SlideShare a Scribd company logo
1 of 62
BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH
Trịnh Anh Tuấn
SỰ SUY BIẾN CỦA ĐƯỜNG CONG
CHỈNH HÌNH VÀ CÁC SIÊU MẶT
HYPERBOLIC P-ADIC
LUẬN VĂN THẠC SĨ TOÁN HỌC
Thành phố Hồ Chí Minh - 2012
BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH
Trịnh Anh Tuấn
SỰ SUY BIẾN CỦA ĐƯỜNG CONG
CHỈNH HÌNH VÀ CÁC SIÊU MẶT
HYPERBOLIC P-ADIC
Chuyên ngành : Hình học và tôpô
Mã số : 60 46 10
LUẬN VĂN THẠC SĨ TOÁN HỌC
NGƯỜI HƯỚNG DẪN KHOA HỌC
TS. NGUYỄN TRỌNG HÒA
Thành phố Hồ Chí Minh - 2012
1
LỜI CAM ĐOAN

Tôi cam đoan đây là công trình nghiên cứu của riêng tôi trên cơ sở các
công trình của GS.TSKH. Hà Huy Khoái. Các số liệu, kết quả nêu trong luận
văn là trung thực và chính xác.
Thành phố Hồ Chí Minh, tháng 09 năm 2012
Trịnh Anh Tuấn
2
LỜI CẢM ƠN

Tôi vô cùng biết ơn
Tiến sĩ NGUYỄN TRỌNG HÒA đã định hướng tôi nghiên cứu về sự suy
biến của các đường cong chỉnh hình và các siêu mặt hyperbolic p-adic,
một vấn đề còn đang rất mới và được quan tâm do những ứng dụng của
nó trong nhiều lĩnh vực của Toán học; thầy là người trực tiếp hướng
dẫn tôi thực hiện luận văn này.
Tôi gửi lời tri ân đến
các thầy cô giáo trong khoa Toán – Tin đã hướng dẫn tôi nghiên cứu Toán
học trong những năm học tại trường Đại học Sư Phạm TP Hồ Chí
Minh.
gia đình và bạn bè đã chia sẻ và động viên tôi trong quá trình tôi thực hiện
đề tài.
Một lần nữa tôi xin chân thành cảm ơn!
Trịnh Anh Tuấn
3
MỤC LỤC
LỜI CAM ĐOAN .............................................................................................................1
LỜI CẢM ƠN ...................................................................................................................2
MỤC LỤC.........................................................................................................................3
MỞ ĐẦU...........................................................................................................................4
NHỮNG KÝ HIỆU DÙNG TRONG LUẬN VĂN..........................................................8
NỘI DUNG .......................................................................................................................9
Chương 1: Một số kiến thức bổ trợ...................................................................................9
1.1. Trường số phức p-adic:......................................................................................9
1.2. Hàm chỉnh hình và hàm phân hình trên trường số phức p-adic:......................15
1.3. Độ cao của hàm chỉnh hình và đường cong chỉnh hình trên ( )n
p . ............25
1.4. Đường cong chỉnh hình trên ( )n
p
 . Định lý cơ bản thứ nhất và thứ hai của
đường cong chỉnh hình:...........................................................................................32
1.5. Không gian hyperbolic, siêu mặt hyperbolic:..................................................41
Chương 2: Sự suy biến của đường cong chỉnh hình và siêu mặt hyperbolic p-adic.......45
2.1. Sự suy biến của đường cong chỉnh hình trong ( )n
p :.................................45
2.2. Các siêu mặt hyperbolic trong ( )3
p : .........................................................51
KẾT LUẬN VÀ KIẾN NGHỊ.........................................................................................58
TÀI LIỆU THAM KHẢO...............................................................................................59
4
MỞ ĐẦU
1. LÝ DO CHỌN ĐỀ TÀI
Một đường cong chỉnh hình trên đa tạp xạ ảnh X được gọi là suy biến nếu
nó được chứa trong một tập con đại số thật sự của X. Vào năm 1979, M. Green
và Ph. Griffiths đã phỏng đoán rằng trong đa tạp xạ ảnh phức dạng tổng quát, mọi
đường cong chỉnh hình đều suy biến.
Cho tới bây giờ, điều phỏng đoán này vẫn chưa được chứng minh hoàn
toàn, tuy nhiên đã có một số bước tiến quan trọng. Chẳng hạn, M. Green đã
chứng minh được về sự suy biến của các đường cong khả tích trên đa tạp Fermat
với số chiều lớn. Để có được kết quả này, M. Green đã sử dụng định lý
Nevanlinna cho các đường cong chỉnh hình. Và A. M. Nadel đã chỉ ra được một
họ các siêu phẳng xạ ảnh mà trên đó điều phỏng đoán trên là đúng. Bằng cách sử
dụng kết quả về sự suy biến của các đường cong chỉnh hình, Nadel đã xây dựng
một số ví dụ chi tiết về các siêu mặt hyperbolic trong 3
 . Các kỹ thuật của Nadel
đều dựa trên định lý Siu về liên thông phân hình.
Trong trường p-adic, sự suy biến của các đường cong chỉnh hình trên đa
tạp Fermat có số chiều lớn đã được trình bày chi tiết trong tài liệu tham khảo [2].
Và trong bài viết [1], Hà Huy Khoái đã chứng minh rằng “Nếu X là nhiễu của đa
tạp Fermat trong ( )n
p có số chiều đủ lớn đối với n và với số các hệ số khác 0
trong phương trình định nghĩa ( )f z , thì mọi đường cong chỉnh hình trên X đều
suy biến”. Chứng minh điều này cung cấp đầy đủ thông tin chính xác về vị trí của
các đường cong trong X, những thông tin này sẽ rất hữu dụng cho các ứng dụng
về sau. Và như một hệ quả của việc chứng minh này, Hà Huy Khoái đã đưa ra
5
một số ví dụ cụ thể về các mặt hyperbolic p-adic trong ( )3
p và về các đường
cong trong ( )2
p với các phần bù hyperbolic. Bên cạnh đó còn có các ví dụ cụ
thể về các mặt hyperbolic với các phần bù hyperbolic. Nhắc lại, một đa tạp X
được gọi là hyperbolic p-adic nếu mọi ánh xạ chỉnh hình từ p vào X là ánh xạ
hằng. Các ví dụ này khác với các ví dụ trong tài liệu [2] (được cho bằng cách sử
dụng định lý Nevanlinna – Cartan p-adic). Trong khi số chiều của các mặt trong
[2] được chia bởi một số nguyên lớn hơn 1, số chiều này được cho tốt như trong
tất cả các ví dụ phổ biến về các mặt hyperbolic phức, số chiều d của các ví dụ
trong bài viết [1] chỉ yêu cầu không nhỏ hơn 50 cho các mặt hyperbolic với các
phần bù hyperbolic. Như trong [2], công cụ chủ yếu của [1] là hàm độ cao đã
được trình bày trong [2], [5], [6] và [7]. Hàm này có vai trò tương tự như một đa
thức đặc trưng Nevanlinna trong chứng minh của Green. Hơn nữa, độ cao của
một hàm chỉnh hình p-adic ( )f z cung cấp thông tin về mật độ các không điểm
của f tại một điểm nào đó và mô tả cấp tăng của ( )f z . Trong nhiều trường
hợp, ta có thể sử dụng độ cao để nghiên cứu về các hàm chỉnh hình p-adic tương
tự như sử dụng số chiều trong nghiên cứu về các đa thức phức.
Việc nghiên cứu tính suy biến của đường cong chỉnh hình và các siêu mặt trong
không gian xạ ảnh nhiều chiều là vấn đề thời sự đang được nhiều nhà toán học
trên thế giới quan tâm. Vì vậy, chúng tôi chọn việc nghiên cứu Sự suy biến của
đường cong chỉnh hình và siêu mặt hyperbolic trong không gian xạ ảnh phức
p-adic làm đề tài của mình. Ở đây, chúng tôi chỉ giới hạn nghiên cứu sự suy biến
của đường cong chỉnh hình trên ( )n
p
 và các siêu mặt hyperbolic trong
không gian xạ ảnh 3
( )p
 đã công bố trong các công trình của Hà Huy Khoái,
6
W. Cherry, K. Masuda, J. Noguchi và A. Nadel từ 1996 đến nay, trên cơ sở đó,
xây dựng các ví dụ minh chứng trong các lớp siêu mặt cụ thể.
2. MỤC ĐÍCH NGHIÊN CỨU
Nghiên cứu Sự suy biến của đường cong chỉnh hình trên ( )n
p
 và các
siêu mặt Hyperbolic trong không gian xạ ảnh 3
( )p
 .
3. ĐỐI TƯỢNG VÀ PHẠM VI NGHIÊN CỨU
- Đường cong chỉnh hình trong không gian xạ ảnh phức p-adic n chiều.
- Các siêu mặt hyperbolic p-adic bởi Hà Huy Khoái, W. Cherry, K.
Masuda, J. Noguchi và A. Nadel.
- Cụ thể hóa các kết quả trong một số trường hợp đặc biệt.
4. PHƯƠNG PHÁP NGHIÊN CỨU
Tổng hợp và hoàn thiện những kết quả đã có từ những bài báo, tài liệu khoa
học có liên quan đến vấn đề cần nghiên cứu. Đưa ra các ví dụ minh họa cho các
kết quả đã trình bày.
Sử dụng phương pháp Nevanlinna p-adic.
5. CẤU TRÚC LUẬN VĂN
Chương I: MỘT SỐ KIẾN THỨC BỔ TRỢ
1. Trường các số phức p-adic.
2. Hàm chỉnh hình và hàm phân hình trên trường các số phức p-adic.
3. Độ cao của hàm chỉnh hình và đường cong chỉnh hình trên
( )n
p .
7
4. Đường cong chỉnh hình trên ( )n
p
 . Định lý cơ bản thứ nhất và
thứ hai của đường cong chỉnh hình.
5. Không gian hyperbolic, siêu mặt hyperbolic.
Chương 2: SỰ SUY BIẾN CỦA ĐƯỜNG CONG CHỈNH HÌNH VÀ
SIÊU MẶT HYPERBOLIC P-ADIC
1. Sự suy biến của đường cong chỉnh hình ( )n
p
 .
2. Các siêu mặt hyperbolic trong 3
( )p
 .
8
NHỮNG KÝ HIỆU DÙNG TRONG LUẬN VĂN
κ là một trường;
[ ] { }0,1 1O x xκ κ κ= =∈ ≤ ;
( ) ( ){ }lim 0n
r nf z a rκ= =A ;
( ) ( ){ }( ;baùn kính hoäi tuïr f z rκ ρ= ≤A
( ) ( )κ κ∞=A A là tập các hàm nguyên trên ;κ
f ′ là đạo hàm bậc một của hàm f ;
( )R D là tập các hàm hữu tỉ h không có cực điểm trong tập D ;
( )DH là đầy đủ hóa của ( )R D theo tôpô sinh bởi chuẩn hội tụ đều trên D ;
( )Hol D là tập các hàm giải tích địa phương trên D ;
( )DM là tập các hàm phân hình trên D ;
( )DH là tập các hàm giải tích trên D ;
( )( ) ( ( )0; , , 0 ;p
g
g h h
h
κ ρ κ
 
= ∈ ≡ 
 
M A
( ( ) ( )( )0; ;p
κ κ ρ=M M
( )M là tập các hàm phân hình trên  ;
( )1O là đại lượng giới nội;
log là hàm số logarit cơ số e (log : ln)= .
9
NỘI DUNG
Chương 1: Một số kiến thức bổ trợ
Chương này trình bày các kiến thức chuẩn bị cho những nội dung ở
chương 2. Đó là các khái niệm về trường số phức p-adic; hàm chỉnh hình; hàm
phân hình; không gian hyperbolic, ...
1.1. Trường số phức p-adic:
Trước tiên, ta nhắc lại ký hiệu trường số phức, số thực và số hữu tỉ lần lượt
là ,  và  , và ký hiệu vành số nguyên là . Nếu η là tập con của  thì ta ký
hiệu:
{ }0x xη η+ = ∈ ≥ , { }0 .x xη η+
= ∈ >
Với ,a b sao cho a b≤ , ta ký hiệu:
[ ] { }, .a b x a x bη η= ∈ ≤ ≤
Cho κ là trường và ký hiệu nhóm nhân { } 0κ là *κ
Định nghĩa 1.1.1. Cho κ là trường. Một chuẩn Acsimet trên κ là hàm:
[ ): 0,κ +⋅ → = +∞
thỏa các điều kiện sau:
(1) 0 0,x x= ⇔ =
(2) , , ,xy x y x y κ= ∀ ∈
(3) , , .x y x y x y κ+ ≤ + ∀ ∈
Nếu thay (3) bởi điều kiện sau:
(4) max{ , }, , ,x y x y x y κ+ ≤ ∀ ∈
10
thì ⋅ thỏa mãn (1), (2), (4) gọi là chuẩn không Acsimet.
Một chuẩn ⋅ trên κ cảm sinh một hàm khoảng cách d được định nghĩa
bởi:
( ), , ,d x y x y x y κ= − ∀ ∈ .
Nếu chuẩn ⋅ không Acsimet thì metric cảm sinh d thỏa:
( ) ( ) ( ){ }, max , , , , , ,d x y d x z d z y x y z κ≤ ∀ ∈ .
Metric ứng với chuẩn không Acsimet được gọi là siêu metric.
Ví dụ 1.1.2. Xét hàm:
*
:
1 :
0 : 0
x
x x
x
κ
κ
+⋅ →
∈
= 
=


Khi đó ⋅ là chuẩn không Acsimet trên κ và metric cảm sinh:
( ) ( )
:
1 :
, ,
0 :
d
x y
x y d x y
x y
κ κ +× →
≠
= 
=


là một siêu metric. Metric này được gọi là metric tầm thường.
Ta xét một số đặc trưng của tôpô sinh bởi chuẩn không Acsimet thông qua
các hình cầu sau:
Với mỗi số thực dương r và một điểm x κ∈ , ta định nghĩa quả cầu mở và
quả cầu đóng bán kính r , tâm x lần lượt là:
( ) ( ){ }
[ ] ( ){ }
; , ,
; , ,
x r y d x y r
x r y d x y r
κ κ
κ κ
=∈ <
=∈ ≤
và ký hiệu đường tròn:
( ){ } [ ] ( ); , ;  ;x r y d x y r x r x rκ κ κ κ=∈ == .
11
Nếu ⋅ không Acsimet, tập con:
[ ] { }0,1 1O x xκ κ κ= =∈ ≤
là vành con của κ và được gọi là vành định giá của ⋅ .
Mệnh đề 1.1.3. Cho κ là trường định chuẩn không Acsimet. Ta có:
(1) Nếu ( );y x rκ∈ thì ( ) ( ); ;x r y rκ κ= ,
(2) Hình cầu ( );x rκ vừa là tập mở vừa là tập đóng,
(3) Hai hình cầu mở (đóng) hoặc rời nhau hoặc chứa nhau.
Sau đây, ta sẽ trình bày sơ lược khái niệm trường số phức p-adic (xem chi
tiết ở [11]):
Giả sử p∈, p là số nguyên tố. Khi đó, mọi số nguyên a đều được biểu
diễn duy nhất dưới dạng:
v
a p a′= ,
trong đó p không là ước của a′, { } 0 .a′∈ Với mỗi p và a , số nguyên v được
xác định duy nhất. Ký hiệu ( )pv a v= , ta có hàm số:
{ } [ )
( )
:  0 0,p
p
v
a v a
+→ = ∩ +∞  

và ( )0 0pv = . Ta mở rộng hàm v lên  như sau:
Với
a
x
b
= ∈, đặt:
( )
( ) ( ) : 0
: 0
p p
p
v a v b x
v x
x
 − ≠
= 
+∞ =
Với mỗi số nguyên tố p, xét:
12
{ }
( )
:
, .vôùi
p
v
pp
x x p v v x−
⋅ → ∪ +∞
= =
 

Khi đó, p
⋅ là một chuẩn không Acsimet và được gọi là chuẩn p-adic.
Giá trị tuyệt đối thông thường trên  có thể xem là chuẩn p-adic khi p là
vô cực và được ký hiệu :∞
⋅ =⋅ , và hiển nhiên là Acsimet.
Mệnh đề 1.1.4. (Ostrowski). Mọi chuẩn không tầm thường trên  đều tương
đương với một chuẩn p
⋅ , với p là số nguyên tố hoặc p = ∞ .
Từ định lý này, suy ra rằng các chuẩn trên  hoặc là chuẩn thông thường,
hoặc là p
⋅ với p là số nguyên tố nào đó. Vì vậy, với mỗi *x∈ , ta có:
1p
p
x
≤∞
=∏
trong đó, p
p
x
≤∞
∏ với nghĩa là ta lấy tích p
x với cả các số nguyên tố p trong , bao
gồm cả p = ∞ .
Đầy đủ hóa của  được tạo bởi tôpô cảm sinh từ p
⋅ là một trường, được
ký hiệu là p , và chuẩn p
⋅ trên  được mở rộng thành một chuẩn không
Acsimet trên p , vẫn ký hiệu là p
⋅ và thỏa:
(i) Tồn tại phép nhúng p⊂→  và chuẩn cảm sinh bởi p
⋅ trên  qua
phép nhúng là p-adic. Từ đây về sau, ta sẽ đồng nhất  với ảnh của nó qua phép
nhúng trong p ,
(ii)  trù mật trong p ,
(iii) p đầy đủ.
13
Trường p thỏa (i), (ii), (iii) (thay phép nhúng trên bằng đẳng cấu đồng nhất).
p được gọi là trường các số p-adic. p còn có tính chất sau:
(iv) Với mỗi *px∈ , tồn tại một số nguyên ( )pv x sao cho ( )pv x
p
x p
−
= ,
tức là pv trong  được mở rộng lên p . Nói cách khác, tập tất cả các giá trị của
 và p qua p
⋅ là trùng nhau và đó là tập { } { }0n
p n∈ ∪ .
Từ (iv) dễ thấy:
( ); ; , , .p p p
r
x r x x r
p
+ 
= ∈ ∈ 
 
   
Do đó vành định giá [ ] ( )0;1 0;p p pO p= =   vừa mở vừa đóng, và được gọi là
vành số nguyên p-adic, ký hiệu p . Với mọi n +
∈ , vành p được phủ bởi
( ); 0,1,..., 1 .n n n
p pk p k p k p−
  =+ = −  
Tức là p compắc và do đó p compắc địa phương. Như vậy, ta có
n n
p p pp p≅    ,
và lớp các n
pp  trong p là các quả cầu trong tôpô p-adic. Các tập
( )0; n n
p pp p n−
 = ∈    tạo thành một hệ tọa độ địa phương của 0 p∈ . Không
gian p không liên thông nhưng là không gian tôpô Hausdorff.
Bây giờ ta mở rộng của chuẩn p-adic trong p trên bao đóng đại số p của p .
Lấy px∈ , khi đó x cũng thuộc mở rộng hữu hạn ( )p x và do đó ta có
thể định nghĩa p
x bằng cách mở rộng chuẩn p-adic trên ( )p x , cụ thể, ta có
hàm:
: p +⋅ →  .
14
Hàm trên là một mở rộng của chuẩn p-adic trên p , và dễ chứng minh được rằng
hàm này cũng là một chuẩn. Chuẩn trên p vẫn được gọi là chuẩn p-adic. Tuy
nhiên, p không đầy đủ với chuẩn này.
Đầy đủ hóa của p ứng với tôpô sinh bởi p
⋅ là một trường được ký hiệu
là p , chuẩn p
⋅ trên p được mở rộng thành một chuẩn không Acsimet trên
p , chuẩn này vẫn được ký hiệu là p
⋅ và thỏa:
(i) Tồn tại phép nhúng p p⊂→  và chuẩn sinh bởi p
⋅ trên p qua
phép nhúng là p-adic. Từ đây về sau, ta sẽ đồng nhất p với ảnh của nó qua phép
nhúng trong p ,
(ii) p trù mật trong p ,
(iii) p đầy đủ.
Trường p thỏa (i), (ii), (iii) (thay phép nhúng trên bằng đẳng cấu đồng nhất).
p gọi là trường các số phức p-adic. p còn có tính chất sau:
(iv) Với mỗi *px∈ , tồn tại một số hữu tỉ ( )pv x sao cho ( )pv x
p
x p
−
= ,
tức là pv trong p được mở rộng trong p . Và ảnh của *p qua pv là  ,
(v) p đóng đại số nhưng không compắc địa phương.
15
1.2. Hàm chỉnh hình và hàm phân hình trên trường số phức p-
adic:
Cho κ là trường đóng đại số, đầy đủ với chuẩn không Acsimet ⋅ và có
đặc số 0. Trong phần này ta sẽ trình bày một số kiến thức cơ bản về hàm chỉnh
hình và hàm phân hình. Các khái niệm về dãy, chuỗi và sự hội tụ của dãy, chuỗi
giống như trong trường định chuẩn Acsimet. Tuy nhiên với chuẩn không Acsimet
ta có một số tính chất đặc biệt sau:
Bổ đề 1.2.1. Giả sử ( )nx là một dãy trong κ . Dãy ( )nx là dãy Cauchy nếu và chỉ
nếu
1lim 0n n
n
x x+
→∞
− =.
Chứng minh:
Điều kiện đủ hiển nhiên theo định nghĩa dãy Cauchy.
Ta chứng minh điều kiện cần:
,n p∀ ∈ ta có:
{ }
1 1 2 1
1 1 2 1
...
max , ,...,
n p n n p n p n p n p n n
n p n p n p n p n n
x x x x x x x x
x x x x x x
+ + + − + − + − +
+ + − + − + − +
− = − + − + + −
≤ − − −
Vì 1lim 0n n
n
x x+
→∞
− =nên suy ra điều cần chứng minh. 
Từ tính chất trên và theo định nghĩa sự hội tụ của chuỗi số, chuỗi lũy thừa ta có
các tính chất sau:
Mệnh đề 1.2.2. Chuỗi
0
,n n
n
a a κ
∞
=
∈∑ hội tụ khi và chỉ khi lim 0n
n
a
→∞
= .
Khi đó ta có:
0
maxn n
n
n
a a
∞
=
≤∑ .
16
Chuỗi lũy thừa ( )
0
,n
n n
n
f z a z a κ
∞
=
= ∈∑ hội tụ tại z khi và chỉ khi lim 0n
n
n
a z
→∞
= .
Mệnh đề 1.2.3. Đặt
1
limsup n
na
ρ = , khi đó ta có:
(1) Nếu 0ρ = thì ( )f z chỉ hội tụ tại 0z = ,
(2) Nếu ρ = +∞ thì ( )f z hội tụ tại mọi z κ∈ ,
(3) Nếu 0 ρ< < +∞ và 0n
na ρ → thì ( )f z hội tụ khi và chỉ khi z ρ≤ ,
(4) Nếu 0 ρ< < +∞ và 0n
na ρ → thì ( )f z hội tụ khi và chỉ khi .z ρ<
Khi đó ρ được gọi là bán kính hội tụ của chuỗi lũy thừa ( )f z . Nếu ρ = ∞ thì
( )f z gọi là hàm nguyên trên .κ
Tập các chuỗi lũy thừa ( )
0
,n
n n
n
f z a z a κ
∞
=
= ∈∑ cùng với phép cộng và nhân hai
chuỗi lũy thừa lập thành một vành.
Kí hiệu ( ) ( ){ }lim 0n
r nf z a rκ= =A ,
( ) ( ){ }( ,baùn kính hoäi tuïr f z rκ ρ= ≤A
( ) ( )κ κ∞=A A là tập các hàm nguyên trên .κ
Ta có: ( ) ( )r s
s r
κ κ
≤
= ∩A A .
Định nghĩa 1.2.4. Với ( ) ( )
0
n
n
n
f z a z ρ κ
∞
=
= ∈∑ A và 0 r ρ< < , ta định nghĩa:
Số hạng lớn nhất của ( )f z là ( ) 0
, max n
n
n
r f a rµ
≥
= và chỉ số ứng với số hạng lớn
nhất là ( ) ( ){ }, max , .n
nr f n a r r fυ µ= =
Với 0r = , ta định nghĩa:
17
( ) ( ) ( ) ( )0 0
0, lim , , 0, lim ,
r r
f r f f r fµ µ υ υ+ +
→ →
= = .
Từ định nghĩa của số hạng lớn nhất, ta có kết quả sau:
Mệnh đề 1.2.5. Với 0r > , hàm ( ) ( ), : rrµ κ +⋅ → A thỏa mãn:
(i) ( ) ( ), 0; , 0 0r f r f fµ µ≥ = ⇔ = ,
(ii) ( ) ( ) ( ), , ,r fg r f r gµ µ µ= và ( ) ( ), , ,r f r fµ λ λ µ λ κ= ∀ ∈ ,
(iii) ( ) ( ) ( ){ }, max , , ,r f g r f r gµ µ µ+ ≤ .
Khi đó ( ),rµ ⋅ là một chuẩn không Acsimet trên ( )r κA và:
(iv) ( )r κA đầy đủ với chuẩn ( ),rµ ⋅ ,
(v) Vành đa thức [ ]zκ trù mật trong ( )r κA theo ( ),rµ ⋅ .
Định lý 1.2.6. (Định lý Weierstrass). Với ( ) { } 0 , 0rf rκ∈ >A tồn tại đa thức:
( ) 0 1 ...g z b b z b zυ
υ= + + + với ( ),r fυ υ= ,
và một chuỗi lũy thừa:
( )
1
1 ,n
n n
n
h z c z c κ
∞
=
=+ ∈∑
thỏa mãn:
(i) ( ) ( ) ( ),f z h z g z=
(ii) ( ), ,r g b rυ
υµ =
(iii) ( ),rh κ∈ A
(iv) ( ), 1 1r hµ − < và ( ) ( ), ,r f g r fµ µ− < .
Định nghĩa 1.2.7. Với U κ⊂ là tập mở, hàm :f U κ→ được gọi là khả vi tại
0z U∈ nếu tồn tại:
18
( ) ( )
( )0 0
0
0
lim :
h
f z h f z
f z
h→
+ −
′= .
Hàm f ′ được gọi là đạo hàm của f . Hàm f được gọi là khả vi trên U nếu f
khả vi tại mọi z U∈ .
Ta có mối liên hệ giữa hàm f và đạo hàm f ′ như sau:
Mệnh đề 1.2.8. Giả sử chuỗi ( )
0
n
n
n
f z a z
∞
=
= ∑ có bán kính hội tụ 0ρ ≠ và z κ∈ .
Nếu ( )f z hội tụ thì ( )f z′ tồn tại và ( ) 1
1
n
n
n
f z na z −
≥
′ = ∑ .
Hơn nữa, f và f ′ có cùng bán kính hội tụ ρ và thỏa mãn:
( ) ( )
1
, , , :0r f r f r r
r
µ µ ρ′ ≤ ∀ < < .
Mệnh đề 1.2.9. Với dãy ( ) *nz κ⊂ , nếu nz → ∞ thì tích vô hạn
( )
1
1 n
n
z
f z
z
∞
=
 
= − 
 
∏
là một hàm nguyên.
Ngược lại, nếu f là một hàm nguyên khác đa thức thì f có thể được biểu diễn
dưới dạng:
( )
1
1m
n
n
z
f z az
z
∞
=
 
= − 
 
∏ ,
với 0, , 0,n nm a z zκ> ∈ ≠ → ∞ và ( ) 0nf z = .
Định nghĩa 2.10. Cho 0z κ∈ và [ ]f zκ∈ .
Điểm 0z được gọi là không điểm của hàm f khi và chỉ khi ( )0 0f z = .
Điểm 0z κ∈ được gọi là cực điểm của hàm f khi và chỉ khi ( )
0
lim
z z
f z
→
= ∞ .
19
Hệ quả 1.2.11.
Nếu f là hàm nguyên khác đa thức thì f có vô số không điểm.
Nếu f là hàm nguyên không có không điểm thì f là hàm hằng.
Tồn tại ước chung lớn nhất của một họ hữu hạn các hàm nguyên.
Hệ quả 1.2.12. Giả sử ( ) { },  0f g κ∈ A . Nếu fg là hàm hằng thì f và g là
những hàm hằng.
Giả sử, ( )( ) { }, ,  0f g d a r∈ A . Nếu fg bị chặn thì f và g là những hàm bị chặn.
Định nghĩa 1.2.13. Giả sử D là tập vô hạn trong ,κ đặt ( )R D là tập các hàm hữu
tỉ h không có cực điểm trong D . Khi đó, với mọi ( )h R D∈ , đặt:
( )supD
z D
h h z
∈
= .
Ký hiệu ( )DH là đầy đủ hóa của ( )R D theo tôpô sinh bởi chuẩn hội tụ đều trên
D . Mỗi phần tử của ( )DH được gọi là một hàm giải tích trên D . Khi đó, ( )DH
là một κ - không gian vectơ và mỗi hàm giải tích trên D là giới hạn đều của một
dãy các hàm hữu tỉ thuộc ( )R D .
Mệnh đề 1.2.14. Với r +
∈ , ta có [ ]( ) ( )0; rrκ κ=H A .
Chứng minh:
Vì vành các đa thức [ ]zκ trù mật trong ( )r κA nên ta suy ra:
( ) [ ]( ) ( )0;r rκ κ⊂ ∗HA
Ngược lại, [ ] 0; ,a r kκ κ +∀ ∈ ∈ ta có:
20
0
0
1 1
1
, .vôùi
kn
n
k n
n n
n
z
z a a a
z
b b
a a
∞
=
∞
+
=
    
