SlideShare a Scribd company logo
1 of 48
Download to read offline
Δημήτρης Διαμαντίδης, Γεωργία Ευθυμίου
Αναστάσιος Κουπετώρης, Ιωάννης Σταμπόλας
Άλγεβρα Α΄ Λυκείου
Εκφωνήσεις και λύσεις
όλων των ασκήσεων
της Τράπεζας Θεμάτων
ανά θεματική Ενότητα
Ιούλιος 2014
1ο Μέρος
Το παρόν ένθετο διατίθεται μαζί με το βιβλίο Άλγεβρα Α΄ Λυκείου, α΄ τόμος
(ISBN 978-960-16-4807-1).
3
ˆ•¢˜•©¡š• ‘
ȆǿĬǹȃȅȉǾȉǼȈ
2Į ĬǼȂǹȉǹ
2_1003 5
2_1102 5
2_1287 5
2_1506 6
2_1520 6
2_3383 6
2_3384 7
2_3878 7
2_497 7
2_499 8
4Į ĬǼȂǹȉǹ
4_1868 8
4_1936 9
4_2064 10
4_2073 10
4_2080 11
4_6144 11
ȆȇǹīȂǹȉǿȀȅǿ ǹȇǿĬȂȅǿ:
ȉǹȊȉȅȉǾȉǼȈ –
ȂǼĬȅǻȅǿ ǹȆȅǻǼǿȄǾȈ –
ȆǹȇǹīȅȃȉȅȆȅǿǾȈǾ
2Į ĬǼȂǹȉǹ
2_1070 12
2_1080 13
2_3874 13
ǻǿǹȉǹȄǾ
ȆȇǹīȂǹȉǿȀȍȃ ǹȇǿĬȂȍȃ
2Į ĬǼȂǹȉǹ
2_486 13
2_487 14
2_506 14
2_1092 14
2_1541 14
2_3852 15
2_3870 15
2_4299 15
2_7519 16
ǹȆȅȁȊȉǾ ȉǿȂǾ
ȆȇǹīȂǹȉǿȀȅȊ ǹȇǿĬȂȅȊ
2Į ĬǼȂǹȉǹ
2_504 16
2_509 16
2_996 16
2_1009 17
2_1062 17
2_1074 17
2_1089 17
2_1091 18
2_1273 18
2_1544 18
2_2702 18
4Į ĬǼȂǹȉǹ
4_2287 19
4_2301 19
4_2302 19
4_4946 20
4_7791 20
4_8443 21
4_8453 21
ȇǿǽǼȈ
ȆȇǹīȂǹȉǿȀȍȃ ǹȇǿĬȂȍȃ
2Į ĬǼȂǹȉǹ
2_936 22
2_938 22
2_944 22
2_947 22
2_950 22
2_952 23
2_955 23
2_1276 23
2_1300 23
2_3382 24
4
ȆİȡȚİȤȩȝİȞĮ
2_4311 24
2_4314 24
2_4316 24
2_8173 24
ǼȄǿȈȍȈǼǿȈ 1Ƞȣ ǺǹĬȂȅȊ
2Į ĬǼȂǹȉǹ
2_485 25
2_507 25
2_1055 26
2_4302 26
ǼȄǿȈȍȈǼǿȈ 2Ƞȣ ǺǹĬȂȅȊ
2Į ĬǼȂǹȉǹ
2_481 26
2_483 26
2_493 27
2_496 27
2_1005 27
2_1007 28
2_1093 28
2_1275 28
2_1298 29
2_1509 29
2_3839 29
2_3847 29
2_3857 30
2_3863 30
2_4306 30
2_4308 31
2_4309 31
2_4310 31
2_4313 32
2_4317 32
4Į ĬǼȂǹȉǹ
4_1890 33
4_1955 33
4_2055 34
4_2081 34
4_2332 35
4_4551 35
4_4654 36
4_4659 36
4_4665 37
4_4667 37
4_4681 38
4_4835 38
4_4857 39
4_4903 39
4_4957 40
4_4962 40
4_4970 40
4_4975 41
4_4992 42
4_5317 42
4_6223 43
4_7263 43
4_7510 44
4_7515 45
4_7516 45
4_7940 46
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
5
ˆ˜…‘ ¡£—£•Œ
2Į ĬǼȂǹȉǹ
]ĬǼȂǹ 2_1003
DzȞĮ țȠȣIJȓ ʌİȡȚȑȤİȚ ȐıʌȡİȢ, ȝĮȪȡİȢ, țȩțțȚȞİȢ țĮȚ
ʌȡȐıȚȞİȢ ȝʌȐȜİȢ. ȅȚ ȐıʌȡİȢ İȓȞĮȚ 5, ȠȚ ȝĮȪȡİȢ İȓ-
ȞĮȚ 9, İȞȫ ȠȚ țȩțțȚȞİȢ țĮȚ ȠȚ ʌȡȐıȚȞİȢ ȝĮȗȓ İȓȞĮȚ 16.
ǼʌȚȜȑȖȠȣȝİ ȝȚĮ ȝʌȐȜĮ ıIJȘȞ IJȪȤȘ. ǻȓȞȠȞIJĮȚ IJĮ ʌĮȡĮ-
țȐIJȦ İȞįİȤȩȝİȞĮ:
ǹ: Ș ȝʌȐȜĮ ʌȠȣ İʌȚȜȑȖȠȣȝİ İȓȞĮȚ ǹȈȆȇǾ
K: Ș ȝʌȐȜĮ ʌȠȣ İʌȚȜȑȖȠȣȝİ İȓȞĮȚ KOKKINH
Ȇ: Ș ȝʌȐȜĮ ʌȠȣ İʌȚȜȑȖȠȣȝİ İȓȞĮȚ ȆȇǹȈǿȃǾ
Į) ȋȡȘıȚȝȠʌȠȚȫȞIJĮȢ IJĮ ǹ, Ȁ țĮȚ Ȇ ȞĮ ȖȡȐȥİIJİ ıIJȘ
ȖȜȫııĮ IJȦȞ ıȣȞȩȜȦȞ IJĮ İȞįİȤȩȝİȞĮ:
i) Ǿ ȝʌȐȜĮ ʌȠȣ İʌȚȜȑȖȠȣȝİ įİȞ İȓȞĮȚ ȐıʌȡȘ,
ii) Ǿ ȝʌȐȜĮ ʌȠȣ İʌȚȜȑȖȠȣȝİ İȓȞĮȚ țȩțțȚȞȘ Ȓ ʌȡȐ-
ıȚȞȘ. (ȂȠȞȐįİȢ 13)
ȕ) ȃĮ ȕȡİȓIJİ IJȘȞ ʌȚșĮȞȩIJȘIJĮ ʌȡĮȖȝĮIJȠʌȠȓȘıȘȢ țĮșİ-
ȞȩȢ Įʌȩ IJĮ įȪȠ İȞįİȤȩȝİȞĮ IJȠȣ İȡȦIJȒȝĮIJȠȢ (Į).
(ȂȠȞȐįİȢ 12)
ȁȪıȘ
Į) i) , ii)   
ȕ) īȚĮ ȞĮ ȕȡȠȪȝİ IJȘȞ ʌȚșĮȞȩIJȘIJĮ ʌȡĮȖȝĮIJȠʌȠȓȘıȘȢ
IJȠȣ İȞįİȤȠȝȑȞȠȣ , ȕȡȓıțȠȣȝİ ʌȡȫIJĮ IJȘȞ ʌȚșĮ-
ȞȩIJȘIJĮ ʌȡĮȖȝĮIJȠʌȠȓȘıȘȢ IJȠȣ A:
P 
( )=
 
( )
 
( )
=
5
5+ 9 +16
=
5
30
=
1
6
, ȐȡĮ
P 
( )= 1 P 
( )= 1
1
6
=
6
6

1
6
=
5
6
.
īȚĮ IJȘȞ ʌȚșĮȞȩIJȘIJĮ ʌȡĮȖȝĮIJȠʌȠȓȘıȘȢ IJȠȣ İȞįİ-
ȤȠȝȑȞȠȣ    ȑȤȠȣȝİ
P   
( )=
   
( )
 
( )
=
16
5+ 9 +16
=
16
30
=
8
15
.
]ĬǼȂǹ 2_1102
ǻȓȞȠȞIJĮȚ įȪȠ İȞįİȤȩȝİȞĮ A, B İȞȩȢ įİȚȖȝĮIJȚțȠȪ ȤȫȡȠȣ
 țĮȚ ȠȚ ʌȚșĮȞȩIJȘIJİȢ:
P 
( )=
3
4
, P  
( )=
5
8
țĮȚ P 
( )=
1
4
Į) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ P  
( ). (ȂȠȞȐįİȢ 9)
ȕ) i) ȃĮ ʌĮȡĮıIJȒıİIJİ ȝİ įȚȐȖȡĮȝȝĮ Venn țĮȚ ȞĮ
ȖȡȐȥİIJİ ıIJȘ ȖȜȫııĮ IJȦȞ ıȣȞȩȜȦȞ IJȠ İȞįİȤȩ-
ȝİȞȠ: «A Ȓ B». (ȂȠȞȐįİȢ 7)
ii) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ ʌȚșĮȞȩIJȘIJĮ ʌȡĮȖȝĮIJȠʌȠȓ-
ȘıȘȢ IJȠȣ ʌĮȡĮʌȐȞȦ İȞįİȤȠȝȑȞȠȣ. (ȂȠȞȐįİȢ 9)
ȁȪıȘ
Į) P  
( )=
5
8
 P 
( ) P  
( )=
5
8

3
4
 P  
( )=
5
8
 P  
( )=
3
4

5
8

P  
( )=
1
8
ȕ) i) ǿıȤȪİȚ P  
( ) 0,      țĮȚ
P   
( )= P B
( ) P A B
( ) P B  A
( )=
=
1
4

1
8
=
1
8
 0  B  A  .
ȉȠ İȞįİȤȩȝİȞȠ «A Ȓ B» ʌĮȡȚıIJȐȞİIJĮȚ ȝİ ȤȡȒ-
ıȘ įȚĮȖȡȐȝȝĮIJȠȢ Venn ȦȢ İȟȒȢ:
țĮȚ ȝİ ȤȡȒıȘ IJȘȢ ȖȜȫııĮȢ IJȦȞ ıȣȞȩȜȦȞ ȑȤȠȣ-
ȝİ  .
ii) P  
( )= P 
( )+ P 
( ) P  
( )=
=
3
4
+
1
4

1
8
=
6
8
+
2
8

1
8
=
7
8
]ĬǼȂǹ 2_1287
ǻȓȞİIJĮȚ Ƞ ʌȓȞĮțĮȢ:
1 2 3
1 11 12 13
2 21 22 23
3 31 32 33
ǼʌȚȜȑȖȠȣȝİ IJȣȤĮȓĮ ȑȞĮȞ Įʌȩ IJȠȣȢ İȞȞȑĮ įȚȥȒijȚȠȣȢ
ĮȡȚșȝȠȪȢ IJȠȣ ʌĮȡĮʌȐȞȦ ʌȓȞĮțĮ.
ȃĮ ȕȡİȓIJİ IJȘȞ ʌȚșĮȞȩIJȘIJĮ ʌȡĮȖȝĮIJȠʌȠȓȘıȘȢ IJȦȞ
ʌĮȡĮțȐIJȦ İȞįİȤȠȝȑȞȦȞ:
6
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
ǹ: Ƞ įȚȥȒijȚȠȢ ȞĮ İȓȞĮȚ ȐȡIJȚȠȢ (ȂȠȞȐįİȢ 7)
Ǻ: Ƞ įȚȥȒijȚȠȢ ȞĮ İȓȞĮȚ ȐȡIJȚȠȢ țĮȚ ʌȠȜȜĮʌȜȐıȚȠ IJȠȣ 3
(ȂȠȞȐįİȢ 9)
ī: Ƞ įȚȥȒijȚȠȢ ȞĮ İȓȞĮȚ ȐȡIJȚȠȢ Ȓ ʌȠȜȜĮʌȜȐıȚȠ IJȠȣ 3
(ȂȠȞȐįİȢ 9)
ȁȪıȘ
ȅ įİȚȖȝĮIJȚțȩȢ ȤȫȡȠȢ İȓȞĮȚ
 = 11, 12, 13, 21, 22, 23, 31, 32, 33
{ }țĮȚ
ȑȤȠȣȝİ  = 12, 22, 32
{ },  = 12
{ } țĮȚ
 = 12, 21, 22, 32, 33
{ }. DZȡĮ
P 
( )=
 
( )
 
( )
=
3
9
=
1
3
, P 
( )=
 
( )
 
( )
=
1
9
țĮȚ
P 
( )=
 
( )
 
( )
=
5
9
.
]ĬǼȂǹ 2_1506
ǻȓȞİIJĮȚ IJȠ ıȪȞȠȜȠ  = 1, 2, 3, 4, 5, 6
{ } țĮȚ IJĮ ȣʌȠ-
ıȪȞȠȜȐ IJȠȣ  = 1, 2, 4, 5
{ }țĮȚ  = 2, 4, 6
{ }.
Į) ȃĮ ʌĮȡĮıIJȒıİIJİ ıIJȠ ȓįȚȠ įȚȐȖȡĮȝȝĮ Venn, ȝİ
ȕĮıȚțȩ ıȪȞȠȜȠ IJȠ ȍ, IJĮ ıȪȞȠȜĮ ǹ țĮȚ Ǻ. ȀĮIJȩ-
ʌȚȞ, ȞĮ ʌȡȠıįȚȠȡȓıİIJİ IJĮ ıȪȞȠȜĮ  ,  ,
ǹǯ țĮȚ Bǯ. (ȂȠȞȐįİȢ 13)
ȕ) ǼʌȚȜȑȖȠȣȝİ IJȣȤĮȓĮ ȑȞĮ ıIJȠȚȤİȓȠ IJȠȣ . ȃĮ ȕȡİȓIJİ
IJȚȢ ʌȚșĮȞȩIJȘIJİȢ IJȦȞ İȞįİȤȠȝȑȞȦȞ:
i) ȃĮ ȝȘȞ ʌȡĮȖȝĮIJȠʌȠȚȘșİȓ IJȠ İȞįİȤȩȝİȞȠ ǹ.
(ȂȠȞȐįİȢ 4)
ii) ȃĮ ʌȡĮȖȝĮIJȠʌȠȚȘșȠȪȞ ıȣȖȤȡȩȞȦȢ IJĮ İȞįİȤȩ-
ȝİȞĮ ǹ țĮȚ Ǻ. (ȂȠȞȐįİȢ 4)
iii) ȃĮ ʌȡĮȖȝĮIJȠʌȠȚȘșİȓ ȑȞĮ IJȠȣȜȐȤȚıIJȠȞ Įʌȩ IJĮ
İȞįİȤȩȝİȞĮ ǹ, Ǻ. (ȂȠȞȐįİȢ 4)
ȁȪıȘ
Į)
  = 1, 2, 4, 5, 6
{ },   = 2, 4
{ },  = 3, 6
{ }
țĮȚ  = 1, 3, 5
{ }.
ȕ) i) P 
( )=
 
