẳng cấu. Giả sử rằng ,( / ) 0n a Jz a Mϕ = ∈ . Khi đó tồn tại ,m b J∈ ∈ sao cho ( ) 0m a b z− =. Vì 2 2 ( ) l l m a b− chia hết cho ( )m a b− với mọi l ∈ nên 2 2 ( ) 0 l l m a b z− =. Mặt khác do M là môđun J-xoắn nên tồn tại số tự nhiênl đủ lớn thì 2 0 l b z = . Từ đây ta suy ra 2 0 l m a z = nên / 0n az a M= ∈ . Vậy ta chứng minh được ϕ là đơn cấu. Để chứng minh ϕ là toàn cấu ta lấy ,w / ( )n a Jz a b M= − ∈ với z M∈ và b J∈ . Vì Mlà J-xoắn nên tồn tạil đủ lớn sao cho 2 0 l b z = . Ta viết 2 2 ( ) .( ) l l m m a b c a b− = − với c R∈ , thì 2 ( ) l m m a z c a b z= − trong M. Vậy 2 2 w / ( ) / ( / ) l l n m m z a b cz a cz aϕ= −= = nên ϕ là toàn cấu. Do ϕ là một đẳng cấu nên ta có ,a a JM M≅ với mọi a I∈ . Từ đây ta có ,a J R a RC M C M• • ⊗ ≅ ⊗ với mọi a I∈ . Và do đó ta có được đẳng cấu giữa các phức: 1 2 1 2 , , , ,.... .... s s J R a J a J a J a a a R C M C C C M C C C M C M • • • • • • • • ⊗ = ⊗ ⊗ ⊗ ⊗ ≅ ⊗ ⊗ ⊗ ⊗ = ⊗ a a Áp dụng định lý (2.2.4) và định lý (1.8.5) ta được:
  • 37. 33 , ,( ) ( ) ( ) ( )i i i i I J J R R IH M H C M H C M H M• • = ⊗ ≅ ⊗ =a a  Mệnh đề 2.2.6. Hàm tử , ( 0)i I JH i ≥ là giao hoán với giới hạn thuận. Tức là: nếu { }|M Iλ λ ∈ là một hệ thuận thì ta sẽ có đẳng cấu tự nhiên: , ,(lim ) lim( ( ))i i I J I JH M H Mλ λ λ λ ≅  Chứng minh. Gọi 1 2, ,... sa a a=a là một dãy các phần tử trong R sinh ra I . Theo định lý (2.2.4) và tính giao hoán của tích tenxơ và hàm tử đối đồng điều với giới hạn thuận, ta có: ( ) , , , , , (lim ) lim lim( ) lim ( ) lim( ( )) i i i I J J R J R i i J R I J H M H C M H C M H C M H M λ λ λ λ λ λ λ λ λ λ • • •    ≅ ⊗ ≅ ⊗        ≅ ⊗ ≅      a a a  Định lý 2.2.7. Cho I và J là hai iđêan của R, M’ là một R-môđun, : 'R Rϕ → là một đồng cấu vành thỏa mãn tính chất ( ) . 'J J Rϕ = . Ta có đẳng cấu tự nhiên giữa hai R’-môđun sau: , ', '( ') ( ')i i I J IR JRH M H M≅ với mọi số tự nhiên i . Chứng minh. Đặt 1 2, ,... sa a a=a là dãy các phần tử trong vành R sinh ra iđêan I, đặt 1 2( ) ( ), ( ),... ( )sa a aϕ ϕ ϕ ϕ=a . Từ giả thiết ta có đẳng thức của hai tập con nhân trong R’: , ( ), '( )i ia J a JRS Sϕϕ = với mọi 1 i s≤ ≤ . Do đó ta có: , , ( ), ' ', '( ') ( ') ( ') ( ')i i i i I J J R J R IR JRH M H C M H C M H Mϕ • • ≅ ⊗ ≅ ⊗ ≅a a Ta được điều phải chứng minh. 