= −     −    
   
=− ∈   
   
∑
∑ 
Vì a r> nên suy ra:
0
n
nnn
n
b r
r
a a
→∞
 
≤ →  
 
.
Do đó ( )
1
k
r
z a
κ
 
∈ 
− 
A , suy ra [ ]( ) ( ) ( )0; rR rκ κ⊂ ∗∗A .
Mặt khác, vì ( ),r fµ liên tục tại r nên suy ra:
( ) ( )sup , , :0
z r
f z r f r rµ ρ
≤
= ∀ ≤ ≤ .
Do đó ta có:
[ ] ( ) ( )0;
, , rr
f r f fκ
µ κ= ∈ A .
Vì ( )r κA đầy đủ với chuẩn ( ),rµ ⋅ nên ( )r κA cũng đầy đủ với chuẩn [ ]0;rκ
⋅ . Do
đó, từ ( )∗∗ ta suy ra ( ) [ ]( )0;r rκ κ⊃ HA . Kết hợp với ( )∗ ta có điều cần chứng
minh. 
Định nghĩa 1.2.15. Cho D κ⊂ không có điểm cô lập. Hàm :f D κ→ được gọi là
giải tích địa phương nếu với mỗi a D∈ , ( ), nr a κ+
∃ ∈ ⊂ sao cho:
( ) ( ) [ ]
0
, ;
n
n
n
f z a z a z D a rκ
∞
=
= − ∀ ∈ ∩∑ .
Ký hiệu ( )Hol D là tập các hàm giải tích địa phương trên D .
Mệnh đề 1.2.16. Nếu hàm f giải tích địa phương trên tập mở D thì nó có đạo
hàm mọi cấp trên D . Điểm 0z D∈ là nghiệm bội q của f nếu và chỉ nếu:
21
( )
( )0 0,
n
f z n q= ∀ < và ( )
( )0 0
q
f z ≠ .
Định lý 1.2.17. Cho r +
∈ và đặt:
( ) ( ) 1
10
, sup 0n n
n r n
nn
f z a z s a rκ
∞
−
≥=
= ∈ = >∑ A .
Khi đó, các mệnh đề sau là tương đương:
(1) 1
1 , 1,n
na a r n−
> ∀ >
(2) ( ) ( ) [ ]1 , , 0; ,f x f y x y a x y rκ− = − ∀ ∈
(3) f đơn ánh trong [ ]0;rκ và ( ) [ ]0, 0;f z z rκ′ ≠ ∀ ∈ .
Chứng minh:
 Chứng minh ( ) ( )1 2⇒ :
Do 0n
na r → khi n → ∞ nên từ (1) ta có:
1
1
2
max n
n
n
a a r −
≥
>
Lại có:
( ) ( ) ( )
1
1
1
2 0
n
j n j
n
n j
f x f y x y a a x y
∞ −
− −
= =
 
− =− + 
 
∑ ∑
và 1 1j n j n
x y r− − −
≤ nên:
1
1 1
1
2
2 0
max
n
n j n j
n n
n
n j
a a r a x y
∞ −
− − −
≥
= =
> ≥ ∑ ∑ ,
và do đó ( ) ( ) 1f x f y x y a− =− .
 Chứng minh ( ) ( )2 3⇒ :
Do 0s > nên f không là hàm hằng, và do đó từ (2) suy ra 1 0a ≠ .
22
Cũng từ (2) suy ra ( ) ( )f x f y≠ khi x y≠ , nghĩa là f đơn ánh trong [ ]0;rκ
và cho y x→ ta có ( ) [ ]1 0, 0;f x a x rκ′ = ≠ ∀ ∈ .
 Chứng minh ( ) ( )3 1⇒ :
Do f đơn ánh trong [ ]0;rκ nên ( ) 0 0 0f z a z− = ⇔ = . Khi đó từ định lý
Weierstrass ta có ( ), 1r fν = và hiển nhiên (1) thỏa. 
Định lý 1.2.18. Cho D là tập mở trong κ và 0 D∈ . Lấy ( )f Hol D∈ với ( )0 0f ′ ≠ .
Khi đó tồn tại số r +
∈ sao cho f là song ánh trong [ ]0;rκ và 1
f −
giải tích toàn
cục trong [ ]( )0;f rκ .
Bổ đề 1.2.19. Cho r +
∈ và đặt ( ) n
nf z a z= ∑ là chuỗi lũy thừa với các hệ số
thuộc κ . Khi đó các mệnh đề sau là tương đương:
(1) ( )( ,rf κ∈ A
(2) ( ),s
s r
f κ
<
∈ ∩ A
(3) Chuỗi f hội tụ trong ( )0;rκ .
Định nghĩa 1.2.20. Cho D κ⊂ không có điểm cô lập. Hàm { }:f D κ→ ∪ ∞ được
gọi là hàm phân hình trên D nếu tồn tại một tập không quá đếm được S D⊂ , S
không có điểm giới hạn trong D và thỏa ( )f D S∈H .
Ký hiệu ( )DM là tập các hàm phân hình trên D .
Định nghĩa 1.2.21. Cho D κ⊂ không có điểm cô lập. Hàm { }:f D κ→ ∪ ∞ được
gọi là hàm phân hình địa phương trên D nếu a D∀ ∈ , tồn tại ,r q+
+∈ ∈  và
na κ∈ sao cho:
23
( ) ( ) [ ], ;
n
n
n q
f z a z a z D a rκ
∞
=−
= − ∀ ∈ ∩∑ .
Ký hiệu ( )Mer D là tập các hàm phân hình địa phương trên D .
Định nghĩa 1.2.22. Cho tập mở D κ⊂ . Một hàm :f D κ→ được gọi là giải tích
tại điểm a D∈ nếu tồn tại { }ρ +
∈ ∪ ∞ và na κ∈ sao cho ( );a Dκ ρ ⊂ ,
[ ];  ,a Dκ ρ ρ ρ′ ′≠ ∅ ∀ > và thỏa:
( ) ( ) ( )
0
, ;
n
n
n
f z a z a z aκ ρ
∞
=
= − ∀ ∈∑ .
Nếu f giải tích tại mọi điểm thuộc D thì f được gọi là giải tích trên D .
Ký hiệu ( )DH là tập các hàm giải tích trên D .
Đĩa ( );aκ ρ được gọi là đĩa giải tích cực đại của f tại a . Các hàm giải tích trong
D đều có thể có giải tích cực đại trên D . Và ta có:
( ) ( ) ( )D D Hol D⊂ ⊂H H .
Trường các phân thức của ( )DH được ký hiệu là ( )DM . Một hàm ( )f D∈ M
được gọi là hàm phân hình trên D . Nếu f không có điểm cực trên D thì f còn
được gọi là hàm chỉnh hình trên D .
Mệnh đề 1.2.23. Nếu f là hàm phân hình thì tồn tại ,g h là các hàm chỉnh hình
sao cho:
g
f
h
=
và
( )
( )
( )
,
, , 0
,
r g
r f r
r h
µ
µ ρ
µ
= ≤ ≤ .
Đặc biệt:
24
( )
1 1
,
,
r
f r f
µ
µ
 
= 
 
.
Lấy ρ +
∈ . Nếu ( )( )0;f κ ρ∈H thì đĩa cực đại của f tại mỗi điểm
( )0;a κ ρ∈ chính là ( )0;κ ρ . Ta có ( )( ) ( ( )0; p
κ ρ κ= AH nên:
( )( ) ( ( )0; , , 0p
g
g h h
h
κ ρ κ
 
= ∈ ≡ 
 
M A .
Để tiện cho việc trình bày, ta viết:
( ( ) ( )( )0;p
κ κ ρ=M M
Và dễ thấy:
( )( ) [ ]( )0; 0;
r
r
ρ
κ ρ κ
<
= M M .
Đặt biệt, mỗi phần tử thuộc:
( ( ) ( )( ) ( )0;κ κ κ∞
= ∞=M M M
được gọi là hàm phân hình trên κ . Ta cũng ký hiệu ( )M là tập các hàm phân
hình trên  . Hiển nhiên, ( )κM chứa tập các hàm hữu tỉ ( )zκ .
Mệnh đề 1.2.24. Với 0 r ρ< < , hàm ( ) ( )(,r ρµ κ +⋅= → M thỏa:
(i) ( ), 0 0,r f fµ = ⇔ =
(ii) ( ) ( ) ( ){ }1 2 1 2, max , , , ,r f f r f r fµ µ µ+ ≤
(iii) ( ) ( ) ( )1 2 1 2, . , . ,r f f r f r fµ µ µ= .
25
1.3. Độ cao của hàm chỉnh hình và đường cong chỉnh hình trên
( )n
p .
Có thể xem chi tiết trong [ ] [ ]1 , 4 .
Cho ( )f z là một hàm chỉnh hình p-adic trên p và:
( )
0
n
n
n
f z a z
∞
=
= ∑ .
Khi đó, ta có:
( ) ( )lim ,n p
n
v a nv z z
→∞
 + =∞ ∀ ∈   .
Suy ra, với ( )v z t= ∈ tồn tại n để cho ( )nv a nt+ là cực tiểu.
Định nghĩa 1.3.1. Độ cao của ( )f z được xác định bởi công thức:
( ) ( ){ }0
, min n
n
h f t v a nt
≤ ≤∞
= + .
Sau đây, ta sẽ mô tả biểu diễn hình học của độ cao hàm chỉnh hình.
Với mỗi n, ta vẽ đồ thị nΓ của ( )n
nv a z . Đồ thị này là một đường thẳng với độ
dốc n. Khi đó ( ),h f t là biên của giao tất cả các nửa mặt phẳng nằm bên dưới
đường thẳng nΓ . Trong bất kỳ đoạn thẳng hữu hạn [ ] ( ), , 0 ,r s r s< < +∞ , chỉ có
hữu hạn điểm trên nΓ nằm trong ( ),h f t . Do đó, ( ),h f t là một đa giác. Điểm t
tại các đỉnh của ( ),h f t được gọi là điểm tới hạn của ( )f z .
t
nΓ
( ),h f t
26
Một đoạn thẳng hữu hạn [ ],r s chỉ có thể chứa hữu hạn điểm tới hạn của ( )f z .
Dễ thấy, nếu t là một điểm tới hạn thì ( )nv a nt+ đạt cực tiểu tại ít nhất hai giá trị
của n.
Nếu ( )v z t= không phải là điểm tới hạn thì ( ) 0f z ≠ và ( ) ( ),h f t
f z p
−
= . Và
( )f z có không điểm khi ( ) iv z t= , với 0 1 ...t t> > là dãy các điểm tới hạn; số các
không điểm ứng với ( ) iv z t= bằng hiệu 1i in n+ − giữa độ dốc của ( ),h f t tại
{ } 0it và độ dốc của ( ),h f t tại { }0it ∪ . Dễ thấy rằng in và 1in + lần lượt là giá trị
lớn nhất và nhỏ nhất của n để ( )nv a nt+ là cực tiểu.
Bổ đề 1.3.2. Cho ( )f z là hàm chỉnh hình khác hằng trên p . Khi đó, với t đủ
nhỏ, ta có ( ) ( ), ,h f t h f t t′ − ≥ − .
Bổ đề 1.3.3. Cho ( )f z là hàm chỉnh hình khác hằng trên p , khi đó:
( ),h f t → −∞ khi t → −∞ .
Bổ đề 1.3.4. Cho ( ) ( ),f z g z là các hàm chỉnh hình trên p . Khi đó ta có:
(i) ( ) ( ) ( ){ }, min , , ,h f g t h f t h g t+ ≥ ,
(ii) ( ) ( ) ( ), , , .h fg t h f t h g t= +
Định nghĩa 1.3.5. Cho f là một ánh xạ chỉnh hình từ p vào ( )n
p và f được
cho bởi:
( )1 2 1, ,..., nf f f f += ,
27
trong đó, if là các hàm chỉnh hình trong p và không có chung không điểm.
Khi đó, f được gọi là một đường cong chỉnh hình p-adic trên không gian xạ ảnh
( )n
p .
Định nghĩa 1.3.6. Độ cao của đường cong chỉnh hình f được xác định bởi:
( ) ( )1 1
, min ,i
i n
h f t h f t
≤ ≤ +
= .
Bổ đề 1.3.7. Cho ( )2 1, ,...,i nf f f f += và giả sử ( )1 2 1, ,..., ng g g + là một biểu diễn
tương tự khác của f , trong đó ig là các hàm chỉnh hình. Khi đó:
( ) ( )1 1
, min ,i
i n
h f t h g t C
≤ ≤ +
= + , với C là hằng số.
Chứng minh:
Từ giả thuyết ta có một hàm phân hình ( )zλ thỏa:
( ) ( ) ( ), 1,..., 1i ig z z f z i nλ= ∀= + .
Do ( )ig z là hàm chỉnh hình và ( )if z không có cùng không điểm nên λ là một
hàm chỉnh hình.
Do đó ( ),h tλ → −∞ khi t → −∞ (Bổ đề 1.3.3).
Suy ra ( ), 0h tλ < khi t đủ nhỏ, hoặc ( )zλ là hàm hằng.
Kết hợp định nghĩa độ cao đường cong chỉnh hình, ta có điều cần chứng minh.
Như vậy, từ Bổ đề 1.3.6, ta thấy định nghĩa độ cao của đường cong chỉnh hình là
một định nghĩa tốt.
Để kết thúc phần này và chuẩn bị cho những nội dung sau, chúng ta sẽ
nhắc lại khái niệm các hàm đặc trưng Nevanlinna, hai định lý cơ bản của lý
thuyết Nevanlinna và một số nội dung liên quan:
28
Định nghĩa 1.3.8. Giả sử ( )(f ρ κ∈ A , 0 ρ< ≤ ∞ và ( )
0
n
n
n
f z a z
∞
=
= ∑ . Lấy a κ∈ , ta
định nghĩa:
1
,n r
f a
 
 
− 
là hàm đếm số không điểm (kể cả bội) của f tại a trong
[ ]0;rκ (nghĩa là đếm số không điểm (kể cả bội) của f a− với giá trị tuyệt đối
nhỏ hơn hoặc bằng r ).
1
,n r
f a
 
 
− 
là hàm đếm số không điểm phân biệt của f tại a trong
[ ]0;rκ .
Với 0 oρ ρ< < , hàm:
( )
1
,
1
, : ,
o
r
o
n t
f a
N r dt r
f a tρ
ρ ρ
 
 −   = < < 
− 
∫
được gọi là hàm giá trị của f tại a trên [ ]0;rκ .
Mệnh đề 1.3.9. Giả sử ( )(rf κ∈ A có k – không điểm (kể cả bội) trong [ ]0;rκ ,
1k ≥ . Khi đó với [ ]( )0;b f rκ∈ thì f b− cũng có k – không điểm (kể cả bội)
trong [ ]0;rκ .
Chứng minh:
Giả sử ( )
0
n
n
n
f z a z
∞
=
= ∑ . Theo định lý Weierstrass (định lý 1.2.6) ta có:
( ),k r fυ= và ,n k
n ka r a r n k≤ ∀ ≤ ; ,n k
n ka r a r n k< ∀ > .
Với [ ]( )0;b f rκ∈ , ta có:
29
( ) ( )( )0 0 , k
ka b f b r f z b a rµ−= − ≤ − = .
Do đó ( ) ( ), ,r f b k r fυ υ υ= − = = . Theo định lý Weierstrass, f b− có k – không
điểm trong [ ]0;rκ . 
Từ Mệnh đề 1.3.9 ta có một số tính chất về hàm giá trị như sau:
Hệ quả 1.3.10. Giả sử ( )(f ρ κ∈ A , ( )0 ρ< ≤ ∞ không bị chặn và b κ∈ , ta có:
( ) ( )
1 1
, , 1 ,N r N r O r
f b f
ρ
   
= + →   
−   
.
trong đó, ( )1O là đại lượng giới nội.
Hệ quả 1.3.11. Giả sử f là hàm nguyên khác hằng và b κ∈ , ta có:
( ) ( )
1 1
, , 1 ,N r N r O r
f b f
ρ
   
= + →   
−   
.
Ta xây dựng các hàm đặc trưng cho hàm phân hình:
Cố định r , 0 r ρ< < ≤ ∞ và ( )(f ρ κ∈ M . Khi đó tồn tại ( )0 1 (, rf f κ∈ A sao
cho 1
0
f
f
f
= , với 0 1,f f không có nhân tử chung trong vành ( )r κA .
Định nghĩa 1.3.12. Với { }a κ∈ ∪ ∞ , ta định nghĩa:
Hàm đếm số không điểm (kể cả bội) của f tại a trong [ ]0;rκ :
( )
0
1 0
1
, , ,
1
,
1
, ,
n r f n r a
f
n r
f a
n r a
f af
  
= = ∞  
    
=  
−     ≠ ∞  − 
neáu
neáu
Hàm giá trị của f tại a trên [ ]0;rκ :
30
( )
0
1 0
1
, , ,
1
,
1
, ,
N r f N r a
f
N r
f a
N r a
f af
  
= = ∞  
    
=  
−     ≠ ∞  − 
neáu
neáu
Mệnh đề 1.3.13. (Công thức Jensen) Với ( )(f ρ κ∈ M , ta có:
( ) ( ) ( )0
1
, , log , log ,N r N r f r f f
f
µ µ ρ
 
− = − 
 
, với 00 rρ ρ< < ≤ .
Định nghĩa 1.3.14. Giả sử ( )(f ρ κ∈ M , với r ρ< ta định nghĩa:
Hàm xấp xỉ của f trên [ ]0;rκ :
( ) ( ) ( ){ }, log , max 0;log ,m r f r f r fµ µ+
= = .
Hàm đặc trưng của f trên [ ]0;rκ :
( ) ( ) ( ), , ,T r f m r f N r f= + .
Chú ý:
Ta có:
( ) ( )
( )
( )
1
log , log , log
,
1
, , .
r f r f
r f
m r f m r
f
µ µ
µ
+ +
= −
 
= −  
 
Do đó công thức Jensen có thể viết lại như sau:
( ) ( )0
1
, , log ,T r T r f f
f
µ ρ
 
= − 
 
.
Hay
( ) ( )
1
, , 1T r T r f O
f
 
= + 
 
.
31
Mệnh đề 1.3.15. (Định lý cơ bản thứ nhất của lý thuyết Nevanlinna).
Giả sử f là hàm phân hình khác hằng trên ( )0,κ ρ . Khi đó với mọi a κ∈ ,
ta có:
( ) ( ) ( )
1 1
, , , 1 ,m r N r T r f O r
f a f a
ρ
   
+ = + →   
− −   
.
Mệnh đề 1.3.16. (Định lý cơ bản thứ hai của lý thuyết Nevanlinna).
Giả sử f là hàm phân hình khác hằng trên ( )0,κ ρ và 1,..., qa a là các điểm
phân biệt thuộc κ . Định nghĩa:
{ } { }min 1; , max 1;i j i
i j i
a a A aδ
≠
= − = .
Khi đó với 0 r ρ< < , ta có:
( ) ( ) ( ) ( )
( )
1
1
1 1
1 , , , , , log
1
, , log ,
q
f
j j
q
f
j j
q T r f N r N r f N r f N r r S
f a f
N r f N r r S
f a
=
=
   
′− ≤ − + − − +     ′−   
 
≤ + − +  − 
∑
∑
với ( ) ( ) ( )0 0
1
log , log , 1 log
q
f j
j
A
S f a f qµ ρ µ ρ
δ=
′= − − + −∑ .
Có thể xem chi tiết các chứng minh trong [11].
32
1.4. Đường cong chỉnh hình trên ( )n
p
 . Định lý cơ bản thứ nhất
và thứ hai của đường cong chỉnh hình:
Trước tiên, chúng ta sẽ nhắc lại một công cụ cần thiết cho phần này, đó là định
thức Wronski:
Cho hai hàm số ( )1y x và ( )2y x . Định thức:
( ) 1 2
1 2 1 2 2 1
1 2
,
y y
W y y y y y y
y y
′ ′= = −
′ ′
được gọi là định thức Wronski của 1 2,y y . (Bạn đọc có thể xem chi tiết hơn về định thức
Wronski trong các tài liệu liên quan đến phương trình vi phân. Vì khuôn khổ luận văn
không cho phép nên chúng tôi không trình bày chi tiết ở đây.)
Sau đây, chúng ta sẽ nhắc lại về đường cong chỉnh hình trên ( )n
p và hai định
lý cơ bản của đường cong chỉnh hình:
Định nghĩa 1.4.1. Cho κ là trường đóng đại số có đặc số 0 và đầy đủ với chuẩn
⋅ không Acsimet, không tầm thường. Gọi V là không gian vectơ định chuẩn
( )1n + - chiều trên κ và ( )0 ,..., ne e e= là một cơ sở của V . Một đường cong chỉnh
hình (không Acsimet) là hàm:
( ):f Vκ →  .
Hay nói cách khác:
 ( ) 1
0 ,..., : n
nf f f κ κ +
= → ,
sao cho  
0 ,..., nf f không có nhân tử chung trong vành các hàm nguyên trên κ và
các 
if không đồng thời bằng 0.
Đặt   
0 0 ... :n nf f e f e Vκ= + + → và gọi là biểu diễn thu gọn của f . Đặt:
33
( ) ( )0
, max , k
k n
r f r fµ µ
≤ ≤
= .
Ghi chú, ( )  ( )  ( )0
, max k
k n
z f f z f zµ
≤ ≤
= = .
Khi đó hàm đặc trưng:
( ) ( ), log ,T r f r fµ=
đúng với mọi 0r > , sai khác ( )1O .
Định nghĩa 1.4.2. Một đường cong chỉnh hình ( ):f Vκ →  được gọi là siêu việt
nếu:
( ),
limsup
logr
T r f
r→∞
= ∞.
Tổng quát, đặt:
0 0 ... :n nh h e h e Vκ= + + →   ,
trong đó, ( )0 ,..., nh h  là bộ 1n + các hàm phân hình sao cho các jh không đồng
nhất bằng 0. Từ Hệ quả 1.2.10 tồn tại ước chung lớn nhất h của 0 ,..., jh h  sao cho
h
f
h
=

 là một biểu diễn thu gọn của đường cong chỉnh hình không Acsimet
( ):f Vκ →  . Ta gọi h là biểu diễn của f và ta viết f h=  . Chú ý rằng:
( ) ( ) ( ), , ,r h r h r fµ µ µ=  .
Từ công thức Jensen ta được:
( ) ( ) ( ) ( ) ( ), log , 1 4.1fT r f N r r h Oµ+ = +
trong đó, ( ) ( )
1
, ,fN r N r N r h
h
 
= − 
 
.
34
Ta còn có thể viết: ( ) ( )
1 1
, , , , ,N r N r N r h N r h
hh
   
= =   
   


.
Gọi ( ):f Vκ →  là một đường cong chỉnh hình và đặt:
0 0 ... :n nf f e f e Vκ= + + →  
là một biểu diễn thu gọn của f . Khi đó:
( )
1... , ...W
n
o nf f f e f e e e ′∧ ∧ ∧= ∧ ∧ ∧ 
    ,
trong đó, ,W e f 
 
 là định thức Wronski của f ứng với cơ sở e:
( )
( ) ( ) ( )
0 1
0 1
0
0 1
...
...
, ,...,
... ... ... ...
...
W W
n
n
n
n n n
n
f f f
f f f
e f f f
f f f
 
 
′ ′ ′ 
 = =   
 
 
 
  
  
  
  
,
và, do đó ta có
( )
, ...W
n
e f f f f  ′= ∧ ∧ ∧ 
    .
Và ta cũng được:
( )
1, ... , ...W
n
o ne f f f f ε ε ε  ′= ∧ ∧ ∧ ∧ ∧ ∧ 
    ,
trong đó, ( )1, ,...,o nε ε ε ε= là cơ sở đối ngẫu của e.
Ta định nghĩa hàm nguyên:
( )0 0, ,..., : ...n ne f f f f f Κ =Κ = 
     ,
và hàm phân hình:
( )0
,
, ,..., :
,
W
S S n
e f
e f f f
e f
 
  = =   Κ  

  

.
Từ bổ đề về đạo hàm logarit, ta có:
35
( )
( )
( ) ( ) ( )
1
2
, , , 1 4.2
n n
r e f r m e f Oµ
+
−
   ≤ =   
 S ; S
Kí hiệu 0 1, ,..., sV V V và W là các không gian vectơ trên κ . Đặt:
0 ...: WsV V× × →
là ánh xạ ( )1s + − tuyến tính trên κ . Và các đường cong chỉnh hình không
Acsimet sau:
( ): , 0,1,...,j jf V j sκ → =
cùng với các hàm biểu diễn thu gọn:
 : , 0,1,...,j jf V j sκ → = .
Định nghĩa 1.4.3. ( )0 1, ,..., sf f f được gọi là độc lập với  nếu  
0 ... 0sf f ≡  .
Giả sử 0 ,..., sf f độc lập với  . Khi đó ta có:
( )
 ( )
( ) ( )
0
0
0
, ...
, ...
, ... ,
s
s
s
r f f
r f f
r f r f
µ
µ
µ µ
=
 
  .
Nhận xét: ( ) ( ) ( )0 0, ... ...s sz f f f z f zµ =    .
Giả sử ( )0 ,..., sf f độc lập với  và ta có hàm xấp xỉ:
( ) ( )0 ... 0log , ...sf f sm r r f fµ= −    .
Lưu ý, 0 ... : Wsf f κ →  là một đường cong chỉnh hình không Acsimet với biểu
diễn thu gọn  ...j sf f  .
Khi đó, từ ( )4.1 ta được định lý cơ bản thứ nhất của đường cong chỉnh hình:
Định lý 1.4.4. Cho ( ):f Vκ →  là đường cong chỉnh hình không Acsimet. Khi
đó ta có :
36
( ) ( ) ( ) ( ) ( ) ( )0 0... ... 0
0
, , ... 1 4.3 .s s
s
j f f f f s
j
T r f N r m r T r f f O
=
= + + +∑  
Nếu dim 1W = thì ( )W là một điểm và ( )0, ... sT r f f  là hàm hằng.
Cho ( ):g Vκ ∗
→  là một đường cong chỉnh hình không Acsimet với biểu
diễn thu gọn:
0 0 ... :n ng g g Vε ε κ ∗
= + + →   ,
trong đó ( )1, ,...,o nε ε ε ε= là cơ sở đối ngẫu của e.
Định nghĩa 1.4.5. ( ),f g được gọi là độc lập nếu chúng độc lập với ∠, nghĩa là
0 0, ... 0n nf g f g g f g f∠= = + + ≡       .
Giả sử ( ),f g độc lập, khi đó định lý cơ bản thứ nhất được viết lại như sau:
( ) ( ) ( ) ( ) ( ) ( ), , , , 1 4.4 ,f fT r f T r g N r g m r g O+ = + +
trong đó:
( ) ( ) ( ) ( )
1
, , , ,
,
f f g f f gN r g N r N r m r g m r
f g
∠ ∠
 
 = = =
 
 
 
.
Số khuyết của f đối với g được xác định bởi công thức:
( )
( )
( ) ( )
,
1 limsup
, ,
f
f
r
N r g
g
T r f T r g
δ
→∞
= −
+
,
với ( )0 1f gδ≤ ≤ .
Ta nói g tăng chậm hơn f nếu
( )
( )
,
lim 0
,r
T r g
T r f→∞
= .
Như vậy, ta có:
( )
( )
( )
,
1 limsup
,
f
f
r
N r g
g
T r f
δ
→∞
= − .
37
Đặc biệt, nếu g a= là hằng số thì ( )4.4 trở thành:
( ) ( ) ( ) ( ) ( ), , , 1 4.5f fT r f N r a m r a O= + + .
và số khuyết của f đối với a được cho bởi:
( )
( )
( )
,
1 limsup
,
f
f
r
N r a
a
T r f
δ
→∞
= − .
Tiếp theo, ta sẽ trình bày về Định lý cơ bản thứ 2 của đường cong chỉnh
hình:
Gọi V là không gian vectơ ( )1n + - chiều trên κ .
Bổ đề 1.4.6. Đường cong chỉnh hình ( ):f Vκ →  là không suy biến tuyến tính
khi và chỉ khi định thức Wronski ,W e f 
 
 của một biểu diễn thu gọn f của f
với cơ sở e đồng nhất bằng 0.
(Có thể xem chứng minh chi tiết trong [11])
Cho đường cong chỉnh hình không suy biến tuyến tính ( ):f Vκ →  với
biểu diễn thu gọn 0 0 ... :n nf f e f e Vκ ∗= + + →   . Khi đó số hạng rẽ nhánh ( ),RamN r f
được định nghĩa:
( )
1
, ,
,
RamN r f N r
W e f
 
 =
  
  