( )
 
( )
=
2
6
=
1
3
ii) P  
( )=
  
( )
 
( )
=
2
6
=
1
3
iii) P  
( )=
  
( )
 
( )
=
5
6
]ĬǼȂǹ 2_1520
ǹʌȩ IJȠȣȢ ıʌȠȣįĮıIJȑȢ İȞȩȢ ȍįİȓȠȣ, IJȠ 50% ȝĮșĮȓ-
ȞİȚ ʌȚȐȞȠ, IJȠ 40% ȝĮșĮȓȞİȚ țȚșȐȡĮ, İȞȫ IJȠ 10% IJȦȞ
ıʌȠȣįĮıIJȫȞ ȝĮșĮȓȞİȚ țĮȚ IJĮ įȪȠ ĮȣIJȐ ȩȡȖĮȞĮ. ǼʌȚ-
ȜȑȖȠȣȝİ IJȣȤĮȓĮ ȑȞĮȞ ıʌȠȣįĮıIJȒ IJȠȣ ȍįİȓȠȣ. ȅȡȓ-
ȗȠȣȝİ IJĮ İȞįİȤȩȝİȞĮ:
A: Ƞ ıʌȠȣįĮıIJȒȢ ĮȣIJȩȢ ȝĮșĮȓȞİȚ ʌȚȐȞȠ
B: Ƞ ıʌȠȣįĮıIJȒȢ ĮȣIJȩȢ ȝĮșĮȓȞİȚ țȚșȐȡĮ
ȃĮ ȕȡİȓIJİ IJȘȞ ʌȚșĮȞȩIJȘIJĮ ʌȡĮȖȝĮIJȠʌȠȓȘıȘȢ IJȠȣ İȞ-
įİȤȠȝȑȞȠȣ:
Į) ȅ ıʌȠȣįĮıIJȒȢ ĮȣIJȩȢ ȞĮ ȝĮșĮȓȞİȚ ȑȞĮ IJȠȣȜȐȤȚ-
ıIJȠȞ Įʌȩ IJĮ įȪȠ ʌĮȡĮʌȐȞȦ ȩȡȖĮȞĮ. (ȂȠȞȐįİȢ 12)
ȕ) ȅ ıʌȠȣįĮıIJȒȢ ĮȣIJȩȢ ȞĮ ȝȘ ȝĮșĮȓȞİȚ țĮȞȑȞĮ Įʌȩ
IJĮ įȪȠ ʌĮȡĮʌȐȞȦ ȩȡȖĮȞĮ. (ȂȠȞȐįİȢ 13)
ȁȪıȘ
ǿıȤȪİȚ P 
( )=
50
100
, P 
( )=
40
100
țĮȚ
P  
( )=
10
100
.
Į) P  
( )= P 
( )+ P 
( ) P  
( )=
=
50
100
+
40
100

10
100
=
80
100
ȕ) P  
( )
( )= 1 P  
( )=
= 1
80
100
=
100
100

80
100
=
20
100
]ĬǼȂǹ 2_3383
ȉȠ 70% IJȦȞ țĮIJȠȓțȦȞ ȝȚĮȢ ʌȩȜȘȢ ȑȤİȚ ĮȣIJȠțȓȞȘIJȠ,
IJȠ 40% ȑȤİȚ ȝȘȤĮȞȐțȚ țĮȚ IJȠ 20% ȑȤİȚ țĮȚ ĮȣIJȠțȓ-
ȞȘIJȠ țĮȚ ȝȘȤĮȞȐțȚ. ǼʌȚȜȑȖȠȣȝİ IJȣȤĮȓĮ ȑȞĮȞ țȐIJȠȚțȠ
ĮȣIJȒȢ IJȘȢ ʌȩȜȘȢ. ȅȡȓȗȠȣȝİ IJĮ İȞįİȤȩȝİȞĮ:
A: Ƞ țȐIJȠȚțȠȢ ȞĮ ȑȤİȚ ĮȣIJȠțȓȞȘIJȠ
M: Ƞ țȐIJȠȚțȠȢ ȞĮ ȑȤİȚ ȝȘȤĮȞȐțȚ
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
7
Į) ȃĮ İțijȡȐıİIJİ ȜİțIJȚțȐ IJĮ İȞįİȤȩȝİȞĮ:
i)   ii)    iii)  (ȂȠȞȐįİȢ 9)
ȕ) ȃĮ ȕȡİȓIJİ IJȘȞ ʌȚșĮȞȩIJȘIJĮ Ƞ țȐIJȠȚțȠȢ ʌȠȣ İʌȚȜȑ-
ȤșȘțİ:
i) ȃĮ ȝȘȞ ȑȤİȚ ȝȘȤĮȞȐțȚ. (ȂȠȞȐįİȢ 7)
ii) ȃĮ ȝȘȞ ȑȤİȚ ȠȪIJİ ȝȘȤĮȞȐțȚ ȠȪIJİ ĮȣIJȠțȓȞȘIJȠ.
(ȂȠȞȐįİȢ 9)
ȁȪıȘ
Į) i) ȅ țȐIJȠȚțȠȢ ȑȤİȚ ĮȣIJȠțȓȞȘIJȠ Ȓ ȝȘȤĮȞȐțȚ.
ii) ȅ țȐIJȠȚțȠȢ ȑȤİȚ ȝȩȞȠ ȝȘȤĮȞȐțȚ.
iii) ȅ țȐIJȠȚțȠȢ įİȞ ȑȤİȚ ȝȘȤĮȞȐțȚ.
ȕ) i) P 
( )= 1 P 
( )= 1
40
100
=
100
100

40
100
=
60
100
ii) ǹȡȤȚțȐ ȕȡȓıțȠȣȝİ
P  
( )= P 
( )+ P 
( ) P  
( )=
=
70
100
+
40
100

20
100
=
90
100
, ȐȡĮ
P  
( )
( )= 1 P  
( )=
= 1
90
100
=
100
100

90
100
=
10
100
.
]ĬǼȂǹ 2_3384
ǹʌȩ IJȠȣȢ 180 ȝĮșȘIJȑȢ İȞȩȢ ȜȣțİȓȠȣ, 20 ȝĮșȘIJȑȢ
ıȣȝȝİIJȑȤȠȣȞ ıIJȘ șİĮIJȡȚțȒ ȠȝȐįĮ, 30 ȝĮșȘIJȑȢ ıȣȝ-
ȝİIJȑȤȠȣȞ ıIJȘȞ ȠȝȐįĮ ıIJȓȕȠȣ, İȞȫ 10 ȝĮșȘIJȑȢ ıȣȝ-
ȝİIJȑȤȠȣȞ țĮȚ ıIJȚȢ įȪȠ ȠȝȐįİȢ. ǼʌȚȜȑȖȠȣȝİ IJȣȤĮȓĮ
ȑȞĮȞ ȝĮșȘIJȒ IJȠȣ ȜȣțİȓȠȣ. ȅȡȓȗȠȣȝİ IJĮ İȞįİȤȩȝİȞĮ:
A: Ƞ ȝĮșȘIJȒȢ ıȣȝȝİIJȑȤİȚ ıIJȘ șİĮIJȡȚțȒ ȠȝȐįĮ
B: Ƞ ȝĮșȘIJȒȢ ıȣȝȝİIJȑȤİȚ ıIJȘȞ ȠȝȐįĮ ıIJȓȕȠȣ
Į) ȃĮ İțijȡȐıİIJİ ȜİțIJȚțȐ IJĮ İȞįİȤȩȝİȞĮ:
i)   ii)    iii)  (ȂȠȞȐįİȢ 9)
ȕ) ȃĮ ȕȡİȓIJİ IJȘȞ ʌȚșĮȞȩIJȘIJĮ Ƞ ȝĮșȘIJȒȢ ʌȠȣ İʌȚȜȑȤșȘțİ:
i) NĮ ȝȘ ıȣȝȝİIJȑȤİȚ ıİ țĮȝȓĮ ȠȝȐįĮ. (ȂȠȞȐįİȢ 9)
ii) NĮ ıȣȝȝİIJȑȤİȚ ȝȩȞȠ ıIJȘȞ ȠȝȐįĮ ıIJȓȕȠȣ.
(ȂȠȞȐįİȢ 7)
ȁȪıȘ
Į) i) ȅ ȝĮșȘIJȒȢ ıȣȝȝİIJȑȤİȚ ıIJȘ șİĮIJȡȚțȒ ȠȝȐįĮ Ȓ
ıIJȘȞ ȠȝȐįĮ ıIJȓȕȠȣ.
ii) ȅ ȝĮșȘIJȒȢ ıȣȝȝİIJȑȤİȚ ȝȩȞȠ ıIJȘȞ ȠȝȐįĮ ıIJȓȕȠȣ.
iii) ȅ ȝĮșȘIJȒȢ įİ ıȣȝȝİIJȑȤİȚ ıIJȘ șİĮIJȡȚțȒ ȠȝȐįĮ.
ȕ) i) ǹȡȤȚțȐ ȕȡȓıțȠȣȝİ
P  
( )= P 
( )+ P 
( ) P  
( )=
=
20
180
+
30
180

10
180
=
40
180
=
2
9
, ȐȡĮ
P  
( )
( )= 1 P  
( )= 1
2
9
=
9
9

2
9
=
7
9
.
ii) P   
( )= P 
( ) P  
( )=
=
30
180

10
180
=
20
180
=
1
9
]ĬǼȂǹ 2_3878
DzȞĮ ȁȪțİȚȠ ȑȤİȚ 400 ȝĮșȘIJȑȢ Įʌȩ IJȠȣȢ ȠʌȠȓȠȣȢ ȠȚ
200 İȓȞĮȚ ȝĮșȘIJȑȢ IJȘȢ ǹǯ IJȐȟȘȢ. ǹȞ İʌȚȜȑȟȠȣȝİ IJȣ-
ȤĮȓĮ ȑȞĮȞ ȝĮșȘIJȒ, Ș ʌȚșĮȞȩIJȘIJĮ ȞĮ İȓȞĮȚ ȝĮșȘIJȒȢ
IJȘȢ īǯ IJȐȟȘȢ İȓȞĮȚ 20%. ȃĮ ȕȡİȓIJİ:
Į) ȉȠ ʌȜȒșȠȢ IJȦȞ ȝĮșȘIJȫȞ IJȘȢ īǯ IJȐȟȘȢ. (ȂȠȞȐįİȢ 10)
ȕ) ȉȠ ʌȜȒșȠȢ IJȦȞ ȝĮșȘIJȫȞ IJȘȢ Ǻǯ IJȐȟȘȢ. (ȂȠȞȐįİȢ 5)
Ȗ) ȉȘȞ ʌȚșĮȞȩIJȘIJĮ Ƞ ȝĮșȘIJȒȢ ʌȠȣ İʌȚȜȑȟĮȝİ ȞĮ İȓȞĮȚ
IJȘȢ Ǻǯ IJȐȟȘȢ. (ȂȠȞȐįİȢ 10)
ȁȪıȘ
Į) DzıIJȦ ī IJȠ İȞįİȤȩȝİȞȠ Ƞ ȝĮșȘIJȒȢ ȞĮ İȓȞĮȚ IJȘȢ īǯ
IJȐȟȘȢ țĮȚ ȍ IJȠ ıȪȞȠȜȠ IJȦȞ ȝĮșȘIJȫȞ IJȠȣ ıȤȠȜİȓȠȣ.
ȉȩIJİ P 
( )=
 
( )
 
( )

20
100
=
N 
( )
400

100N 
( )= 20400  N 
( )= 80.
ȕ) ǹȞ ǹ țĮȚ Ǻ İȓȞĮȚ IJĮ İȞįİȤȩȝİȞĮ Ƞ ȝĮșȘIJȒȢ ȞĮ
İȓȞĮȚ IJȘȢ ǹǯ țĮȚ IJȘȢ Ǻǯ IJȐȟȘȢ ĮȞIJȓıIJȠȚȤĮ, IJȩIJİ
N 
( )+ N B
( )+ N 
( )=  
( )
200 +  
( )+80 = 400   
( )= 120.
Ȗ) P B
( )=
N B
( )
N 
( )
=
120
400
= 0,3
]ĬǼȂǹ 2_497
DzȞĮ IJȘȜİȠʌIJȚțȩ ʌĮȚȤȞȓįȚ ʌĮȓȗİIJĮȚ ȝİ ȗİȪȖȘ ĮȞIJȚʌȐȜȦȞ
IJȦȞ įȪȠ ijȪȜȦȞ. ȈIJȠ ʌĮȚȤȞȓįȚ ıȣȝȝİIJȑȤȠȣȞ 3 ȐȞIJȡİȢ:
Ƞ ǻȘȝȒIJȡȘȢ (ǻ), Ƞ ȀȫıIJĮȢ (Ȁ), Ƞ ȂȚȤȐȜȘȢ (Ȃ) țĮȚ 2
ȖȣȞĮȓțİȢ: Ș ǼȚȡȒȞȘ (Ǽ) țĮȚ Ș ǽȦȒ (ǽ). ǼʌȚȜȑȖȠȞIJĮȚ
ıIJȘȞ IJȪȤȘ ȑȞĮȢ ȐȞIJȡĮȢ țĮȚ ȝȚĮ ȖȣȞĮȓțĮ ȖȚĮ ȞĮ įȚĮȖȦ-
ȞȚıIJȠȪȞ țĮȚ țĮIJĮȖȡȐijȠȞIJĮȚ IJĮ ȠȞȩȝĮIJȐ IJȠȣȢ.
Į) ȃĮ ȕȡİșİȓ Ƞ įİȚȖȝĮIJȚțȩȢ ȤȫȡȠȢ IJȠȣ ʌİȚȡȐȝĮIJȠȢ.
(ȂȠȞȐįİȢ 10)
8
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȚȢ ʌȚșĮȞȩIJȘIJİȢ IJȦȞ ʌĮȡĮțȐIJȦ
İȞįİȤȠȝȑȞȦȞ:
ǹ: ȃĮ įȚĮȖȦȞȓıIJȘțĮȞ Ƞ ȀȫıIJĮȢ Ȓ Ƞ ȂȚȤȐȜȘȢ.
Ǻ: ȃĮ įȚĮȖȦȞȓıIJȘțİ Ș ǽȦȒ.
ī: ȃĮ ȝȘ įȚĮȖȦȞȓıIJȘțİ ȠȪIJİ Ƞ ȀȫıIJĮȢ ȠȪIJİ Ƞ ǻȘ-
ȝȒIJȡȘȢ. (ȂȠȞȐįİȢ 15)
ȁȪıȘ
Į) DzıIJȦ ȩIJȚ İʌȚȜȑȖȠȣȝİ ʌȡȫIJĮ ȐȞIJȡĮ țĮȚ ȝİIJȐ ȖȣȞĮȓțĮ.
ȅ įİȚȖȝĮIJȚțȩȢ ȤȫȡȠȢ IJȠȣ ʌİȚȡȐȝĮIJȠȢ İȓȞĮȚ