  • 38. 34 2.3. Liên hệ giữa môđun đối đồng điều địa phương theo một cặp Iđêan và môđun đối đồng điều địa phương Định nghĩa 2.3.1. Ta định nghĩa W( , )I J là tập các iđêan a của R sao cho tồn tại 0: n n I J≥ ⊆ +a . Sau đó ta trang bị cho W( , )I J một quan hệ thứ tự bộ phận ≤ như sau: ≤ ⇔ ⊇a b a b . Khi đó với mọi R-môđun M ta có ( ) ( )M MΓ ⊆ Γa b . Như vậy ( )W( , ),I J ≤ và các đồng cấu nhúng đi từ ( ) ( )M MΓ → Γa b nếu ≤a b tạo thành một hệ thống thuận (direct system): { } W( , ) ( ) I J M ∈ Γ a a . Định lý 2.3.2. Cho M là một R-môđun, I và J là hai iđêan của vành R. Ta có đẳng cấu tự nhiên sau đây: , W( , ) ( ) lim ( )i i I J I J H M H M ∈ ≅   a a Chứng minh: Trước tiên ta chứng minh cho i = 0, hay: , W( , ) ( ) lim ( )I J I J M M ∈ Γ ≅ Γ   a a Theo mệnh đề (1.5.4) ta có: W( , ) W( , ) ( ) lim ( )I J I J M M∈ ∈ Γ ≅ Γ   a aa a nên ta chỉ cần chứng minh , W( , ) ( ) ( )I J I J M M∈ Γ = Γ aa . ( )⊆ Với , ( )I Jx M∈Γ thì tồn tại 0n ≥ sao cho ( )n I Ann x J⊆ + . Đặt ( )Ann x=a , ta có: W( , )I J∈ a và ( )x M∈Γa nên W( , ) ( )I J x M∈ ∈ Γ aa ( )⊇ Với W( , ) ( )I J x M∈ ∈ Γ aa thì ta có W( , )I J∈ a và ( )x M∈Γa . Do đó tồn tại , 0m n ≥ sao cho m I J⊆ +a và 0n x =a . Vì ( ). nm n n I J J⊆ + ⊆ +a a nên suy ra . , ( )m n I JI x Jx x M⊆ ⇒ ∈Γ Với 0 0L M N→ → → → là một dãy khớp các R-môđun. Ta có dãy khớp dài sau với mỗi W( , )I J∈ a :
  • 39. 35 1 1 1 0 ( ) ( ) ( ) ( ) ( ) ( ) ....L M N H L H M H N→ Γ → Γ → Γ → → → →a a a a a a Vì giới hạn thuận là hàm tử khớp, ta có dãy khớp dài sau: 1 W( , ) W( , ) W( , ) W( , ) 1 1 W( , ) W( , ) 0 lim ( ) lim ( ) lim ( ) lim ( ) lim ( ) lim ( ) ... (**) I J I J I J I J I J I J L M N H L H M H N ∈ ∈ ∈ ∈ ∈ ∈ → Γ → Γ → Γ → → → →             a a a a a a a a a a a a Mặt khác với E là một R-môđun nội xạ và 0i > ta có ( ) 0i H E =a với mọi a . Do đó: W( , ) lim ( ) 0i I J H E ∈ =   a a (***) Từ (*), (**) và (***) ta chứng minh được W( , ) lim / 0,1,2,3....i I J H i ∈   =     a a là một hệ thống các hàm tử dẫn xuất phải của ,I JΓ nên ta suy ra điều phải chứng minh.  Hệ quả 2.3.3. Cho E là một R-môđun nội xạ; I, J là hai iđêan của R. Khi đó ta có: i. , ( )I J EΓ là R-môđun nội xạ. ii. , ( ) 0i I JH E = với mọi 1i ≥ . Chứng minh. Ta thấy rằng (ii) là dễ dàng có được do , ( )i I JH − là hàm tử dẫn xuất phải của hàm tử , ( )I JΓ − . Vậy ta chỉ cần chứng minh (i). Theo định lý (2.3.2) ta có đẳng cấu sau: , W( , ) ( ) lim ( )I J I J E E ∈ Γ ≅ Γ   a a