Định lý 1.4.7. (Định lý cơ bản thứ hai của đường cong chỉnh hình)
Cho ( ):f Vκ →  là đường cong chỉnh hình không suy biến tuyến tính và
lấy { }0 1, ,..., qa a aA = là một họ các điểm ( )ja V ∗
∈ được chọn tổng quát. Khi đó
ta có:
( ) ( ) ( ) ( )
( )
( )
0
1
, , , log 1
2
q
f j Ram
j
n n
q n T r f N r a N r f r O
=
+
− ≤ − − +∑ .
38
Chứnh minh:
Lấy { } 0ja V∗
∈ với ( )j ja a= . Ta có:
0 0 ... , 0,...,j j jn na a a j qε ε= + + =   ,
trong đó ( )0 ,..., nε ε ε= là cơ sở đối ngẫu của e. Với 0,1,...,i q= đặt:
0 0 1 1, ...i i i i in nF f a a f a f a f= = + + +       .
Vì f không suy biến tuyến tính nên 0iF ≡ . Do Ađược chọn tổng quát, ta có
( )( )det 0, q
ni j
a Jλ
λ≠ ∀ ∈ và do đó:
( )
( )
( )
( )
( )
( )
0 1
0 1
... , 0,1,...,
i i i n
i n
f a F a F a F i n
λ λ λ
λ λ λ
= + + + =   
trong đó ( )
( )i j
a
λ
 là ma trận nghịch đảo của ( )( )i j
aλ
 . Do đó với mọi q
nJλ ∈ ta có:
( ) ( ) ( ){ }0
max , , 0,1,...,i ij n
f z A F z z i nλ
κ
≤ ≤
≤ ∈ = ,
trong đó ( )
{ }max : ,0 ,
i j q
nA a J i j n
λ
λ= ∈ ≤ ≤ .
Ta viết ngắn gọn định thức Wronski như sau:
( )0 ,..., ,nW W f f W e f = =  
   ,
( ) ( ) ( )( )0 1
, ,..., n
W W F F Fλ λ λ λ
= .
Khi đó:
( )( ), i j
W c W c det aλ λ λ λ
= =  .
Tiếp theo, ta cố định [ ]0 0,z κ κ ρ∈ thỏa:
( ) ( ) ( ) ( ) ( )0, 0 0,1,..., , 0 0,1,...,i jW z f z i n F z j q≠ ≠= ≠= .
Khi đó ta có thể lấy hai chỉ số phân biệt ( )0 0 1,..., , ,...,n q nα α β β β −= sao cho:
39
( ) ( ) ( ) ( )0 1
0 ... ...n q n
F z F z F z F zα α β β −
< ≤ ≤ ≤ ≤ ≤ < ∞ .
Lấy q
nJλ ∈ với { }0Im ,..., nλ α α= . Khi đó ta có:
( ) ( ) ( ){ } ( )0
max lk ij n
f z A F z A F zβλ≤ ≤
≤ ≤ ,
với 0,1,... ; 0,1,...,k n l q n= = − . Từ đó, ta được:
( ) ( ){ } ( )max , 0,1,...,lk
k
f z f z A F z l q nβ= ≤ = −  .
Từ W c Wλ λ= , ta được:
( ) ( )
( )
( ) ( ) ( )1
0 ...
log log ... log logq n
qF z F z
F z F z D z c
W z
β β λ λ−
= − + ,
trong đó
( ) ( )
( ) ( )
( )( )
( )
( )
( )( )
( )
0
0
00
...
... n
i i n
n
i J nn
F FW
D sign i
F FF F
λ λλ
λ
λ λλ λ ∈
= = ∑ ,
với n
J là nhóm giao hoán trong [ ]0,n và ( )0
j jF F= . Suy ra:
( ) ( )
( ) ( )
( )
( )1
0 ...
log ... log log logq n
qF z F z
F z F z D z c
W z
β β λ λ−
≤ + − .
Do đó ta có:
( ) ( )
( ) ( )
( )
( ) ( ) ( )0 ...
log log log log log 4.6
qF z F z
q n f z D z q n A A
W z
λ
′− ≤ + + − − ,
trong đó minq
nJ
A cλ
λ∈
′ = .
Đặt r z= , từ Định lý 1.2.8 ta được:
( )
( )
( )( )
( )
( ) ( )
( )
( )( )
( )
( ) ( )
( )
0
1
0
2
0
max ...n
i i n
n n
n
i J
n
F z F z
D z r
F z F z
λ λ
λ
λ λ
+
−
∈
 
 
≤ ≤ 
 
 
,
40
và do đó: ( )
( )1
log log
2
n n
D z rλ
− +
≤ .
Theo công thức Jensen ta có:
( ) ( ) ( )0
1
log log , , log ,W z r W N r W
W
µ µ ρ
 
= = + 
 
,
( ) ( ) ( ) ( )0log log , , log ,i i f i iF z r F N r a Fµ µ ρ= = + ,
với 0,1,...,i q= và kết hợp ( ) ( ) ( )log , 1f z T r f O= + , ta được:
( ) ( ) ( ) ( )
( ) ( )
0
11
, , , log 1 4.7
2
q
f j
j
n n
q n T r f N r a N r r O
W=
+ 
− ≤ − − + 
 
∑
Chú ý rằng tập hợp các r trong ( )4.7 trù mật trong ( )0 ,ρ ∞ . Do đó ( )4.7
cũng thỏa với mọi 0 rρ < < ∞ , do tính liên tục của các hàm trong bất phương trình
trên. 
Hệ quả 1.4.8. Cho ( ):f Vκ →  là đường cong chỉnh hình không suy biến tuyến
tính và lấy { }0 1, ,..., qa a aA = là một họ các điểm ( )ja V ∗
∈ được chọn tổng
quát. Khi đó:
( ) ( ) ( ) ( )
( ),
0
1
, , log 1
2
q
f n j
j
n n
q n T r f N r a r O
=
+
− ≤ − +∑ ,
trong đó ( ),
1
, ,f n j n
j
N r a N r
F
 
=   
 
.
Với mỗi ( ),k a V+ ∗
∈ ∈  , ta định nghĩa:
( )
( )
( )
, ,
, 1 lim
,
f k j
f
r
N r a
a k
T r f
δ
→∞
= − ,
với ( ) ( )0 , 1f fa a kδ δ≤ ≤ ≤ . Và ta có thể xem ( ) ( ),f fa aδ δ= ∞ .
41
Bổ đề 1.4.9. Cho ( ):f Vκ →  là đường cong chỉnh hình không suy biến tuyến
tính và lấy { }0 1, ,..., qa a aA = là một họ các điểm ( )ja V ∗
∈ được chọn tổng
quát. Khi đó:
( ) ( )
0 0
, 1
q q
f j f j
j j
a a n nδ δ
= =
≤ ≤ +∑ ∑ .
1.5. Không gian hyperbolic, siêu mặt hyperbolic:
Trước hết, chúng ta cần có những khái niệm cơ bản sau:
Định nghĩa 1.5.1. Cho đĩa tròn đơn vị { 1}z∆= < . Metric Poincare ρ∆ là metric
Riemann đầy đủ trên ∆ được định nghĩa như sau:
2
2 2
(1 | | )
dzdz
ds
z
=
−
.
Kết quả sau đây còn được gọi là tính chất giảm khoảng cách của Metric Poincare:
Mệnh đề 1.5.2. (Schwartz-Alhfors) Giả sử :f ∆ → ∆ là ánh xạ chỉnh hình. Khi
đó * 2 2
f ds ds≤ , nghĩa là ( ) ( )( ) ( ), ,f p f q p qρ ρ∆ ∆≤ với hai điểm ,p q∈∆ .
Định nghĩa 1.5.3. (Giả metric Kobyashi-Royden) Cho X là đa tạp phức (không
nhất thiết là compắc). Giả metric Kobyashi-Royden Xρ được định nghĩa như sau:
Với ,p q X∈ , chọn một dãy các điểm 0 1, , , np p p p q= … = và các ánh xạ
chỉnh hình :if X∆ → sao cho 1, ( )i i ip p f− ∈ ∆ . Khi đó:
( ) ( ) ( )( ) ( )1 1
1
{ },{ }
1
, inf , 5.1
i i
n
X i i i i
p f
i
p q f p f pρ ρ − −
∆ −
=
= ∑
42
Chúng ta cũng có thể định nghĩa giả metric Kobyashi-Royden theo hướng sau
đây:
Định nghĩa 1.5.4. Chuẩn · : XT →  trên không gian tiếp xúc chỉnh hình XT
của X được định nghĩa như sau:
Giả sử p X∈ và ,X pv T∈ là vectơ tiếp xúc chỉnh hình tại p. Ta xét tất cả những
ánh xạ chỉnh hình f từ {| | }R z R∆ = < vào X thỏa mãn ( )0f p= và *( / )f z v∂ ∂ =.
Khi đó:
( )
1
inf 5.2
f
v
R
=
Giả metric sinh bởi · chính là Xρ được định nghĩa ở trên.
Theo ý nghĩa hình học, ta đang cố kéo giãn đĩa tròn lớn đến mức có thể trong X.
Mệnh đề 1.5.5. Giả metric Kobyashi-Royden Xρ thỏa mãn những tính chất sau:
(1) Bất đẳng thức tam giác: ( ) ( ) ( ), , ,X X Xp q q r p rρ ρ ρ+ ≥ với , ,p q r X∈ ,
(2) Giảm khoảng cách: Cho :f X Y→ là ánh xạ chỉnh hình. Khi đó:
( ) ( )( ) ( ), ,Y Xf p f q p qρ ρ≤ .
Ta nhận thấy giả metric Kobayashi-Royden chưa là một metric, nghĩa là nó
có thể suy biến ( ( ), 0X p qρ = với p q≠ ).
Ví dụ 1.5.6. Giả sử X = . Cho trước điểm 0z ∈ và số R 0> , ta xét ánh xạ
: Rf ∆ →  với 0( )f z z z= + . Từ định nghĩa 1.5.4, ta có 0v = với 0,X zv T∈ .
43
Định nghĩa 1.5.7. Một đa tạp phức là hyperbolic theo quan điểm của Kobayashi
nếu Xρ là một metric.
Một đa tạp phức X là hyperbolic Brody (B-hyperbolic) nếu mọi ánh xạ chỉnh
hình :f X→ đều là ánh xạ hằng.
Nếu đa tạp phức X là hyperbolic thì X là B-hyperbolic. Chiều ngược lại chỉ đúng
đối với đa tạp phức compắc:
Định lý 1.5.8. (R.Brody). Một đa tạp phức compắc là hyperbolic khi và chỉ khi
nó là B-hyperbolic.
Nhận xét 1.5.9. Ta có n là compắc. Do đó trên không gian xạ ảnh phức n ,
khái niệm hypberbolic theo quan điểm của Kobayashi và Bordy là trùng nhau,
nên ta gọi chung hai khái niệm này là hypberbolic.
Thông thường, chúng ta không dễ để xây dựng những ví dụ đa tạp
hyperbolic. Thậm chí cũng khó để chứng minh một đa tạp X cho trước là
hyperbolic. Nhưng với dim 1X = thì X là hyperbolic. Giả sử X là mặt Riemann
(có thể không compắc). Cho :Y Xπ → là phủ phổ dụng của X. Khi đó Y chỉ có
thể là 1 hay  hay ∆ . Nếu 1Y =  hay Y = , hiển nhiên tồn tại những ánh xạ
chỉnh hình khác hằng :f Y X→ → và vì vậy X không là hyperbolic. Nếu
Y = ∆ , ta dễ thấy rằng X Yρ π ρ=  không suy biến. Vì vậy X là hyperbolic khi và
chỉ khi phủ phổ dụng của X là ∆ .
Mệnh đề 1.5.10. 1 {3 điểm} là hyperbolic.
Mệnh đề này tương đương với định lý Little Picard.
44
Ví dụ 1.5.11. Cho phương trình n n n
x y z+ =, mỗi nghiệm của phương trình này
trong trường hàm phân hình trên  có dạng: ( ) ( ) ( ) x x t , y y t v z z tà= = = . Mỗi
nghiệm trên xác định một ánh xạ chỉnh hình 2: { }n n n
f C x y z→ = + = ⊂  .
Nghiệm của phương trình trên là tầm thường nếu và chỉ nếu f là ánh xạ hằng. Khi
đó, phương trình có nghiệm không tầm thường nếu và chỉ nếu giống của C lớn
hơn hoặc bằng 2, nghĩa là n 4= .
Như vậy, trong chương này chúng ta đã làm rõ được những kiến thức quan
trọng nhất để chuẩn bị cho chương tiếp theo, đó là hàm phân hình, hàm chỉnh
hình, đường cong chỉnh hình, các siêu mặt hyperbolic cùng các nội dung liên
quan. Sau đây là nội dung chính của luận văn:
45
Chương 2: Sự suy biến của đường cong chỉnh
hình và siêu mặt hyperbolic p-adic
Chương này là nội dung chính của luận văn, gồm hai phần: sự suy biến
của đường cong chỉnh hình trong ( )n
p và các siêu mặt hyperbolic trong
( )3
p . Phần thứ nhất trình bày cơ sở để xem xét một hàm chỉnh hình có suy
biến hay không trong ( )n
p . Phần thứ hai nêu ra một phương pháp xây dựng
siêu mặt hyperbolic trong ( )3
p .
2.1. Sự suy biến của đường cong chỉnh hình trong ( )n
p :
Đặt:
,1 , 1
1 1... , 1j j n
j nM z z j s
α α +
+= ≤ ≤ ,
Là các đơn thức phân biệt bậc d với số mũ không âm. Gọi X là siêu mặt trong
( )n
p , có số chiều d và xác định bởi phương trình:
1 1 2 2: ... 0s sX c M c M c M+ + =,
trong đó *
i pc ∈ .
Ta gọi X là nhiễu của siêu mặt Fermat số chiều d nếu 1s n≥ + và
, 1,..., 1d
j jM z j n= = + .
Bổ đề 2.1.1. Cho ( )1 1,..., nf f f += là một đường cong chỉnh hình và đặt M là một
đơn thức như trên. Khi đó với mọi 0k ≥ , ta có:
46
( )( )
1 1...
k
k
k k
n
M f Q
M f f f +
=


,
trong đó kQ là một hàm chỉnh hình và
( ) ( )
1
1
, ,
n
k i
i
h Q t k h f t kt
+
=
≥ −∑ ,
với t đủ nhỏ.
Chứng minh:
Ta chứng minh quy nạp theo k .
Với 0k = là hiển nhiên đúng.
Giả sử mệnh đề trên đúng với k .
Để đơn giản ta đặt:
1 1... nf fϕ += .
Khi đó ta có:
( ) ( ) ( )
1
1
, , 1
n
i
i
h t h f tϕ
+
=
= ∑
Theo giả thiết quy nạp ta có:
( )( ) .k k
k
Q M f
M f
ϕ
=

 .
Khi đó:
( )( )1
1
1
k
k
k
M f Q
M f ϕ
+
+
+
=


,
trong đó
( )
1 . .k k k k
M f
Q Q Q kQ
M f
ϕ ϕ ϕ+
′
′ ′=+ −


.
47
Chú ý rằng hàm
( )M f
M f
′

chỉ có một cực điểm duy nhất tại không điểm của
1 1,..., nf f + . Do đó, hàm
( ).
M f
M f
ϕ
′

là chỉnh hình. Suy ra 1kQ + là hàm chỉnh hình.
Mặt khác, từ Bổ đề 1.3.3 và 1.3.4 ta có:
( )
( ) ( )
( ) ( ) ( )( ) ( )
( ) ( ) ( )
1
, , ,
, min , , , , ,
, ,
k
k k
k
h t h Q t
h Q t h t h Q t h M f t h M f t
v k h Q t h t
ϕ
ϕ
ϕ
+
 ′+
 
  ′≥ + + − 
 
 ′+ +
  
  .
Khi đó, từ Bổ đề 1.3.2 ta có:
( )
( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
1
, , , , , ,
, min
, ,
, , 2
k k
k
k
k
h t h Q t t h t h Q t t
h Q t
v k h Q t h t t
h t h Q t t
ϕ ϕ
ϕ
ϕ
+
 + − + − 
≥  
+ + −  
= + −
.
Từ (1) và (2) suy ra mệnh đề trên cũng đúng tại 1k + .
Vậy theo quy nạp ta có điều cần chứng minh. 
Bổ đề 2.1.2. Gọi X là nhiễu của siêu phẳng Fermat số chiều d trong ( )n
p
và f là một đường cong chỉnh hình trong X . Giả sử:
( )( )( )1 1 2
2
n s s
d
+ − −
≥ .
Nếu { }, 1,..., 1jM f j s= − độc lập tuyến tính thì f là ánh xạ hằng.
Chứng minh:
Để đơn giản, ta đặt:
( )
( )
, 1,..., 1j j
j
s s
c M f z
g z j s
c M f
= = −


.
48
Khi đó các hàm phân hình { }1 1,..., sg g − thỏa:
1 1... 1sg g −+ + ≡ − .
Ta sẽ chứng minh { }1 1,..., sg g − phụ thuộc tuyến tính. Để chứng minh điều này ta
sẽ sử dụng kĩ thuật Wronski của Nevanlinna:
Ta có định thức Wronski logarit như sau:
( )
( ) ( ) ( )
11 2
1 2 1
22 2
11 2
1 2 1
1 1 ... 1
...
... ... ... ...
...
s
s
s
ss s
s
s
gg g
g g g
L g
gg g
g g g
−
−
−− −
−
−
 
 
′′ ′ 
 
 =
 
 
 
  
,
Và các ( )1 1,...,i i sL L g g −= xác định bởi:
( )
( ) ( )
12
2 1
1 1 1 1
22
12
2 1
1 1 ... 1
0 ...
,...,
... ... ... ...
0 ...
s
s
s
ss
s
s
gg
g g
L L g g
gg
g g
−
−
−
−−
−
−
 
 
′′ 
 
 = =
 
 
 
  
,
và tương tự với 2,..., 1i s= − trong đó cột { }1,0,...,0 là cột thứ i.
Nếu { }1 1,..., sg g − độc lập tuyến tính thì các ánh xạ xạ ảnh
( )1 ,..., sM f M f  và ( )1 2, ,..., sL L L L= đều trùng nhau.
Áp dụng Bổ đề 2.1.1 cho các định thức. Cụ thể, hạng tử thứ nhất trong
khai triển của ( )1L g có thể được viết dưới dạng:
( )( )
1 2
2 1 2 2
...
...
s
s s s
Q Q R
ϕ ϕ ϕ
−
− − −
= .
49
Với ( )( )1 2 2s s
ϕ − −
là mẫu thức chung của tất cả các hạng tử trong khai triển các định
thức ( )iL g . Do đó ta có ( ) ( ) ( )1 1 1,..., ,..., ,...,s s sM f M f L L R R= =  , trong đó, theo
Bổ đề 2.1.1, jR là các hàm chỉnh hình và thỏa điều kiện sau (với t đủ nhỏ):
( ) ( )
( )( )
( )( )
( )
( )( )
( )( )( )
( )
( )( )
2
1
2
1
, ,
,
1 2 1 2
,
2 2
1 1 2 1 2
, .
2 2
s
j k
k
s
k
h R t h Q t
h t t k
s s s s
h t t
n s s s s
h f t t
ϕ
ϕ
−
=
−
=
=
≥ −
− − − −
= −
+ − − − −
≥ −
∑
∑
Do 1 ,..., sM f M f  không có chung không điểm nên từ Bổ đề 1.3.6 ta có:
( ) ( ) ( )
( )( )( )
( )
( )( )
( )
1
min , min , 0 1
1 1 2 1 2
, 0 1 .
2 2
s
j j
j j
h M f t h R t
n s s s s
h f t t
≤ ≤
≥ +
+ − − − −
≥ − +

Do X là nhiễu của siêu phẳng Fermat số chiều d nên ta có:
( ) ( ) ( ) ( )1 1 1 1
min , min , , 3j j
j n j n
h M f t d h f t dh f t
≤ ≤ + ≤ ≤ +
= =
Lại có:
( ) ( ) ( )
1
1
, , ,
n
j jk k
k
h M f t h f t dh f tα
+
=
= ≥∑ .
Từ đó, ta được:
( )
( )( )( )
( )
( )( )
( ) ( )
1 1 2 1 2
, , 0 1 . 4
2 2
n s s s s
dh f t h f t t
+ − − − −
≥ − +
Khi
( )( )( )1 1 2
2
n s s
d
+ − −
= ta có điều vô lý là t → −∞ .
50
Khi
( )( )( )1 1 2
2
n s s
d
+ − −
≥ , từ (4) ta có:
( ) ( ), 0 1h f t Nt≥ − + ,
trong đó N là một số dương. Do đó, từ Bổ đề 1.3.4 ta có f là ánh xạ hằng.
Vậy Bổ đề 2.1.2 được chứng minh. 
Định lý 2.1.3. Cho X là nhiễu của siêu mặt Fermat số chiều d trong ( )n
p và
gọi f là một đường cong chỉnh hình trong X . Nếu
( )( )( )1 1 2
2
n s s
d
+ − −
≥
thì ảnh của f nằm trong một tập con thực sự của X .
Nếu tồn tại 0if ≡ thì f suy biến, và ta có thể giả sử rằng 0,if i≡ ∀ .
Chứng minh :
Từ Bổ đề 2.1.2, ảnh của f nằm trong tập con thật sự của X , với X được xác
định bởi phương trình:
1 1 2 2 1 1 1 2 1 1... ... 0d d d
n n n n s sa z a z a z a M a M+ + + + − −+ + + + + + =,
trong đó tồn tại ít nhất một 0ja ≠ .
Ghi chú 2.1.1. Không có kết quả tương tự trong trường số phức.
51
2.2. Các siêu mặt hyperbolic trong ( )3
p :
Trong phần này, ta sẽ áp dụng Định lý 2.1.3 để đưa ra một số ví dụ chi tiết về các
mặt hyperbolic trong ( )3
p cũng như các ví dụ về các đường cong trong
( )2
p với phần bù hyperbolic và các ví dụ về các siêu mặt hyperbolic với phần
bù hyperbolic của chúng.
Không mất tính tổng quát, ta có thể giả sử trong phương trình của X các
hệ số đầu tiên 1, 1,..., 1ic i n= = + .
Sau đây chúng ta sẽ trình bày một phương pháp xây dựng các siêu phẳng
hyperbolic, trước tiên, ta nhắc lại kết quả sau:
Bổ đề 2.2.1. Gọi X là siêu mặt Fermat số chiều d trong ( )n
p , và
( )1 1,..., nf f f += là một đường cong chỉnh hình trong X . Giả sử
0, 1,..., 1if i n≡ ∀= + . Nếu 2
1d n≥ − thì hoặc f là đường cong hằng hoặc tồn tại
một phân hoạch của tập chỉ số { }1,..., 1n Iξ+ =∪ sao cho mỗi Iξ chứa ít nhất 2
phần tử, và nếu ,i j Iξ∈ thì i jf f= tại một số điểm (nếu 2n = thì chỉ tồn tại một
lớp).
Định lý 2.2.2. Gọi X là một mặt trong ( )3
p và có phương trình:
( )31 2 4
1 2 3 4 1 2 3 4: 0 1d d d d
X z z z z cz z z zαα α α
+ + + + =
trong đó
4
1
0, i
i
c dα
=
≠ =∑ , và nếu có 0iα = thì 1, , 1,2,3,4j j i jα ≠ ∀ ≠ = . Khi đó,
X là hyperbolic nếu 24d ≥ .
Chứng minh:
Gọi ( )1 2 3 4, , , : pf f f f f X= → là đường cong chỉnh hình trong X .
52
Giả sử tồn tại i sao cho 0if = , chẳng hạn 4 0f = . Nếu 4 0α = thì ánh xạ
( )1 2 3, ,f f f từ p vào ( )2
p có ảnh nằm trên một đường cong xạ ảnh giống
dương. Từ Định lý Berkovich (xem [12]), ( )1 2 3, ,f f f là ánh xạ hằng. Kết hợp
với ( )1 ta suy ra f là ánh xạ hằng.
Hiển nhiên, ta có thể giả sử mọi 0if ≡ . Từ chứng minh của Định lý 2.1.3
ta có { }1 4,...,d d
f f phụ thuộc tuyến tính. Giả sử:
1 1 4 4... 0d d
a f a f+ + ≡ ,
trong đó các ia không đồng thời bằng 0. Ta xét các trường hợp sau:
(i) 0, 1,2,3,4.ia i≠ = Từ Bổ đề 2.2.1, ta có hoặc f là ánh xạ hằng hoặc ta
có thể giả sử rằng ( )1 1 2 3 2 4,f c f f c f= = ∗ . Và thay ( )∗ vào ( )1 ta có f là ánh xạ
hằng,
(ii) Có duy nhất một hệ số bằng 0, không mất tính tổng quát ta có thể giả
sử 4 0a = . Khi đó, theo Bổ đề 2.2.1, ta có ( )1 2 3, ,f f f là ánh xạ hằng. Và như vậy
f là ánh xạ hằng,
(iii) Có hai hệ số bằng 0, giả sử 1 2 0a a= = . Khi đó ta có 3 3 4f c f= . Thay
vào ( )1 ta được:
31 2
1 2 1 3 2 1 2 3 0d d d
f f f f f f αα α
ε ε+ + + ≡ ,
trong đó 2 0ε ≠ . Nếu 1 0ε ≠ thì ảnh của ánh xạ ( ) ( )2
1 2 3, , : p pf f f →  nằm trên
một đường cong xạ ảnh có giống dương và ( )1 2 3, ,f f f là ánh xạ hằng, và do đó
f cũng là ánh xạ hằng (Định lý Berkovich).
53
Giả sử 1 0ε = thì ảnh của ( )1 2 3, ,f f f nằm trong đường cong trong ( )2
p sau:
3 41 2
1 2 2 1 2 3: 0d d
Y z z z z zα αα α
ε +
+ + =.
Ta sẽ chứng minh theo giả thuyết của Định lý 2.2.2, giống của Y nhỏ nhất là
bằng 1, khi đó từ định lý Berkovich ta sẽ có điều cần chứng minh.
Ta có giống của Y bằng số các điểm nguyên nằm trên tam giác với ba đỉnh
là ( ) ( ),0 , 0,d d và ( )1 2,α α , và hiển nhiên 1 2 dα α+ < . Như vậy, dễ thấy tam giác
này chứa ít nhất một điểm nguyên, trừ trường hợp 1 2 1dα α+ = − . Trường hợp
này đã được loại từ giải thuyết của Định lý 2.2.2. Vậy định lý được chứng minh.