 = , , , , 	, 	
{ }.
ȕ) ǹʌȩ IJȠ ȍ ȕȡȓıțȠȣȝİ ȩIJȚ
 = 	, 	, 
, 

{ },  = , , 	
{ }
țĮȚ  = , 
{ }. ǼȓȞĮȚ  
( )= 6,
 
( )= 4,  
( )= 3 țĮȚ  
( )= 2.ǹʌȩ
IJȠȞ țȜĮıȚțȩ ȠȡȚıȝȩ IJȘȢ ʌȚșĮȞȩIJȘIJĮȢ ȑȤȠȣȝİ
 
( )=
 
( )
 
( )
=
4
6
=
2
3
,  
( )=
 
( )
 
( )
=
3
6
=
1
2
țĮȚ  
( )=
 
( )
 
( )
=
2
6
=
1
3
.
]ĬǼȂǹ 2_499
ǹʌȩ IJȠȣȢ ȝĮșȘIJȑȢ İȞȩȢ ȁȣțİȓȠȣ, IJȠ 25% ıȣȝȝİIJȑȤİȚ
ıIJȘ șİĮIJȡȚțȒ ȠȝȐįĮ, IJȠ 30% ıȣȝȝİIJȑȤİȚ ıIJȘȞ ȠȝȐ-
įĮ ʌȠįȠıijĮȓȡȠȣ țĮȚ IJȠ 15% IJȦȞ ȝĮșȘIJȫȞ ıȣȝȝİ-
IJȑȤİȚ țĮȚ ıIJȚȢ įȪȠ ȠȝȐįİȢ. ǼʌȚȜȑȖȠȣȝİ IJȣȤĮȓĮ ȑȞĮȞ
ȝĮșȘIJȒ. ǹȞ ȠȞȠȝȐıȠȣȝİ IJĮ İȞįİȤȩȝİȞĮ:
ǹ: «Ƞ ȝĮșȘIJȒȢ ȞĮ ıȣȝȝİIJȑȤİȚ ıIJȘ șİĮIJȡȚțȒ ȠȝȐįĮ»
țĮȚ
Ǻ: «Ƞ ȝĮșȘIJȒȢ ȞĮ ıȣȝȝİIJȑȤİȚ ıIJȘȞ ȠȝȐįĮ ʌȠįȠıijĮȓ-
ȡȠȣ»,
Į) ȞĮ İțijȡȐıİIJİ ȜİțIJȚțȐ IJĮ İȞįİȤȩȝİȞĮ:
i)   ii)   iii)    iv)  (ȂȠȞȐįİȢ 12)
ȕ) ȞĮ ȣʌȠȜȠȖȓıİIJİ IJȚȢ ʌȚșĮȞȩIJȘIJİȢ ʌȡĮȖȝĮIJȠʌȠȓȘ-
ıȘȢ IJȦȞ İȞįİȤȠȝȑȞȦȞ
i) Ƞ ȝĮșȘIJȒȢ ʌȠȣ İʌȚȜȑȤșȘțİ ȞĮ ıȣȝȝİIJȑȤİȚ ȝȩȞȠ
ıIJȘȞ ȠȝȐįĮ ʌȠįȠıijĮȓȡȠȣ,
ii) Ƞ ȝĮșȘIJȒȢ ʌȠȣ İʌȚȜȑȤșȘțİ ȞĮ ȝȘ ıȣȝȝİIJȑȤİȚ
ıİ țĮȝȓĮ ȠȝȐįĮ. (ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į) i) O ȝĮșȘIJȒȢ ıȣȝȝİIJȑȤİȚ ıIJȘ șİĮIJȡȚțȒ ȠȝȐįĮ Ȓ
ıIJȘȞ ȠȝȐįĮ ʌȠįȠıijĮȓȡȠȣ.
ii) O ȝĮșȘIJȒȢ ıȣȝȝİIJȑȤİȚ țĮȚ ıIJȘ șİĮIJȡȚțȒ ȠȝȐ-
įĮ țĮȚ ıIJȘȞ ȠȝȐįĮ ʌȠįȠıijĮȓȡȠȣ.
iii) O ȝĮșȘIJȒȢ ıȣȝȝİIJȑȤİȚ ȝȩȞȠ ıIJȘȞ ȠȝȐįĮ ʌȠ-
įȠıijĮȓȡȠȣ.
iv) O ȝĮșȘIJȒȢ įİ ıȣȝȝİIJȑȤİȚ ıIJȘ șİĮIJȡȚțȒ ȠȝȐįĮ.
ȕ) ǼȓȞĮȚ  
( )=
25
100
= 0,25,  
( )=
30
100
= 0,3
țĮȚ   
( )=
15
100
= 0,15.
i) ȉȠ İȞįİȤȩȝİȞȠ İȓȞĮȚ IJȠ    țĮȚ Ș ȗȘIJȠȪȝİȞȘ
ʌȚșĮȞȩIJȘIJĮ Ș    
( )=  
( )   
( )=
= 0,3 0,15 = 0,15.
ii) ȉȠ İȞįİȤȩȝİȞȠ İȓȞĮȚ IJȠ  
( ) țĮȚ Ș
ȗȘIJȠȪȝİȞȘ ʌȚșĮȞȩIJȘIJĮ Ș
  
( )
( )= 1   
( )=
= 1  
( )+  
( )   
( )
( )=
= 1 0,25+ 0,3 0,15
( )= 0,6.
4Į ĬǼȂǹȉǹ
]ĬǼȂǹ 4_1868
Ȉİ ȑȞĮ IJȝȒȝĮ IJȘȢ ǹǯ ȁȣțİȓȠȣ țȐʌȠȚȠȚ ȝĮșȘIJȑȢ
ʌĮȡĮțȠȜȠȣșȠȪȞ ȝĮșȒȝĮIJĮ ǹȖȖȜȚțȫȞ țĮȚ țȐʌȠȚȠȚ
īĮȜȜȚțȫȞ. Ǿ ʌȚșĮȞȩIJȘIJĮ ȑȞĮȢ ȝĮșȘIJȒȢ ȞĮ ȝȘȞ ʌĮ-
ȡĮțȠȜȠȣșİȓ īĮȜȜȚțȐ İȓȞĮȚ 0,8. Ǿ ʌȚșĮȞȩIJȘIJĮ ȑȞĮȢ
ȝĮșȘIJȒȢ ȞĮ ʌĮȡĮțȠȜȠȣșİȓ ǹȖȖȜȚțȐ İȓȞĮȚ IJİIJȡĮʌȜȐ-
ıȚĮ Įʌȩ IJȘȞ ʌȚșĮȞȩIJȘIJĮ ȞĮ ʌĮȡĮțȠȜȠȣșİȓ īĮȜȜȚțȐ.
ȉȑȜȠȢ, Ș ʌȚșĮȞȩIJȘIJĮ ȑȞĮȢ ȝĮșȘIJȒȢ ȞĮ ʌĮȡĮțȠȜȠȣșİȓ
ȝĮșȒȝĮIJĮ IJȠȣȜȐȤȚıIJȠȞ ȝȚĮȢ Įʌȩ IJȚȢ įȪȠ ȖȜȫııİȢ
İȓȞĮȚ 0,9.
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
9
Į) ǼʌȚȜȑȖȠȣȝİ ȑȞĮȞ ȝĮșȘIJȒ ıIJȘȞ IJȪȤȘ.
i) ȆȠȚĮ İȓȞĮȚ Ș ʌȚșĮȞȩIJȘIJĮ ĮȣIJȩȢ ȞĮ ʌĮȡĮțȠȜȠȣ-
șİȓ ȝĮșȒȝĮIJĮ țĮȚ IJȦȞ įȪȠ ȖȜȦııȫȞ;
(ȂȠȞȐįİȢ 9)
ii) ȆȠȚĮ İȓȞĮȚ Ș ʌȚșĮȞȩIJȘIJĮ ĮȣIJȩȢ ȞĮ ʌĮȡĮțȠȜȠȣ-
șİȓ ȝĮșȒȝĮIJĮ ȝȩȞȠ ȝȚĮȢ Įʌȩ IJȚȢ įȪȠ ȖȜȫııİȢ;
(ȂȠȞȐįİȢ 9)
ȕ) ǹȞ 14 ȝĮșȘIJȑȢ ʌĮȡĮțȠȜȠȣșȠȪȞ ȝȩȞȠ ǹȖȖȜȚțȐ, ʌȩ-
ıȠȚ İȓȞĮȚ ȠȚ ȝĮșȘIJȑȢ IJȠȣ IJȝȒȝĮIJȠȢ;
(ȂȠȞȐįİȢ 7)
ȁȪıȘ
DzıIJȦ ǹ IJȠ İȞįİȤȩȝİȞȠ «Ƞ ȝĮșȘIJȒȢ ȞĮ ʌĮȡĮțȠȜȠȣ-
șİȓ ǹȖȖȜȚțȐ» țĮȚ ī IJȠ İȞįİȤȩȝİȞȠ «Ƞ ȝĮșȘIJȒȢ ȞĮ
ʌĮȡĮțȠȜȠȣșİȓ īĮȜȜȚțȐ». ǹʌȩ IJĮ įİįȠȝȑȞĮ ȑȤȠȣȝİ:
• P 
( )= 0,8 1 P 
( )= 0,8 
P 
( )= 1 0,8  P 
( )= 0,2
• P 
( )= 4P 
( )= 40,2 = 0,8
• P  
( )= 0,9
Į) i) ȉȠ İȞįİȤȩȝİȞȠ ȞĮ ʌĮȡĮțȠȜȠȣșİȓ ȝĮșȒȝĮIJĮ
țĮȚ IJȦȞ įȪȠ ȖȜȦııȫȞ İȓȞĮȚ IJȠ  . DZȡĮ
P  
( )= P 
( )+ P 
( ) P  
( )
0,9 = 0,8+ 0,2  P  
( )
P  
( )= 1 0,9  P  
( )= 0,1.
ii) ȉȠ İȞįİȤȩȝİȞȠ ȞĮ ʌĮȡĮțȠȜȠȣșİȓ ȝĮșȒȝĮIJĮ
ȝȩȞȠ ȝȚĮȢ Įʌȩ IJȚȢ įȪȠ ȖȜȫııİȢ İȓȞĮȚ IJȠ
 
( )   
( ), ȝİ IJĮ İȞįİȤȩȝİȞĮ
 
( ) țĮȚ   
( ) ȞĮ İȓȞĮȚ ĮıȣȝȕȓȕĮıIJĮ. DZȡĮ
P  
( )   
( )
( )= P  
( )+ P   
( )=
= P 
( ) P  
( )+ P 
( ) P  
( )=
= 0,8 0,1+ 0,2  0,1= 0,8.
ȕ) DzıIJȦ Ȟ IJȠ ʌȜȒșȠȢ IJȦȞ ȝĮșȘIJȫȞ IJȠȣ IJȝȒȝĮIJȠȢ.
ǼʌİȚįȒ Ș ʌȚșĮȞȩIJȘIJĮ ȑȞĮȢ ȝĮșȘIJȒȢ ȞĮ ʌĮȡĮțȠ-
ȜȠȣșİȓ ȝȩȞȠ ǹȖȖȜȚțȐ İȓȞĮȚ
P  
( )= P 
( ) P  
( )= 0,8 0,1= 0,7,
ȑȤȠȣȝİ
P  
( )=
  
( )
 
( )
 0,7 =
14


0,7 = 14   =
14
0,7
  = 20.
]ĬǼȂǹ 4_1936
Ǿ İȟȑIJĮıȘ ıİ ȑȞĮȞ įȚĮȖȦȞȚıȝȩ IJȦȞ ȂĮșȘȝĮIJȚțȫȞ
ʌİȡȚȜȐȝȕĮȞİ įȪȠ șȑȝĮIJĮ IJĮ ȠʌȠȓĮ ȑʌȡİʌİ ȞĮ ĮʌĮ-
ȞIJȒıȠȣȞ ȠȚ İȟİIJĮȗȩȝİȞȠȚ. īȚĮ ȞĮ ȕĮșȝȠȜȠȖȘșȠȪȞ ȝİ
ȐȡȚıIJĮ ȑʌȡİʌİ ȞĮ ĮʌĮȞIJȒıȠȣȞ țĮȚ ıIJĮ įȪȠ șȑȝĮIJĮ,
İȞȫ ȖȚĮ ȞĮ ʌİȡȐıȠȣȞ IJȘȞ İȟȑIJĮıȘ ȑʌȡİʌİ ȞĮ ĮʌĮȞIJȒ-
ıȠȣȞ ıİ ȑȞĮ IJȠȣȜȐȤȚıIJȠȞ Įʌȩ IJĮ įȪȠ șȑȝĮIJĮ. ȈIJȠȞ
įȚĮȖȦȞȚıȝȩ İȟİIJȐıșȘțĮȞ 100 ȝĮșȘIJȑȢ. ȈIJȠ ʌȡȫIJȠ
șȑȝĮ ĮʌȐȞIJȘıĮȞ ıȦıIJȐ 60 ȝĮșȘIJȑȢ. ȈIJȠ įİȪIJİȡȠ
șȑȝĮ ĮʌȐȞIJȘıĮȞ ıȦıIJȐ 50 ȝĮșȘIJȑȢ, İȞȫ țĮȚ ıIJĮ
įȪȠ șȑȝĮIJĮ ĮʌȐȞIJȘıĮȞ ıȦıIJȐ 30 ȝĮșȘIJȑȢ. ǼʌȚȜȑ-
ȖȠȣȝİ IJȣȤĮȓĮ ȑȞĮȞ ȝĮșȘIJȒ.
Į) ȃĮ ʌĮȡĮıIJȒıİIJİ ȝİ įȚȐȖȡĮȝȝĮ Venn țĮȚ ȝİ IJȘ
ȤȡȒıȘ IJȘȢ ȖȜȫııĮȢ IJȦȞ ıȣȞȩȜȦȞ (ȠȡȓȗȠȞIJĮȢ IJĮ
țĮIJȐȜȜȘȜĮ İȞįİȤȩȝİȞĮ) IJĮ ʌĮȡĮʌȐȞȦ įİįȠȝȑȞĮ.
(ȂȠȞȐįİȢ 13)
ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ ʌȚșĮȞȩIJȘIJĮ Ƞ ȝĮșȘIJȒȢ:
i) ȃĮ ĮʌȐȞIJȘıİ ıȦıIJȐ ȝȩȞȠ ıIJȠ įİȪIJİȡȠ șȑȝĮ.
ii) ȃĮ ȕĮșȝȠȜȠȖȘșİȓ ȝİ ȐȡȚıIJĮ.
iii) ȃĮ ȝȘȞ ĮʌȐȞIJȘıİ ıȦıIJȐ ıİ țĮȞȑȞĮ șȑȝĮ.
iv) ȃĮ ʌȑȡĮıİ IJȘȞ İȟȑIJĮıȘ. (ȂȠȞȐįİȢ 12)
ȁȪıȘ
Į) ȅȡȓȗȠȣȝİ IJĮ İȞįİȤȩȝİȞĮ
 =
{ },
 =
,
 =
țĮȚ
  =
.
ǼȓȞĮȚ  
( )= 100,  
( )= 60 țĮȚ
 