  • 40. 36 Theo tính chất của hàm tử đối đồng điều địa phương thì ta có ( )EΓa là R- môđun nội xạ với mọi iđêan a của R. Do đó theo mệnh đề (1.5.7) ta suy ra điều phải chứng minh.  Bổ đề 2.3.4. Cho R là vành địa phương với iđêan tối đại m ,ta có: W( , ) W( , ) ( ) W( , ) W( , )I J J V J I∈ ∈ = = m p m m m p Chứng minh. Với ( )V J∈p , W( , )I J∈  m thì tồn tại 0n ≥ sao cho n I J I⊆ + ⊆ +m p suy ra W( , )I∈p m .Do đó ta có W( , ) ( ) W( , )I J V J I∈ ⊆  m m . Mặt khác do W( , ) W( , )J J⊇ m m nên ta có W( , ) W( , ) W( , ) W( , )I J J I∈ ∈ ⊆ m p m m m p . Vậy ta chỉ cần chứng minh W( , ) W( , ) ( )J V J∈ ⊆p m m p . Ta chứng minh phản chứng, giả sử tồn tại W( , ) W( , )J∈ ∈p m q m p mà ( )V J J∉ ⇒ ⊄q q . Lấy x J∈ q và ta đặt dim /r R= q.Do x là phần tử /R q -chính quy nên suy ra dim 1 ( ) R r x = − +q . Do đó tồn tại 1 2 3 1, , ..., ry y y y − ∈m sao cho 1 2 3 1, , ..., ry y y y − là một hệ tham số của của ( ) R x+q . Theo tính chất của hệ tham số thì ta suy ra 1 2 1( , , ..., )rx y y y −+q là m -nguyên sơ còn 1 2 1( , ..., )ry y y −+q thì không phải là iđêan m -nguyên sơ. Do đó ta tìm được ( )Spec R∈p sao cho: 1 2 1( , ..., ) (*)ry y y −+ ⊆ ⊂q p m Mặt khác vì 1 2 1( , , ..., ) ( )rx y y y x J−+ ⊆ + ⊂ +q p p nên J + p cũng là iđêan m - nguyên sơ. Từ đó ta suy ra W( , )J∈p m mà W( , ) W( , )J∈ ∈p m q m p nên suy ra W( , )∈q m p , suy ra p = p+q là iđêan m -nguyên sơ! Mâu thuẫn với (*), nên ta
  • 41. 37 có điều phải chứng minh.  Nhớ lại rằng tập W( , )I J là tập sắp thứ tự bộ phận, trong đó ≤ ⇔ ⊇a b a b, để ý rằng nếu ≤a b thì ta suy ra , ,( ) ( )I IM MΓ ⊇ Γa b , từ đây ta có được một hệ thống nghịch { }, W( , ) ( )I I J M ∈ Γ a a . Mệnh đề 2.3.5. Cho vành địa phương ( , )R m , M là R-môđun.Ta có đẳng cấu tự nhiên sau : , W( , ) ( ) lim ( )I J J I M M ∈ Γ = Γ   m m Chứng minh. Ta chỉ cần chứng minh rằng ,W( , ) ( ) ( )I JJ I M M∈ Γ = Γ mm . ( )⊆ Lấy ( )Ix M∈Γ , W( , )J I∈  m thì tồn tại , 0m n ≥ sao cho 0m I x = và n I J⊆ +m . Từ đây ta suy ra . , ( )m n Jx Jx x M⊆ ⇒ ∈Γmm . Vậy ,W( , ) ( ) ( )I JJ I M M∈ Γ ⊆ Γ mm . ( )⊇ Lấy ,W( , ) ( )JJ I x M∈ ∈ Γ mm Với mọi W( , )J I∈  m , tồn tại 0n ≥ sao cho ( ) W( , ( ))n Ann x J J Ann x⊆ + ⇒ ∈ m m . Vậy ta có W( , ) W( , ( ))I Ann x⊆ m m . Bây giờ, áp dụng bổ đề (2.3.4) ta có: W( , ( )) W( , ) ( ( )) W( , ) W( , ) ( ) J Ann x J I V Ann x J J V I ∈ ∈ = ⊆ =    m m m m Từ đây suy ra ( ) ( )II Ann x x M⊆ ⇒ ∈Γ , ta có điều phải chứng minh. 