Ghi chú 2.2.1. Trong [2], bằng cách sử dụng phương pháp của K.Masuda và
J.Noguchi [8], ta có các ví dụ sau về các siêu mặt hyperbolic trong ( )3
p :
( ) ( )4 4
1 4 1 2 3 4... 0, 6 deg 4 24 ,
dd d
pz z t z z z z d X d t ∗
+ + + = ≥ = ≥ ∈ .
Trong khi đó, các siêu mặt hyperbolic được xây dựng theo Định lý 2.2.2 như
trên có số chiều lớn hơn hoặc bằng 24 (không nhất thiết phải là bội của 4). Chú ý
rằng, hầu hết các siêu mặt hyperbolic trong trường số phức trước đó đều cho với
số chiều d chia hết cho một số lớn hơn 1 (chia hết cho 2 trong ví dụ của Brody-
Green, cho 3 trong ví dụ của Nadel, cho 3 và 4 trong ví dụ của Noguchi). Trong
[8] đã trình bày một thuật toán để xây dựng các siêu mặt hyperbolic có số chiều
tùy ý đủ lớn d . Ở đây ta có các siêu mặt hyperbolic với số chiều 24d ≥ .
Ghi chú 2.2.2. Ví dụ sau đây chỉ ra rằng nếu giữa các số mũ iα , hai trong chúng
là 0,1 thì X không thể là hyperbolic. Mặt:
25 25 25 25 24
1 2 3 4 1 2: 0X z z z z z z+ + + + =
54
chứa đường cong chỉnh hình ( )25 25
1 ,1,1 ,z z z− − + .
Bây giờ ta sẽ dùng Định lý 2.1.3 để đưa ra một số ví dụ về các đường cong
trong ( )2
p với các phần bù hyperbolic:
Định lý 2.2.3. Cho X là một đường cong trong ( )2
p xác định bởi phương
trình:
31 2
1 2 3 1 2 3: 0d d d
X z z z cz z zαα α
+ + + =,
trong đó 24, 0,i id d dα α≥ > ≥ =∑ . Khi đó phần bù của X là một hyperbolic
p-adic trong ( )2
p .
Chứng minh:
Gọi ( ) 2
1 2 3, , : pf f f f= →  là một đường cong giải tích có ảnh nằm trong phần
bù của X . Khi đó, hàm số:
31 2
1 2 3 1 2 3 0d d d
f f f cf f f αα α
+ + + ≠ với pz ∈ ,
và bằng một hằng số 0a ≠ . Do đó, ảnh của đường cong chỉnh hình sau:
( ) 3
1 2 3, , ,1 : pf f f → 
nằm trong mặt Y của 3
 , với Y xác định bởi phương trình:
31 2
1 2 3 4 1 2 3: 0d d d d
Y z z z az cz z zαα α
+ + − + =.
Từ chứng minh của Định lý 2.1.3, { }1 2 3, , ,1d d d
f f f phụ thuộc tuyến tính:
1 1 2 2 3 3 4 0d d d
c f c f c f c+ + + ≡ ,
trong đó các ic không đồng thời bằng 0. Ta xét các trường hợp sau:
(i) 0,ic i≠ ∀ . Theo Bổ đề 2.2.1, có ít nhất một trong các hàm 1 2 3, ,f f f là
hàm hằng. Suy ra f là ánh xạ hằng,
55
(ii) Tồn tại duy nhất một 0ic = . Khi đó theo Bổ đề 2.2.1, ta có f là ánh xạ
hằng,
(iii) Nếu có hai 0ic = thì hoặc một trong các if là hàm hằng, hoặc hàm
thương của hai hàm ,i jf f là hàm hằng. Trong cả hai điều trên, ta đều có f là
hàm hằng.
Vậy Định lý 2.2.3 được chứng minh. 
Ghi chú 2.2.3. Ta chứng minh được rằng ánh xạ ( )1 2 3, , ,1 : pf f f Y→ là ánh xạ
hằng mặc dù Y không là hyperbolic.
Bây giờ ta sẽ dùng chứng minh của Định lý 2.2.2 và Định lý 2.2.3 để đưa
ra một số ví dụ cụ thể về các mặt hyperbolic trong ( )3
p với các phần bù
hyperbolic.
Định lý 2.2.4. Cho X là một siêu mặt trong ( )3
p có số chiều 50d ≥ và xác
định bởi phương trình:
( )31 2 4
1 4 1 2 3 4: ... 0 6d d
X z z cz z z zαα α α
+ + + =
trong đó 0c ≠ và nếu có một 0iα = thì những jα còn lại nhỏ nhất là bằng 2. Khi
đó X là hyperbolic và phần bù của X trong ( )3
p cũng là hyperbolic.
Chứng minh:
Ta sẽ dùng Định lý 2.2.2 để chứng minh phần bù của X là hyperbolic.
Đặt ( )1 4,...,f f f= là đường cong có ảnh nằm trong phần bù của X . Như trong
chứng minh Định lý 2.2.3 tồn tại một hằng số 0a ≠ sao cho ánh xạ
( )1 2 3 4, , , ,1f f f f có ảnh nằm trong siêu mặt Y có số chiều d trong ( )4
p xác
định bởi phương trình:
56
( )31 2 4
1 2 3 4 5 1 2 3 4: 0 7d d d d d
Y z z z z az cz z z zαα α α
+ + + + + =
Từ chứng minh của Định lý 2.1.3 ta có khi
( )( )( )4 1 6 1 6 2
50
2
d
+ − −
≥ =thì
{ }1 2 3 4, , , ,1d d d d
f f f f phụ thuộc tuyến tính. Do đó:
4
5
1
0d
i i
i
fε ε
=
+ ≡∑ ,
trong đó các iε không đồng thời bằng 0.
Nếu 5 0ε = thì ta có thể lặp lại phần chứng minh của Định lý 2.2.2 và ta có
f là ánh xạ hằng.
Giả sử 5 0ε ≠ , từ Bổ đề 2.2.1 ta suy ra hoặc f là ánh xạ hằng hoặc tồn tại ít nhất
một if , giả sử 4f , là hàm hằng. Thay 4f bằng hằng số vào ( )7 , ta thấy ảnh của
ánh xạ ( )1 2 3, , ,1f f f nằm trong một mặt phẳng được xác định bởi phương trình:
31 2 4
1 2 3 4 1 2 3 4: 0d d d d
Z z z z a z c z z z zαα α β
′ ′+ + + + =,
trong đó ( )4 1 2 3, 0,a c dβ α α α′ ′ ≠ = − + + .
Và cũng từ Định lý 2.1.3, { }1 2 3, , ,1d d d
f f f phụ thuộc tuyến tính. Do đó:
1 1 2 2 3 3 4 0d d d
f f fδ δ δ δ+ + + ≡ .
Nếu 4 0δ = thì tương tự như trong chứng minh Định lý 2.2.2, ta có f là ánh xạ
hằng. Để chỉ ra được lý do ta cần giả thuyết nếu 1 0α = thì các số mũ còn lại ít
nhất phải bằng 2, ta sẽ xét trường hợp 4 0δ ≠ . Từ Bổ đề 2.1.1, ta có hoặc f là
ánh xạ hằng hoặc tồn tại ít nhất một if , chẳng hạn 3f , là hàm hằng. Thay 3 4,f f
là hằng số vào ( )6 ta được 1 2f fε= , với ε là hằng số nào đó. Cuối cùng, do ánh
xạ ( )1 2 3 4, , , ,1f f f f có ảnh nằm trên Y nên ta có:
57
1 2
2 2 0d
Af Bf Cα α+
+ + ≡ ,
trong đó , ,A B C là hằng số và 0B ≠ . Từ giả thuyết của Định lý 2.2.4,
1 2 0, dα α+ ≠ nên ta có 2f là hàm hằng.
Vậy Định lý 2.2.4 được chứng minh. 
Ghi chú 2.2.4. Định lý 2.2.3 và 2.2.4 cho ta các ví dụ đầu tiên về các siêu
mặt hyperbolic với các phần bù hyperbolic trong trường p-adic. Trong trường số
phức, sự tồn tại của các siêu mặt này được chứng minh bởi M. G. Zaidenberg
[10]. A.Nadel [7]đã đưa ra các ví dụ đầu tiên của các đường cong này trong 2

và các ví dụ cụ thể về các siêu mặt hyperbolic trong 3
 được đưa ra bởi K.
Masuda và J. Noguchi [8].
Ghi chú 2.2.5. Ví dụ sau chứng tỏ rằng khi tổng của hai trong số các số mũ
iα bằng không hoặc bằng d thì phần bù của X có thể không là hyperbolic. Xét
mặt X được cho bởi phương trình:
51 51 51 51 25 26
1 2 3 4 3 4: 0X z z z z z z+ + + + =.
Khi đó, X là hyperbolic (Định lý 2.2.2), nhưng phần bù của X trong ( )3
p
chứa đường cong chỉnh hình sau:
( ), ,1,1f z z= − .
Vậy, với chương 2, chúng ta đã có được phương pháp nghiên cứu về sự
suy biến của đường cong chỉnh hình cùng với phương pháp kiểm tra và xây dựng
một siêu mặt hyperbolic (nhờ định lý 2.1.3, định lý 2.2.3 và định lý 2.2.4 )
-----------------------------------------------------------------------------------
58
KẾT LUẬN VÀ KIẾN NGHỊ
Luận văn đã làm rõ những kết quả của Hà Huy Khoái trong công trình của
ông công bố năm 1997 và các tác giả có liên quan như W. Cherry, K. Masuda, J.
Noguchi và A. Nadel. Luận văn cũng đã có những đóng góp sau đây:
- Đưa ra một điều kiện đủ về sự suy biến của đường cong chỉnh hình trong
( )n
p (Định lý 2.1.3). Từ đó chỉ ra một phương pháp xét sự suy biến của một
đường cong chỉnh hình trong ( )n
p .
- Áp dụng Định lý 2.2.3, xây dựng một số lớp các siêu mặt hyperbolic cụ
thể trong ( )3
p .
Vì lí do thời gian và vì khuôn khổ luận văn, chúng tôi không nêu chi tiết một
số khái niệm và chứng minh một số kết quả của đường cong đại số, giống đường
cong đại số và một số kết quả của lý thuyết Nevanlinna mà chỉ ra các tài liệu có
trình bày chi tiết các nội dung này.
Hướng nghiên cứu tiếp theo của đề tài:
- Tìm và vận dụng độ cao của hàm chỉnh hình vào xét sự suy biến của
đường cong chỉnh hình trong ( )n
p . Xây dựng một phương pháp đơn giản
nhất có thể được để xét sự suy biến nói trên.
- Tìm ra một phương pháp xây dựng và đưa ra được các ví dụ cụ thể về các
siêu phẳng hyperbolic p-adic trong ( )n
p với 3n > .
59
TÀI LIỆU THAM KHẢO
[1] Hà Huy Khoái (1997), p-adic Hyperbolic Surfaces, ACTA
MATHEMATICA VIETNAMICA, Volume 22, Number 2, 501-514.
[2] Hà Huy Khoái và Mai Văn Tư (1995), p-adic Nevanlinna-Cartan
Theorem, Internat, 719-731.
[3] Hà Huy Khoái(1983), On p-adic meromorphic functions, Duke Math.
J. 50, 695-711.
[4] Hà Huy Khoái (1993), Height of p-adic holomorphic functions and
applications, Diophantine Geometry and Related topics, RIMS Lect
Notes Ser 819, Kyoto, 96-105.
[5] Hà Huy Khoái and Mỵ Vinh Quang (1988),p-adic Nevanlinna theory,
Lecture Notes in Math, 1351, 138-152.
[6] Hà Huy Khoái and Vũ Hoài An (2003), Value distribution for p-adic
hypersurfaces, Taiwanese journal of mathematics, Vol 7, No 1, pp 51-
67.
[7] A. Nadel(1989), Hyperbolic surfaces in 3
P , Duke Math. J. 58, 749-
771.
[8] K. Masuda and J. Noguchi(1996), A construction of hyperbolic
hypersurfaces of ( )n
P  , Math Ann 304, 339-362.
[9] M. Green(1975), Some Picard theorems for holomorphic maps to
algebraic varieties, Amer. J. Math. 97, 43-75.
60
[10] M. G. Zaidenberg (1993), Hyperbolicity in projective spaces,
Diophantine Geometry and Relatedtopics, RIMS Lect, Notes Ser 819,
Kyoto, pp 136-156.
[11] Pei-Chu Hu and Chung-Chun Yang (1999), Meromorphic functions
over Non-Archimedean fields, Kluwer Academic Publishers.
[12] R. Brody and M. Green(1977), A family of smooth hyperbolic
hypersurfacesin 3
P , Duke Math. J. 44, 873-874.
[13] V. Berkovich (1990), Spectral Theory and Analytic Geometry over
Non-Archimedean Fields, AMS Surveys and Monographs 33.
[14] William Fulton (2008), Algebraic curves -An introduction to algebraic
geometry, January 28.
[15] W. A. Cherry (1994), Hyperbolic p-adic analytic spaces, Math. Ann.
300, 393- 404.

More Related Content

What's hot

Bài tập hình học 12 ôn thi tốt nghiệp và đại học
Bài tập hình học 12 ôn thi tốt nghiệp và đại họcBài tập hình học 12 ôn thi tốt nghiệp và đại học
Bài tập hình học 12 ôn thi tốt nghiệp và đại họcThế Giới Tinh Hoa
 
Hình không gian - luyện thi đại học online
Hình không gian - luyện thi đại học onlineHình không gian - luyện thi đại học online
Hình không gian - luyện thi đại học onlineNguyễn Hậu
 
đề Thi và đáp án trường chuyên ams truonghocso.com
đề Thi và đáp án trường chuyên ams   truonghocso.comđề Thi và đáp án trường chuyên ams   truonghocso.com
đề Thi và đáp án trường chuyên ams truonghocso.comThế Giới Tinh Hoa
 
[Www.toan capba.net] bài tập phuong phap toa do trong khong gian
[Www.toan capba.net] bài tập phuong phap toa do trong khong gian[Www.toan capba.net] bài tập phuong phap toa do trong khong gian
[Www.toan capba.net] bài tập phuong phap toa do trong khong giankasinlo
 
Bai 1,2 dai cuong va phep tinh tien
Bai 1,2 dai cuong va phep tinh tienBai 1,2 dai cuong va phep tinh tien
Bai 1,2 dai cuong va phep tinh tienLe Hanh
 
Boi duong hinh hoc phang toan cuc tri
Boi duong hinh hoc phang  toan cuc triBoi duong hinh hoc phang  toan cuc tri
Boi duong hinh hoc phang toan cuc trihaisuoicat
 
32 đề thi vào lớp 10 dh khtn ha noi 1989 2005 truonghocso.com
32 đề thi vào lớp 10 dh khtn ha noi 1989 2005   truonghocso.com32 đề thi vào lớp 10 dh khtn ha noi 1989 2005   truonghocso.com
32 đề thi vào lớp 10 dh khtn ha noi 1989 2005 truonghocso.comThế Giới Tinh Hoa
 
PHÉP ĐỐI XỨNG TRỤC VÀ ĐỐI XỨNG TÂM
PHÉP ĐỐI XỨNG TRỤC VÀ ĐỐI XỨNG TÂMPHÉP ĐỐI XỨNG TRỤC VÀ ĐỐI XỨNG TÂM
PHÉP ĐỐI XỨNG TRỤC VÀ ĐỐI XỨNG TÂMDANAMATH
 
De thi vao truong le hong phong (hcm) truonghocso.com
De thi vao truong le hong phong (hcm)   truonghocso.comDe thi vao truong le hong phong (hcm)   truonghocso.com
De thi vao truong le hong phong (hcm) truonghocso.comThế Giới Tinh Hoa
 
Xuctu.com de thi_tuyen_sinh_10_lhp_tdn_chuyen_dhsp(hcm)
Xuctu.com de thi_tuyen_sinh_10_lhp_tdn_chuyen_dhsp(hcm)Xuctu.com de thi_tuyen_sinh_10_lhp_tdn_chuyen_dhsp(hcm)
Xuctu.com de thi_tuyen_sinh_10_lhp_tdn_chuyen_dhsp(hcm)Minh Đức
 
[Phần 1] Tuyển tập các bài hình giải tích phẳng Oxy trong đề thi thử ĐH (2013...
[Phần 1] Tuyển tập các bài hình giải tích phẳng Oxy trong đề thi thử ĐH (2013...[Phần 1] Tuyển tập các bài hình giải tích phẳng Oxy trong đề thi thử ĐH (2013...
[Phần 1] Tuyển tập các bài hình giải tích phẳng Oxy trong đề thi thử ĐH (2013...Megabook
 
Đề thi vào lớp 10 THPT môn Toán tỉnh Hưng Yên năm 2015
Đề thi vào lớp 10 THPT môn Toán tỉnh Hưng Yên năm 2015Đề thi vào lớp 10 THPT môn Toán tỉnh Hưng Yên năm 2015
Đề thi vào lớp 10 THPT môn Toán tỉnh Hưng Yên năm 2015Linh Nguyễn
 
Cac dinh ly_tach_tap_loi-libre
Cac dinh ly_tach_tap_loi-libreCac dinh ly_tach_tap_loi-libre
Cac dinh ly_tach_tap_loi-librenguyen khiem
 
50 de thi hsg toan 9
50 de thi hsg toan 950 de thi hsg toan 9
50 de thi hsg toan 9thanhgand
 
9 [htq] de thi hsg 2
9 [htq] de thi hsg 29 [htq] de thi hsg 2
9 [htq] de thi hsg 2Hồng Quang
 
Thi thử toán đức thọ ht 2012 lần 1
Thi thử toán đức thọ ht 2012 lần 1Thi thử toán đức thọ ht 2012 lần 1
Thi thử toán đức thọ ht 2012 lần 1Thế Giới Tinh Hoa
 

What's hot (20)

Bài tập hình học 12 ôn thi tốt nghiệp và đại học
Bài tập hình học 12 ôn thi tốt nghiệp và đại họcBài tập hình học 12 ôn thi tốt nghiệp và đại học
Bài tập hình học 12 ôn thi tốt nghiệp và đại học
 
Hình không gian - luyện thi đại học online
Hình không gian - luyện thi đại học onlineHình không gian - luyện thi đại học online
Hình không gian - luyện thi đại học online
 
Luận văn: Các điểm hữu tỷ trên các đường cong ELLIPTIC trên trường hữu hạn
Luận văn: Các điểm hữu tỷ trên các đường cong ELLIPTIC trên trường hữu hạnLuận văn: Các điểm hữu tỷ trên các đường cong ELLIPTIC trên trường hữu hạn
Luận văn: Các điểm hữu tỷ trên các đường cong ELLIPTIC trên trường hữu hạn
 
Nhóm đồng phôi tôpô và không gian tích của nửa – Hình hộp, 9đ
Nhóm đồng phôi tôpô và không gian tích của nửa – Hình hộp, 9đNhóm đồng phôi tôpô và không gian tích của nửa – Hình hộp, 9đ
Nhóm đồng phôi tôpô và không gian tích của nửa – Hình hộp, 9đ
 
đề Thi và đáp án trường chuyên ams truonghocso.com
đề Thi và đáp án trường chuyên ams   truonghocso.comđề Thi và đáp án trường chuyên ams   truonghocso.com
đề Thi và đáp án trường chuyên ams truonghocso.com
 
[Www.toan capba.net] bài tập phuong phap toa do trong khong gian
[Www.toan capba.net] bài tập phuong phap toa do trong khong gian[Www.toan capba.net] bài tập phuong phap toa do trong khong gian
[Www.toan capba.net] bài tập phuong phap toa do trong khong gian
 
Bai 1,2 dai cuong va phep tinh tien
Bai 1,2 dai cuong va phep tinh tienBai 1,2 dai cuong va phep tinh tien
Bai 1,2 dai cuong va phep tinh tien
 
Boi duong hinh hoc phang toan cuc tri
Boi duong hinh hoc phang  toan cuc triBoi duong hinh hoc phang  toan cuc tri
Boi duong hinh hoc phang toan cuc tri
 
32 đề thi vào lớp 10 dh khtn ha noi 1989 2005 truonghocso.com
32 đề thi vào lớp 10 dh khtn ha noi 1989 2005   truonghocso.com32 đề thi vào lớp 10 dh khtn ha noi 1989 2005   truonghocso.com
32 đề thi vào lớp 10 dh khtn ha noi 1989 2005 truonghocso.com
 
PHÉP ĐỐI XỨNG TRỤC VÀ ĐỐI XỨNG TÂM
PHÉP ĐỐI XỨNG TRỤC VÀ ĐỐI XỨNG TÂMPHÉP ĐỐI XỨNG TRỤC VÀ ĐỐI XỨNG TÂM
PHÉP ĐỐI XỨNG TRỤC VÀ ĐỐI XỨNG TÂM
 
De thi vao truong le hong phong (hcm) truonghocso.com
De thi vao truong le hong phong (hcm)   truonghocso.comDe thi vao truong le hong phong (hcm)   truonghocso.com
De thi vao truong le hong phong (hcm) truonghocso.com
 
Xuctu.com de thi_tuyen_sinh_10_lhp_tdn_chuyen_dhsp(hcm)
Xuctu.com de thi_tuyen_sinh_10_lhp_tdn_chuyen_dhsp(hcm)Xuctu.com de thi_tuyen_sinh_10_lhp_tdn_chuyen_dhsp(hcm)
Xuctu.com de thi_tuyen_sinh_10_lhp_tdn_chuyen_dhsp(hcm)
 
Bùi việt anh
Bùi việt anhBùi việt anh
Bùi việt anh
 
[Phần 1] Tuyển tập các bài hình giải tích phẳng Oxy trong đề thi thử ĐH (2013...
[Phần 1] Tuyển tập các bài hình giải tích phẳng Oxy trong đề thi thử ĐH (2013...[Phần 1] Tuyển tập các bài hình giải tích phẳng Oxy trong đề thi thử ĐH (2013...
[Phần 1] Tuyển tập các bài hình giải tích phẳng Oxy trong đề thi thử ĐH (2013...
 
Đề thi vào lớp 10 THPT môn Toán tỉnh Hưng Yên năm 2015
Đề thi vào lớp 10 THPT môn Toán tỉnh Hưng Yên năm 2015Đề thi vào lớp 10 THPT môn Toán tỉnh Hưng Yên năm 2015
Đề thi vào lớp 10 THPT môn Toán tỉnh Hưng Yên năm 2015
 
Luận văn: Nghiên cứu Về cực trị hàm lồi, HAY, 9đ
Luận văn: Nghiên cứu Về cực trị hàm lồi, HAY, 9đLuận văn: Nghiên cứu Về cực trị hàm lồi, HAY, 9đ
Luận văn: Nghiên cứu Về cực trị hàm lồi, HAY, 9đ
 
Cac dinh ly_tach_tap_loi-libre
Cac dinh ly_tach_tap_loi-libreCac dinh ly_tach_tap_loi-libre
Cac dinh ly_tach_tap_loi-libre
 
50 de thi hsg toan 9
50 de thi hsg toan 950 de thi hsg toan 9
50 de thi hsg toan 9
 
9 [htq] de thi hsg 2
9 [htq] de thi hsg 29 [htq] de thi hsg 2
9 [htq] de thi hsg 2
 
Thi thử toán đức thọ ht 2012 lần 1
Thi thử toán đức thọ ht 2012 lần 1Thi thử toán đức thọ ht 2012 lần 1
Thi thử toán đức thọ ht 2012 lần 1
 

Similar to Luận văn: Sự suy biến của đường cong chỉnh hình, HAY, 9đ

Luận án tiến sĩ toán học tính hyperbolic của không gian phức và nhóm các cr t...
Luận án tiến sĩ toán học tính hyperbolic của không gian phức và nhóm các cr t...Luận án tiến sĩ toán học tính hyperbolic của không gian phức và nhóm các cr t...
Luận án tiến sĩ toán học tính hyperbolic của không gian phức và nhóm các cr t...https://www.facebook.com/garmentspace
 
Mô hình hóa phần tử hữu hạn hệ số dẫn và mô đun đàn hồi, HAY - Gửi miễn phí q...
Mô hình hóa phần tử hữu hạn hệ số dẫn và mô đun đàn hồi, HAY - Gửi miễn phí q...Mô hình hóa phần tử hữu hạn hệ số dẫn và mô đun đàn hồi, HAY - Gửi miễn phí q...
Mô hình hóa phần tử hữu hạn hệ số dẫn và mô đun đàn hồi, HAY - Gửi miễn phí q...Dịch vụ viết bài trọn gói ZALO: 0909232620
 
Luận án tiến sĩ toán học những khía cạnh số học của lí thuyết phân bố giá trị
Luận án tiến sĩ toán học những khía cạnh số học của lí thuyết phân bố giá trịLuận án tiến sĩ toán học những khía cạnh số học của lí thuyết phân bố giá trị
Luận án tiến sĩ toán học những khía cạnh số học của lí thuyết phân bố giá trịhttps://www.facebook.com/garmentspace
 
Dạng Legendre và ứng dụng.pdf
Dạng Legendre và ứng dụng.pdfDạng Legendre và ứng dụng.pdf
Dạng Legendre và ứng dụng.pdfNuioKila
 
Luận văn: Phân tích thành nhân tử trên vành các số nguyên đại số bậc K
Luận văn: Phân tích thành nhân tử trên vành các số nguyên đại số bậc KLuận văn: Phân tích thành nhân tử trên vành các số nguyên đại số bậc K
Luận văn: Phân tích thành nhân tử trên vành các số nguyên đại số bậc KViết thuê trọn gói ZALO 0934573149
 
LuanVanThacSi-ChuaPhanLoai (130).pdf
LuanVanThacSi-ChuaPhanLoai (130).pdfLuanVanThacSi-ChuaPhanLoai (130).pdf
LuanVanThacSi-ChuaPhanLoai (130).pdfNamDoMinh2
 
Luận án tiến sĩ toán học ngưỡng chính tắc của hàm chỉnh hình và hàm đa điều h...
Luận án tiến sĩ toán học ngưỡng chính tắc của hàm chỉnh hình và hàm đa điều h...Luận án tiến sĩ toán học ngưỡng chính tắc của hàm chỉnh hình và hàm đa điều h...
Luận án tiến sĩ toán học ngưỡng chính tắc của hàm chỉnh hình và hàm đa điều h...https://www.facebook.com/garmentspace
 
Luận văn: Vài vấn đề cơ bản của hàm nhiều biến phức, HAY
Luận văn: Vài vấn đề cơ bản của hàm nhiều biến phức, HAYLuận văn: Vài vấn đề cơ bản của hàm nhiều biến phức, HAY
Luận văn: Vài vấn đề cơ bản của hàm nhiều biến phức, HAYViết thuê trọn gói ZALO 0934573149
 

Similar to Luận văn: Sự suy biến của đường cong chỉnh hình, HAY, 9đ (20)

Luận án tiến sĩ toán học tính hyperbolic của không gian phức và nhóm các cr t...
Luận án tiến sĩ toán học tính hyperbolic của không gian phức và nhóm các cr t...Luận án tiến sĩ toán học tính hyperbolic của không gian phức và nhóm các cr t...
Luận án tiến sĩ toán học tính hyperbolic của không gian phức và nhóm các cr t...
 
Ước lượng Gradient cho hàm p-điều hòa trên đa tạp Riemann, 9đ
Ước lượng Gradient cho hàm p-điều hòa trên đa tạp Riemann, 9đƯớc lượng Gradient cho hàm p-điều hòa trên đa tạp Riemann, 9đ
Ước lượng Gradient cho hàm p-điều hòa trên đa tạp Riemann, 9đ
 
Mô hình hóa phần tử hữu hạn hệ số dẫn và mô đun đàn hồi, HAY - Gửi miễn phí q...
Mô hình hóa phần tử hữu hạn hệ số dẫn và mô đun đàn hồi, HAY - Gửi miễn phí q...Mô hình hóa phần tử hữu hạn hệ số dẫn và mô đun đàn hồi, HAY - Gửi miễn phí q...
Mô hình hóa phần tử hữu hạn hệ số dẫn và mô đun đàn hồi, HAY - Gửi miễn phí q...
 
Luận văn: Mặt cực tiểu kiểu đồ thị trong không gian R ×ω R 2, HAY
Luận văn: Mặt cực tiểu kiểu đồ thị trong không gian R ×ω R 2, HAYLuận văn: Mặt cực tiểu kiểu đồ thị trong không gian R ×ω R 2, HAY
Luận văn: Mặt cực tiểu kiểu đồ thị trong không gian R ×ω R 2, HAY
 
Luận án tiến sĩ toán học những khía cạnh số học của lí thuyết phân bố giá trị
Luận án tiến sĩ toán học những khía cạnh số học của lí thuyết phân bố giá trịLuận án tiến sĩ toán học những khía cạnh số học của lí thuyết phân bố giá trị
Luận án tiến sĩ toán học những khía cạnh số học của lí thuyết phân bố giá trị
 
Luận văn: Kết quả về nghiệm của phương trình Cauchy-Riemann
Luận văn: Kết quả về nghiệm của phương trình Cauchy-RiemannLuận văn: Kết quả về nghiệm của phương trình Cauchy-Riemann
Luận văn: Kết quả về nghiệm của phương trình Cauchy-Riemann
 
Đề tài: Về môđun giả BUCHSBAUM, HAY
Đề tài: Về môđun giả BUCHSBAUM, HAYĐề tài: Về môđun giả BUCHSBAUM, HAY
Đề tài: Về môđun giả BUCHSBAUM, HAY
 
Đề tài: Bài toán phương trình đạo hàm riêng dạng elliptic, HAY
Đề tài: Bài toán phương trình đạo hàm riêng dạng elliptic, HAYĐề tài: Bài toán phương trình đạo hàm riêng dạng elliptic, HAY
Đề tài: Bài toán phương trình đạo hàm riêng dạng elliptic, HAY
 
Bat Đang Thức V I Hàm Loi B Ph N Và Ứng Dụng.docx
Bat Đang Thức V I Hàm Loi B Ph N Và Ứng Dụng.docxBat Đang Thức V I Hàm Loi B Ph N Và Ứng Dụng.docx
Bat Đang Thức V I Hàm Loi B Ph N Và Ứng Dụng.docx
 
Luận văn: Giải bài toán Dirichlet đối với phương trình Elliptic, 9đ
Luận văn: Giải bài toán Dirichlet đối với phương trình Elliptic, 9đLuận văn: Giải bài toán Dirichlet đối với phương trình Elliptic, 9đ
Luận văn: Giải bài toán Dirichlet đối với phương trình Elliptic, 9đ
 
Luận văn: Thác triển chỉnh hình của hàm nhiều biến phức, HAY
Luận văn: Thác triển chỉnh hình của hàm nhiều biến phức, HAYLuận văn: Thác triển chỉnh hình của hàm nhiều biến phức, HAY
Luận văn: Thác triển chỉnh hình của hàm nhiều biến phức, HAY
 
Dạng Legendre và ứng dụng.pdf
Dạng Legendre và ứng dụng.pdfDạng Legendre và ứng dụng.pdf
Dạng Legendre và ứng dụng.pdf
 
Luận văn: Phân tích thành nhân tử trên vành các số nguyên đại số bậc K
Luận văn: Phân tích thành nhân tử trên vành các số nguyên đại số bậc KLuận văn: Phân tích thành nhân tử trên vành các số nguyên đại số bậc K
Luận văn: Phân tích thành nhân tử trên vành các số nguyên đại số bậc K
 
LuanVanThacSi-ChuaPhanLoai (130).pdf
LuanVanThacSi-ChuaPhanLoai (130).pdfLuanVanThacSi-ChuaPhanLoai (130).pdf
LuanVanThacSi-ChuaPhanLoai (130).pdf
 
Luận văn: Ước lượng gradient cho phương trình khuếch tán phi tuyến
Luận văn: Ước lượng gradient cho phương trình khuếch tán phi tuyếnLuận văn: Ước lượng gradient cho phương trình khuếch tán phi tuyến
Luận văn: Ước lượng gradient cho phương trình khuếch tán phi tuyến
 
Luận án tiến sĩ toán học ngưỡng chính tắc của hàm chỉnh hình và hàm đa điều h...
Luận án tiến sĩ toán học ngưỡng chính tắc của hàm chỉnh hình và hàm đa điều h...Luận án tiến sĩ toán học ngưỡng chính tắc của hàm chỉnh hình và hàm đa điều h...
Luận án tiến sĩ toán học ngưỡng chính tắc của hàm chỉnh hình và hàm đa điều h...
 