( )= 50. ǼʌȓıȘȢ,   
( )= 30,
ȐȡĮ    , ȠʌȩIJİ IJĮ İȞįİȤȩȝİȞĮ įİȞ İȓȞĮȚ
ĮıȣȝȕȓȕĮıIJĮ. ǼʌȚʌȜȑȠȞ,
  
( )=  
( )   
( )=
= 60  30 = 30  0 țĮȚ
   
( )=  
( )   
( )=
= 50  30 = 20  0.
DZȡĮ     țĮȚ     . ȉȠ įȚȐȖȡĮȝȝĮ
Venn İȓȞĮȚ IJȠ ĮțȩȜȠȣșȠ:
10
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
ȕ) ǹʌȩ IJȠȞ țȜĮıȚțȩ ȠȡȚıȝȩ IJȘȢ ʌȚșĮȞȩIJȘIJĮȢ
ȑȤȠȣȝİ 
 

 

 

60
100
 0,6,

 

 

 

50
100
 0,5 țĮȚ

 
30
100
 0,3.
i) 
  
  
  0,5 0,3 0,2
ii) 
  0,3
iii) 
 

  1 
 
 1 
  
  
 

 
 1 0,6  0,5 0,3

  0,2
iv) P
  
  
  
 
 0,6  0,5 0,3 0,8
]ĬǼȂǹ 4_2064
Ȉİ ȝȚĮ ȠȝȐįĮ ʌȠȣ ĮʌȠIJİȜİȓIJĮȚ Įʌȩ 7 ȐȞįȡİȢ țĮȚ 13 Ȗȣ-
ȞĮȓțİȢ, 4 Įʌȩ IJȠȣȢ ȐȞįȡİȢ țĮȚ 2 Įʌȩ IJȚȢ ȖȣȞĮȓțİȢ ʌĮȓ-
ȗȠȣȞ ıțȐțȚ. ǼʌȚȜȑȖȠȣȝİ IJȣȤĮȓĮ ȑȞĮ Įʌȩ IJĮ ȐIJȠȝĮ ĮȣIJȐ.
Į) ȃĮ ʌĮȡĮıIJȒıİIJİ ȝİ įȚȐȖȡĮȝȝĮ Venn țĮȚ ȝİ IJȘ
ȤȡȒıȘ IJȘȢ ȖȜȫııĮȢ IJȦȞ ıȣȞȩȜȦȞ IJȠ İȞįİȤȩȝİȞȠ
IJȠ ȐIJȠȝȠ ʌȠȣ İʌȚȜȑȤșȘțİ:
i) ȞĮ İȓȞĮȚ ȐȞįȡĮȢ Ȓ ȞĮ ʌĮȓȗİȚ ıțȐțȚ, (ȂȠȞȐįİȢ 6)
ii) ȞĮ ȝȘȞ İȓȞĮȚ ȐȞįȡĮȢ țĮȚ ȞĮ ʌĮȓȗİȚ ıțȐțȚ.
(ȂȠȞȐįİȢ 6)
ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ ʌȚșĮȞȩIJȘIJĮ IJȠ ȐIJȠȝȠ ʌȠȣ
İʌȚȜȑȤșȘțİ ȞĮ İȓȞĮȚ ȖȣȞĮȓțĮ țĮȚ ȞĮ ʌĮȓȗİȚ ıțȐțȚ.
(ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į) DzıIJȦ A IJȠ ıȪȞȠȜȠ IJȦȞ ĮȞįȡȫȞ, ī IJȠ ıȪȞȠȜȠ
IJȦȞ ȖȣȞĮȚțȫȞ țĮȚ Ȉ IJȠ ıȪȞȠȜȠ IJȦȞ ĮIJȩȝȦȞ ʌȠȣ
ʌĮȓȗȠȣȞ ıțȐțȚ.
i) ȉȠ İȞįİȤȩȝİȞȠ İȓȞĮȚ IJȠ .
ii) ȉȠ İȞįİȤȩȝİȞȠ İȓȞĮȚ IJȠ  , ĮijȠȪ
 .
ǼʌȓıȘȢ, İȓȞĮȚ 
  4
țĮȚ 
  2 , ȠʌȩIJİ IJĮ
įȚĮȖȡȐȝȝĮIJĮ Venn ȖȚĮ IJĮ İȡȦIJȒȝĮIJĮ (i) țĮȚ
(ii) İȓȞĮȚ IJĮ ĮțȩȜȠȣșĮ:
i)
ii)
ȕ) ǼȓȞĮȚ 
  7, 
  13 țĮȚ

  
  
  7 13 20, ȩʌȠȣ
ȍ İȓȞĮȚ Ƞ įİȚȖȝĮIJȚțȩȢ ȤȫȡȠȢ IJȠȣ ʌİȚȡȐȝĮIJȠȢ. ȉȠ
İȞįİȤȩȝİȞȠ ȞĮ İȓȞĮȚ ȖȣȞĮȓțĮ țĮȚ ȞĮ ʌĮȓȗİȚ ıțȐțȚ
İȓȞĮȚ IJȠ ȝİ 
  2. ǼʌȠȝȑȞȦȢ Įʌȩ
IJȠȞ țȜĮıȚțȩ ȠȡȚıȝȩ IJȘȢ ʌȚșĮȞȩIJȘIJĮȢ ȑȤȠȣȝİ

 

 

 

2
20
 0,1.
]ĬǼȂǹ 4_2073
ȅȚ įȡȐıIJİȢ ȝȚĮȢ țȜȠʌȒȢ įȚȑijȣȖĮȞ ȝ’ ȑȞĮ ĮȣIJȠțȓȞȘIJȠ
țĮȚ ȝİIJȐ Įʌȩ IJȘȞ țĮIJȐșİıȘ įȚĮijȩȡȦȞ ȝĮȡIJȪȡȦȞ ȑȖȚ-
Ȟİ ȖȞȦıIJȩ ȩIJȚ Ƞ IJİIJȡĮȥȒijȚȠȢ ĮȡȚșȝȩȢ IJȘȢ ʌȚȞĮțȓįĮȢ
IJȠȣ ĮȣIJȠțȚȞȒIJȠȣ İȓȤİ ʌȡȫIJȠ țĮȚ IJȑIJĮȡIJȠ ȥȘijȓȠ IJȠ 2.
ȉȠ įİȪIJİȡȠ ȥȘijȓȠ ȒIJĮȞ 6 Ȓ 8 Ȓ 9 țĮȚ IJȠ IJȡȓIJȠ ȥȘijȓȠ
IJȠȣ ȒIJĮȞ 4 Ȓ 7.
Į) Ȃİ ȤȡȒıȘ įİȞįȡȠįȚĮȖȡȐȝȝĮIJȠȢ, ȞĮ ʌȡȠıįȚȠȡȓıİ-
IJİ IJȠ ıȪȞȠȜȠ IJȦȞ įȣȞĮIJȫȞ ĮȡȚșȝȫȞ IJȘȢ ʌȚȞĮțȓįĮȢ
IJȠȣ ĮȣIJȠțȚȞȒIJȠȣ. (ȂȠȞȐįİȢ 13)
ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȚȢ ʌȚșĮȞȩIJȘIJİȢ IJȦȞ ʌĮȡĮțȐIJȦ
İȞįİȤȠȝȑȞȦȞ:
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
11
ǹ: ȉȠ IJȡȓIJȠ ȥȘijȓȠ IJȠȣ ĮȡȚșȝȠȪ IJȘȢ ʌȚȞĮțȓįĮȢ İȓȞĮȚ
IJȠ 7.
Ǻ: ȉȠ įİȪIJİȡȠ ȥȘijȓȠ IJȠȣ ĮȡȚșȝȠȪ IJȘȢ ʌȚȞĮțȓįĮȢ
İȓȞĮȚ 6 Ȓ 8.
ī: ȉȠ įİȪIJİȡȠ ȥȘijȓȠ IJȠȣ ĮȡȚșȝȠȪ IJȘȢ ʌȚȞĮțȓįĮȢ
įİȞ İȓȞĮȚ ȠȪIJİ 8 ȠȪIJİ 9. (ȂȠȞȐįİȢ 12)
ȁȪıȘ
Į)
ȉȠ ıȪȞȠȜȠ IJȦȞ įȣȞĮIJȫȞ ĮȡȚșȝȫȞ IJȘȢ ʌȚȞĮțȓįĮȢ
IJȠȣ ĮȣIJȠțȚȞȒIJȠȣ İȓȞĮȚ
 = 2642, 2672, 2842, 2872, 2942, 2972
{ }.
ȕ)  = 2672, 2872, 2972
{ }, ȐȡĮ
P 
( )=
 
( )
 
( )
=
3
6
=
1
2
.
 = 2642, 2672, 2842, 2872
{ }, ȐȡĮ
P 
( )=
 
( )
 
( )
=
4
6
=
2
3
.
 = 2642, 2672
{ }, ȐȡĮ P 
( )=
 
( )
 
( )
=
2
6
=
1
3
.
]ĬǼȂǹ 4_2080
ǹʌȩ ȝȚĮ ȑȡİȣȞĮ ȝİIJĮȟȪ ȝĮșȘIJȫȞ İȞȩȢ ȁȣțİȓȠȣ IJȘȢ
ȤȫȡĮȢ, ʌȡȠȑțȣȥİ ȩIJȚ IJȠ 80% IJȦȞ ȝĮșȘIJȫȞ ʌȓȞİȚ
ȖȐȜĮ Ȓ IJȡȫİȚ įȣȠ ijȑIJİȢ ȥȦȝȓ ȝİ ȕȠȪIJȣȡȠ țĮȚ ȝȑȜȚ
ıIJȠ ıʌȓIJȚ IJȠ ʌȡȦȓ. ǼʌȚȜȑȖȠȣȝİ ȑȞĮȞ ȝĮșȘIJȒ ıIJȘȞ
IJȪȤȘ țĮȚ ȠȡȓȗȠȣȝİ IJĮ İȞįİȤȩȝİȞĮ:
ǹ: Ƞ ȝĮșȘIJȒȢ ʌȓȞİȚ ȖȐȜĮ
B: Ƞ ȝĮșȘIJȒȢ IJȡȫİȚ įȣȠ ijȑIJİȢ ȥȦȝȓ ȝİ ȕȠȪIJȣȡȠ țĮȚ
ȝȑȜȚ
ǹȞ Įʌȩ IJȠ ıȪȞȠȜȠ IJȦȞ ȝĮșȘIJȫȞ IJȠ 60% ʌȓȞİȚ ȖȐȜĮ țĮȚ
IJȠ 45% IJȡȫİȚ įȣȠ ijȑIJİȢ ȥȦȝȓ ȝİ ȕȠȪIJȣȡȠ țĮȚ ȝȑȜȚ,
Į) ȃĮ ȠȡȓıİIJİ ȝİ ȤȡȒıȘ IJȘȢ ȖȜȫııĮȢ IJȦȞ ıȣȞȩȜȦȞ
IJĮ İȞįİȤȩȝİȞĮ:
i) Ƞ ȝĮșȘIJȒȢ ȠȪIJİ ȞĮ ʌȓȞİȚ ȖȐȜĮ ȠȪIJİ ȞĮ IJȡȫİȚ
įȣȠ ijȑIJİȢ ȥȦȝȓ ȝİ ȕȠȪIJȣȡȠ țĮȚ ȝȑȜȚ
ii) Ƞ ȝĮșȘIJȒȢ ȞĮ ʌȓȞİȚ ȖȐȜĮ țĮȚ ȞĮ IJȡȫİȚ įȣȠ ijȑ-
IJİȢ ȥȦȝȓ ȝİ ȕȠȪIJȣȡȠ țĮȚ ȝȑȜȚ
iii) Ƞ ȝĮșȘIJȒȢ ȞĮ ʌȓȞİȚ ȝȩȞȠ ȖȐȜĮ. (ȂȠȞȐįİȢ 12)
ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ ʌȚșĮȞȩIJȘIJĮ ʌȡĮȖȝĮIJȠʌȠȓȘ-
ıȘȢ IJȦȞ İȞįİȤȠȝȑȞȦȞ IJȠȣ Į) İȡȦIJȒȝĮIJȠȢ.
(ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į) i)    =  
( )
ii)  
iii)  
ȕ) ǹʌȩ IJĮ įİįȠȝȑȞĮ IJȘȢ ȐıțȘıȘȢ ȑȤȠȣȝİ
  
( )=
80
100
= 0,8,
 
( )=
60
100
= 0,6 țĮȚ  
( )=
45
100
= 0,45.
ǼʌȠȝȑȞȦȢ
  
( )
( )= 1   
( )= 1 0,8 = 0,2,
  
( )=  
( )+  
( )   
( )
  