  • 42. 38 2.4. Tính chất triệt tiêu và không triệt tiêu của môđun đối đồng điều địa phương theo một cặp Iđêan Định lý 2.4.1. Cho M là R-môđun hữu hạn sinh, đặt { }inf W( , )n depth M I J= ∈p |p thì ta có: i. , ( ) 0i I JH M = với mọi 0 i n≤ < . ii. , ( ) 0n I JH M ≠ Chứng minh. Lấy ( )E M• là phép giải nội xạ tối tiểu của M. Thì ( ) ( ) ( ) ( / i Mi Spec R E M E R µ ∈ = ⊕ p, p p) với mọi 0 i≤ trong đó ( )i Mµ p, là số Bass thứ i của M theo p. Áp dụng mệnh đề (2.1.12) ta có: ( ) , , ( ) ( ) ( ) , , W( , ) W( , ) ( ) , W( , ) ( ) W( , ) ( ( )) ( ( / ) ( ( / ) ( ( / ) ( ( / ) ( / (*) i i i i i Mi I J I J Spec R M M I J I J I J I J M I J I J M I J E M E R E R E R E R E R µ µ µ µ µ ∈ ∈ ∉ ∈ ∈ Γ =Γ ⊕ =Γ ⊕ ⊕ Γ ⊕ =Γ ⊕ = ⊕ p, p p, p, p p p, p p, p p) p) p) p) p) Mặt khác nếu W( , )I J∈p thì ta có { }inf | ( ) 0in depth M i Mµ≤ = ≠p p, nên ta được , ,( ( )) 0 ( ) 0, 0i i I J I JE M H M i nΓ = ⇒ = ∀ ≤ < . Bây giờ ta cần chứng minh , ( ) 0n I JH M ≠ . Từ (*) ta thấy rằng , ( ( )) 0n I J E MΓ ≠ , do đó phức ( ), ( )I J E M• Γ chỉ xuất phát từ phần tử thứ n. Ta có biểu đồ giao hoán sau: 1 1 , , , 1 1 0 ( ) ( ( )) ( ( )) ( ) ( ) ( ) n n n n n I J I J I J d dn n n H M E M E M E M E M E M − + − + → →Γ →Γ → → trong đó hai dòng là khớp, hai mũi tên cột là phép nhúng tự nhiên. Vì 1 er Im ( )n n n K d d E M− = ⊆ là mở rộng thiết yếu, nên ta có: 1 , ,( ) ( ( )) er 0n i n n I J I JH M E M K d − =Γ ∩ ≠
  • 43. 39 Vậy ta được điều phải chứng minh.  Nhận thấy rằng định lý (2.4.1) này chính là mở rộng của định lý (1.8.8) quen thuộc trong đối đồng điều địa phương. Hệ quả 2.4.2. Cho ( ,R m) là vành địa phương, M là R-môđun hữu hạn sinh. Khi đó các mệnh đề sau là tương đương. i. M là môđun (I,J)-xoắn. ii. , ( ) 0i I JH M = với mọi i>0. Chứng minh. ( ) ( )i ii⇒ đã chứng minh trong phần (i) mệnh đề (2.1.14) ( ) ( )ii i⇒ Vì , ( )I J M MΓ ⊆ nên ta đặt , ( )I J MN M = Γ và ta cần chứng minh N = 0. Giả sử 0N ≠ .Theo phần (iv) của mệnh đề (2.1.15) ta có: , , , , , , , ( ) 0 ( ) ( ) ( ), 0 ( ) I J I J I J i i i I J I J I J I J MN M MH N H H M i M   Γ =Γ = Γ    = ≅ ∀ > Γ  Mặt khác W( , )I J∈m nên { }inf / W( , )depth N I J depth N depth N∈ ≤ ≤ < ∞p mp . Theo định lý (2.4.1) thì với số { }inf / W( , )i depth N I J= ∈p p ta có ( ), 0i I JH N ≠ (vô lý) Vậy ta có điều phải chứng minh. Định lý 2.4.3. Cho ( ,R m)là vành địa phương, M là R-môđun hữu hạn sinh. Giả sử J R≠ khi đó ta có: , ( ) 0, dimi I J MH M i JM = ∀ > Chứng minh. Ta chứng minh bằng quy nạp theo dim Mr JM = .