Định lý zsigmondy và Tính chất số học của đa thức.docx
Định lý zsigmondy và Tính chất số học của đa thức.docxĐịnh lý zsigmondy và Tính chất số học của đa thức.docx
Định lý zsigmondy và Tính chất số học của đa thức.docx
 
Luận văn: Vài vấn đề cơ bản của hàm nhiều biến phức, HAY
Luận văn: Vài vấn đề cơ bản của hàm nhiều biến phức, HAYLuận văn: Vài vấn đề cơ bản của hàm nhiều biến phức, HAY
Luận văn: Vài vấn đề cơ bản của hàm nhiều biến phức, HAY
 
Luận án: Phương pháp lặp giải bất đẳng thức biến phân, HAY
Luận án: Phương pháp lặp giải bất đẳng thức biến phân, HAYLuận án: Phương pháp lặp giải bất đẳng thức biến phân, HAY
Luận án: Phương pháp lặp giải bất đẳng thức biến phân, HAY
 
Xấp xỉ hàm đa điều hòa dưới Bởi hàm green đa cực.doc
Xấp xỉ hàm đa điều hòa dưới Bởi hàm green đa cực.docXấp xỉ hàm đa điều hòa dưới Bởi hàm green đa cực.doc
Xấp xỉ hàm đa điều hòa dưới Bởi hàm green đa cực.doc
 

More from Dịch vụ viết bài trọn gói ZALO: 0909232620

Danh Sách 200 Đề Tài Tiểu Luận Chuyên Viên Chính Về Bảo Hiểm Xã Hội Mới Nhất
Danh Sách 200 Đề Tài Tiểu Luận Chuyên Viên Chính Về Bảo Hiểm Xã Hội Mới NhấtDanh Sách 200 Đề Tài Tiểu Luận Chuyên Viên Chính Về Bảo Hiểm Xã Hội Mới Nhất
Danh Sách 200 Đề Tài Tiểu Luận Chuyên Viên Chính Về Bảo Hiểm Xã Hội Mới NhấtDịch vụ viết bài trọn gói ZALO: 0909232620
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phòng, Chống Hiv, Mới Nhất, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phòng, Chống Hiv, Mới Nhất, Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phòng, Chống Hiv, Mới Nhất, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phòng, Chống Hiv, Mới Nhất, Điểm CaoDịch vụ viết bài trọn gói ZALO: 0909232620
 

More from Dịch vụ viết bài trọn gói ZALO: 0909232620 (20)

Danh Sách 200 Đề Tài Tiểu Luận Chuyên Viên Chính Về Bảo Hiểm Xã Hội Mới Nhất
Danh Sách 200 Đề Tài Tiểu Luận Chuyên Viên Chính Về Bảo Hiểm Xã Hội Mới NhấtDanh Sách 200 Đề Tài Tiểu Luận Chuyên Viên Chính Về Bảo Hiểm Xã Hội Mới Nhất
Danh Sách 200 Đề Tài Tiểu Luận Chuyên Viên Chính Về Bảo Hiểm Xã Hội Mới Nhất
 
Danh Sách 200 Đề Tài Luận Văn Thạc Sĩ Quản Trị Nguồn Nhân Lực, 9 Điểm
Danh Sách 200 Đề Tài Luận Văn Thạc Sĩ Quản Trị Nguồn Nhân Lực, 9 ĐiểmDanh Sách 200 Đề Tài Luận Văn Thạc Sĩ Quản Trị Nguồn Nhân Lực, 9 Điểm
Danh Sách 200 Đề Tài Luận Văn Thạc Sĩ Quản Trị Nguồn Nhân Lực, 9 Điểm
 
Danh Sách 200 Đề Tài Luận Văn Thạc Sĩ Quản Lý Văn Hóa Giúp Bạn Thêm Ý Tưởng
Danh Sách 200 Đề Tài Luận Văn Thạc Sĩ Quản Lý Văn Hóa Giúp Bạn Thêm Ý TưởngDanh Sách 200 Đề Tài Luận Văn Thạc Sĩ Quản Lý Văn Hóa Giúp Bạn Thêm Ý Tưởng
Danh Sách 200 Đề Tài Luận Văn Thạc Sĩ Quản Lý Văn Hóa Giúp Bạn Thêm Ý Tưởng
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Quản Lý Giáo Dục Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Quản Lý Giáo Dục Dễ Làm Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Quản Lý Giáo Dục Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Quản Lý Giáo Dục Dễ Làm Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Quan Hệ Lao Động Từ Sinh Viên Giỏi
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Quan Hệ Lao Động Từ Sinh Viên GiỏiDanh Sách 200 Đề Tài Báo Cáo Thực Tập Quan Hệ Lao Động Từ Sinh Viên Giỏi
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Quan Hệ Lao Động Từ Sinh Viên Giỏi
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Nuôi Trồng Thủy Sản Dễ Làm Nhất
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Nuôi Trồng Thủy Sản Dễ Làm NhấtDanh Sách 200 Đề Tài Báo Cáo Thực Tập Nuôi Trồng Thủy Sản Dễ Làm Nhất
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Nuôi Trồng Thủy Sản Dễ Làm Nhất
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Sư, Mới Nhất, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Sư, Mới Nhất, Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Sư, Mới Nhất, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Sư, Mới Nhất, Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phòng, Chống Hiv, Mới Nhất, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phòng, Chống Hiv, Mới Nhất, Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phòng, Chống Hiv, Mới Nhất, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phòng, Chống Hiv, Mới Nhất, Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phá Sản, Mới Nhất
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phá Sản, Mới NhấtDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phá Sản, Mới Nhất
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Phá Sản, Mới Nhất
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Nhà Ở, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Nhà Ở, Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Nhà Ở, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Nhà Ở, Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Ngân Hàng, Mới Nhất
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Ngân Hàng, Mới NhấtDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Ngân Hàng, Mới Nhất
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Ngân Hàng, Mới Nhất
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Môi Trường, Mới Nhất
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Môi Trường, Mới NhấtDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Môi Trường, Mới Nhất
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Môi Trường, Mới Nhất
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hộ Tịch, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hộ Tịch, Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hộ Tịch, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hộ Tịch, Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hình Sự , Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hình Sự , Dễ Làm Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hình Sự , Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hình Sự , Dễ Làm Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hành Chính, Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hành Chính, Dễ Làm Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hành Chính, Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Hành Chính, Dễ Làm Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Giáo Dục, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Giáo Dục, Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Giáo Dục, Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Giáo Dục, Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đấu Thầu, Từ Sinh Viên Khá Giỏi
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đấu Thầu, Từ Sinh Viên Khá GiỏiDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đấu Thầu, Từ Sinh Viên Khá Giỏi
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đấu Thầu, Từ Sinh Viên Khá Giỏi
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đầu Tư, Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đầu Tư, Dễ Làm Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đầu Tư, Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đầu Tư, Dễ Làm Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đầu Tư Công, Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đầu Tư Công, Dễ Làm Điểm CaoDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đầu Tư Công, Dễ Làm Điểm Cao
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đầu Tư Công, Dễ Làm Điểm Cao
 
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đất Đai, Từ Sinh Viên Khá Giỏi
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đất Đai, Từ Sinh Viên Khá GiỏiDanh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đất Đai, Từ Sinh Viên Khá Giỏi
Danh Sách 200 Đề Tài Báo Cáo Thực Tập Luật Đất Đai, Từ Sinh Viên Khá Giỏi
 

Recently uploaded

Xem tử vi miễn phí trực tuyến cho kết quả chính xác cùng luậ...
Xem tử vi miễn phí trực tuyến cho kết quả chính xác cùng luậ...Xem tử vi miễn phí trực tuyến cho kết quả chính xác cùng luậ...
Xem tử vi miễn phí trực tuyến cho kết quả chính xác cùng luậ...Xem Số Mệnh
 
Mạch điện tử - Điện tử số sáng tạo VN-new.pdf
Mạch điện tử - Điện tử số sáng tạo VN-new.pdfMạch điện tử - Điện tử số sáng tạo VN-new.pdf
Mạch điện tử - Điện tử số sáng tạo VN-new.pdfXem Số Mệnh
 
200 câu hỏi trắc nghiệm ôn tập PLDC.pdf
200 câu hỏi trắc nghiệm ôn tập  PLDC.pdf200 câu hỏi trắc nghiệm ôn tập  PLDC.pdf
200 câu hỏi trắc nghiệm ôn tập PLDC.pdfdong92356
 
Luận giải tử vi của 12 con giáp năm 2024 chi tiết và chính xác -...
Luận giải tử vi của 12 con giáp năm 2024 chi tiết và chính xác -...Luận giải tử vi của 12 con giáp năm 2024 chi tiết và chính xác -...
Luận giải tử vi của 12 con giáp năm 2024 chi tiết và chính xác -...Xem Số Mệnh
 
Tư tưởng Hồ Chí Minh về độc lập dân tộc và CNXH
Tư tưởng Hồ Chí Minh về độc lập dân tộc và CNXHTư tưởng Hồ Chí Minh về độc lập dân tộc và CNXH
Tư tưởng Hồ Chí Minh về độc lập dân tộc và CNXHThaoPhuong154017
 
Gieo quẻ kinh dịch, xin xăm,Xin lộc thánh.pdf
Gieo quẻ kinh dịch, xin xăm,Xin lộc thánh.pdfGieo quẻ kinh dịch, xin xăm,Xin lộc thánh.pdf
Gieo quẻ kinh dịch, xin xăm,Xin lộc thánh.pdfXem Số Mệnh
 
Ma trận - định thức và các ứng dụng trong kinh tế
Ma trận - định thức và các ứng dụng trong kinh tếMa trận - định thức và các ứng dụng trong kinh tế
Ma trận - định thức và các ứng dụng trong kinh tếngTonH1
 
SÁNG KIẾN “THIẾT KẾ VÀ SỬ DỤNG INFOGRAPHIC TRONG DẠY HỌC ĐỊA LÍ 11 (BỘ SÁCH K...
SÁNG KIẾN “THIẾT KẾ VÀ SỬ DỤNG INFOGRAPHIC TRONG DẠY HỌC ĐỊA LÍ 11 (BỘ SÁCH K...SÁNG KIẾN “THIẾT KẾ VÀ SỬ DỤNG INFOGRAPHIC TRONG DẠY HỌC ĐỊA LÍ 11 (BỘ SÁCH K...
SÁNG KIẾN “THIẾT KẾ VÀ SỬ DỤNG INFOGRAPHIC TRONG DẠY HỌC ĐỊA LÍ 11 (BỘ SÁCH K...Nguyen Thanh Tu Collection
 
Slide Webinar Hướng dẫn sử dụng ChatGPT cho người mới bắt đầ...
Slide Webinar Hướng dẫn sử dụng ChatGPT cho người mới bắt đầ...Slide Webinar Hướng dẫn sử dụng ChatGPT cho người mới bắt đầ...
Slide Webinar Hướng dẫn sử dụng ChatGPT cho người mới bắt đầ...Học viện Kstudy
 
2第二课:汉语不太难.pptx. Chinese lesson 2: Chinese not that hard
2第二课:汉语不太难.pptx. Chinese lesson 2: Chinese not that hard2第二课:汉语不太难.pptx. Chinese lesson 2: Chinese not that hard
2第二课:汉语不太难.pptx. Chinese lesson 2: Chinese not that hardBookoTime
 
ĐẢNG LÃNH ĐẠO HAI CUỘC KHÁNG CHIẾN GIÀNH ĐỘC LẬP HOÀN TOÀN, THỐNG NHẤT ĐẤT NƯ...
ĐẢNG LÃNH ĐẠO HAI CUỘC KHÁNG CHIẾN GIÀNH ĐỘC LẬP HOÀN TOÀN, THỐNG NHẤT ĐẤT NƯ...ĐẢNG LÃNH ĐẠO HAI CUỘC KHÁNG CHIẾN GIÀNH ĐỘC LẬP HOÀN TOÀN, THỐNG NHẤT ĐẤT NƯ...
ĐẢNG LÃNH ĐẠO HAI CUỘC KHÁNG CHIẾN GIÀNH ĐỘC LẬP HOÀN TOÀN, THỐNG NHẤT ĐẤT NƯ...PhcTrn274398
 
ĐỀ THAM KHẢO THEO HƯỚNG MINH HỌA 2025 KIỂM TRA CUỐI HỌC KÌ 2 NĂM HỌC 2023-202...
ĐỀ THAM KHẢO THEO HƯỚNG MINH HỌA 2025 KIỂM TRA CUỐI HỌC KÌ 2 NĂM HỌC 2023-202...ĐỀ THAM KHẢO THEO HƯỚNG MINH HỌA 2025 KIỂM TRA CUỐI HỌC KÌ 2 NĂM HỌC 2023-202...
ĐỀ THAM KHẢO THEO HƯỚNG MINH HỌA 2025 KIỂM TRA CUỐI HỌC KÌ 2 NĂM HỌC 2023-202...Nguyen Thanh Tu Collection
 
Sơ đồ tư duy môn sinh học bậc THPT.pdf
Sơ đồ tư duy môn sinh học bậc THPT.pdfSơ đồ tư duy môn sinh học bậc THPT.pdf
Sơ đồ tư duy môn sinh học bậc THPT.pdftohoanggiabao81
 
Xem sim phong thủy luận Hung - Cát số điện thoại chính xác nhất.pdf
Xem sim phong thủy luận Hung - Cát số điện thoại chính xác nhất.pdfXem sim phong thủy luận Hung - Cát số điện thoại chính xác nhất.pdf
Xem sim phong thủy luận Hung - Cát số điện thoại chính xác nhất.pdfXem Số Mệnh
 
ĐỀ THAM KHẢO THEO HƯỚNG MINH HỌA 2025 KIỂM TRA GIỮA HỌC KÌ + CUỐI HỌC KÌ 2 NĂ...
ĐỀ THAM KHẢO THEO HƯỚNG MINH HỌA 2025 KIỂM TRA GIỮA HỌC KÌ + CUỐI HỌC KÌ 2 NĂ...ĐỀ THAM KHẢO THEO HƯỚNG MINH HỌA 2025 KIỂM TRA GIỮA HỌC KÌ + CUỐI HỌC KÌ 2 NĂ...
ĐỀ THAM KHẢO THEO HƯỚNG MINH HỌA 2025 KIỂM TRA GIỮA HỌC KÌ + CUỐI HỌC KÌ 2 NĂ...Nguyen Thanh Tu Collection
 
VẬN DỤNG KIẾN THỨC LIÊN MÔN TRONG GIẢI BÀI TẬP ÔN THI THPTQG MÔN SINH HỌC - H...
VẬN DỤNG KIẾN THỨC LIÊN MÔN TRONG GIẢI BÀI TẬP ÔN THI THPTQG MÔN SINH HỌC - H...VẬN DỤNG KIẾN THỨC LIÊN MÔN TRONG GIẢI BÀI TẬP ÔN THI THPTQG MÔN SINH HỌC - H...
VẬN DỤNG KIẾN THỨC LIÊN MÔN TRONG GIẢI BÀI TẬP ÔN THI THPTQG MÔN SINH HỌC - H...Nguyen Thanh Tu Collection
 
Linh kiện điện tử - Điện tử số sáng tạo VN.pdf
Linh kiện điện tử - Điện tử số sáng tạo VN.pdfLinh kiện điện tử - Điện tử số sáng tạo VN.pdf
Linh kiện điện tử - Điện tử số sáng tạo VN.pdfXem Số Mệnh
 
TỔNG HỢP 30 ĐỀ THI CHỌN HSG CÁC TRƯỜNG THPT CHUYÊN VÙNG DUYÊN HẢI & ĐỒNG BẰNG...
TỔNG HỢP 30 ĐỀ THI CHỌN HSG CÁC TRƯỜNG THPT CHUYÊN VÙNG DUYÊN HẢI & ĐỒNG BẰNG...TỔNG HỢP 30 ĐỀ THI CHỌN HSG CÁC TRƯỜNG THPT CHUYÊN VÙNG DUYÊN HẢI & ĐỒNG BẰNG...
TỔNG HỢP 30 ĐỀ THI CHỌN HSG CÁC TRƯỜNG THPT CHUYÊN VÙNG DUYÊN HẢI & ĐỒNG BẰNG...Nguyen Thanh Tu Collection
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...Nguyen Thanh Tu Collection
 
10 ĐỀ KIỂM TRA + 6 ĐỀ ÔN TẬP CUỐI KÌ 2 VẬT LÝ 11 - KẾT NỐI TRI THỨC - THEO C...
10 ĐỀ KIỂM TRA + 6 ĐỀ ÔN TẬP CUỐI KÌ 2 VẬT LÝ 11 - KẾT NỐI TRI THỨC - THEO C...10 ĐỀ KIỂM TRA + 6 ĐỀ ÔN TẬP CUỐI KÌ 2 VẬT LÝ 11 - KẾT NỐI TRI THỨC - THEO C...
10 ĐỀ KIỂM TRA + 6 ĐỀ ÔN TẬP CUỐI KÌ 2 VẬT LÝ 11 - KẾT NỐI TRI THỨC - THEO C...Nguyen Thanh Tu Collection
 

Recently uploaded (20)

Xem tử vi miễn phí trực tuyến cho kết quả chính xác cùng luậ...
Xem tử vi miễn phí trực tuyến cho kết quả chính xác cùng luậ...Xem tử vi miễn phí trực tuyến cho kết quả chính xác cùng luậ...
Xem tử vi miễn phí trực tuyến cho kết quả chính xác cùng luậ...
 
Mạch điện tử - Điện tử số sáng tạo VN-new.pdf
Mạch điện tử - Điện tử số sáng tạo VN-new.pdfMạch điện tử - Điện tử số sáng tạo VN-new.pdf
Mạch điện tử - Điện tử số sáng tạo VN-new.pdf
 
200 câu hỏi trắc nghiệm ôn tập PLDC.pdf
200 câu hỏi trắc nghiệm ôn tập  PLDC.pdf200 câu hỏi trắc nghiệm ôn tập  PLDC.pdf
200 câu hỏi trắc nghiệm ôn tập PLDC.pdf
 
Luận giải tử vi của 12 con giáp năm 2024 chi tiết và chính xác -...
Luận giải tử vi của 12 con giáp năm 2024 chi tiết và chính xác -...Luận giải tử vi của 12 con giáp năm 2024 chi tiết và chính xác -...
Luận giải tử vi của 12 con giáp năm 2024 chi tiết và chính xác -...
 
Tư tưởng Hồ Chí Minh về độc lập dân tộc và CNXH
Tư tưởng Hồ Chí Minh về độc lập dân tộc và CNXHTư tưởng Hồ Chí Minh về độc lập dân tộc và CNXH
Tư tưởng Hồ Chí Minh về độc lập dân tộc và CNXH
 
Gieo quẻ kinh dịch, xin xăm,Xin lộc thánh.pdf
Gieo quẻ kinh dịch, xin xăm,Xin lộc thánh.pdfGieo quẻ kinh dịch, xin xăm,Xin lộc thánh.pdf
Gieo quẻ kinh dịch, xin xăm,Xin lộc thánh.pdf
 
Ma trận - định thức và các ứng dụng trong kinh tế
Ma trận - định thức và các ứng dụng trong kinh tếMa trận - định thức và các ứng dụng trong kinh tế
Ma trận - định thức và các ứng dụng trong kinh tế
 
SÁNG KIẾN “THIẾT KẾ VÀ SỬ DỤNG INFOGRAPHIC TRONG DẠY HỌC ĐỊA LÍ 11 (BỘ SÁCH K...
SÁNG KIẾN “THIẾT KẾ VÀ SỬ DỤNG INFOGRAPHIC TRONG DẠY HỌC ĐỊA LÍ 11 (BỘ SÁCH K...SÁNG KIẾN “THIẾT KẾ VÀ SỬ DỤNG INFOGRAPHIC TRONG DẠY HỌC ĐỊA LÍ 11 (BỘ SÁCH K...
SÁNG KIẾN “THIẾT KẾ VÀ SỬ DỤNG INFOGRAPHIC TRONG DẠY HỌC ĐỊA LÍ 11 (BỘ SÁCH K...
 
Slide Webinar Hướng dẫn sử dụng ChatGPT cho người mới bắt đầ...
Slide Webinar Hướng dẫn sử dụng ChatGPT cho người mới bắt đầ...Slide Webinar Hướng dẫn sử dụng ChatGPT cho người mới bắt đầ...
Slide Webinar Hướng dẫn sử dụng ChatGPT cho người mới bắt đầ...
 
2第二课:汉语不太难.pptx. Chinese lesson 2: Chinese not that hard
2第二课:汉语不太难.pptx. Chinese lesson 2: Chinese not that hard2第二课:汉语不太难.pptx. Chinese lesson 2: Chinese not that hard
2第二课:汉语不太难.pptx. Chinese lesson 2: Chinese not that hard
 
ĐẢNG LÃNH ĐẠO HAI CUỘC KHÁNG CHIẾN GIÀNH ĐỘC LẬP HOÀN TOÀN, THỐNG NHẤT ĐẤT NƯ...
ĐẢNG LÃNH ĐẠO HAI CUỘC KHÁNG CHIẾN GIÀNH ĐỘC LẬP HOÀN TOÀN, THỐNG NHẤT ĐẤT NƯ...ĐẢNG LÃNH ĐẠO HAI CUỘC KHÁNG CHIẾN GIÀNH ĐỘC LẬP HOÀN TOÀN, THỐNG NHẤT ĐẤT NƯ...
ĐẢNG LÃNH ĐẠO HAI CUỘC KHÁNG CHIẾN GIÀNH ĐỘC LẬP HOÀN TOÀN, THỐNG NHẤT ĐẤT NƯ...
 
ĐỀ THAM KHẢO THEO HƯỚNG MINH HỌA 2025 KIỂM TRA CUỐI HỌC KÌ 2 NĂM HỌC 2023-202...
ĐỀ THAM KHẢO THEO HƯỚNG MINH HỌA 2025 KIỂM TRA CUỐI HỌC KÌ 2 NĂM HỌC 2023-202...ĐỀ THAM KHẢO THEO HƯỚNG MINH HỌA 2025 KIỂM TRA CUỐI HỌC KÌ 2 NĂM HỌC 2023-202...
ĐỀ THAM KHẢO THEO HƯỚNG MINH HỌA 2025 KIỂM TRA CUỐI HỌC KÌ 2 NĂM HỌC 2023-202...
 
Sơ đồ tư duy môn sinh học bậc THPT.pdf
Sơ đồ tư duy môn sinh học bậc THPT.pdfSơ đồ tư duy môn sinh học bậc THPT.pdf
Sơ đồ tư duy môn sinh học bậc THPT.pdf
 
Xem sim phong thủy luận Hung - Cát số điện thoại chính xác nhất.pdf
Xem sim phong thủy luận Hung - Cát số điện thoại chính xác nhất.pdfXem sim phong thủy luận Hung - Cát số điện thoại chính xác nhất.pdf
Xem sim phong thủy luận Hung - Cát số điện thoại chính xác nhất.pdf
 
ĐỀ THAM KHẢO THEO HƯỚNG MINH HỌA 2025 KIỂM TRA GIỮA HỌC KÌ + CUỐI HỌC KÌ 2 NĂ...
ĐỀ THAM KHẢO THEO HƯỚNG MINH HỌA 2025 KIỂM TRA GIỮA HỌC KÌ + CUỐI HỌC KÌ 2 NĂ...ĐỀ THAM KHẢO THEO HƯỚNG MINH HỌA 2025 KIỂM TRA GIỮA HỌC KÌ + CUỐI HỌC KÌ 2 NĂ...
ĐỀ THAM KHẢO THEO HƯỚNG MINH HỌA 2025 KIỂM TRA GIỮA HỌC KÌ + CUỐI HỌC KÌ 2 NĂ...
 
VẬN DỤNG KIẾN THỨC LIÊN MÔN TRONG GIẢI BÀI TẬP ÔN THI THPTQG MÔN SINH HỌC - H...
VẬN DỤNG KIẾN THỨC LIÊN MÔN TRONG GIẢI BÀI TẬP ÔN THI THPTQG MÔN SINH HỌC - H...VẬN DỤNG KIẾN THỨC LIÊN MÔN TRONG GIẢI BÀI TẬP ÔN THI THPTQG MÔN SINH HỌC - H...
VẬN DỤNG KIẾN THỨC LIÊN MÔN TRONG GIẢI BÀI TẬP ÔN THI THPTQG MÔN SINH HỌC - H...
 
Linh kiện điện tử - Điện tử số sáng tạo VN.pdf
Linh kiện điện tử - Điện tử số sáng tạo VN.pdfLinh kiện điện tử - Điện tử số sáng tạo VN.pdf
Linh kiện điện tử - Điện tử số sáng tạo VN.pdf
 
TỔNG HỢP 30 ĐỀ THI CHỌN HSG CÁC TRƯỜNG THPT CHUYÊN VÙNG DUYÊN HẢI & ĐỒNG BẰNG...
TỔNG HỢP 30 ĐỀ THI CHỌN HSG CÁC TRƯỜNG THPT CHUYÊN VÙNG DUYÊN HẢI & ĐỒNG BẰNG...TỔNG HỢP 30 ĐỀ THI CHỌN HSG CÁC TRƯỜNG THPT CHUYÊN VÙNG DUYÊN HẢI & ĐỒNG BẰNG...
TỔNG HỢP 30 ĐỀ THI CHỌN HSG CÁC TRƯỜNG THPT CHUYÊN VÙNG DUYÊN HẢI & ĐỒNG BẰNG...
 
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
30 ĐỀ PHÁT TRIỂN THEO CẤU TRÚC ĐỀ MINH HỌA BGD NGÀY 22-3-2024 KỲ THI TỐT NGHI...
 
10 ĐỀ KIỂM TRA + 6 ĐỀ ÔN TẬP CUỐI KÌ 2 VẬT LÝ 11 - KẾT NỐI TRI THỨC - THEO C...
10 ĐỀ KIỂM TRA + 6 ĐỀ ÔN TẬP CUỐI KÌ 2 VẬT LÝ 11 - KẾT NỐI TRI THỨC - THEO C...10 ĐỀ KIỂM TRA + 6 ĐỀ ÔN TẬP CUỐI KÌ 2 VẬT LÝ 11 - KẾT NỐI TRI THỨC - THEO C...
10 ĐỀ KIỂM TRA + 6 ĐỀ ÔN TẬP CUỐI KÌ 2 VẬT LÝ 11 - KẾT NỐI TRI THỨC - THEO C...
 