( )=  
( )+  
( )   
( )=
= 0,6 + 0,45 0,8 = 0,25 țĮȚ
  
( )=  
( )   
( )= 0,6  0,25 = 0,35.
]ĬǼȂǹ 4_6144
ȂȚĮ ȘȝȑȡĮ, ıIJȠ IJȝȒȝĮ ǹ1 İȞȩȢ ȁȣțİȓȠȣ, IJȠ
1
4
IJȦȞ
ȝĮșȘIJȫȞ įİȞ ȑȤİȚ įȚĮȕȐıİȚ ȠȪIJİ DZȜȖİȕȡĮ ȠȪIJİ
īİȦȝİIJȡȓĮ, İȞȫ IJo
1
3
IJȦȞ ȝĮșȘIJȫȞ ȑȤİȚ įȚĮȕȐıİȚ
țĮȚ IJĮ įȪȠ ĮȣIJȐ ȝĮșȒȝĮIJĮ. Ǿ țĮșȘȖȒIJȡȚĮ IJȦȞ ȝĮ-
șȘȝĮIJȚțȫȞ İʌȚȜȑȖİȚ IJȣȤĮȓĮ ȑȞĮȞ ȝĮșȘIJȒ ȖȚĮ ȞĮ IJȠȞ
İȟİIJȐıİȚ. ȅȡȓȗȠȣȝİ IJĮ İȞįİȤȩȝİȞĮ:
ǹ: Ƞ ȝĮșȘIJȒȢ ȞĮ ȑȤİȚ įȚĮȕȐıİȚ DZȜȖİȕȡĮ
ī: Ƞ ȝĮșȘIJȒȢ ȞĮ ȑȤİȚ įȚĮȕȐıİȚ īİȦȝİIJȡȓĮ
Į) ȃĮ ʌĮȡĮıIJȒıİIJİ ȝİ įȚȐȖȡĮȝȝĮ Venn țĮȚ ȝİ ȤȡȒ-
ıȘ IJȘȢ ȖȜȫııĮȢ IJȦȞ ıȣȞȩȜȦȞ IJĮ įİįȠȝȑȞĮ IJȠȣ
ʌȡȠȕȜȒȝĮIJȠȢ. (ȂȠȞȐįİȢ 9)
ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ ʌȚșĮȞȩIJȘIJĮ Ƞ ȝĮșȘIJȒȢ:
i) ȞĮ ȑȤİȚ įȚĮȕȐıİȚ ȑȞĮ IJȠȣȜȐȤȚıIJȠȞ Įʌȩ IJĮ įȪȠ
ȝĮșȒȝĮIJĮ
ii) ȞĮ ȑȤİȚ įȚĮȕȐıİȚ ȑȞĮ ȝȩȞȠ Įʌȩ IJĮ įȣȠ ȝĮșȒ-
ȝĮIJĮ. (ȂȠȞȐįİȢ 8)
12
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
Ȗ) ǹȞ ȖȞȦȡȓȗȠȣȝİ İʌȚʌȜȑȠȞ ȩIJȚ ȠȚ ȝȚıȠȓ Įʌȩ IJȠȣȢ
ȝĮșȘIJȑȢ ȑȤȠȣȞ įȚĮȕȐıİȚ īİȦȝİIJȡȓĮ, ȞĮ ȕȡİȓIJİ IJȘȞ
ʌȚșĮȞȩIJȘIJĮ Ƞ ȝĮșȘIJȒȢ:
i) ȞĮ ȑȤİȚ įȚĮȕȐıİȚ īİȦȝİIJȡȓĮ
ii) ȞĮ ȑȤİȚ įȚĮȕȐıİȚ DZȜȖİȕȡĮ (ȂȠȞȐįİȢ 8)
ȁȪıȘ
Į) ȉȠ İȞįİȤȩȝİȞȠ Ƞ ȝĮșȘIJȒȢ ȞĮ ȝȘȞ ȑȤİȚ įȚĮȕȐıİȚ
ȠȪIJİ DZȜȖİȕȡĮ ȠȪIJİ īİȦȝİIJȡȓĮ ʌĮȡȚıIJȐȞİIJĮȚ ȝİ
ȤȡȒıȘ įȚĮȖȡȐȝȝĮIJȠȢ Venn ȦȢ İȟȒȢ:
țĮȚ ȝİ ȤȡȒıȘ IJȘȢ ȖȜȫııĮȢ IJȦȞ ıȣȞȩȜȦȞ ȑȤȠȣȝİ
P 
 

 
1
4
, İȞȫ ȖȚĮ IJȠ İȞįİȤȩȝİȞȠ Ƞ
ȝĮșȘIJȒȢ ȞĮ ȑȤİȚ įȚĮȕȐıİȚ țĮȚ IJĮ įȪȠ ȝĮșȒȝĮIJĮ
ȑȤȠȣȝİ:
ȝİ P
 
1
3
.
ȕ) i) P
  1 P 
 

 
 1
1
4

4
4
1
4

3
4
ii) P 
  
 

 

  
 
 P
  P
 
 P
  P
  P
  P
 
 P
  P
 

3
4
1
3

9
12
4
12

5
12
Ȗ) i) P
 

 

 

1
2

 

 

1
2
ii) P
  P
  P
  P
 
3
4
 P
 
1
2
1
3
P
 
3
4
1
2

1
3
P
 
9
12
6
12

4
12
P
 
7
12
ˆ¢‘ƒš‘£˜™¡˜ ‘¢˜…š¡˜:
£‘¨£¡£—£•Œ – š•…¡„¡˜ ‘ˆ¡„•˜‡—Œ – ˆ‘¢‘ƒ¡ £¡ˆ¡˜—Œ—
2Į ĬǼȂǹȉǹ
]ĬǼȂǹ 2_1070
ǻȓȞȠȞIJĮȚ ȠȚ ʌȡĮȖȝĮIJȚțȠȓ ĮȡȚșȝȠȓ Į, ȕ, Ȗ, į ȝİ 0
țĮȚ ȫıIJİ ȞĮ ȚıȤȪȠȣȞ:

 4 țĮȚ 
1
4
Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ  3 țĮȚ  5 .
(ȂȠȞȐįİȢ 10)
ȕ) ȃĮ ȕȡİȓIJİ IJȘȞ IJȚȝȒ IJȘȢ ʌĮȡȐıIJĮıȘȢ:


(ȂȠȞȐįİȢ 15)
ȁȪıȘ
Į) ǯǼȤȠȣȝİ

 4   4
 4  3 țĮȚ 
1
4
 4  4   5 .
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
13
ȕ) ȆȡȑʌİȚ     0     
( ) 0 
  0    
( ), ʌȠȣ ȚıȤȪİȚ. DzȤȠȣȝİ:
 =
 + 
  
=
3  + 
 5  
=
=
3 + 
5  
=
4
4
= 1.
]ĬǼȂǹ 2_1080
DzıIJȦ x, y ʌȡĮȖȝĮIJȚțȠȓ ĮȡȚșȝȠȓ ȫıIJİ ȞĮ ȚıȤȪİȚ:
4x +5y
x  4y
= 2.
Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ: y = 2x. (ȂȠȞȐįİȢ 12)
ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ IJȚȝȒ IJȘȢ ʌĮȡȐıIJĮıȘȢ:
 =
2x2
+ 3y2
+ xy
xy
. (ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į)
4x 5y
x 4y
 2
x 4 y
4x 5y  2 x 4y

 
4x +5y = 2x +8y  3y = 6x  y = 2x
ȕ) 
2x2
 3y2
 xy
xy

y2x 2x2
 3 2x

 
2
 x 2x

 
x 2x

 

=
2x2
+12x2
+ 2x2
2x2
=
16x2
2x2
= 8
]ĬǼȂǹ 2_3874
ǻȓȞȠȞIJĮȚ ȠȚ ȝȘ ȝȘįİȞȚțȠȓ ʌȡĮȖȝĮIJȚțȠȓ ĮȡȚșȝȠȓ Į, ȕ
ȝİ    ȖȚĮ IJȠȣȢ ȠʌȠȓȠȣȢ ȚıȤȪİȚ:
2
+1
2
+1
=


Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ ȠȚ ĮȡȚșȝȠȓ Į țĮȚ ȕ İȓȞĮȚ ĮȞIJȓ-
ıIJȡȠijȠȚ. (ȂȠȞȐįİȢ 13)
ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ IJȚȝȒ IJȘȢ ʌĮȡȐıIJĮıȘȢ:
 =
22
 3
( )
8
2
 
( )
25
(ȂȠȞȐįİȢ 12)
ȁȪıȘ
Į)
2
+1
2
+1
=


 2
 +  = 2
+   2
  2
=
 
 
0
 =
  
  
  = 1, ȐȡĮ ȠȚ ĮȡȚșȝȠȓ Į, ȕ İȓȞĮȚ
ĮȞIJȓıIJȡȠijȠȚ.
ȕ)  =
22
 3
( )
8
2
 
( )
25
=
22
 24
2
25
 25
=
22
 24
23
 25
=
=
22
23

24
25
=
1


1

=
1

= 1
„˜‘£‘‡— ˆ¢‘ƒš‘£˜™ž  ‘¢˜…šž 
2Į ĬǼȂǹȉǹ
]ĬǼȂǹ 2_486
ǹȞ 0   1, IJȩIJİ
Į) ȞĮ ĮʌȠįİȓȟİIJİ ȩIJȚ: 3
 , (ȂȠȞȐįİȢ 13)
ȕ) ȞĮ įȚĮIJȐȟİIJİ Įʌȩ IJȠȞ ȝȚțȡȩIJİȡȠ ʌȡȠȢ IJȠȞ ȝİȖĮȜȪ-
IJİȡȠ IJȠȣȢ ĮȡȚșȝȠȪȢ:
0, 3
, 1, ,
1

(ȂȠȞȐįİȢ 12)
ȁȪıȘ
Į) 3
   3
   0   2
1
( ) 0 
  1
( )  +1
( ) 0. ǹʌȩ IJȘ ıȤȑıȘ 0   1
ȑȤȠȣȝİ 0   țĮȚ 0   1  +1
01
0   +1 țĮȚ
 1  1 0. ǹʌȩ IJȠȞ țĮȞȩȞĮ ʌȡȠıȒȝȦȞ
IJȠȣ ʌȠȜȜĮʌȜĮıȚĮıȝȠȪ ʌȡȠțȪʌIJİȚ
  1
( )  +1
( ) 0.
ȕ) ǹʌȩ IJȠ İȡȫIJȘȝĮ (Į) ȑȤȠȣȝİ 3
 . ǼʌȓıȘȢ,
0    0  3
țĮȚ 0   1
1

1.
DZȡĮ ȠȚ ĮȡȚșȝȠȓ įȚĮIJȐııȠȞIJĮȚ ȦȢ İȟȒȢ:
0  3
  1
1

.
14
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
]ĬǼȂǹ 2_487
Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ ȖȚĮ ȠʌȠȚȠȣıįȒʌȠIJİ ʌȡĮȖȝĮIJȚ-
țȠȪȢ ĮȡȚșȝȠȪȢ x, y ȚıȤȪİȚ:
x 1
( )
2
+ y + 3
( )
2
= x2
+ y2
 2x + 6y +10
(ȂȠȞȐįİȢ 12)
ȕ) ȃĮ ȕȡİȓIJİ IJȠȣȢ ĮȡȚșȝȠȪȢ x, y ȫıIJİ:
x2
+ y2
 2x + 6y +10 = 0. (ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į) x 1
( )
2
+ y + 3
( )
2
= x2
 2x +1
( )+ y2
+ 6y + 9
( )=
= x2
+ y2
 2x + 6y +10
ȕ) x2
 y2
2x  6y 10  0
( )
x 1
( )
2
+ y + 3
( )
2
= 0 
x 1= 0  y + 3= 0
( ) x = 1  y = 3
( )
]ĬǼȂǹ 2_506
ǹȞ 2  x  3 țĮȚ 1 y  2, ȞĮ ȕȡİȓIJİ ȝİIJĮȟȪ ʌȠȚȦȞ
ȠȡȓȦȞ ȕȡȓıțİIJĮȚ Ș IJȚȝȒ țĮșİȝȚȐȢ Įʌȩ IJȚȢ ʌĮȡĮțȐIJȦ
ʌĮȡĮıIJȐıİȚȢ:
Į) x + y (ȂȠȞȐįİȢ 5)
ȕ) 2x  3y (ȂȠȞȐįİȢ 10)
Ȗ)
x
y
(ȂȠȞȐįİȢ 10)
ȁȪıȘ
Į)
2 x 3
1 y 2
()
3 x  y 5
ȕ)
2 x 3
1 y 2 3

 
2 4 2x 6
6 3y 3
()
2 2x 3y 3
Ȗ)
2 x 3
1 y 2 1, y,2#0
2 x 3
1
2
1
y
1

 
1
x
y
3
]ĬǼȂǹ 2_1092
ǹʌȩ IJȠ ȠȡșȠȖȫȞȚȠ ABZH ĮijĮȚȡȑșȘțİ IJȠ IJİIJȡȐȖȦȞȠ
īǻǼǾ ʌȜİȣȡȐȢ y.
Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ Ș ʌİȡȓȝİIJȡȠȢ IJȠȣ ȖȡĮȝȝȠıțȚ-
ĮıȝȑȞȠȣ ıȤȒȝĮIJȠȢ ǼǽǺǹīǻ ʌȠȣ ĮʌȑȝİȚȞİ įȓȞİIJĮȚ
Įʌȩ IJȘ ıȤȑıȘ:  = 2x + 4y
(ȂȠȞȐįİȢ 10)
ȕ) ǹȞ ȚıȤȪİȚ 5  x  8 țĮȚ 1 y  2, ȞĮ ȕȡİȓIJİ ȝİIJĮ-
ȟȪ ʌȠȚȦȞ ĮȡȚșȝȫȞ ȕȡȓıțİIJĮȚ Ș IJȚȝȒ IJȘȢ ʌİȡȚȝȑIJȡȠȣ
IJȠȣ ʌĮȡĮʌȐȞȦ ȖȡĮȝȝȠıțȚĮıȝȑȞȠȣ ıȤȒȝĮIJȠȢ.
(ȂȠȞȐįİȢ 15)
ȁȪıȘ
Į) ǹʌȩ IJȠ ıȤȒȝĮ ȑȤȠȣȝİ  = x  y țĮȚ  = 2y,
ȐȡĮ Ș ʌİȡȓȝİIJȡȠȢ İȓȞĮȚ
 =  + 
 + 
	 + 	+  +  =
= x + 2y + x  y + y + y + y = 2x + 4y.
ȕ) ǹʌȩ IJȚȢ ĮȞȚıȠIJȚțȑȢ ıȤȑıİȚȢ ʌȠȣ įȓȞȠȞIJĮȚ ȑȤȠȣȝİ
5 ! x ! 8
2
2 5 ! 2x ! 2 8 10 ! 2x !16 1