  • 44. 40 Với 1r = − , khi đó 0M JM = nên theo bổ đề Nakayama ta được 0M = suy ra , ( ) 0i I JH M = với mọi số tự nhiên i. Giả sử 0r ≥ , ta có một lọc hữu hạn sau 0 10 .... sM M M M= ⊂ ⊂ ⊂ = sao cho 1/ /j j jM M R− ≅ p , với ( )j Supp M∈p và 0,1,...j s= Do đó ta có dãy khớp sau với mỗi 0,1,...j s= : 10 / 0j j jM M R−→ → → →p Từ đây ta suy ra dãy khớp với mỗi 0,1,...,j s= : , 1 , ,( ) ( ) ( / )i i i I J j I J j I J jH M H M H R− → → p Lưu ý rằng: dim / ( ) dim / ( ( ) ) dim /jR J R Ann M J M JM r+ ≤ += =p Do đó ta có thể giả sử /M R= p với ( )Spec R∈p . Theo định lý (2.2.7) ta có , ( / ), ( / )( / ) ( / )i i I J I R J RH R H R≅ p pp p . Do đó nếu thay R bởi( / )R p , ta có thể giả sử rằng R là một miền nguyên và M R= . Bây giờ ta giả sử rằng tồn lại l r> sao cho , ( ) 0l I JH R ≠ , ta cần chỉ ra điều vô lý. Để ý rằng lúc này ta có ,As ( ( ))l I Js H R ≠ ∅ . Đầu tiên ta giả sử rằng ,As ( ( ))l I Js H R chứa một iđêan nguyên tố (0)≠q . Khi đó chọn một phần tử 0x ≠ thuộc vào q . Dãy khớp 0 0 ( ) x RR R x → → → → , cho ta thu được dãy khớp: 1 , , ,( ) ( ) ( ) ( ) xl l l I J I J I J RH H R H R x − → → Lưu ý rằng dim 1 1 ( ) R r l J x = − < − + nên theo giả thiết quy nạp ta suy ra được 1 , ( ) 0 ( ) l I J RH x − = . Điều này chứng tỏ rằngx là , ( )l I JH R -chính quy. Nhưng x lại nằm trong iđêan nguyên tố liên kết q của , ( )l I JH R , nên x là ước của không trong , ( )l I JH R (!). Điều vô lý ở trên dẫn đến { },As ( ( )) (0)l I Js H R = . Dựa theo mệnh đề (2.1.8) và (2.1.14) phần (v) ta có rằng ,As ( ( )) W( , )l I Js H R I J⊆ , suy ra (0) W( , )I J∈ . Do đó tồn tại 0: n n I J≥ ⊆ , suy ra rằng với mọi x thuộc R ta đều có
  • 45. 41 ,( ) ( )n I JI Ann x J x R⊆ + ⇒ ∈Γ . Điều này suy ra R là một R-môđun (I,J)-xoắn do đó , ( ) 0l I JH R = (mâu thuẫn!). Vậy ta có điều phải chứng minh.  Hệ quả 2.4.4. Cho R là một vành địa phương và M là một R-môđun (không cần thiết phải hữu hạn sinh). Thì ta có , ( ) 0i I JH M = với mọi dim /i R J> . Chứng minh. Do một R-môđun là giới hạn thuận của những môđun con hữu hạn sinh, ta có thể viết limM Mλ λ =  trong đó mỗi Mλ là một R-môđun hữu hạn sinh. Để ý rằng dim / dim dim ( ( )) MRR J J Ann M JM λ λ λ ≥ = + . Do đó với dim / dim M i R J JM λ λ > ≥ thì theo mệnh đề (2.2.6), ta có: , ,( ) lim ( ) 0i i I J I JH M H Mλ λ = =  Định lý 2.4.5. Cho M là một môđun hữu hạn sinh trên vành địa phương ( , )R m . Giả sử I J+ là iđêan m -nguyên sơ. Khi đó ta có đẳng thức: { },sup | ( ) 0 dim /i I Ji H M M JM≠ = Chứng minh. Nhờ định lý (2.4.3) ta chỉ cần chứng minh rằng , ( ) 0r I JH M ≠ với dim /r M JM= . Vì I J+ là iđêan m -nguyên sơ nên theo mệnh đề (2.1.5)thì , ,( ) ( )i i I J JH M H M= m với mọi số tự nhiên i. Do đó ta có thể giả sử I = m . Từ dãy khớp 0 0MJM M JM → → → → ta suy ra được dãy khớp: 1 , , ,( ) ( ) ( )r r r J J J MH M H H JM JM + → →m m m (*) Theo định lý (2.4.3) ta có 1 , ( ) 0r JH JM+ =m vì 2 2dim( ) dim( )JM M J M J M ≤ dim( )M r JM = = . Hơn nữa, theo mệnh đề (2.2.5) và định lý không triệt tiêu của Grothendieck (1.8.7) ta có:
  • 46. 42 , ( ) ( ) 0r r J M MH H JM JM = ≠m m Do đó từ dãy khớp (*) ta suy ra được , ( ) 0r I JH M ≠ (điều phải chứng minh).  Định lý 2.4.6. Cho M là một R-môđun hữu hạn sinh, ta có: i. , ( ) 0i I JH M = với mọi dimi M> . ii. , ( ) 0i I JH M = với mọi dim 1Mi JM > + . Chứng minh. i. Theo định lý (2.3.2) và định lý triệt tiêu của Grothendieck (1.8.6) ta có: , W( , ) ( ) lim ( ) 0i i I J I J H M H M ∈ ≅ =   a a với mọi dimi M> . ii. Ta chứng minh bằng quy nạp theo dim( )Mr JM = . Khi 1r = − thì theo bổ đề Nakayama ta có a J∈ sao cho (1 ) 0a M+ =. Do đó với mọi x M∈ thì x ax Jx=− ∈ nên Rx Jx= . Từ đây ta suy ra Mlà R-môđun (I,J)- xoắn. Mệnh đề(2.1.14) cho chúng ta , ( ) 0, 0 1i I JH M i r= ∀ > = + . Khi 0r ≥ sử dụng kỹ thuật chứng minh tương tự như định lý (2.4.3) ta sẽ có điều phải chứng minh. 
  • 47. 43 KẾT LUẬN Trong luận văn này tôi đã làm được những điều sau đây: • Đưa ra định nghĩa môđun , ( )I J MΓ , môđun , ( )i I JH M và một số tính chất cơ bản (trong phần 2.1), và tập W( , )I J có một vai trò quan trọng trong việc nghiên cứu các tính chất này. • Đưa ra định nghĩa phức Cech suy rộng tương ứng với môđun đối đồng điều địa phương theo một cặp iđêan, và định lý (2.2.4) chỉ ra đẳng cấu tự nhiên của môđun đối đồng điều địa phương theo một cặp iđêan và phức Cech suy rộng. • Môđun , ( )i I JH M là giới hạn thuận của một hệ thuận các môđun đối đồng điều địa phương, và mệnh đề (2.3.5) ta có , W( , ) ( ) lim ( )I J J I M M ∈ Γ = Γ   m m trong trường hợp (R, )m là vành địa phương. • Một số định lý về tính triệt tiêu và không triệt tiêu trong phần (2.4). Đối đồng điều địa phương theo một cặp iđêan là một vấn đề khá mới mẻ và còn nhiều bài toán mở để nghiên cứu. Chẳng hạn như về tính Artin của môđun đối đồng điều địa phương theo một cặp iđêan, tập các iđêan nguyên tố liên kết, đối ngẫu Matlis hoặc biến đối iđêan…
  • 48. 44 TÀI LIỆU THAM KHẢO [1] M. P. Brodman and R. Y. Sharp, Local cohomology: An Algebraic Introduction with Geometric Application, Cambridge University Press, Cambridge, 1998. [2] R. Takahashi, Y. Yoshino and T. Yoshizawa, Local cohomology based on a nonclosed support define by a pair of ideals, J. Pure Appl. Algebra 213 (2009), 582-600. [3] L. Chu and Q. Wang, Some results on local cohomology modules define by a pair of ideals, J. Math. Kyoto Univ. 49 (2009), no. 1, 59-72. [4] H. Matsumura, Commutative ring theory, Cambridge University Press, 1986. [5] A. Grothendieck, Local cohomology, Lecture Notes in Mathematics 41, Springer, 1967. [6] L. Chu, Top local cohomology modules with respect to a pair of ideals, Proc. Amer. Math. Soc, 139: 777-782, 2011. [7] J. R. Strooker, Homological question in Local Algebra, Cambridge University Press, Cambridge, 1990. [8] D. G. Northcott, An introduction to Homological Algebra, Cambridge University Press, Cambridge, 1960. [9] J. J. Rotman, An introduction to Homological Algebra, Springer Press, 2009. [10] D. Eisenbud, Comutative Algebra with a view toward Algebraic Geometry, Springer Press, 1995.