Luận văn: Sự suy biến của đường cong chỉnh hình, HAY, 9đ

  • 1. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Trịnh Anh Tuấn SỰ SUY BIẾN CỦA ĐƯỜNG CONG CHỈNH HÌNH VÀ CÁC SIÊU MẶT HYPERBOLIC P-ADIC LUẬN VĂN THẠC SĨ TOÁN HỌC Thành phố Hồ Chí Minh - 2012
  • 2. BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Trịnh Anh Tuấn SỰ SUY BIẾN CỦA ĐƯỜNG CONG CHỈNH HÌNH VÀ CÁC SIÊU MẶT HYPERBOLIC P-ADIC Chuyên ngành : Hình học và tôpô Mã số : 60 46 10 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC TS. NGUYỄN TRỌNG HÒA Thành phố Hồ Chí Minh - 2012
  • 3. 1 LỜI CAM ĐOAN  Tôi cam đoan đây là công trình nghiên cứu của riêng tôi trên cơ sở các công trình của GS.TSKH. Hà Huy Khoái. Các số liệu, kết quả nêu trong luận văn là trung thực và chính xác. Thành phố Hồ Chí Minh, tháng 09 năm 2012 Trịnh Anh Tuấn
  • 4. 2 LỜI CẢM ƠN  Tôi vô cùng biết ơn Tiến sĩ NGUYỄN TRỌNG HÒA đã định hướng tôi nghiên cứu về sự suy biến của các đường cong chỉnh hình và các siêu mặt hyperbolic p-adic, một vấn đề còn đang rất mới và được quan tâm do những ứng dụng của nó trong nhiều lĩnh vực của Toán học; thầy là người trực tiếp hướng dẫn tôi thực hiện luận văn này. Tôi gửi lời tri ân đến các thầy cô giáo trong khoa Toán – Tin đã hướng dẫn tôi nghiên cứu Toán học trong những năm học tại trường Đại học Sư Phạm TP Hồ Chí Minh. gia đình và bạn bè đã chia sẻ và động viên tôi trong quá trình tôi thực hiện đề tài. Một lần nữa tôi xin chân thành cảm ơn! Trịnh Anh Tuấn
  • 5. 3 MỤC LỤC LỜI CAM ĐOAN .............................................................................................................1 LỜI CẢM ƠN ...................................................................................................................2 MỤC LỤC.........................................................................................................................3 MỞ ĐẦU...........................................................................................................................4 NHỮNG KÝ HIỆU DÙNG TRONG LUẬN VĂN..........................................................8 NỘI DUNG .......................................................................................................................9 Chương 1: Một số kiến thức bổ trợ...................................................................................9 1.1. Trường số phức p-adic:......................................................................................9 1.2. Hàm chỉnh hình và hàm phân hình trên trường số phức p-adic:......................15 1.3. Độ cao của hàm chỉnh hình và đường cong chỉnh hình trên ( )n p . ............25 1.4. Đường cong chỉnh hình trên ( )n p  . Định lý cơ bản thứ nhất và thứ hai của đường cong chỉnh hình:...........................................................................................32 1.5. Không gian hyperbolic, siêu mặt hyperbolic:..................................................41 Chương 2: Sự suy biến của đường cong chỉnh hình và siêu mặt hyperbolic p-adic.......45 2.1. Sự suy biến của đường cong chỉnh hình trong ( )n p :.................................45 2.2. Các siêu mặt hyperbolic trong ( )3 p : .........................................................51 KẾT LUẬN VÀ KIẾN NGHỊ.........................................................................................58 TÀI LIỆU THAM KHẢO...............................................................................................59
  • 6. 4 MỞ ĐẦU 1. LÝ DO CHỌN ĐỀ TÀI Một đường cong chỉnh hình trên đa tạp xạ ảnh X được gọi là suy biến nếu nó được chứa trong một tập con đại số thật sự của X. Vào năm 1979, M. Green và Ph. Griffiths đã phỏng đoán rằng trong đa tạp xạ ảnh phức dạng tổng quát, mọi đường cong chỉnh hình đều suy biến. Cho tới bây giờ, điều phỏng đoán này vẫn chưa được chứng minh hoàn toàn, tuy nhiên đã có một số bước tiến quan trọng. Chẳng hạn, M. Green đã chứng minh được về sự suy biến của các đường cong khả tích trên đa tạp Fermat với số chiều lớn. Để có được kết quả này, M. Green đã sử dụng định lý Nevanlinna cho các đường cong chỉnh hình. Và A. M. Nadel đã chỉ ra được một họ các siêu phẳng xạ ảnh mà trên đó điều phỏng đoán trên là đúng. Bằng cách sử dụng kết quả về sự suy biến của các đường cong chỉnh hình, Nadel đã xây dựng một số ví dụ chi tiết về các siêu mặt hyperbolic trong 3  . Các kỹ thuật của Nadel đều dựa trên định lý Siu về liên thông phân hình. Trong trường p-adic, sự suy biến của các đường cong chỉnh hình trên đa tạp Fermat có số chiều lớn đã được trình bày chi tiết trong tài liệu tham khảo [2]. Và trong bài viết [1], Hà Huy Khoái đã chứng minh rằng “Nếu X là nhiễu của đa tạp Fermat trong ( )n p có số chiều đủ lớn đối với n và với số các hệ số khác 0 trong phương trình định nghĩa ( )f z , thì mọi đường cong chỉnh hình trên X đều suy biến”. Chứng minh điều này cung cấp đầy đủ thông tin chính xác về vị trí của các đường cong trong X, những thông tin này sẽ rất hữu dụng cho các ứng dụng về sau. Và như một hệ quả của việc chứng minh này, Hà Huy Khoái đã đưa ra
  • 7. 5 một số ví dụ cụ thể về các mặt hyperbolic p-adic trong ( )3 p và về các đường cong trong ( )2 p với các phần bù hyperbolic. Bên cạnh đó còn có các ví dụ cụ thể về các mặt hyperbolic với các phần bù hyperbolic. Nhắc lại, một đa tạp X được gọi là hyperbolic p-adic nếu mọi ánh xạ chỉnh hình từ p vào X là ánh xạ hằng. Các ví dụ này khác với các ví dụ trong tài liệu [2] (được cho bằng cách sử dụng định lý Nevanlinna – Cartan p-adic). Trong khi số chiều của các mặt trong [2] được chia bởi một số nguyên lớn hơn 1, số chiều này được cho tốt như trong tất cả các ví dụ phổ biến về các mặt hyperbolic phức, số chiều d của các ví dụ trong bài viết [1] chỉ yêu cầu không nhỏ hơn 50 cho các mặt hyperbolic với các phần bù hyperbolic. Như trong [2], công cụ chủ yếu của [1] là hàm độ cao đã được trình bày trong [2], [5], [6] và [7]. Hàm này có vai trò tương tự như một đa thức đặc trưng Nevanlinna trong chứng minh của Green. Hơn nữa, độ cao của một hàm chỉnh hình p-adic ( )f z cung cấp thông tin về mật độ các không điểm của f tại một điểm nào đó và mô tả cấp tăng của ( )f z . Trong nhiều trường hợp, ta có thể sử dụng độ cao để nghiên cứu về các hàm chỉnh hình p-adic tương tự như sử dụng số chiều trong nghiên cứu về các đa thức phức. Việc nghiên cứu tính suy biến của đường cong chỉnh hình và các siêu mặt trong không gian xạ ảnh nhiều chiều là vấn đề thời sự đang được nhiều nhà toán học trên thế giới quan tâm. Vì vậy, chúng tôi chọn việc nghiên cứu Sự suy biến của đường cong chỉnh hình và siêu mặt hyperbolic trong không gian xạ ảnh phức p-adic làm đề tài của mình. Ở đây, chúng tôi chỉ giới hạn nghiên cứu sự suy biến của đường cong chỉnh hình trên ( )n p  và các siêu mặt hyperbolic trong không gian xạ ảnh 3 ( )p  đã công bố trong các công trình của Hà Huy Khoái,
  • 8. 6 W. Cherry, K. Masuda, J. Noguchi và A. Nadel từ 1996 đến nay, trên cơ sở đó, xây dựng các ví dụ minh chứng trong các lớp siêu mặt cụ thể. 2. MỤC ĐÍCH NGHIÊN CỨU Nghiên cứu Sự suy biến của đường cong chỉnh hình trên ( )n p  và các siêu mặt Hyperbolic trong không gian xạ ảnh 3 ( )p  . 3. ĐỐI TƯỢNG VÀ PHẠM VI NGHIÊN CỨU - Đường cong chỉnh hình trong không gian xạ ảnh phức p-adic n chiều. - Các siêu mặt hyperbolic p-adic bởi Hà Huy Khoái, W. Cherry, K. Masuda, J. Noguchi và A. Nadel. - Cụ thể hóa các kết quả trong một số trường hợp đặc biệt. 4. PHƯƠNG PHÁP NGHIÊN CỨU Tổng hợp và hoàn thiện những kết quả đã có từ những bài báo, tài liệu khoa học có liên quan đến vấn đề cần nghiên cứu. Đưa ra các ví dụ minh họa cho các kết quả đã trình bày. Sử dụng phương pháp Nevanlinna p-adic. 5. CẤU TRÚC LUẬN VĂN Chương I: MỘT SỐ KIẾN THỨC BỔ TRỢ 1. Trường các số phức p-adic. 2. Hàm chỉnh hình và hàm phân hình trên trường các số phức p-adic. 3. Độ cao của hàm chỉnh hình và đường cong chỉnh hình trên ( )n p .
  • 9. 7 4. Đường cong chỉnh hình trên ( )n p  . Định lý cơ bản thứ nhất và thứ hai của đường cong chỉnh hình. 5. Không gian hyperbolic, siêu mặt hyperbolic. Chương 2: SỰ SUY BIẾN CỦA ĐƯỜNG CONG CHỈNH HÌNH VÀ SIÊU MẶT HYPERBOLIC P-ADIC 1. Sự suy biến của đường cong chỉnh hình ( )n p  . 2. Các siêu mặt hyperbolic trong 3 ( )p  .
  • 10. 8 NHỮNG KÝ HIỆU DÙNG TRONG LUẬN VĂN κ là một trường; [ ] { }0,1 1O x xκ κ κ= =∈ ≤ ; ( ) ( ){ }lim 0n r nf z a rκ= =A ; ( ) ( ){ }( ;baùn kính hoäi tuïr f z rκ ρ= ≤A ( ) ( )κ κ∞=A A là tập các hàm nguyên trên ;κ f ′ là đạo hàm bậc một của hàm f ; ( )R D là tập các hàm hữu tỉ h không có cực điểm trong tập D ; ( )DH là đầy đủ hóa của ( )R D theo tôpô sinh bởi chuẩn hội tụ đều trên D ; ( )Hol D là tập các hàm giải tích địa phương trên D ; ( )DM là tập các hàm phân hình trên D ; ( )DH là tập các hàm giải tích trên D ; ( )( ) ( ( )0; , , 0 ;p g g h h h κ ρ κ   = ∈ ≡    M A ( ( ) ( )( )0; ;p κ κ ρ=M M ( )M là tập các hàm phân hình trên  ; ( )1O là đại lượng giới nội; log là hàm số logarit cơ số e (log : ln)= .
  • 11. 9 NỘI DUNG Chương 1: Một số kiến thức bổ trợ Chương này trình bày các kiến thức chuẩn bị cho những nội dung ở chương 2. Đó là các khái niệm về trường số phức p-adic; hàm chỉnh hình; hàm phân hình; không gian hyperbolic, ... 1.1. Trường số phức p-adic: Trước tiên, ta nhắc lại ký hiệu trường số phức, số thực và số hữu tỉ lần lượt là ,  và  , và ký hiệu vành số nguyên là . Nếu η là tập con của  thì ta ký hiệu: { }0x xη η+ = ∈ ≥ , { }0 .x xη η+ = ∈ > Với ,a b sao cho a b≤ , ta ký hiệu: [ ] { }, .a b x a x bη η= ∈ ≤ ≤ Cho κ là trường và ký hiệu nhóm nhân { } 0κ là *κ Định nghĩa 1.1.1. Cho κ là trường. Một chuẩn Acsimet trên κ là hàm: [ ): 0,κ +⋅ → = +∞ thỏa các điều kiện sau: (1) 0 0,x x= ⇔ = (2) , , ,xy x y x y κ= ∀ ∈ (3) , , .x y x y x y κ+ ≤ + ∀ ∈ Nếu thay (3) bởi điều kiện sau: (4) max{ , }, , ,x y x y x y κ+ ≤ ∀ ∈
  • 12. 10 thì ⋅ thỏa mãn (1), (2), (4) gọi là chuẩn không Acsimet. Một chuẩn ⋅ trên κ cảm sinh một hàm khoảng cách d được định nghĩa bởi: ( ), , ,d x y x y x y κ= − ∀ ∈ . Nếu chuẩn ⋅ không Acsimet thì metric cảm sinh d thỏa: ( ) ( ) ( ){ }, max , , , , , ,d x y d x z d z y x y z κ≤ ∀ ∈ . Metric ứng với chuẩn không Acsimet được gọi là siêu metric. Ví dụ 1.1.2. Xét hàm: * : 1 : 0 : 0 x x x x κ κ +⋅ → ∈ =  =   Khi đó ⋅ là chuẩn không Acsimet trên κ và metric cảm sinh: ( ) ( ) : 1 : , , 0 : d x y x y d x y x y κ κ +× → ≠ =  =   là một siêu metric. Metric này được gọi là metric tầm thường. Ta xét một số đặc trưng của tôpô sinh bởi chuẩn không Acsimet thông qua các hình cầu sau: Với mỗi số thực dương r và một điểm x κ∈ , ta định nghĩa quả cầu mở và quả cầu đóng bán kính r , tâm x lần lượt là: ( ) ( ){ } [ ] ( ){ } ; , , ; , , x r y d x y r x r y d x y r κ κ κ κ =∈ < =∈ ≤ và ký hiệu đường tròn: ( ){ } [ ] ( ); , ; ;x r y d x y r x r x rκ κ κ κ=∈ == .
  • 13. 11 Nếu ⋅ không Acsimet, tập con: [ ] { }0,1 1O x xκ κ κ= =∈ ≤ là vành con của κ và được gọi là vành định giá của ⋅ . Mệnh đề 1.1.3. Cho κ là trường định chuẩn không Acsimet. Ta có: (1) Nếu ( );y x rκ∈ thì ( ) ( ); ;x r y rκ κ= , (2) Hình cầu ( );x rκ vừa là tập mở vừa là tập đóng, (3) Hai hình cầu mở (đóng) hoặc rời nhau hoặc chứa nhau. Sau đây, ta sẽ trình bày sơ lược khái niệm trường số phức p-adic (xem chi tiết ở [11]): Giả sử p∈, p là số nguyên tố. Khi đó, mọi số nguyên a đều được biểu diễn duy nhất dưới dạng: v a p a′= , trong đó p không là ước của a′, { } 0 .a′∈ Với mỗi p và a , số nguyên v được xác định duy nhất. Ký hiệu ( )pv a v= , ta có hàm số: { } [ ) ( ) : 0 0,p p v a v a +→ = ∩ +∞    và ( )0 0pv = . Ta mở rộng hàm v lên  như sau: Với a x b = ∈, đặt: ( ) ( ) ( ) : 0 : 0 p p p v a v b x v x x  − ≠ =  +∞ = Với mỗi số nguyên tố p, xét:
  • 14. 12 { } ( ) : , .vôùi p v pp x x p v v x− ⋅ → ∪ +∞ = =    Khi đó, p ⋅ là một chuẩn không Acsimet và được gọi là chuẩn p-adic. Giá trị tuyệt đối thông thường trên  có thể xem là chuẩn p-adic khi p là vô cực và được ký hiệu :∞ ⋅ =⋅ , và hiển nhiên là Acsimet. Mệnh đề 1.1.4. (Ostrowski). Mọi chuẩn không tầm thường trên  đều tương đương với một chuẩn p ⋅ , với p là số nguyên tố hoặc p = ∞ . Từ định lý này, suy ra rằng các chuẩn trên  hoặc là chuẩn thông thường, hoặc là p ⋅ với p là số nguyên tố nào đó. Vì vậy, với mỗi *x∈ , ta có: 1p p x ≤∞ =∏ trong đó, p p x ≤∞ ∏ với nghĩa là ta lấy tích p x với cả các số nguyên tố p trong , bao gồm cả p = ∞ . Đầy đủ hóa của  được tạo bởi tôpô cảm sinh từ p ⋅ là một trường, được ký hiệu là p , và chuẩn p ⋅ trên  được mở rộng thành một chuẩn không Acsimet trên p , vẫn ký hiệu là p ⋅ và thỏa: (i) Tồn tại phép nhúng p⊂→  và chuẩn cảm sinh bởi p ⋅ trên  qua phép nhúng là p-adic. Từ đây về sau, ta sẽ đồng nhất  với ảnh của nó qua phép nhúng trong p , (ii)  trù mật trong p , (iii) p đầy đủ.
  • 15. 13 Trường p thỏa (i), (ii), (iii) (thay phép nhúng trên bằng đẳng cấu đồng nhất). p được gọi là trường các số p-adic. p còn có tính chất sau: (iv) Với mỗi *px∈ , tồn tại một số nguyên ( )pv x sao cho ( )pv x p x p − = , tức là pv trong  được mở rộng lên p . Nói cách khác, tập tất cả các giá trị của  và p qua p ⋅ là trùng nhau và đó là tập { } { }0n p n∈ ∪ . Từ (iv) dễ thấy: ( ); ; , , .p p p r x r x x r p +  = ∈ ∈        Do đó vành định giá [ ] ( )0;1 0;p p pO p= =   vừa mở vừa đóng, và được gọi là vành số nguyên p-adic, ký hiệu p . Với mọi n + ∈ , vành p được phủ bởi ( ); 0,1,..., 1 .n n n p pk p k p k p−   =+ = −   Tức là p compắc và do đó p compắc địa phương. Như vậy, ta có n n p p pp p≅    , và lớp các n pp  trong p là các quả cầu trong tôpô p-adic. Các tập ( )0; n n p pp p n−  = ∈    tạo thành một hệ tọa độ địa phương của 0 p∈ . Không gian p không liên thông nhưng là không gian tôpô Hausdorff. Bây giờ ta mở rộng của chuẩn p-adic trong p trên bao đóng đại số p của p . Lấy px∈ , khi đó x cũng thuộc mở rộng hữu hạn ( )p x và do đó ta có thể định nghĩa p x bằng cách mở rộng chuẩn p-adic trên ( )p x , cụ thể, ta có hàm: : p +⋅ →  .
  • 16. 14 Hàm trên là một mở rộng của chuẩn p-adic trên p , và dễ chứng minh được rằng hàm này cũng là một chuẩn. Chuẩn trên p vẫn được gọi là chuẩn p-adic. Tuy nhiên, p không đầy đủ với chuẩn này. Đầy đủ hóa của p ứng với tôpô sinh bởi p ⋅ là một trường được ký hiệu là p , chuẩn p ⋅ trên p được mở rộng thành một chuẩn không Acsimet trên p , chuẩn này vẫn được ký hiệu là p ⋅ và thỏa: (i) Tồn tại phép nhúng p p⊂→  và chuẩn sinh bởi p ⋅ trên p qua phép nhúng là p-adic. Từ đây về sau, ta sẽ đồng nhất p với ảnh của nó qua phép nhúng trong p , (ii) p trù mật trong p , (iii) p đầy đủ. Trường p thỏa (i), (ii), (iii) (thay phép nhúng trên bằng đẳng cấu đồng nhất). p gọi là trường các số phức p-adic. p còn có tính chất sau: (iv) Với mỗi *px∈ , tồn tại một số hữu tỉ ( )pv x sao cho ( )pv x p x p − = , tức là pv trong p được mở rộng trong p . Và ảnh của *p qua pv là  , (v) p đóng đại số nhưng không compắc địa phương.
  • 17. 15 1.2. Hàm chỉnh hình và hàm phân hình trên trường số phức p- adic: Cho κ là trường đóng đại số, đầy đủ với chuẩn không Acsimet ⋅ và có đặc số 0. Trong phần này ta sẽ trình bày một số kiến thức cơ bản về hàm chỉnh hình và hàm phân hình. Các khái niệm về dãy, chuỗi và sự hội tụ của dãy, chuỗi giống như trong trường định chuẩn Acsimet. Tuy nhiên với chuẩn không Acsimet ta có một số tính chất đặc biệt sau: Bổ đề 1.2.1. Giả sử ( )nx là một dãy trong κ . Dãy ( )nx là dãy Cauchy nếu và chỉ nếu 1lim 0n n n x x+ →∞ − =. Chứng minh: Điều kiện đủ hiển nhiên theo định nghĩa dãy Cauchy. Ta chứng minh điều kiện cần: ,n p∀ ∈ ta có: { } 1 1 2 1 1 1 2 1 ... max , ,..., n p n n p n p n p n p n n n p n p n p n p n n x x x x x x x x x x x x x x + + + − + − + − + + + − + − + − + − = − + − + + − ≤ − − − Vì 1lim 0n n n x x+ →∞ − =nên suy ra điều cần chứng minh.  Từ tính chất trên và theo định nghĩa sự hội tụ của chuỗi số, chuỗi lũy thừa ta có các tính chất sau: Mệnh đề 1.2.2. Chuỗi 0 ,n n n a a κ ∞ = ∈∑ hội tụ khi và chỉ khi lim 0n n a →∞ = . Khi đó ta có: 0 maxn n n n a a ∞ = ≤∑ .
  • 18. 16 Chuỗi lũy thừa ( ) 0 ,n n n n f z a z a κ ∞ = = ∈∑ hội tụ tại z khi và chỉ khi lim 0n n n a z →∞ = . Mệnh đề 1.2.3. Đặt 1 limsup n na ρ = , khi đó ta có: (1) Nếu 0ρ = thì ( )f z chỉ hội tụ tại 0z = , (2) Nếu ρ = +∞ thì ( )f z hội tụ tại mọi z κ∈ , (3) Nếu 0 ρ< < +∞ và 0n na ρ → thì ( )f z hội tụ khi và chỉ khi z ρ≤ , (4) Nếu 0 ρ< < +∞ và 0n na ρ → thì ( )f z hội tụ khi và chỉ khi .z ρ< Khi đó ρ được gọi là bán kính hội tụ của chuỗi lũy thừa ( )f z . Nếu ρ = ∞ thì ( )f z gọi là hàm nguyên trên .κ Tập các chuỗi lũy thừa ( ) 0 ,n n n n f z a z a κ ∞ = = ∈∑ cùng với phép cộng và nhân hai chuỗi lũy thừa lập thành một vành. Kí hiệu ( ) ( ){ }lim 0n r nf z a rκ= =A , ( ) ( ){ }( ,baùn kính hoäi tuïr f z rκ ρ= ≤A ( ) ( )κ κ∞=A A là tập các hàm nguyên trên .κ Ta có: ( ) ( )r s s r κ κ ≤ = ∩A A . Định nghĩa 1.2.4. Với ( ) ( ) 0 n n n f z a z ρ κ ∞ = = ∈∑ A và 0 r ρ< < , ta định nghĩa: Số hạng lớn nhất của ( )f z là ( ) 0 , max n n n r f a rµ ≥ = và chỉ số ứng với số hạng lớn nhất là ( ) ( ){ }, max , .n nr f n a r r fυ µ= = Với 0r = , ta định nghĩa:
  • 19. 17 ( ) ( ) ( ) ( )0 0 0, lim , , 0, lim , r r f r f f r fµ µ υ υ+ + → → = = . Từ định nghĩa của số hạng lớn nhất, ta có kết quả sau: Mệnh đề 1.2.5. Với 0r > , hàm ( ) ( ), : rrµ κ +⋅ → A thỏa mãn: (i) ( ) ( ), 0; , 0 0r f r f fµ µ≥ = ⇔ = , (ii) ( ) ( ) ( ), , ,r fg r f r gµ µ µ= và ( ) ( ), , ,r f r fµ λ λ µ λ κ= ∀ ∈ , (iii) ( ) ( ) ( ){ }, max , , ,r f g r f r gµ µ µ+ ≤ . Khi đó ( ),rµ ⋅ là một chuẩn không Acsimet trên ( )r κA và: (iv) ( )r κA đầy đủ với chuẩn ( ),rµ ⋅ , (v) Vành đa thức [ ]zκ trù mật trong ( )r κA theo ( ),rµ ⋅ . Định lý 1.2.6. (Định lý Weierstrass). Với ( ) { } 0 , 0rf rκ∈ >A tồn tại đa thức: ( ) 0 1 ...g z b b z b zυ υ= + + + với ( ),r fυ υ= , và một chuỗi lũy thừa: ( ) 1 1 ,n n n n h z c z c κ ∞ = =+ ∈∑ thỏa mãn: (i) ( ) ( ) ( ),f z h z g z= (ii) ( ), ,r g b rυ υµ = (iii) ( ),rh κ∈ A (iv) ( ), 1 1r hµ − < và ( ) ( ), ,r f g r fµ µ− < . Định nghĩa 1.2.7. Với U κ⊂ là tập mở, hàm :f U κ→ được gọi là khả vi tại 0z U∈ nếu tồn tại:
  • 20. 18 ( ) ( ) ( )0 0 0 0 lim : h f z h f z f z h→ + − ′= . Hàm f ′ được gọi là đạo hàm của f . Hàm f được gọi là khả vi trên U nếu f khả vi tại mọi z U∈ . Ta có mối liên hệ giữa hàm f và đạo hàm f ′ như sau: Mệnh đề 1.2.8. Giả sử chuỗi ( ) 0 n n n f z a z ∞ = = ∑ có bán kính hội tụ 0ρ ≠ và z κ∈ . Nếu ( )f z hội tụ thì ( )f z′ tồn tại và ( ) 1 1 n n n f z na z − ≥ ′ = ∑ . Hơn nữa, f và f ′ có cùng bán kính hội tụ ρ và thỏa mãn: ( ) ( ) 1 , , , :0r f r f r r r µ µ ρ′ ≤ ∀ < < . Mệnh đề 1.2.9. Với dãy ( ) *nz κ⊂ , nếu nz → ∞ thì tích vô hạn ( ) 1 1 n n z f z z ∞ =   = −    ∏ là một hàm nguyên. Ngược lại, nếu f là một hàm nguyên khác đa thức thì f có thể được biểu diễn dưới dạng: ( ) 1 1m n n z f z az z ∞ =   = −    ∏ , với 0, , 0,n nm a z zκ> ∈ ≠ → ∞ và ( ) 0nf z = . Định nghĩa 2.10. Cho 0z κ∈ và [ ]f zκ∈ . Điểm 0z được gọi là không điểm của hàm f khi và chỉ khi ( )0 0f z = . Điểm 0z κ∈ được gọi là cực điểm của hàm f khi và chỉ khi ( ) 0 lim z z f z → = ∞ .
  • 21. 19 Hệ quả 1.2.11. Nếu f là hàm nguyên khác đa thức thì f có vô số không điểm. Nếu f là hàm nguyên không có không điểm thì f là hàm hằng. Tồn tại ước chung lớn nhất của một họ hữu hạn các hàm nguyên. Hệ quả 1.2.12. Giả sử ( ) { }, 0f g κ∈ A . Nếu fg là hàm hằng thì f và g là những hàm hằng. Giả sử, ( )( ) { }, , 0f g d a r∈ A . Nếu fg bị chặn thì f và g là những hàm bị chặn. Định nghĩa 1.2.13. Giả sử D là tập vô hạn trong ,κ đặt ( )R D là tập các hàm hữu tỉ h không có cực điểm trong D . Khi đó, với mọi ( )h R D∈ , đặt: ( )supD z D h h z ∈ = . Ký hiệu ( )DH là đầy đủ hóa của ( )R D theo tôpô sinh bởi chuẩn hội tụ đều trên D . Mỗi phần tử của ( )DH được gọi là một hàm giải tích trên D . Khi đó, ( )DH là một κ - không gian vectơ và mỗi hàm giải tích trên D là giới hạn đều của một dãy các hàm hữu tỉ thuộc ( )R D . Mệnh đề 1.2.14. Với r + ∈ , ta có [ ]( ) ( )0; rrκ κ=H A . Chứng minh: Vì vành các đa thức [ ]zκ trù mật trong ( )r κA nên ta suy ra: ( ) [ ]( ) ( )0;r rκ κ⊂ ∗HA Ngược lại, [ ] 0; ,a r kκ κ +∀ ∈ ∈ ta có:
  • 22. 20 0 0 1 1 1 , .vôùi kn n k n n n n z z a a a z b b a a ∞ = ∞ + =      = −     −         =− ∈        ∑ ∑  Vì a r> nên suy ra: 0 n nnn n b r r a a →∞   ≤ →     . Do đó ( ) 1 k r z a κ   ∈  −  A , suy ra [ ]( ) ( ) ( )0; rR rκ κ⊂ ∗∗A . Mặt khác, vì ( ),r fµ liên tục tại r nên suy ra: ( ) ( )sup , , :0 z r f z r f r rµ ρ ≤ = ∀ ≤ ≤ . Do đó ta có: [ ] ( ) ( )0; , , rr f r f fκ µ κ= ∈ A . Vì ( )r κA đầy đủ với chuẩn ( ),rµ ⋅ nên ( )r κA cũng đầy đủ với chuẩn [ ]0;rκ ⋅ . Do đó, từ ( )∗∗ ta suy ra ( ) [ ]( )0;r rκ κ⊃ HA . Kết hợp với ( )∗ ta có điều cần chứng minh.  Định nghĩa 1.2.15. Cho D κ⊂ không có điểm cô lập. Hàm :f D κ→ được gọi là giải tích địa phương nếu với mỗi a D∈ , ( ), nr a κ+ ∃ ∈ ⊂ sao cho: ( ) ( ) [ ] 0 , ; n n n f z a z a z D a rκ ∞ = = − ∀ ∈ ∩∑ . Ký hiệu ( )Hol D là tập các hàm giải tích địa phương trên D . Mệnh đề 1.2.16. Nếu hàm f giải tích địa phương trên tập mở D thì nó có đạo hàm mọi cấp trên D . Điểm 0z D∈ là nghiệm bội q của f nếu và chỉ nếu:
  • 23. 21 ( ) ( )0 0, n f z n q= ∀ < và ( ) ( )0 0 q f z ≠ . Định lý 1.2.17. Cho r + ∈ và đặt: ( ) ( ) 1 10 , sup 0n n n r n nn f z a z s a rκ ∞ − ≥= = ∈ = >∑ A . Khi đó, các mệnh đề sau là tương đương: (1) 1 1 , 1,n na a r n− > ∀ > (2) ( ) ( ) [ ]1 , , 0; ,f x f y x y a x y rκ− = − ∀ ∈ (3) f đơn ánh trong [ ]0;rκ và ( ) [ ]0, 0;f z z rκ′ ≠ ∀ ∈ . Chứng minh:  Chứng minh ( ) ( )1 2⇒ : Do 0n na r → khi n → ∞ nên từ (1) ta có: 1 1 2 max n n n a a r − ≥ > Lại có: ( ) ( ) ( ) 1 1 1 2 0 n j n j n n j f x f y x y a a x y ∞ − − − = =   − =− +    ∑ ∑ và 1 1j n j n x y r− − − ≤ nên: 1 1 1 1 2 2 0 max n n j n j n n n n j a a r a x y ∞ − − − − ≥ = = > ≥ ∑ ∑ , và do đó ( ) ( ) 1f x f y x y a− =− .  Chứng minh ( ) ( )2 3⇒ : Do 0s > nên f không là hàm hằng, và do đó từ (2) suy ra 1 0a ≠ .
  • 24. 22 Cũng từ (2) suy ra ( ) ( )f x f y≠ khi x y≠ , nghĩa là f đơn ánh trong [ ]0;rκ và cho y x→ ta có ( ) [ ]1 0, 0;f x a x rκ′ = ≠ ∀ ∈ .  Chứng minh ( ) ( )3 1⇒ : Do f đơn ánh trong [ ]0;rκ nên ( ) 0 0 0f z a z− = ⇔ = . Khi đó từ định lý Weierstrass ta có ( ), 1r fν = và hiển nhiên (1) thỏa.  Định lý 1.2.18. Cho D là tập mở trong κ và 0 D∈ . Lấy ( )f Hol D∈ với ( )0 0f ′ ≠ . Khi đó tồn tại số r + ∈ sao cho f là song ánh trong [ ]0;rκ và 1 f − giải tích toàn cục trong [ ]( )0;f rκ . Bổ đề 1.2.19. Cho r + ∈ và đặt ( ) n nf z a z= ∑ là chuỗi lũy thừa với các hệ số thuộc κ . Khi đó các mệnh đề sau là tương đương: (1) ( )( ,rf κ∈ A (2) ( ),s s r f κ < ∈ ∩ A (3) Chuỗi f hội tụ trong ( )0;rκ . Định nghĩa 1.2.20. Cho D κ⊂ không có điểm cô lập. Hàm { }:f D κ→ ∪ ∞ được gọi là hàm phân hình trên D nếu tồn tại một tập không quá đếm được S D⊂ , S không có điểm giới hạn trong D và thỏa ( )f D S∈H . Ký hiệu ( )DM là tập các hàm phân hình trên D . Định nghĩa 1.2.21. Cho D κ⊂ không có điểm cô lập. Hàm { }:f D κ→ ∪ ∞ được gọi là hàm phân hình địa phương trên D nếu a D∀ ∈ , tồn tại ,r q+ +∈ ∈  và na κ∈ sao cho:
  • 25. 23 ( ) ( ) [ ], ; n n n q f z a z a z D a rκ ∞ =− = − ∀ ∈ ∩∑ . Ký hiệu ( )Mer D là tập các hàm phân hình địa phương trên D . Định nghĩa 1.2.22. Cho tập mở D κ⊂ . Một hàm :f D κ→ được gọi là giải tích tại điểm a D∈ nếu tồn tại { }ρ + ∈ ∪ ∞ và na κ∈ sao cho ( );a Dκ ρ ⊂ , [ ]; ,a Dκ ρ ρ ρ′ ′≠ ∅ ∀ > và thỏa: ( ) ( ) ( ) 0 , ; n n n f z a z a z aκ ρ ∞ = = − ∀ ∈∑ . Nếu f giải tích tại mọi điểm thuộc D thì f được gọi là giải tích trên D . Ký hiệu ( )DH là tập các hàm giải tích trên D . Đĩa ( );aκ ρ được gọi là đĩa giải tích cực đại của f tại a . Các hàm giải tích trong D đều có thể có giải tích cực đại trên D . Và ta có: ( ) ( ) ( )D D Hol D⊂ ⊂H H . Trường các phân thức của ( )DH được ký hiệu là ( )DM . Một hàm ( )f D∈ M được gọi là hàm phân hình trên D . Nếu f không có điểm cực trên D thì f còn được gọi là hàm chỉnh hình trên D . Mệnh đề 1.2.23. Nếu f là hàm phân hình thì tồn tại ,g h là các hàm chỉnh hình sao cho: g f h = và ( ) ( ) ( ) , , , 0 , r g r f r r h µ µ ρ µ = ≤ ≤ . Đặc biệt:
  • 26. 24 ( ) 1 1 , , r f r f µ µ   =    . Lấy ρ + ∈ . Nếu ( )( )0;f κ ρ∈H thì đĩa cực đại của f tại mỗi điểm ( )0;a κ ρ∈ chính là ( )0;κ ρ . Ta có ( )( ) ( ( )0; p κ ρ κ= AH nên: ( )( ) ( ( )0; , , 0p g g h h h κ ρ κ   = ∈ ≡    M A . Để tiện cho việc trình bày, ta viết: ( ( ) ( )( )0;p κ κ ρ=M M Và dễ thấy: ( )( ) [ ]( )0; 0; r r ρ κ ρ κ < = M M . Đặt biệt, mỗi phần tử thuộc: ( ( ) ( )( ) ( )0;κ κ κ∞ = ∞=M M M được gọi là hàm phân hình trên κ . Ta cũng ký hiệu ( )M là tập các hàm phân hình trên  . Hiển nhiên, ( )κM chứa tập các hàm hữu tỉ ( )zκ . Mệnh đề 1.2.24. Với 0 r ρ< < , hàm ( ) ( )(,r ρµ κ +⋅= → M thỏa: (i) ( ), 0 0,r f fµ = ⇔ = (ii) ( ) ( ) ( ){ }1 2 1 2, max , , , ,r f f r f r fµ µ µ+ ≤ (iii) ( ) ( ) ( )1 2 1 2, . , . ,r f f r f r fµ µ µ= .
  • 27. 25 1.3. Độ cao của hàm chỉnh hình và đường cong chỉnh hình trên ( )n p . Có thể xem chi tiết trong [ ] [ ]1 , 4 . Cho ( )f z là một hàm chỉnh hình p-adic trên p và: ( ) 0 n n n f z a z ∞ = = ∑ . Khi đó, ta có: ( ) ( )lim ,n p n v a nv z z →∞  + =∞ ∀ ∈   . Suy ra, với ( )v z t= ∈ tồn tại n để cho ( )nv a nt+ là cực tiểu. Định nghĩa 1.3.1. Độ cao của ( )f z được xác định bởi công thức: ( ) ( ){ }0 , min n n h f t v a nt ≤ ≤∞ = + . Sau đây, ta sẽ mô tả biểu diễn hình học của độ cao hàm chỉnh hình. Với mỗi n, ta vẽ đồ thị nΓ của ( )n nv a z . Đồ thị này là một đường thẳng với độ dốc n. Khi đó ( ),h f t là biên của giao tất cả các nửa mặt phẳng nằm bên dưới đường thẳng nΓ . Trong bất kỳ đoạn thẳng hữu hạn [ ] ( ), , 0 ,r s r s< < +∞ , chỉ có hữu hạn điểm trên nΓ nằm trong ( ),h f t . Do đó, ( ),h f t là một đa giác. Điểm t tại các đỉnh của ( ),h f t được gọi là điểm tới hạn của ( )f z . t nΓ ( ),h f t
  • 28. 26 Một đoạn thẳng hữu hạn [ ],r s chỉ có thể chứa hữu hạn điểm tới hạn của ( )f z . Dễ thấy, nếu t là một điểm tới hạn thì ( )nv a nt+ đạt cực tiểu tại ít nhất hai giá trị của n. Nếu ( )v z t= không phải là điểm tới hạn thì ( ) 0f z ≠ và ( ) ( ),h f t f z p − = . Và ( )f z có không điểm khi ( ) iv z t= , với 0 1 ...t t> > là dãy các điểm tới hạn; số các không điểm ứng với ( ) iv z t= bằng hiệu 1i in n+ − giữa độ dốc của ( ),h f t tại { } 0it và độ dốc của ( ),h f t tại { }0it ∪ . Dễ thấy rằng in và 1in + lần lượt là giá trị lớn nhất và nhỏ nhất của n để ( )nv a nt+ là cực tiểu. Bổ đề 1.3.2. Cho ( )f z là hàm chỉnh hình khác hằng trên p . Khi đó, với t đủ nhỏ, ta có ( ) ( ), ,h f t h f t t′ − ≥ − . Bổ đề 1.3.3. Cho ( )f z là hàm chỉnh hình khác hằng trên p , khi đó: ( ),h f t → −∞ khi t → −∞ . Bổ đề 1.3.4. Cho ( ) ( ),f z g z là các hàm chỉnh hình trên p . Khi đó ta có: (i) ( ) ( ) ( ){ }, min , , ,h f g t h f t h g t+ ≥ , (ii) ( ) ( ) ( ), , , .h fg t h f t h g t= + Định nghĩa 1.3.5. Cho f là một ánh xạ chỉnh hình từ p vào ( )n p và f được cho bởi: ( )1 2 1, ,..., nf f f f += ,
  • 29. 27 trong đó, if là các hàm chỉnh hình trong p và không có chung không điểm. Khi đó, f được gọi là một đường cong chỉnh hình p-adic trên không gian xạ ảnh ( )n p . Định nghĩa 1.3.6. Độ cao của đường cong chỉnh hình f được xác định bởi: ( ) ( )1 1 , min ,i i n h f t h f t ≤ ≤ + = . Bổ đề 1.3.7. Cho ( )2 1, ,...,i nf f f f += và giả sử ( )1 2 1, ,..., ng g g + là một biểu diễn tương tự khác của f , trong đó ig là các hàm chỉnh hình. Khi đó: ( ) ( )1 1 , min ,i i n h f t h g t C ≤ ≤ + = + , với C là hằng số. Chứng minh: Từ giả thuyết ta có một hàm phân hình ( )zλ thỏa: ( ) ( ) ( ), 1,..., 1i ig z z f z i nλ= ∀= + . Do ( )ig z là hàm chỉnh hình và ( )if z không có cùng không điểm nên λ là một hàm chỉnh hình. Do đó ( ),h tλ → −∞ khi t → −∞ (Bổ đề 1.3.3). Suy ra ( ), 0h tλ < khi t đủ nhỏ, hoặc ( )zλ là hàm hằng. Kết hợp định nghĩa độ cao đường cong chỉnh hình, ta có điều cần chứng minh. Như vậy, từ Bổ đề 1.3.6, ta thấy định nghĩa độ cao của đường cong chỉnh hình là một định nghĩa tốt. Để kết thúc phần này và chuẩn bị cho những nội dung sau, chúng ta sẽ nhắc lại khái niệm các hàm đặc trưng Nevanlinna, hai định lý cơ bản của lý thuyết Nevanlinna và một số nội dung liên quan:
  • 30. 28 Định nghĩa 1.3.8. Giả sử ( )(f ρ κ∈ A , 0 ρ< ≤ ∞ và ( ) 0 n n n f z a z ∞ = = ∑ . Lấy a κ∈ , ta định nghĩa: 1 ,n r f a     −  là hàm đếm số không điểm (kể cả bội) của f tại a trong [ ]0;rκ (nghĩa là đếm số không điểm (kể cả bội) của f a− với giá trị tuyệt đối nhỏ hơn hoặc bằng r ). 1 ,n r f a     −  là hàm đếm số không điểm phân biệt của f tại a trong [ ]0;rκ . Với 0 oρ ρ< < , hàm: ( ) 1 , 1 , : , o r o n t f a N r dt r f a tρ ρ ρ    −   = < <  −  ∫ được gọi là hàm giá trị của f tại a trên [ ]0;rκ . Mệnh đề 1.3.9. Giả sử ( )(rf κ∈ A có k – không điểm (kể cả bội) trong [ ]0;rκ , 1k ≥ . Khi đó với [ ]( )0;b f rκ∈ thì f b− cũng có k – không điểm (kể cả bội) trong [ ]0;rκ . Chứng minh: Giả sử ( ) 0 n n n f z a z ∞ = = ∑ . Theo định lý Weierstrass (định lý 1.2.6) ta có: ( ),k r fυ= và ,n k n ka r a r n k≤ ∀ ≤ ; ,n k n ka r a r n k< ∀ > . Với [ ]( )0;b f rκ∈ , ta có:
  • 31. 29 ( ) ( )( )0 0 , k ka b f b r f z b a rµ−= − ≤ − = . Do đó ( ) ( ), ,r f b k r fυ υ υ= − = = . Theo định lý Weierstrass, f b− có k – không điểm trong [ ]0;rκ .  Từ Mệnh đề 1.3.9 ta có một số tính chất về hàm giá trị như sau: Hệ quả 1.3.10. Giả sử ( )(f ρ κ∈ A , ( )0 ρ< ≤ ∞ không bị chặn và b κ∈ , ta có: ( ) ( ) 1 1 , , 1 ,N r N r O r f b f ρ     = + →    −    . trong đó, ( )1O là đại lượng giới nội. Hệ quả 1.3.11. Giả sử f là hàm nguyên khác hằng và b κ∈ , ta có: ( ) ( ) 1 1 , , 1 ,N r N r O r f b f ρ     = + →    −    . Ta xây dựng các hàm đặc trưng cho hàm phân hình: Cố định r , 0 r ρ< < ≤ ∞ và ( )(f ρ κ∈ M . Khi đó tồn tại ( )0 1 (, rf f κ∈ A sao cho 1 0 f f f = , với 0 1,f f không có nhân tử chung trong vành ( )r κA . Định nghĩa 1.3.12. Với { }a κ∈ ∪ ∞ , ta định nghĩa: Hàm đếm số không điểm (kể cả bội) của f tại a trong [ ]0;rκ : ( ) 0 1 0 1 , , , 1 , 1 , , n r f n r a f n r f a n r a f af    = = ∞        =   −     ≠ ∞  −  neáu neáu Hàm giá trị của f tại a trên [ ]0;rκ :
  • 32. 30 ( ) 0 1 0 1 , , , 1 , 1 , , N r f N r a f N r f a N r a f af    = = ∞        =   −     ≠ ∞  −  neáu neáu Mệnh đề 1.3.13. (Công thức Jensen) Với ( )(f ρ κ∈ M , ta có: ( ) ( ) ( )0 1 , , log , log ,N r N r f r f f f µ µ ρ   − = −    , với 00 rρ ρ< < ≤ . Định nghĩa 1.3.14. Giả sử ( )(f ρ κ∈ M , với r ρ< ta định nghĩa: Hàm xấp xỉ của f trên [ ]0;rκ : ( ) ( ) ( ){ }, log , max 0;log ,m r f r f r fµ µ+ = = . Hàm đặc trưng của f trên [ ]0;rκ : ( ) ( ) ( ), , ,T r f m r f N r f= + . Chú ý: Ta có: ( ) ( ) ( ) ( ) 1 log , log , log , 1 , , . r f r f r f m r f m r f µ µ µ + + = −   = −     Do đó công thức Jensen có thể viết lại như sau: ( ) ( )0 1 , , log ,T r T r f f f µ ρ   = −    . Hay ( ) ( ) 1 , , 1T r T r f O f   = +    .
  • 33. 31 Mệnh đề 1.3.15. (Định lý cơ bản thứ nhất của lý thuyết Nevanlinna). Giả sử f là hàm phân hình khác hằng trên ( )0,κ ρ . Khi đó với mọi a κ∈ , ta có: ( ) ( ) ( ) 1 1 , , , 1 ,m r N r T r f O r f a f a ρ     + = + →    − −    . Mệnh đề 1.3.16. (Định lý cơ bản thứ hai của lý thuyết Nevanlinna). Giả sử f là hàm phân hình khác hằng trên ( )0,κ ρ và 1,..., qa a là các điểm phân biệt thuộc κ . Định nghĩa: { } { }min 1; , max 1;i j i i j i a a A aδ ≠ = − = . Khi đó với 0 r ρ< < , ta có: ( ) ( ) ( ) ( ) ( ) 1 1 1 1 1 , , , , , log 1 , , log , q f j j q f j j q T r f N r N r f N r f N r r S f a f N r f N r r S f a = =     ′− ≤ − + − − +     ′−      ≤ + − +  −  ∑ ∑ với ( ) ( ) ( )0 0 1 log , log , 1 log q f j j A S f a f qµ ρ µ ρ δ= ′= − − + −∑ . Có thể xem chi tiết các chứng minh trong [11].
  • 34. 32 1.4. Đường cong chỉnh hình trên ( )n p  . Định lý cơ bản thứ nhất và thứ hai của đường cong chỉnh hình: Trước tiên, chúng ta sẽ nhắc lại một công cụ cần thiết cho phần này, đó là định thức Wronski: Cho hai hàm số ( )1y x và ( )2y x . Định thức: ( ) 1 2 1 2 1 2 2 1 1 2 , y y W y y y y y y y y ′ ′= = − ′ ′ được gọi là định thức Wronski của 1 2,y y . (Bạn đọc có thể xem chi tiết hơn về định thức Wronski trong các tài liệu liên quan đến phương trình vi phân. Vì khuôn khổ luận văn không cho phép nên chúng tôi không trình bày chi tiết ở đây.) Sau đây, chúng ta sẽ nhắc lại về đường cong chỉnh hình trên ( )n p và hai định lý cơ bản của đường cong chỉnh hình: Định nghĩa 1.4.1. Cho κ là trường đóng đại số có đặc số 0 và đầy đủ với chuẩn ⋅ không Acsimet, không tầm thường. Gọi V là không gian vectơ định chuẩn ( )1n + - chiều trên κ và ( )0 ,..., ne e e= là một cơ sở của V . Một đường cong chỉnh hình (không Acsimet) là hàm: ( ):f Vκ →  . Hay nói cách khác:  ( ) 1 0 ,..., : n nf f f κ κ + = → , sao cho   0 ,..., nf f không có nhân tử chung trong vành các hàm nguyên trên κ và các  if không đồng thời bằng 0. Đặt    0 0 ... :n nf f e f e Vκ= + + → và gọi là biểu diễn thu gọn của f . Đặt:
  • 35. 33 ( ) ( )0 , max , k k n r f r fµ µ ≤ ≤ = . Ghi chú, ( )  ( )  ( )0 , max k k n z f f z f zµ ≤ ≤ = = . Khi đó hàm đặc trưng: ( ) ( ), log ,T r f r fµ= đúng với mọi 0r > , sai khác ( )1O . Định nghĩa 1.4.2. Một đường cong chỉnh hình ( ):f Vκ →  được gọi là siêu việt nếu: ( ), limsup logr T r f r→∞ = ∞. Tổng quát, đặt: 0 0 ... :n nh h e h e Vκ= + + →   , trong đó, ( )0 ,..., nh h  là bộ 1n + các hàm phân hình sao cho các jh không đồng nhất bằng 0. Từ Hệ quả 1.2.10 tồn tại ước chung lớn nhất h của 0 ,..., jh h  sao cho h f h =   là một biểu diễn thu gọn của đường cong chỉnh hình không Acsimet ( ):f Vκ →  . Ta gọi h là biểu diễn của f và ta viết f h=  . Chú ý rằng: ( ) ( ) ( ), , ,r h r h r fµ µ µ=  . Từ công thức Jensen ta được: ( ) ( ) ( ) ( ) ( ), log , 1 4.1fT r f N r r h Oµ+ = + trong đó, ( ) ( ) 1 , ,fN r N r N r h h   = −    .
  • 36. 34 Ta còn có thể viết: ( ) ( ) 1 1 , , , , ,N r N r N r h N r h hh     = =          . Gọi ( ):f Vκ →  là một đường cong chỉnh hình và đặt: 0 0 ... :n nf f e f e Vκ= + + →   là một biểu diễn thu gọn của f . Khi đó: ( ) 1... , ...W n o nf f f e f e e e ′∧ ∧ ∧= ∧ ∧ ∧      , trong đó, ,W e f     là định thức Wronski của f ứng với cơ sở e: ( ) ( ) ( ) ( ) 0 1 0 1 0 0 1 ... ... , ,..., ... ... ... ... ... W W n n n n n n n f f f f f f e f f f f f f     ′ ′ ′   = =                      , và, do đó ta có ( ) , ...W n e f f f f  ′= ∧ ∧ ∧      . Và ta cũng được: ( ) 1, ... , ...W n o ne f f f f ε ε ε  ′= ∧ ∧ ∧ ∧ ∧ ∧      , trong đó, ( )1, ,...,o nε ε ε ε= là cơ sở đối ngẫu của e. Ta định nghĩa hàm nguyên: ( )0 0, ,..., : ...n ne f f f f f Κ =Κ =       , và hàm phân hình: ( )0 , , ,..., : , W S S n e f e f f f e f     = =   Κ        . Từ bổ đề về đạo hàm logarit, ta có:
  • 37. 35 ( ) ( ) ( ) ( ) ( ) 1 2 , , , 1 4.2 n n r e f r m e f Oµ + −    ≤ =     S ; S Kí hiệu 0 1, ,..., sV V V và W là các không gian vectơ trên κ . Đặt: 0 ...: WsV V× × → là ánh xạ ( )1s + − tuyến tính trên κ . Và các đường cong chỉnh hình không Acsimet sau: ( ): , 0,1,...,j jf V j sκ → = cùng với các hàm biểu diễn thu gọn:  : , 0,1,...,j jf V j sκ → = . Định nghĩa 1.4.3. ( )0 1, ,..., sf f f được gọi là độc lập với  nếu   0 ... 0sf f ≡  . Giả sử 0 ,..., sf f độc lập với  . Khi đó ta có: ( )  ( ) ( ) ( ) 0 0 0 , ... , ... , ... , s s s r f f r f f r f r f µ µ µ µ =     . Nhận xét: ( ) ( ) ( )0 0, ... ...s sz f f f z f zµ =    . Giả sử ( )0 ,..., sf f độc lập với  và ta có hàm xấp xỉ: ( ) ( )0 ... 0log , ...sf f sm r r f fµ= −    . Lưu ý, 0 ... : Wsf f κ →  là một đường cong chỉnh hình không Acsimet với biểu diễn thu gọn  ...j sf f  . Khi đó, từ ( )4.1 ta được định lý cơ bản thứ nhất của đường cong chỉnh hình: Định lý 1.4.4. Cho ( ):f Vκ →  là đường cong chỉnh hình không Acsimet. Khi đó ta có :
  • 38. 36 ( ) ( ) ( ) ( ) ( ) ( )0 0... ... 0 0 , , ... 1 4.3 .s s s j f f f f s j T r f N r m r T r f f O = = + + +∑   Nếu dim 1W = thì ( )W là một điểm và ( )0, ... sT r f f  là hàm hằng. Cho ( ):g Vκ ∗ →  là một đường cong chỉnh hình không Acsimet với biểu diễn thu gọn: 0 0 ... :n ng g g Vε ε κ ∗ = + + →   , trong đó ( )1, ,...,o nε ε ε ε= là cơ sở đối ngẫu của e. Định nghĩa 1.4.5. ( ),f g được gọi là độc lập nếu chúng độc lập với ∠, nghĩa là 0 0, ... 0n nf g f g g f g f∠= = + + ≡       . Giả sử ( ),f g độc lập, khi đó định lý cơ bản thứ nhất được viết lại như sau: ( ) ( ) ( ) ( ) ( ) ( ), , , , 1 4.4 ,f fT r f T r g N r g m r g O+ = + + trong đó: ( ) ( ) ( ) ( ) 1 , , , , , f f g f f gN r g N r N r m r g m r f g ∠ ∠    = = =       . Số khuyết của f đối với g được xác định bởi công thức: ( ) ( ) ( ) ( ) , 1 limsup , , f f r N r g g T r f T r g δ →∞ = − + , với ( )0 1f gδ≤ ≤ . Ta nói g tăng chậm hơn f nếu ( ) ( ) , lim 0 ,r T r g T r f→∞ = . Như vậy, ta có: ( ) ( ) ( ) , 1 limsup , f f r N r g g T r f δ →∞ = − .
  • 39. 37 Đặc biệt, nếu g a= là hằng số thì ( )4.4 trở thành: ( ) ( ) ( ) ( ) ( ), , , 1 4.5f fT r f N r a m r a O= + + . và số khuyết của f đối với a được cho bởi: ( ) ( ) ( ) , 1 limsup , f f r N r a a T r f δ →∞ = − . Tiếp theo, ta sẽ trình bày về Định lý cơ bản thứ 2 của đường cong chỉnh hình: Gọi V là không gian vectơ ( )1n + - chiều trên κ . Bổ đề 1.4.6. Đường cong chỉnh hình ( ):f Vκ →  là không suy biến tuyến tính khi và chỉ khi định thức Wronski ,W e f     của một biểu diễn thu gọn f của f với cơ sở e đồng nhất bằng 0. (Có thể xem chứng minh chi tiết trong [11]) Cho đường cong chỉnh hình không suy biến tuyến tính ( ):f Vκ →  với biểu diễn thu gọn 0 0 ... :n nf f e f e Vκ ∗= + + →   . Khi đó số hạng rẽ nhánh ( ),RamN r f được định nghĩa: ( ) 1 , , , RamN r f N r W e f    =        Định lý 1.4.7. (Định lý cơ bản thứ hai của đường cong chỉnh hình) Cho ( ):f Vκ →  là đường cong chỉnh hình không suy biến tuyến tính và lấy { }0 1, ,..., qa a aA = là một họ các điểm ( )ja V ∗ ∈ được chọn tổng quát. Khi đó ta có: ( ) ( ) ( ) ( ) ( ) ( ) 0 1 , , , log 1 2 q f j Ram j n n q n T r f N r a N r f r O = + − ≤ − − +∑ .
  • 40. 38 Chứnh minh: Lấy { } 0ja V∗ ∈ với ( )j ja a= . Ta có: 0 0 ... , 0,...,j j jn na a a j qε ε= + + =   , trong đó ( )0 ,..., nε ε ε= là cơ sở đối ngẫu của e. Với 0,1,...,i q= đặt: 0 0 1 1, ...i i i i in nF f a a f a f a f= = + + +       . Vì f không suy biến tuyến tính nên 0iF ≡ . Do Ađược chọn tổng quát, ta có ( )( )det 0, q ni j a Jλ λ≠ ∀ ∈ và do đó: ( ) ( ) ( ) ( ) ( ) ( ) 0 1 0 1 ... , 0,1,..., i i i n i n f a F a F a F i n λ λ λ λ λ λ = + + + =    trong đó ( ) ( )i j a λ  là ma trận nghịch đảo của ( )( )i j aλ  . Do đó với mọi q nJλ ∈ ta có: ( ) ( ) ( ){ }0 max , , 0,1,...,i ij n f z A F z z i nλ κ ≤ ≤ ≤ ∈ = , trong đó ( ) { }max : ,0 , i j q nA a J i j n λ λ= ∈ ≤ ≤ . Ta viết ngắn gọn định thức Wronski như sau: ( )0 ,..., ,nW W f f W e f = =      , ( ) ( ) ( )( )0 1 , ,..., n W W F F Fλ λ λ λ = . Khi đó: ( )( ), i j W c W c det aλ λ λ λ = =  . Tiếp theo, ta cố định [ ]0 0,z κ κ ρ∈ thỏa: ( ) ( ) ( ) ( ) ( )0, 0 0,1,..., , 0 0,1,...,i jW z f z i n F z j q≠ ≠= ≠= . Khi đó ta có thể lấy hai chỉ số phân biệt ( )0 0 1,..., , ,...,n q nα α β β β −= sao cho:
  • 41. 39 ( ) ( ) ( ) ( )0 1 0 ... ...n q n F z F z F z F zα α β β − < ≤ ≤ ≤ ≤ ≤ < ∞ . Lấy q nJλ ∈ với { }0Im ,..., nλ α α= . Khi đó ta có: ( ) ( ) ( ){ } ( )0 max lk ij n f z A F z A F zβλ≤ ≤ ≤ ≤ , với 0,1,... ; 0,1,...,k n l q n= = − . Từ đó, ta được: ( ) ( ){ } ( )max , 0,1,...,lk k f z f z A F z l q nβ= ≤ = −  . Từ W c Wλ λ= , ta được: ( ) ( ) ( ) ( ) ( ) ( )1 0 ... log log ... log logq n qF z F z F z F z D z c W z β β λ λ− = − + , trong đó ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) 0 0 00 ... ... n i i n n i J nn F FW D sign i F FF F λ λλ λ λ λλ λ ∈ = = ∑ , với n J là nhóm giao hoán trong [ ]0,n và ( )0 j jF F= . Suy ra: ( ) ( ) ( ) ( ) ( ) ( )1 0 ... log ... log log logq n qF z F z F z F z D z c W z β β λ λ− ≤ + − . Do đó ta có: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 ... log log log log log 4.6 qF z F z q n f z D z q n A A W z λ ′− ≤ + + − − , trong đó minq nJ A cλ λ∈ ′ = . Đặt r z= , từ Định lý 1.2.8 ta được: ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) 0 1 0 2 0 max ...n i i n n n n i J n F z F z D z r F z F z λ λ λ λ λ + − ∈     ≤ ≤      ,
  • 42. 40 và do đó: ( ) ( )1 log log 2 n n D z rλ − + ≤ . Theo công thức Jensen ta có: ( ) ( ) ( )0 1 log log , , log ,W z r W N r W W µ µ ρ   = = +    , ( ) ( ) ( ) ( )0log log , , log ,i i f i iF z r F N r a Fµ µ ρ= = + , với 0,1,...,i q= và kết hợp ( ) ( ) ( )log , 1f z T r f O= + , ta được: ( ) ( ) ( ) ( ) ( ) ( ) 0 11 , , , log 1 4.7 2 q f j j n n q n T r f N r a N r r O W= +  − ≤ − − +    ∑ Chú ý rằng tập hợp các r trong ( )4.7 trù mật trong ( )0 ,ρ ∞ . Do đó ( )4.7 cũng thỏa với mọi 0 rρ < < ∞ , do tính liên tục của các hàm trong bất phương trình trên.  Hệ quả 1.4.8. Cho ( ):f Vκ →  là đường cong chỉnh hình không suy biến tuyến tính và lấy { }0 1, ,..., qa a aA = là một họ các điểm ( )ja V ∗ ∈ được chọn tổng quát. Khi đó: ( ) ( ) ( ) ( ) ( ), 0 1 , , log 1 2 q f n j j n n q n T r f N r a r O = + − ≤ − +∑ , trong đó ( ), 1 , ,f n j n j N r a N r F   =      . Với mỗi ( ),k a V+ ∗ ∈ ∈  , ta định nghĩa: ( ) ( ) ( ) , , , 1 lim , f k j f r N r a a k T r f δ →∞ = − , với ( ) ( )0 , 1f fa a kδ δ≤ ≤ ≤ . Và ta có thể xem ( ) ( ),f fa aδ δ= ∞ .
  • 43. 41 Bổ đề 1.4.9. Cho ( ):f Vκ →  là đường cong chỉnh hình không suy biến tuyến tính và lấy { }0 1, ,..., qa a aA = là một họ các điểm ( )ja V ∗ ∈ được chọn tổng quát. Khi đó: ( ) ( ) 0 0 , 1 q q f j f j j j a a n nδ δ = = ≤ ≤ +∑ ∑ . 1.5. Không gian hyperbolic, siêu mặt hyperbolic: Trước hết, chúng ta cần có những khái niệm cơ bản sau: Định nghĩa 1.5.1. Cho đĩa tròn đơn vị { 1}z∆= < . Metric Poincare ρ∆ là metric Riemann đầy đủ trên ∆ được định nghĩa như sau: 2 2 2 (1 | | ) dzdz ds z = − . Kết quả sau đây còn được gọi là tính chất giảm khoảng cách của Metric Poincare: Mệnh đề 1.5.2. (Schwartz-Alhfors) Giả sử :f ∆ → ∆ là ánh xạ chỉnh hình. Khi đó * 2 2 f ds ds≤ , nghĩa là ( ) ( )( ) ( ), ,f p f q p qρ ρ∆ ∆≤ với hai điểm ,p q∈∆ . Định nghĩa 1.5.3. (Giả metric Kobyashi-Royden) Cho X là đa tạp phức (không nhất thiết là compắc). Giả metric Kobyashi-Royden Xρ được định nghĩa như sau: Với ,p q X∈ , chọn một dãy các điểm 0 1, , , np p p p q= … = và các ánh xạ chỉnh hình :if X∆ → sao cho 1, ( )i i ip p f− ∈ ∆ . Khi đó: ( ) ( ) ( )( ) ( )1 1 1 { },{ } 1 , inf , 5.1 i i n X i i i i p f i p q f p f pρ ρ − − ∆ − = = ∑