 
1! y ! 2
4
4 1! 4y ! 4 2 4 ! 4y ! 8 2

 .
ȆȡȠıșȑIJȠȣȝİ țĮIJȐ ȝȑȜȘ IJȚȢ ıȤȑıİȚȢ 1
( ), 2
( )țĮȚ
ȑȤȠȣȝİ 10 + 4  2x + 4y 16 +8 14    24.
]ĬǼȂǹ 2_1541
ȅȡșȠȖȫȞȚȠ ʌĮȡĮȜȜȘȜȩȖȡĮȝȝȠ ȑȤİȚ ȝȒțȠȢ x İțĮIJȠ-
ıIJȐ țĮȚ ʌȜȐIJȠȢ y İțĮIJȠıIJȐ, ĮȞIJȓıIJȠȚȤĮ. ǹȞ ȖȚĮ IJĮ
ȝȒțȘ x țĮȚ y ȚıȤȪİȚ: 4  x  7 țĮȚ 2  y  3, IJȩIJİ:
Į) ȃĮ ȕȡİȓIJİ IJĮ ȩȡȚĮ ȝİIJĮȟȪ IJȦȞ ȠʌȠȓȦȞ ʌİȡȚȑȤİIJĮȚ
Ș IJȚȝȒ IJȘȢ ʌİȡȚȝȑIJȡȠȣ IJȠȣ ȠȡșȠȖȦȞȓȠȣ ʌĮȡĮȜȜȘ-
ȜȠȖȡȐȝȝȠȣ. (ȂȠȞȐįİȢ 10)
ȕ) ǹȞ IJȠ x ȝİȚȦșİȓ țĮIJȐ 1 țĮȚ IJȠ y IJȡȚʌȜĮıȚĮıIJİȓ,
ȞĮ ȕȡİȓIJİ IJĮ ȩȡȚĮ ȝİIJĮȟȪ IJȦȞ ȠʌȠȓȦȞ ʌİȡȚȑȤİIJĮȚ Ș
IJȚȝȒ IJȘȢ ʌİȡȚȝȑIJȡȠȣ IJȠȣ ȞȑȠȣ ȠȡșȠȖȦȞȓȠȣ ʌĮȡĮȜ-
ȜȘȜȠȖȡȐȝȝȠȣ. (ȂȠȞȐįİȢ 15)
ȁȪıȘ
Į) ȉȠ ȠȡșȠȖȫȞȚȠ ȝİ įȚĮıIJȐıİȚȢ x țĮȚ y ȑȤİȚ ʌİȡȓȝİ-
IJȡȠ  = 2x + 2y = 2 x + y
( ).
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
15
ȆȡȠıșȑIJȠȣȝİ țĮIJȐ ȝȑȜȘ IJȚȢ ıȤȑıİȚȢ IJȘȢ ȣʌȩșİ-
ıȘȢ țĮȚ ȑȤȠȣȝİ
4  2 x  y 7  3 6 x  y 10
2
26  2 x + y
( ) 210 12    20.
ȕ) ȉȠ ȞȑȠ ȠȡșȠȖȫȞȚȠ ȑȤİȚ įȚĮıIJȐıİȚȢ x 1 țĮȚ 3y
țĮȚ șĮ ȑȤİȚ ȞȑĮ ʌİȡȓȝİIJȡȠ
 = 2 x 1
( )+ 2 3y
( )= 2x  2 + 6y = 2x + 6y  2.
DzȤȠȣȝİ
4  x  7
2
24  2x  27  8  2x 14 1
( )
2  y  3
6
62  6y  6312  6y 18 2
( ).
ȆȡȠıșȑIJȠȣȝİ țĮIJȐ ȝȑȜȘ IJȚȢ ıȤȑıİȚȢ 1
( ), 2
( )țĮȚ
ȑȤȠȣȝİ
812 2x  6y 14 18 20 2x  6y 32
2
20  2  2x + 6y  2  32  2 18    30.
]ĬǼȂǹ 2_3852
īȚĮ IJȠȣȢ ʌȡĮȖȝĮIJȚțȠȪȢ ĮȡȚșȝȠȪȢ Į, ȕ ȚıȤȪȠȣȞ
2    4 țĮȚ 4    3. ȃĮ ȕȡİȓIJİ IJĮ ȩȡȚĮ ȝİIJĮ-
ȟȪ IJȦȞ ȠʌȠȓȦȞ ʌİȡȚȑȤİIJĮȚ Ș IJȚȝȒ țĮșİȝȚȐȢ Įʌȩ IJȚȢ
ʌĮȡĮıIJȐıİȚȢ:
Į)   2 (ȂȠȞȐįİȢ 12)
ȕ) 2
 2 (ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į) 4 3
2

 
8 2 6 6 2 8
DzȤȠȣȝİ
2 4
6 2 8


 
8 2 12.
ȕ)
2 4
8 2 12 
 
28     2
( ) 412 16  2
 2  48
]ĬǼȂǹ 2_3870
ǻȓȞȠȞIJĮȚ ȠȚ ʌĮȡĮıIJȐıİȚȢ:
K = 22
+ 2
+ 9 țĮȚ  = 2 3 
( ), ȩʌȠȣ ,  
Į) ȃĮ įİȓȟİIJİ ȩIJȚ:
K   = 2
+ 2 + 2
( )+ 2
 6 + 9
( )
(ȂȠȞȐįİȢ 3)
ȕ) ȃĮ įİȓȟİIJİ ȩIJȚ: Ȁ • ȁ, ȖȚĮ țȐșİ IJȚȝȒ IJȦȞ Į, ȕ.
(ȂȠȞȐįİȢ 10)
Ȗ) īȚĮ ʌȠȚİȢ IJȚȝȑȢ IJȦȞ Į, ȕ ȚıȤȪİȚ Ș ȚıȩIJȘIJĮ K = ;
ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ.
(ȂȠȞȐįİȢ 12)
ȁȪıȘ
Į) K   = 22
+ 2
+ 9  2 3 
( )=
= 22
+ 2
+ 9  6 + 2 =
= 2
+ 2
+ 2
+ 9  6 + 2 =
= 2
+ 2 + 2
( )+ 2
 6 + 9
( )
ȕ) K   =  + 
( )
2
+   3
( )
2
 0, ȦȢ ȐșȡȠȚıȝĮ ȝȘ
ĮȡȞȘIJȚțȫȞ ȩȡȦȞ, ȐȡĮ K  .
Ȗ) K =   K   = 0   + 
( )
2
+   3
( )
2
= 0 
 +  = 0
  3= 0




 = 3
 = 3



.
]ĬǼȂǹ 2_4299
ǹȞ ȖȚĮ IJȠȣȢ ʌȡĮȖȝĮIJȚțȠȪȢ ĮȡȚșȝȠȪȢ x țĮȚ y ȚıȤȪȠȣȞ
3 x  5 țĮȚ 2  y  1, ȞĮ ȕȡİȓIJİ IJĮ ȩȡȚĮ ȝİIJĮȟȪ
IJȦȞ ȠʌȠȓȦȞ ȕȡȓıțȠȞIJĮȚ ȠȚ IJȚȝȑȢ IJȦȞ ʌĮȡĮıIJȐıİȦȞ:
Į) y  x (ȂȠȞȐįİȢ 12)
ȕ) x2
+ y2
(ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į) ǿıȤȪİȚ 3 x  5
 1
( )
 3 x  5  5  x  3
 2  y  1
5  x  3




+
( )
 7  y  x  4
ȕ) ǺȡȓıțȠȣȝİ IJȚȢ ĮțȡĮȓİȢ IJȚȝȑȢ IJȦȞ x2
țĮȚ y2
:
3 x 5
3,x,5#0
32
x2
52
9 x2
25 1
( )
2 y 1
1

 
2 y 1 1 y 2
1, y,2#0
12
 y
( )
2
 22
1 y2
 4 2
( )
1
( )+ 2
( )
9  x2
 25
1 y2
 4






+
( )
10  x2
+ y2
 29
16
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
]ĬǼȂǹ 2_7519
ǻȓȞȠȞIJĮȚ ʌȡĮȖȝĮIJȚțȠȓ ĮȡȚșȝȠȓ Į, ȕ, ȝİ   0 țĮȚ
  0. ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ:
Į)  +
4

 4 (ȂȠȞȐįİȢ 12)
ȕ)  +
4






  +
4






 16 (ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į)  +
4

 4
0
2
+ 
4

 4  2
+ 4  4 
2
 4 + 4  0    2
( )
2
 0, ʌȠȣ ȚıȤȪİȚ.
ȕ) Ǿ ıȤȑıȘ  +
4

 4 1
( ) ȚıȤȪİȚ ȖȚĮ țȐșİ   0.
DZȡĮ ȚıȤȪİȚ țĮȚ ĮȞ ȩʌȠȣ Į ȕȐȜȠȣȝİ IJȠ   0,
ȠʌȩIJİ  +
4

 4 2
( ). ȆȠȜȜĮʌȜĮıȚȐȗȠȞIJĮȢ țĮIJȐ
ȝȑȜȘ IJȚȢ 1
( ) țĮȚ 2
( )(ȩȜȠȚ ȠȚ ȩȡȠȚ İȓȞĮȚ șİIJȚțȠȓ),
ʌĮȓȡȞȠȣȝİ  +
4






  +
4






 16.
‘ˆ¡†¨£— £˜š— ˆ¢‘ƒš‘£˜™¡¨ ‘¢˜…š¡¨
2Į ĬǼȂǹȉǹ
]ĬǼȂǹ 2_504
Į) ǹȞ   0, ȞĮ ĮʌȠįİȚȤșİȓ ȩIJȚ:  +
1

 2.
(ȂȠȞȐįİȢ 15)
ȕ) ǹȞ   0, ȞĮ ĮʌȠįİȚȤșİȓ ȩIJȚ:  +
1

 2.
(ȂȠȞȐįİȢ 10)
ȁȪıȘ
Į)  +
1

 2   +
1

+ 2  0 
2

+
1

+
2

 0 
2
+ 2 +1

 0
0
2
+ 2 +1 0   +1
( )
2
 0, ʌȠȣ ȚıȤȪİȚ.
ȕ)  +
1

 2
0
  
1

 2   +
1

 2,
ʌȠȣ ȚıȤȪİȚ Įʌȩ IJȠ (Į).
]ĬǼȂǹ 2_509
Į) ǹȞ ,    0
{ }, ȞĮ ĮʌȠįİȚȤșİȓ ȩIJȚ:


+


 2 1
( ) (ȂȠȞȐįİȢ 15)
ȕ) ȆȩIJİ ȚıȤȪİȚ Ș ȚıȩIJȘIJĮ ıIJȘȞ 1
( ); ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ
IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ. (ȂȠȞȐįİȢ 10)
ȁȪıȘ
Į)


+


 2 


+


 2  0 

2
 
+

2
 

2  
 
 0 

2
 2   + 
2
 
 0 
  
( )
2
 
 0,
ʌȠȣ ȚıȤȪİȚ.
ȕ) ǹʌȩ IJȠ İȡȫIJȘȝĮ (Į) ʌȡȠțȪʌIJİȚ ȩIJȚ Ș ȚıȩIJȘIJĮ
ȚıȤȪİȚ ȖȚĮ
  
( )
2
 
= 0     = 0 
 =    = ±.
DZȡĮ Ș ȚıȩIJȘIJĮ ȚıȤȪİȚ ȩIJĮȞ ȠȚ ,    0
{ }
İȓȞĮȚ ȓıȠȚ Ȓ ĮȞIJȓșİIJȠȚ.
]ĬǼȂǹ 2_996
ǻȓȞİIJĮȚ Ș ʌĮȡȐıIJĮıȘ:  = x 1 + y  3 , ȝİ x, y
ʌȡĮȖȝĮIJȚțȠȪȢ ĮȡȚșȝȠȪȢ ȖȚĮ IJȠȣȢ ȠʌȠȓȠȣȢ ȚıȤȪİȚ:
1 x  4 țĮȚ 2  y  3.
ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ:
Į)  = x  y + 2 (ȂȠȞȐįİȢ 12)
ȕ) 0    4 (ȂȠȞȐįİȢ 13)
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
17
ȁȪıȘ
Į) 1 x  0  x 1 x 1 = x 1 țĮȚ
y  3 y  3 0  y  3 = 3 y.
DZȡĮ  = x 1+ 3 y = x  y + 2.
ȕ)
1 x  4
2  y  3




1 x  4
3 y  2




(+)
2  x  y  2  0  x  y + 2  4  0    4
]ĬǼȂǹ 2_1009
ǻȓȞİIJĮȚ Ș ʌĮȡȐıIJĮıȘ:  = 3x  6 + 2, ȩʌȠȣ Ƞ x İȓȞĮȚ
ʌȡĮȖȝĮIJȚțȩȢ ĮȡȚșȝȩȢ.
Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ
i) ȖȚĮ țȐșİ x  2,  = 3x  4
ii) ȖȚĮ țȐșİ x  2,  = 8 3x. (ȂȠȞȐįİȢ 12)
ȕ) ǹȞ ȖȚĮ IJȠȞ x ȚıȤȪİȚ ȩIJȚ x  2, ȞĮ ĮʌȠįİȓȟİIJİ ȩIJȚ:
9x2
16
3x  6 + 2
= 3x + 4 (ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į) i) ǹȞ x  2, IJȩIJİ
3x  6  3x  6  0  3x  6 = 3x  6, ȐȡĮ
 = 3x  6 + 2 = 3x  4.
ii) ǹȞ x  2, IJȩIJİ
3x  6  3x  6  0  3x  6 = 3x + 6, ȐȡĮ
 = 3x + 6 + 2 = 8 3x.
ȕ)
9x2
16
3x  6 + 2
=
x2 9x2
16
3x  6 + 2
=
9x2
16
3x  4
=
=
3x
( )
2
 42
3x  4
=
3x  4
( ) 3x + 4
( )
3x  4
= 3x + 4
]ĬǼȂǹ 2_1062
Į) ȃĮ ȕȡİȓIJİ ȖȚĮ ʌȠȚİȢ ʌȡĮȖȝĮIJȚțȑȢ IJȚȝȑȢ IJȠȣ y
ȚıȤȪİȚ: y  3 1. (ȂȠȞȐįİȢ 12)
ȕ) ǹȞ x, y İȓȞĮȚ IJĮ ȝȒțȘ IJȦȞ ʌȜİȣȡȫȞ İȞȩȢ ȠȡșȠ-
ȖȦȞȓȠȣ ʌĮȡĮȜȜȘȜȠȖȡȐȝȝȠȣ, ȝİ 1 x  3 țĮȚ
2  y  4, IJȩIJİ ȞĮ ȕȡİȓIJİ IJĮ ȩȡȚĮ ȝİIJĮȟȪ IJȦȞ
ȠʌȠȓȦȞ ʌİȡȚȑȤİIJĮȚ Ș IJȚȝȒ IJȠȣ İȝȕĮįȠȪ E IJȠȣ Ƞȡ-
șȠȖȦȞȓȠȣ. (ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į) y  3 1 1 y  31
1+ 3 y  3+ 31+ 3 2  y  4
ȕ) ȉȠ İȝȕĮįȩȞ E IJȠȣ ȠȡșȠȖȦȞȓȠȣ ȝİ ȝȒțȘ ʌȜİȣȡȫȞ
x, y ȚıȠȪIJĮȚ ȝİ  = xy. ǹijȠȪ IJĮ
x, y ʌĮȓȡȞȠȣȞ șİIJȚțȑȢ IJȚȝȑȢ, ʌȠȜȜĮʌȜĮıȚȐȗȠȣȝİ
țĮIJȐ ȝȑȜȘ IJȚȢ įȪȠ ĮȞȚıȠIJȚțȑȢ ıȤȑıİȚȢ țĮȚ ȑȤȠȣȝİ:
12  xy  34  2   12.
]ĬǼȂǹ 2_1074
Į) ȃĮ ȕȡİȓIJİ ȖȚĮ ʌȠȚİȢ ʌȡĮȖȝĮIJȚțȑȢ IJȚȝȑȢ IJȠȣ y
ȚıȤȪİȚ: y  3 1. (ȂȠȞȐįİȢ 12)
ȕ) ǹȞ x, y İȓȞĮȚ IJĮ ȝȒțȘ IJȦȞ ʌȜİȣȡȫȞ İȞȩȢ ȠȡșȠ-
ȖȦȞȓȠȣ ʌĮȡĮȜȜȘȜȠȖȡȐȝȝȠȣ, ȝİ 1 x  3 țĮȚ
2  y  4, IJȩIJİ ȞĮ ĮʌȠįİȓȟİIJİ ȩIJȚ: 6   14,
ȩʌȠȣ Ȇ İȓȞĮȚ Ș ʌİȡȓȝİIJȡȠȢ IJȠȣ ȠȡșȠȖȦȞȓȠȣ.
(ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į) y  3 1 1 y  31
1+ 3 y  3+ 31+ 3 2  y  4
ȕ) Ǿ ʌİȡȓȝİIJȡȠȢ Ȇ IJȠȣ ȠȡșȠȖȦȞȓȠȣ
ȝİ ȝȒțȘ ʌȜİȣȡȫȞ x, y ȚıȠȪIJĮȚ ȝİ
 = 2x + 2y = 2 x + y
( ). ȆȡȠıșȑIJȠȞIJĮȢ țĮIJȐ ȝȑȜȘ
IJȚȢ įȪȠ ĮȞȚıȠIJȚțȑȢ ıȤȑıİȚȢ, ȑȤȠȣȝİ
1+ 2  x + y  3+ 4  3 x + y  7 
23 2 x + y
( ) 27  6   14.
]ĬǼȂǹ 2_1089
īȚĮ țȐșİ ʌȡĮȖȝĮIJȚțȩ ĮȡȚșȝȩ x ȝİ IJȘȞ ȚįȚȩIJȘIJĮ
5  x 10,
Į) ȞĮ ȖȡȐȥİIJİ IJȚȢ ʌĮȡĮıIJȐıİȚȢ x 5 țĮȚ x 10
ȤȦȡȓȢ ĮʌȩȜȣIJİȢ IJȚȝȑȢ, (ȂȠȞȐįİȢ 10)
ȕ) ȞĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ IJȚȝȒ IJȘȢ ʌĮȡȐıIJĮıȘȢ:
 =
x 5
x 5
+
x 10
x 10
(ȂȠȞȐįİȢ 15)
ȁȪıȘ
Į) ǹʌȩ IJȘȞ ȣʌȩșİıȘ ȑȤȠȣȝİ 5  x  x 5  0,
İʌȠȝȑȞȦȢ x 5 = x 5 țĮȚ x 10  x 10  0,
ȐȡĮ x 10 =  x 10
( )= x +10.
ȕ) ȁĮȝȕȐȞȠȞIJĮȢ ȣʌȩȥȘ IJȠ İȡȫIJȘȝĮ (Į), Ș ʌĮȡȐ-
ıIJĮıȘ ȖȡȐijİIJĮȚ
 =
x 5
x 5
+
x 10
x 10
=
x 5
x 5

x 10
x 10
= 11= 0.
18
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
]ĬǼȂǹ 2_1091
ǻȓȞİIJĮȚ Ș ʌĮȡȐıIJĮıȘ:  = x 1  x  2
Į) īȚĮ1 x  2, ȞĮ įİȓȟİIJİ ȩIJȚ:  = 2x  3
(ȂȠȞȐįİȢ 13)
ȕ) īȚĮ x 1, ȞĮ įİȓȟİIJİ ȩIJȚ Ș ʌĮȡȐıIJĮıȘ A ȑȤİȚ ıIJĮ-
șİȡȒ IJȚȝȒ (ĮȞİȟȐȡIJȘIJȘ IJȠȣ x), IJȘȞ ȠʌȠȓĮ ȞĮ ʌȡȠı-
įȚȠȡȓıİIJİ. (ȂȠȞȐįİȢ 12)
ȁȪıȘ
Į) ǹʌȩ IJȘȞ ȣʌȩșİıȘ ȑȤȠȣȝİ 1 x  x 1 0,
ȠʌȩIJİ x 1 = x 1 țĮȚ x  2  x  2  0, ȐȡĮ
x  2 =  x  2
( ). ǼʌȠȝȑȞȦȢ Ș ʌĮȡȐıIJĮıȘ ȖȡȐ-
ijİIJĮȚ  = x 1  x  2 = x 1+ x  2 = 2x  3.
ȕ) īȚĮ x 1 x 1 0 șĮ ȑȤȠȣȝİ țĮȚ
x  2  x  2  0, İʌȠȝȑȞȦȢ
x 1 =  x 1
( ) țĮȚ x  2 =  x  2
( ). DZȡĮ
 = x 1  x  2 =  x 1
( )+ x  2 =
= x +1+ x  2 = 1.
]ĬǼȂǹ 2_1273
ǻȓȞȠȞIJĮȚ įȪȠ IJȝȒȝĮIJĮ ȝİ ȝȒțȘ x țĮȚ y, ȖȚĮ IJĮ ȠʌȠȓĮ
ȚıȤȪȠȣȞ: x  3  2 țĮȚ y  6  4.
Į) ȃĮ įİȓȟİIJİ ȩIJȚ: 1 x  5 țĮȚ 2  y 10.
(ȂȠȞȐįİȢ 12)
ȕ) ȃĮ ȕȡİșİȓ Ș ȝȚțȡȩIJİȡȘ țĮȚ Ș ȝİȖĮȜȪIJİȡȘ IJȚȝȒ
ʌȠȣ ȝʌȠȡİȓ ȞĮ ʌȐȡİȚ Ș ʌİȡȓȝİIJȡȠȢ İȞȩȢ ȠȡșȠȖȦ-
ȞȓȠȣ ȝİ įȚĮıIJȐıİȚȢ 2x țĮȚ y. (ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į) x  3  2  2  x  3 2
+3
2 + 3 x  3+ 3 2 + 31 x  5 țĮȚ
y  6  4  4  y  6  4
+6
4 + 6  y  6 + 6  4 + 6  2  y 10.
ȕ) ȉȠ ȠȡșȠȖȫȞȚȠ ȝİ įȚĮıIJȐıİȚȢ 2x țĮȚ y ȑȤİȚ
ʌİȡȓȝİIJȡȠ  = 2 2x + y
( )= 4x + 2y.
ǹʌȩ IJȠ İȡȫIJȘȝĮ (Į) ȑȤȠȣȝİ
1 x  5
4
41 4x  45  4  4x  20 1
( ) țĮȚ
2  y 10
2
22  2y  210 
4  2y  20 2
( ). ȆȡȠıșȑIJȠȣȝİ țĮIJȐ ȝȑȜȘ IJȚȢ
ıȤȑıİȚȢ 1
( ), 2
( )țĮȚ ȑȤȠȣȝİ
4 + 4  4x + 2y  20 + 20  8    40. ȈȣȞİʌȫȢ
Ș ȝȚțȡȩIJİȡȘ IJȚȝȒ ʌȠȣ ȝʌȠȡİȓ ȞĮ ʌȐȡİȚ Ș ʌİȡȓȝİ-
IJȡȠȢ IJȠȣ ȠȡșȠȖȦȞȓȠȣ İȓȞĮȚ 8 țĮȚ Ș ȝİȖĮȜȪIJİȡȘ 40.
]ĬǼȂǹ 2_1544
Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ x2
+ 4x +5  0 ȖȚĮ țȐșİ ʌȡĮȖ-
ȝĮIJȚțȩ ĮȡȚșȝȩ x. (ȂȠȞȐįİȢ 10)
ȕ) ȃĮ ȖȡȐȥİIJİ ȤȦȡȓȢ ĮʌȩȜȣIJİȢ IJȚȝȑȢ IJȘȞ ʌĮȡȐıIJĮıȘ
 = x2
+ 4x +5  x2
+ 4x + 4 . (ȂȠȞȐįİȢ 15)
ȁȪıȘ
Į) x2
+ 4x +5 = x2
+ 4x + 4 +1
5
 =
= x2
+ 4x + 4 +1= x + 2
( )
2
+
( )

 

+1 0
ȕ)  = x2
+ 4x +5  x2
+ 4x + 4 =
= x2
+ 4x +5
+
( )
 
 
  x + 2
( )
2
+
( )

 

=
= x2
+ 4x +5 x2
 4x  4 = 1
]ĬǼȂǹ 2_2702
ǻȓȞȠȞIJĮȚ ȠȚ ʌĮȡĮıIJȐıİȚȢ:
 = 2x  4 țĮȚ  = x  3 , ȩʌȠȣ x İȓȞĮȚ ʌȡĮȖȝĮIJȚ-
țȩȢ ĮȡȚșȝȩȢ.
Į) īȚĮ țȐșİ 2  x  3, ȞĮ ĮʌȠįİȓȟİIJİ ȩIJȚ
+  = x 1. (ȂȠȞȐįİȢ 16)
ȕ) ȊʌȐȡȤİȚ x  2, 3

 ) ȫıIJİ ȞĮ ȚıȤȪİȚ +  = 2; ȃĮ
ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ. (ȂȠȞȐįİȢ 9)
ȁȪıȘ
Į) ǹʌȩ IJȘȞ ȣʌȩșİıȘ ȑȤȠȣȝİ 2  x  x  2  0,
ȠʌȩIJİ x  2 = x  2 țĮȚ x  3 x  3 0, ȐȡĮ
x  3 =  x  3
( ). ǼʌȠȝȑȞȦȢ ȑȤȠȣȝİ
+  = 2 x  2 + x  3 = 2 x  2
( ) x  3
( )=
= 2x  4  x + 3= x 1.
ȕ) +  = 2  x 1= 2  x = 3 2, 3