  • 44. 42 Chúng ta cũng có thể định nghĩa giả metric Kobyashi-Royden theo hướng sau đây: Định nghĩa 1.5.4. Chuẩn · : XT →  trên không gian tiếp xúc chỉnh hình XT của X được định nghĩa như sau: Giả sử p X∈ và ,X pv T∈ là vectơ tiếp xúc chỉnh hình tại p. Ta xét tất cả những ánh xạ chỉnh hình f từ {| | }R z R∆ = < vào X thỏa mãn ( )0f p= và *( / )f z v∂ ∂ =. Khi đó: ( ) 1 inf 5.2 f v R = Giả metric sinh bởi · chính là Xρ được định nghĩa ở trên. Theo ý nghĩa hình học, ta đang cố kéo giãn đĩa tròn lớn đến mức có thể trong X. Mệnh đề 1.5.5. Giả metric Kobyashi-Royden Xρ thỏa mãn những tính chất sau: (1) Bất đẳng thức tam giác: ( ) ( ) ( ), , ,X X Xp q q r p rρ ρ ρ+ ≥ với , ,p q r X∈ , (2) Giảm khoảng cách: Cho :f X Y→ là ánh xạ chỉnh hình. Khi đó: ( ) ( )( ) ( ), ,Y Xf p f q p qρ ρ≤ . Ta nhận thấy giả metric Kobayashi-Royden chưa là một metric, nghĩa là nó có thể suy biến ( ( ), 0X p qρ = với p q≠ ). Ví dụ 1.5.6. Giả sử X = . Cho trước điểm 0z ∈ và số R 0> , ta xét ánh xạ : Rf ∆ →  với 0( )f z z z= + . Từ định nghĩa 1.5.4, ta có 0v = với 0,X zv T∈ .
  • 45. 43 Định nghĩa 1.5.7. Một đa tạp phức là hyperbolic theo quan điểm của Kobayashi nếu Xρ là một metric. Một đa tạp phức X là hyperbolic Brody (B-hyperbolic) nếu mọi ánh xạ chỉnh hình :f X→ đều là ánh xạ hằng. Nếu đa tạp phức X là hyperbolic thì X là B-hyperbolic. Chiều ngược lại chỉ đúng đối với đa tạp phức compắc: Định lý 1.5.8. (R.Brody). Một đa tạp phức compắc là hyperbolic khi và chỉ khi nó là B-hyperbolic. Nhận xét 1.5.9. Ta có n là compắc. Do đó trên không gian xạ ảnh phức n , khái niệm hypberbolic theo quan điểm của Kobayashi và Bordy là trùng nhau, nên ta gọi chung hai khái niệm này là hypberbolic. Thông thường, chúng ta không dễ để xây dựng những ví dụ đa tạp hyperbolic. Thậm chí cũng khó để chứng minh một đa tạp X cho trước là hyperbolic. Nhưng với dim 1X = thì X là hyperbolic. Giả sử X là mặt Riemann (có thể không compắc). Cho :Y Xπ → là phủ phổ dụng của X. Khi đó Y chỉ có thể là 1 hay  hay ∆ . Nếu 1Y =  hay Y = , hiển nhiên tồn tại những ánh xạ chỉnh hình khác hằng :f Y X→ → và vì vậy X không là hyperbolic. Nếu Y = ∆ , ta dễ thấy rằng X Yρ π ρ=  không suy biến. Vì vậy X là hyperbolic khi và chỉ khi phủ phổ dụng của X là ∆ . Mệnh đề 1.5.10. 1 {3 điểm} là hyperbolic. Mệnh đề này tương đương với định lý Little Picard.
  • 46. 44 Ví dụ 1.5.11. Cho phương trình n n n x y z+ =, mỗi nghiệm của phương trình này trong trường hàm phân hình trên  có dạng: ( ) ( ) ( ) x x t , y y t v z z tà= = = . Mỗi nghiệm trên xác định một ánh xạ chỉnh hình 2: { }n n n f C x y z→ = + = ⊂  . Nghiệm của phương trình trên là tầm thường nếu và chỉ nếu f là ánh xạ hằng. Khi đó, phương trình có nghiệm không tầm thường nếu và chỉ nếu giống của C lớn hơn hoặc bằng 2, nghĩa là n 4= . Như vậy, trong chương này chúng ta đã làm rõ được những kiến thức quan trọng nhất để chuẩn bị cho chương tiếp theo, đó là hàm phân hình, hàm chỉnh hình, đường cong chỉnh hình, các siêu mặt hyperbolic cùng các nội dung liên quan. Sau đây là nội dung chính của luận văn:
  • 47. 45 Chương 2: Sự suy biến của đường cong chỉnh hình và siêu mặt hyperbolic p-adic Chương này là nội dung chính của luận văn, gồm hai phần: sự suy biến của đường cong chỉnh hình trong ( )n p và các siêu mặt hyperbolic trong ( )3 p . Phần thứ nhất trình bày cơ sở để xem xét một hàm chỉnh hình có suy biến hay không trong ( )n p . Phần thứ hai nêu ra một phương pháp xây dựng siêu mặt hyperbolic trong ( )3 p . 2.1. Sự suy biến của đường cong chỉnh hình trong ( )n p : Đặt: ,1 , 1 1 1... , 1j j n j nM z z j s α α + += ≤ ≤ , Là các đơn thức phân biệt bậc d với số mũ không âm. Gọi X là siêu mặt trong ( )n p , có số chiều d và xác định bởi phương trình: 1 1 2 2: ... 0s sX c M c M c M+ + =, trong đó * i pc ∈ . Ta gọi X là nhiễu của siêu mặt Fermat số chiều d nếu 1s n≥ + và , 1,..., 1d j jM z j n= = + . Bổ đề 2.1.1. Cho ( )1 1,..., nf f f += là một đường cong chỉnh hình và đặt M là một đơn thức như trên. Khi đó với mọi 0k ≥ , ta có:
  • 48. 46 ( )( ) 1 1... k k k k n M f Q M f f f + =   , trong đó kQ là một hàm chỉnh hình và ( ) ( ) 1 1 , , n k i i h Q t k h f t kt + = ≥ −∑ , với t đủ nhỏ. Chứng minh: Ta chứng minh quy nạp theo k . Với 0k = là hiển nhiên đúng. Giả sử mệnh đề trên đúng với k . Để đơn giản ta đặt: 1 1... nf fϕ += . Khi đó ta có: ( ) ( ) ( ) 1 1 , , 1 n i i h t h f tϕ + = = ∑ Theo giả thiết quy nạp ta có: ( )( ) .k k k Q M f M f ϕ =   . Khi đó: ( )( )1 1 1 k k k M f Q M f ϕ + + + =   , trong đó ( ) 1 . .k k k k M f Q Q Q kQ M f ϕ ϕ ϕ+ ′ ′ ′=+ −   .
  • 49. 47 Chú ý rằng hàm ( )M f M f ′  chỉ có một cực điểm duy nhất tại không điểm của 1 1,..., nf f + . Do đó, hàm ( ). M f M f ϕ ′  là chỉnh hình. Suy ra 1kQ + là hàm chỉnh hình. Mặt khác, từ Bổ đề 1.3.3 và 1.3.4 ta có: ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) 1 , , , , min , , , , , , , k k k k h t h Q t h Q t h t h Q t h M f t h M f t v k h Q t h t ϕ ϕ ϕ +  ′+     ′≥ + + −     ′+ +      . Khi đó, từ Bổ đề 1.3.2 ta có: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 , , , , , , , min , , , , 2 k k k k k h t h Q t t h t h Q t t h Q t v k h Q t h t t h t h Q t t ϕ ϕ ϕ ϕ +  + − + −  ≥   + + −   = + − . Từ (1) và (2) suy ra mệnh đề trên cũng đúng tại 1k + . Vậy theo quy nạp ta có điều cần chứng minh.  Bổ đề 2.1.2. Gọi X là nhiễu của siêu phẳng Fermat số chiều d trong ( )n p và f là một đường cong chỉnh hình trong X . Giả sử: ( )( )( )1 1 2 2 n s s d + − − ≥ . Nếu { }, 1,..., 1jM f j s= − độc lập tuyến tính thì f là ánh xạ hằng. Chứng minh: Để đơn giản, ta đặt: ( ) ( ) , 1,..., 1j j j s s c M f z g z j s c M f = = −   .
  • 50. 48 Khi đó các hàm phân hình { }1 1,..., sg g − thỏa: 1 1... 1sg g −+ + ≡ − . Ta sẽ chứng minh { }1 1,..., sg g − phụ thuộc tuyến tính. Để chứng minh điều này ta sẽ sử dụng kĩ thuật Wronski của Nevanlinna: Ta có định thức Wronski logarit như sau: ( ) ( ) ( ) ( ) 11 2 1 2 1 22 2 11 2 1 2 1 1 1 ... 1 ... ... ... ... ... ... s s s ss s s s gg g g g g L g gg g g g g − − −− − − −     ′′ ′     =          , Và các ( )1 1,...,i i sL L g g −= xác định bởi: ( ) ( ) ( ) 12 2 1 1 1 1 1 22 12 2 1 1 1 ... 1 0 ... ,..., ... ... ... ... 0 ... s s s ss s s gg g g L L g g gg g g − − − −− − −     ′′     = =          , và tương tự với 2,..., 1i s= − trong đó cột { }1,0,...,0 là cột thứ i. Nếu { }1 1,..., sg g − độc lập tuyến tính thì các ánh xạ xạ ảnh ( )1 ,..., sM f M f  và ( )1 2, ,..., sL L L L= đều trùng nhau. Áp dụng Bổ đề 2.1.1 cho các định thức. Cụ thể, hạng tử thứ nhất trong khai triển của ( )1L g có thể được viết dưới dạng: ( )( ) 1 2 2 1 2 2 ... ... s s s s Q Q R ϕ ϕ ϕ − − − − = .
  • 51. 49 Với ( )( )1 2 2s s ϕ − − là mẫu thức chung của tất cả các hạng tử trong khai triển các định thức ( )iL g . Do đó ta có ( ) ( ) ( )1 1 1,..., ,..., ,...,s s sM f M f L L R R= =  , trong đó, theo Bổ đề 2.1.1, jR là các hàm chỉnh hình và thỏa điều kiện sau (với t đủ nhỏ): ( ) ( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )( ) ( ) ( )( ) 2 1 2 1 , , , 1 2 1 2 , 2 2 1 1 2 1 2 , . 2 2 s j k k s k h R t h Q t h t t k s s s s h t t n s s s s h f t t ϕ ϕ − = − = = ≥ − − − − − = − + − − − − ≥ − ∑ ∑ Do 1 ,..., sM f M f  không có chung không điểm nên từ Bổ đề 1.3.6 ta có: ( ) ( ) ( ) ( )( )( ) ( ) ( )( ) ( ) 1 min , min , 0 1 1 1 2 1 2 , 0 1 . 2 2 s j j j j h M f t h R t n s s s s h f t t ≤ ≤ ≥ + + − − − − ≥ − +  Do X là nhiễu của siêu phẳng Fermat số chiều d nên ta có: ( ) ( ) ( ) ( )1 1 1 1 min , min , , 3j j j n j n h M f t d h f t dh f t ≤ ≤ + ≤ ≤ + = = Lại có: ( ) ( ) ( ) 1 1 , , , n j jk k k h M f t h f t dh f tα + = = ≥∑ . Từ đó, ta được: ( ) ( )( )( ) ( ) ( )( ) ( ) ( ) 1 1 2 1 2 , , 0 1 . 4 2 2 n s s s s dh f t h f t t + − − − − ≥ − + Khi ( )( )( )1 1 2 2 n s s d + − − = ta có điều vô lý là t → −∞ .
  • 52. 50 Khi ( )( )( )1 1 2 2 n s s d + − − ≥ , từ (4) ta có: ( ) ( ), 0 1h f t Nt≥ − + , trong đó N là một số dương. Do đó, từ Bổ đề 1.3.4 ta có f là ánh xạ hằng. Vậy Bổ đề 2.1.2 được chứng minh.  Định lý 2.1.3. Cho X là nhiễu của siêu mặt Fermat số chiều d trong ( )n p và gọi f là một đường cong chỉnh hình trong X . Nếu ( )( )( )1 1 2 2 n s s d + − − ≥ thì ảnh của f nằm trong một tập con thực sự của X . Nếu tồn tại 0if ≡ thì f suy biến, và ta có thể giả sử rằng 0,if i≡ ∀ . Chứng minh : Từ Bổ đề 2.1.2, ảnh của f nằm trong tập con thật sự của X , với X được xác định bởi phương trình: 1 1 2 2 1 1 1 2 1 1... ... 0d d d n n n n s sa z a z a z a M a M+ + + + − −+ + + + + + =, trong đó tồn tại ít nhất một 0ja ≠ . Ghi chú 2.1.1. Không có kết quả tương tự trong trường số phức.
  • 53. 51 2.2. Các siêu mặt hyperbolic trong ( )3 p : Trong phần này, ta sẽ áp dụng Định lý 2.1.3 để đưa ra một số ví dụ chi tiết về các mặt hyperbolic trong ( )3 p cũng như các ví dụ về các đường cong trong ( )2 p với phần bù hyperbolic và các ví dụ về các siêu mặt hyperbolic với phần bù hyperbolic của chúng. Không mất tính tổng quát, ta có thể giả sử trong phương trình của X các hệ số đầu tiên 1, 1,..., 1ic i n= = + . Sau đây chúng ta sẽ trình bày một phương pháp xây dựng các siêu phẳng hyperbolic, trước tiên, ta nhắc lại kết quả sau: Bổ đề 2.2.1. Gọi X là siêu mặt Fermat số chiều d trong ( )n p , và ( )1 1,..., nf f f += là một đường cong chỉnh hình trong X . Giả sử 0, 1,..., 1if i n≡ ∀= + . Nếu 2 1d n≥ − thì hoặc f là đường cong hằng hoặc tồn tại một phân hoạch của tập chỉ số { }1,..., 1n Iξ+ =∪ sao cho mỗi Iξ chứa ít nhất 2 phần tử, và nếu ,i j Iξ∈ thì i jf f= tại một số điểm (nếu 2n = thì chỉ tồn tại một lớp). Định lý 2.2.2. Gọi X là một mặt trong ( )3 p và có phương trình: ( )31 2 4 1 2 3 4 1 2 3 4: 0 1d d d d X z z z z cz z z zαα α α + + + + = trong đó 4 1 0, i i c dα = ≠ =∑ , và nếu có 0iα = thì 1, , 1,2,3,4j j i jα ≠ ∀ ≠ = . Khi đó, X là hyperbolic nếu 24d ≥ . Chứng minh: Gọi ( )1 2 3 4, , , : pf f f f f X= → là đường cong chỉnh hình trong X .
  • 54. 52 Giả sử tồn tại i sao cho 0if = , chẳng hạn 4 0f = . Nếu 4 0α = thì ánh xạ ( )1 2 3, ,f f f từ p vào ( )2 p có ảnh nằm trên một đường cong xạ ảnh giống dương. Từ Định lý Berkovich (xem [12]), ( )1 2 3, ,f f f là ánh xạ hằng. Kết hợp với ( )1 ta suy ra f là ánh xạ hằng. Hiển nhiên, ta có thể giả sử mọi 0if ≡ . Từ chứng minh của Định lý 2.1.3 ta có { }1 4,...,d d f f phụ thuộc tuyến tính. Giả sử: 1 1 4 4... 0d d a f a f+ + ≡ , trong đó các ia không đồng thời bằng 0. Ta xét các trường hợp sau: (i) 0, 1,2,3,4.ia i≠ = Từ Bổ đề 2.2.1, ta có hoặc f là ánh xạ hằng hoặc ta có thể giả sử rằng ( )1 1 2 3 2 4,f c f f c f= = ∗ . Và thay ( )∗ vào ( )1 ta có f là ánh xạ hằng, (ii) Có duy nhất một hệ số bằng 0, không mất tính tổng quát ta có thể giả sử 4 0a = . Khi đó, theo Bổ đề 2.2.1, ta có ( )1 2 3, ,f f f là ánh xạ hằng. Và như vậy f là ánh xạ hằng, (iii) Có hai hệ số bằng 0, giả sử 1 2 0a a= = . Khi đó ta có 3 3 4f c f= . Thay vào ( )1 ta được: 31 2 1 2 1 3 2 1 2 3 0d d d f f f f f f αα α ε ε+ + + ≡ , trong đó 2 0ε ≠ . Nếu 1 0ε ≠ thì ảnh của ánh xạ ( ) ( )2 1 2 3, , : p pf f f →  nằm trên một đường cong xạ ảnh có giống dương và ( )1 2 3, ,f f f là ánh xạ hằng, và do đó f cũng là ánh xạ hằng (Định lý Berkovich).
  • 55. 53 Giả sử 1 0ε = thì ảnh của ( )1 2 3, ,f f f nằm trong đường cong trong ( )2 p sau: 3 41 2 1 2 2 1 2 3: 0d d Y z z z z zα αα α ε + + + =. Ta sẽ chứng minh theo giả thuyết của Định lý 2.2.2, giống của Y nhỏ nhất là bằng 1, khi đó từ định lý Berkovich ta sẽ có điều cần chứng minh. Ta có giống của Y bằng số các điểm nguyên nằm trên tam giác với ba đỉnh là ( ) ( ),0 , 0,d d và ( )1 2,α α , và hiển nhiên 1 2 dα α+ < . Như vậy, dễ thấy tam giác này chứa ít nhất một điểm nguyên, trừ trường hợp 1 2 1dα α+ = − . Trường hợp này đã được loại từ giải thuyết của Định lý 2.2.2. Vậy định lý được chứng minh.  Ghi chú 2.2.1. Trong [2], bằng cách sử dụng phương pháp của K.Masuda và J.Noguchi [8], ta có các ví dụ sau về các siêu mặt hyperbolic trong ( )3 p : ( ) ( )4 4 1 4 1 2 3 4... 0, 6 deg 4 24 , dd d pz z t z z z z d X d t ∗ + + + = ≥ = ≥ ∈ . Trong khi đó, các siêu mặt hyperbolic được xây dựng theo Định lý 2.2.2 như trên có số chiều lớn hơn hoặc bằng 24 (không nhất thiết phải là bội của 4). Chú ý rằng, hầu hết các siêu mặt hyperbolic trong trường số phức trước đó đều cho với số chiều d chia hết cho một số lớn hơn 1 (chia hết cho 2 trong ví dụ của Brody- Green, cho 3 trong ví dụ của Nadel, cho 3 và 4 trong ví dụ của Noguchi). Trong [8] đã trình bày một thuật toán để xây dựng các siêu mặt hyperbolic có số chiều tùy ý đủ lớn d . Ở đây ta có các siêu mặt hyperbolic với số chiều 24d ≥ . Ghi chú 2.2.2. Ví dụ sau đây chỉ ra rằng nếu giữa các số mũ iα , hai trong chúng là 0,1 thì X không thể là hyperbolic. Mặt: 25 25 25 25 24 1 2 3 4 1 2: 0X z z z z z z+ + + + =
  • 56. 54 chứa đường cong chỉnh hình ( )25 25 1 ,1,1 ,z z z− − + . Bây giờ ta sẽ dùng Định lý 2.1.3 để đưa ra một số ví dụ về các đường cong trong ( )2 p với các phần bù hyperbolic: Định lý 2.2.3. Cho X là một đường cong trong ( )2 p xác định bởi phương trình: 31 2 1 2 3 1 2 3: 0d d d X z z z cz z zαα α + + + =, trong đó 24, 0,i id d dα α≥ > ≥ =∑ . Khi đó phần bù của X là một hyperbolic p-adic trong ( )2 p . Chứng minh: Gọi ( ) 2 1 2 3, , : pf f f f= →  là một đường cong giải tích có ảnh nằm trong phần bù của X . Khi đó, hàm số: 31 2 1 2 3 1 2 3 0d d d f f f cf f f αα α + + + ≠ với pz ∈ , và bằng một hằng số 0a ≠ . Do đó, ảnh của đường cong chỉnh hình sau: ( ) 3 1 2 3, , ,1 : pf f f →  nằm trong mặt Y của 3  , với Y xác định bởi phương trình: 31 2 1 2 3 4 1 2 3: 0d d d d Y z z z az cz z zαα α + + − + =. Từ chứng minh của Định lý 2.1.3, { }1 2 3, , ,1d d d f f f phụ thuộc tuyến tính: 1 1 2 2 3 3 4 0d d d c f c f c f c+ + + ≡ , trong đó các ic không đồng thời bằng 0. Ta xét các trường hợp sau: (i) 0,ic i≠ ∀ . Theo Bổ đề 2.2.1, có ít nhất một trong các hàm 1 2 3, ,f f f là hàm hằng. Suy ra f là ánh xạ hằng,
  • 57. 55 (ii) Tồn tại duy nhất một 0ic = . Khi đó theo Bổ đề 2.2.1, ta có f là ánh xạ hằng, (iii) Nếu có hai 0ic = thì hoặc một trong các if là hàm hằng, hoặc hàm thương của hai hàm ,i jf f là hàm hằng. Trong cả hai điều trên, ta đều có f là hàm hằng. Vậy Định lý 2.2.3 được chứng minh.  Ghi chú 2.2.3. Ta chứng minh được rằng ánh xạ ( )1 2 3, , ,1 : pf f f Y→ là ánh xạ hằng mặc dù Y không là hyperbolic. Bây giờ ta sẽ dùng chứng minh của Định lý 2.2.2 và Định lý 2.2.3 để đưa ra một số ví dụ cụ thể về các mặt hyperbolic trong ( )3 p với các phần bù hyperbolic. Định lý 2.2.4. Cho X là một siêu mặt trong ( )3 p có số chiều 50d ≥ và xác định bởi phương trình: ( )31 2 4 1 4 1 2 3 4: ... 0 6d d X z z cz z z zαα α α + + + = trong đó 0c ≠ và nếu có một 0iα = thì những jα còn lại nhỏ nhất là bằng 2. Khi đó X là hyperbolic và phần bù của X trong ( )3 p cũng là hyperbolic. Chứng minh: Ta sẽ dùng Định lý 2.2.2 để chứng minh phần bù của X là hyperbolic. Đặt ( )1 4,...,f f f= là đường cong có ảnh nằm trong phần bù của X . Như trong chứng minh Định lý 2.2.3 tồn tại một hằng số 0a ≠ sao cho ánh xạ ( )1 2 3 4, , , ,1f f f f có ảnh nằm trong siêu mặt Y có số chiều d trong ( )4 p xác định bởi phương trình:
  • 58. 56 ( )31 2 4 1 2 3 4 5 1 2 3 4: 0 7d d d d d Y z z z z az cz z z zαα α α + + + + + = Từ chứng minh của Định lý 2.1.3 ta có khi ( )( )( )4 1 6 1 6 2 50 2 d + − − ≥ =thì { }1 2 3 4, , , ,1d d d d f f f f phụ thuộc tuyến tính. Do đó: 4 5 1 0d i i i fε ε = + ≡∑ , trong đó các iε không đồng thời bằng 0. Nếu 5 0ε = thì ta có thể lặp lại phần chứng minh của Định lý 2.2.2 và ta có f là ánh xạ hằng. Giả sử 5 0ε ≠ , từ Bổ đề 2.2.1 ta suy ra hoặc f là ánh xạ hằng hoặc tồn tại ít nhất một if , giả sử 4f , là hàm hằng. Thay 4f bằng hằng số vào ( )7 , ta thấy ảnh của ánh xạ ( )1 2 3, , ,1f f f nằm trong một mặt phẳng được xác định bởi phương trình: 31 2 4 1 2 3 4 1 2 3 4: 0d d d d Z z z z a z c z z z zαα α β ′ ′+ + + + =, trong đó ( )4 1 2 3, 0,a c dβ α α α′ ′ ≠ = − + + . Và cũng từ Định lý 2.1.3, { }1 2 3, , ,1d d d f f f phụ thuộc tuyến tính. Do đó: 1 1 2 2 3 3 4 0d d d f f fδ δ δ δ+ + + ≡ . Nếu 4 0δ = thì tương tự như trong chứng minh Định lý 2.2.2, ta có f là ánh xạ hằng. Để chỉ ra được lý do ta cần giả thuyết nếu 1 0α = thì các số mũ còn lại ít nhất phải bằng 2, ta sẽ xét trường hợp 4 0δ ≠ . Từ Bổ đề 2.1.1, ta có hoặc f là ánh xạ hằng hoặc tồn tại ít nhất một if , chẳng hạn 3f , là hàm hằng. Thay 3 4,f f là hằng số vào ( )6 ta được 1 2f fε= , với ε là hằng số nào đó. Cuối cùng, do ánh xạ ( )1 2 3 4, , , ,1f f f f có ảnh nằm trên Y nên ta có:
  • 59. 57 1 2 2 2 0d Af Bf Cα α+ + + ≡ , trong đó , ,A B C là hằng số và 0B ≠ . Từ giả thuyết của Định lý 2.2.4, 1 2 0, dα α+ ≠ nên ta có 2f là hàm hằng. Vậy Định lý 2.2.4 được chứng minh.  Ghi chú 2.2.4. Định lý 2.2.3 và 2.2.4 cho ta các ví dụ đầu tiên về các siêu mặt hyperbolic với các phần bù hyperbolic trong trường p-adic. Trong trường số phức, sự tồn tại của các siêu mặt này được chứng minh bởi M. G. Zaidenberg [10]. A.Nadel [7]đã đưa ra các ví dụ đầu tiên của các đường cong này trong 2  và các ví dụ cụ thể về các siêu mặt hyperbolic trong 3  được đưa ra bởi K. Masuda và J. Noguchi [8]. Ghi chú 2.2.5. Ví dụ sau chứng tỏ rằng khi tổng của hai trong số các số mũ iα bằng không hoặc bằng d thì phần bù của X có thể không là hyperbolic. Xét mặt X được cho bởi phương trình: 51 51 51 51 25 26 1 2 3 4 3 4: 0X z z z z z z+ + + + =. Khi đó, X là hyperbolic (Định lý 2.2.2), nhưng phần bù của X trong ( )3 p chứa đường cong chỉnh hình sau: ( ), ,1,1f z z= − . Vậy, với chương 2, chúng ta đã có được phương pháp nghiên cứu về sự suy biến của đường cong chỉnh hình cùng với phương pháp kiểm tra và xây dựng một siêu mặt hyperbolic (nhờ định lý 2.1.3, định lý 2.2.3 và định lý 2.2.4 ) -----------------------------------------------------------------------------------
  • 60. 58 KẾT LUẬN VÀ KIẾN NGHỊ Luận văn đã làm rõ những kết quả của Hà Huy Khoái trong công trình của ông công bố năm 1997 và các tác giả có liên quan như W. Cherry, K. Masuda, J. Noguchi và A. Nadel. Luận văn cũng đã có những đóng góp sau đây: - Đưa ra một điều kiện đủ về sự suy biến của đường cong chỉnh hình trong ( )n p (Định lý 2.1.3). Từ đó chỉ ra một phương pháp xét sự suy biến của một đường cong chỉnh hình trong ( )n p . - Áp dụng Định lý 2.2.3, xây dựng một số lớp các siêu mặt hyperbolic cụ thể trong ( )3 p . Vì lí do thời gian và vì khuôn khổ luận văn, chúng tôi không nêu chi tiết một số khái niệm và chứng minh một số kết quả của đường cong đại số, giống đường cong đại số và một số kết quả của lý thuyết Nevanlinna mà chỉ ra các tài liệu có trình bày chi tiết các nội dung này. Hướng nghiên cứu tiếp theo của đề tài: - Tìm và vận dụng độ cao của hàm chỉnh hình vào xét sự suy biến của đường cong chỉnh hình trong ( )n p . Xây dựng một phương pháp đơn giản nhất có thể được để xét sự suy biến nói trên. - Tìm ra một phương pháp xây dựng và đưa ra được các ví dụ cụ thể về các siêu phẳng hyperbolic p-adic trong ( )n p với 3n > .
  • 61. 59 TÀI LIỆU THAM KHẢO [1] Hà Huy Khoái (1997), p-adic Hyperbolic Surfaces, ACTA MATHEMATICA VIETNAMICA, Volume 22, Number 2, 501-514. [2] Hà Huy Khoái và Mai Văn Tư (1995), p-adic Nevanlinna-Cartan Theorem, Internat, 719-731. [3] Hà Huy Khoái(1983), On p-adic meromorphic functions, Duke Math. J. 50, 695-711. [4] Hà Huy Khoái (1993), Height of p-adic holomorphic functions and applications, Diophantine Geometry and Related topics, RIMS Lect Notes Ser 819, Kyoto, 96-105. [5] Hà Huy Khoái and Mỵ Vinh Quang (1988),p-adic Nevanlinna theory, Lecture Notes in Math, 1351, 138-152. [6] Hà Huy Khoái and Vũ Hoài An (2003), Value distribution for p-adic hypersurfaces, Taiwanese journal of mathematics, Vol 7, No 1, pp 51- 67. [7] A. Nadel(1989), Hyperbolic surfaces in 3 P , Duke Math. J. 58, 749- 771. [8] K. Masuda and J. Noguchi(1996), A construction of hyperbolic hypersurfaces of ( )n P  , Math Ann 304, 339-362. [9] M. Green(1975), Some Picard theorems for holomorphic maps to algebraic varieties, Amer. J. Math. 97, 43-75.
  • 62. 60 [10] M. G. Zaidenberg (1993), Hyperbolicity in projective spaces, Diophantine Geometry and Relatedtopics, RIMS Lect, Notes Ser 819, Kyoto, pp 136-156. [11] Pei-Chu Hu and Chung-Chun Yang (1999), Meromorphic functions over Non-Archimedean fields, Kluwer Academic Publishers. [12] R. Brody and M. Green(1977), A family of smooth hyperbolic hypersurfacesin 3 P , Duke Math. J. 44, 873-874. [13] V. Berkovich (1990), Spectral Theory and Analytic Geometry over Non-Archimedean Fields, AMS Surveys and Monographs 33. [14] William Fulton (2008), Algebraic curves -An introduction to algebraic geometry, January 28. [15] W. A. Cherry (1994), Hyperbolic p-adic analytic spaces, Math. Ann. 300, 393- 404.