 ), ȐȡĮ įİȞ
ȣʌȐȡȤİȚ IJȑIJȠȚȠȢ x.
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
19
4Į ĬǼȂǹȉǹ
]ĬǼȂǹ 4_2287
ǻȓȞİIJĮȚ ȑȞĮȢ ʌȡĮȖȝĮIJȚțȩȢ ĮȡȚșȝȩȢ x ʌȠȣ ȚțĮȞȠʌȠȚİȓ
IJȘ ıȤȑıȘ: d x,5
( ) 9.
Į) ȃĮ ĮʌȠįȫıİIJİ IJȘȞ ʌĮȡĮʌȐȞȦ ıȤȑıȘ ȜİțIJȚțȐ.
(ȂȠȞȐįİȢ 5)
ȕ) Ȃİ ȤȡȒıȘ IJȠȣ ȐȟȠȞĮ IJȦȞ ʌȡĮȖȝĮIJȚțȫȞ ĮȡȚșȝȫȞ,
ȞĮ ʌĮȡĮıIJȒıİIJİ ıİ ȝȠȡijȒ įȚĮıIJȒȝĮIJȠȢ IJȠ ıȪȞȠ-
ȜȠ IJȦȞ įȣȞĮIJȫȞ IJȚȝȫȞ IJȠȣ x. (ȂȠȞȐįİȢ 5)
Ȗ) ȃĮ ȖȡȐȥİIJİ IJȘ ıȤȑıȘ ȝİ IJȠ ıȪȝȕȠȜȠ IJȘȢ ĮʌȩȜȣ-
IJȘȢ IJȚȝȒȢ țĮȚ ȞĮ İʌȚȕİȕĮȚȫıİIJİ ȝİ ĮȜȖİȕȡȚțȩ IJȡȩ-
ʌȠ IJȠ ıȣȝʌȑȡĮıȝĮ IJȠȣ İȡȦIJȒȝĮIJȠȢ (ȕ).
(ȂȠȞȐįİȢ 10)
į) ȃĮ ȤȡȘıȚȝȠʌȠȚȒıİIJİ IJȠ ıȣȝʌȑȡĮıȝĮ IJȠȣ İȡȦIJȒ-
ȝĮIJȠȢ (Ȗ) ȖȚĮ ȞĮ įİȓȟİIJİ ȩIJȚ: x + 4 + x 14 = 18
(ȂȠȞȐįİȢ 5)
ȁȪıȘ
Į) Ǿ ĮʌȩıIJĮıȘ IJȠȣ ıȘȝİȓȠȣ ʌȠȣ ʌĮȡȚıIJȐȞİȚ IJȠȞ
ĮȡȚșȝȩ x ıIJȠȞ ȐȟȠȞĮ IJȦȞ ʌȡĮȖȝĮIJȚțȫȞ ĮȡȚșȝȫȞ
Įʌȩ IJȠ ıȘȝİȓȠ ʌȠȣ ʌĮȡȚıIJȐȞİȚ IJȠȞ ĮȡȚșȝȩ 5 İȓȞĮȚ
ȝȚțȡȩIJİȡȘ Ȓ ȓıȘ IJȠȣ 9.
ȕ)
Ȗ) Ǿ ıȤȑıȘ ȖȡȐijİIJĮȚ x 5  9  9  x 5  9 
9 +5  x  9 +5  4  x 14.
į) ǹʌȩ IJȠ İȡȫIJȘȝĮ (Ȗ) ȑȤȠȣȝİ
4  x  0  x + 4  x + 4 = x + 4 țĮȚ
x 14  x 14  0  x 14 =  x 14
( )= 14  x.
DZȡĮ x + 4 + x 14 = x + 4 +14  x = 18.
]ĬǼȂǹ 4_2301
ǻȓȞȠȞIJĮȚ IJĮ ıȘȝİȓĮ ǹ, Ǻ țĮȚ Ȃ ʌȠȣ ʌĮȡȚıIJȐȞȠȣȞ
ıIJȠȞ ȐȟȠȞĮ IJȦȞ ʌȡĮȖȝĮIJȚțȫȞ ĮȡȚșȝȫȞ IJȠȣȢ ĮȡȚș-
ȝȠȪȢ 2, 7 țĮȚ x ĮȞIJȓıIJȠȚȤĮ, ȝİ 2  x  7.
Į) ȃĮ įȚĮIJȣʌȫıİIJİ IJȘ ȖİȦȝİIJȡȚțȒ İȡȝȘȞİȓĮ IJȦȞ ʌĮ-
ȡĮıIJȐıİȦȞ
i) x + 2 (ȂȠȞȐįİȢ 4)
ii) x  7 (ȂȠȞȐįİȢ 4)
ȕ) Ȃİ IJȘ ȕȠȒșİȚĮ IJȠȣ ȐȟȠȞĮ ȞĮ įȫıİIJİ IJȘ ȖİȦȝİIJȡȚțȒ
İȡȝȘȞİȓĮ IJȠȣ ĮșȡȠȓıȝĮIJȠȢ: x + 2 + x  7
(ȂȠȞȐįİȢ 5)
Ȗ) ȃĮ ȕȡİȓIJİ IJȘȞ IJȚȝȒ IJȘȢ ʌĮȡȐıIJĮıȘȢ
 = x + 2 + x  7 ȖİȦȝİIJȡȚțȐ. (ȂȠȞȐįİȢ 5)
į) ȃĮ İʌȚȕİȕĮȚȫıİIJİ ĮȜȖİȕȡȚțȐ IJȠ ʌȡȠȘȖȠȪȝİȞȠ
ıȣȝʌȑȡĮıȝĮ. (ȂȠȞȐįİȢ 7)
ȁȪıȘ
Į) i) x + 2 İȓȞĮȚ Ș ĮʌȩıIJĮıȘ IJȠȣ ıȘȝİȓȠȣ M Įʌȩ IJȠ
ıȘȝİȓȠ A.
ii) x  7 İȓȞĮȚ Ș ĮʌȩıIJĮıȘ IJȠȣ ıȘȝİȓȠȣ M Įʌȩ IJȠ
ıȘȝİȓȠ B.
ȕ)
ȉȠ ȐșȡȠȚıȝĮ x + 2 + x  7 ȚıȠȪIJĮȚ ȝİ IJȠ ȐșȡȠȚ-
ıȝĮ IJȦȞ ĮʌȠıIJȐıİȦȞ IJȠȣ M Įʌȩ IJȠ A țĮȚ Įʌȩ IJȠ B.
Ȗ) ǼʌİȚįȒ 2  x  7, IJȠ ıȘȝİȓȠ M İȓȞĮȚ İıȦIJİȡȚțȩ
IJȠȣ IJȝȒȝĮIJȠȢ AB, ȠʌȩIJİ IJȠ ȐșȡȠȚıȝĮ IJȦȞ ĮʌȠ-
ıIJȐıİȦȞ IJȠȣ M Įʌȩ IJȠ A țĮȚ Įʌȩ IJȠ B ȚıȠȪIJĮȚ ȝİ
IJȘȞ ĮʌȩıIJĮıȘ IJȠȣ A Įʌȩ IJȠ B.
DZȡĮ A = x + 2 + x  7 = 9.
į) DzȤȠȣȝİ 2  x  0  x + 2  x + 2 = x + 2 țĮȚ
x  7  x  7  0  x  7 =  x  7
( )= 7  x.
DZȡĮ A = x + 2 + x  7 = x + 2 + 7  x = 9.
]ĬǼȂǹ 4_2302
Ȉİ ȑȞĮȞ ȐȟȠȞĮ IJĮ ıȘȝİȓĮ A, B țĮȚ M ĮȞIJȚıIJȠȚȤȠȪȞ
ıIJȠȣȢ ĮȡȚșȝȠȪȢ 5, 9 țĮȚ x ĮȞIJȓıIJȠȚȤĮ.
Į) ȃĮ įȚĮIJȣʌȫıİIJİ IJȘ ȖİȦȝİIJȡȚțȒ İȡȝȘȞİȓĮ IJȦȞ ʌĮ-
ȡĮıIJȐıİȦȞ x 5 țĮȚ x  9 . (ȂȠȞȐįİȢ 10)
ȕ) ǹȞ ȚıȤȪİȚ x 5 = x  9 ,
i) ȆȠȚĮ ȖİȦȝİIJȡȚțȒ ȚįȚȩIJȘIJĮ IJȠȣ ıȘȝİȓȠȣ M ĮȞĮ-
ȖȞȦȡȓȗİIJİ; ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ
ıĮȢ. (ȂȠȞȐįİȢ 7)
ii) Ȃİ ȤȡȒıȘ IJȠȣ ȐȟȠȞĮ, ȞĮ ʌȡȠıįȚȠȡȓıİIJİ IJȠȞ
ʌȡĮȖȝĮIJȚțȩ ĮȡȚșȝȩ x ʌȠȣ ʌĮȡȚıIJȐȞİȚ IJȠ ıȘ-
ȝİȓȠ M. ȃĮ İʌȚȕİȕĮȚȫıİIJİ ȝİ ĮȜȖİȕȡȚțȩ IJȡȩʌȠ
IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ. (ȂȠȞȐįİȢ 8)
20
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
ȁȪıȘ
Į) x 5 İȓȞĮȚ Ș ĮʌȩıIJĮıȘ IJȦȞ ıȘȝİȓȦȞ A țĮȚ M,
įȘȜĮįȒ IJȠ ȝȒțȠȢ 
( ), țĮȚ x  9 İȓȞĮȚ Ș
ĮʌȩıIJĮıȘ IJȦȞ ıȘȝİȓȦȞ B țĮȚ M, įȘȜĮįȒ
IJȠ ȝȒțȠȢ 
( ).
ȕ) i) ǹȞ ȚıȤȪİȚ x 5 = x  9 , IJȩIJİ IJȠ ıȘȝİȓȠ M
ȚıĮʌȑȤİȚ Įʌȩ IJĮ A țĮȚ B, įȘȜĮįȒ IJȠ ıȘȝİȓȠ M
ȕȡȓıțİIJĮȚ ıIJȠ ȝȑıȠ IJȠȣ İȣșȪȖȡĮȝȝȠȣ IJȝȒȝĮ-
IJȠȢ AB.
ii)
ȉȠ ȝȑıȠ M ĮȞIJȚıIJȠȚȤİȓ ıIJȠȞ ĮȡȚșȝȩ 7.
ǹȜȖİȕȡȚțȐ ȜȪȞȠȣȝİ IJȘȞ İȟȓıȦıȘ:
x 5 = x  9 
x 5 = x  9  x 5 = x + 9
( )
0x = 4, 	,  2x = 14
( ) x = 7
]ĬǼȂǹ 4_4946
Į) ȃĮ ȜȪıİIJİ IJȘȞ ĮȞȓıȦıȘ x  3  5. (ȂȠȞȐįİȢ 7)
ȕ) ȃĮ ĮʌİȚțȠȞȓıİIJİ IJȠ ıȪȞȠȜȠ IJȦȞ ȜȪıİȦȞ IJȘȢ ĮȞȓ-
ıȦıȘȢ ĮȣIJȒȢ ʌȐȞȦ ıIJȠȞ ȐȟȠȞĮ IJȦȞ ʌȡĮȖȝĮIJȚțȫȞ
ĮȡȚșȝȫȞ țĮȚ ȞĮ İȡȝȘȞİȪıİIJİ IJȠ ĮʌȠIJȑȜİıȝĮ, ȝİ
ȕȐıȘ IJȘ ȖİȦȝİIJȡȚțȒ ıȘȝĮıȓĮ IJȘȢ ʌĮȡȐıIJĮıȘȢ
x  3 . (ȂȠȞȐįİȢ 5)
Ȗ) ȃĮ ȕȡİȓIJİ ȩȜȠȣȢ IJȠȣȢ ĮțȑȡĮȚȠȣȢ ĮȡȚșȝȠȪȢ x ʌȠȣ
ȚțĮȞȠʌȠȚȠȪȞ IJȘȞ ĮȞȓıȦıȘ x  3  5. (ȂȠȞȐįİȢ 5)
į) ȃĮ ȕȡİȓIJİ IJȠ ʌȜȒșȠȢ IJȦȞ ĮțȑȡĮȚȦȞ ĮȡȚșȝȫȞ x
ʌȠȣ ȚțĮȞȠʌȠȚȠȪȞ IJȘȞ ĮȞȓıȦıȘ x  3  5.
ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ.
(ȂȠȞȐįİȢ 8)
ȁȪıȘ
Į) x  3  5  5  x  3 5  35  x  3+5 
2  x  8  x  2, 8

 

ȕ)
ȆȡȩțİȚIJĮȚ ȖȚĮ IJȠȣȢ ĮȡȚșȝȠȪȢ ʌȠȣ ʌĮȡȚıIJȐȞȠȞIJĮȚ
ıIJȠȞ ȐȟȠȞĮ IJȦȞ ʌȡĮȖȝĮIJȚțȫȞ ĮȡȚșȝȫȞ ȝİ ıȘȝİȓĮ
ʌȠȣ ĮʌȑȤȠȣȞ Įʌȩ IJȠ 3 ĮʌȩıIJĮıȘ ȝȚțȡȩIJİȡȘ Ȓ ȓıȘ
IJȠȣ 5.
Ȗ) ȅȚ ĮțȑȡĮȚȠȚ ĮȡȚșȝȠȓ ʌȠȣ ȚțĮȞȠʌȠȚȠȪȞ IJȘȞ ĮȞȓıȦıȘ
x  3  5 İȓȞĮȚ ȠȚ 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8.
į) ȆȡȑʌİȚ x 2, 8 2 x 8
x 0
0 x 8
x  8  8  x  8  x  8, 8

 
.
ȅȚ ĮțȑȡĮȚİȢ ȜȪıİȚȢ İȓȞĮȚ ȠȚ
0, ±1, ± 2, ± 3, ± 4, ±5, ± 6, ± 7, ±8.
]ĬǼȂǹ 4_7791
ǻȓȞȠȞIJĮȚ ȠȚ ʌȡĮȖȝĮIJȚțȠȓ ĮȡȚșȝȠȓ Į țĮȚ ȕ ȖȚĮ IJȠȣȢ
ȠʌȠȓȠȣȢ ȚıȤȪİȚ Ș ĮȞȓıȦıȘ:  1
( ) 1 
( ) 0.
Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ IJȠ 1 İȓȞĮȚ ȝİIJĮȟȪ IJȦȞ Į, ȕ.
(ȂȠȞȐįİȢ 13)
ȕ) ǹȞ İʌȚʌȜȑȠȞ    = 4, ȞĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ IJȚȝȒ
IJȘȢ ʌĮȡȐıIJĮıȘȢ:  =  1 + 1  .
ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ İȓIJİ ȖİȦȝİ-
IJȡȚțȐ İȓIJİ ĮȜȖİȕȡȚțȐ. (ȂȠȞȐįİȢ 12)
ȁȪıȘ
Į) ǹijȠȪ IJȠ ȖȚȞȩȝİȞȠ  1
( ) 1 
( ) İȓȞĮȚ șİIJȚțȩ, ȠȚ
ʌĮȡȐȖȠȞIJİȢ  1
( ) țĮȚ 1 
( ) İȓȞĮȚ ȠȝȩıȘȝȠȚ,
įȘȜĮįȒ Ȓ țĮȚ ȠȚ įȪȠ șİIJȚțȠȓ Ȓ țĮȚ ȠȚ įȪȠ ĮȡȞȘIJȚțȠȓ.
• ǹȞ  1 0   1, IJȩIJİ 1   0   1,
ȐȡĮ  1 .
• ǹȞ  1 0   1, IJȩIJİ 1   0   1,
ȐȡĮ  1 .
Ȉİ țȐșİ ʌİȡȓʌIJȦıȘ IJȠ 1 İȓȞĮȚ ȝİIJĮȟȪ IJȦȞ Į, ȕ.
ȕ) DzȤȠȣȝİ ȩIJȚ  1 İȓȞĮȚ Ș ĮʌȩıIJĮıȘ IJȠȣ Į Įʌȩ IJȠ
1, İȞȫ 1  İȓȞĮȚ Ș ĮʌȩıIJĮıȘ IJȠȣ ȕ Įʌȩ IJȠ 1.
DZȡĮ Ș ʌĮȡȐıIJĮıȘ  =  1 + 1  İțijȡȐȗİȚ
IJȠ ȐșȡȠȚıȝĮ IJȦȞ ĮʌȠıIJȐıİȦȞ IJȠȣ Į Įʌȩ IJȠ 1 țĮȚ
IJȠȣ ȕ Įʌȩ IJȠ 1. ǼʌİȚįȒ ȩȝȦȢ Įʌȩ IJȠ İȡȫIJȘȝĮ (Į)
IJȠ 1 İȓȞĮȚ ȝİIJĮȟȪ IJȦȞ Į, ȕ, ıȣȝʌİȡĮȓȞȠȣȝİ ȩIJȚ
Ș ʌĮȡȐıIJĮıȘ K İțijȡȐȗİȚ IJȘȞ ĮʌȩıIJĮıȘ IJȠȣ Į
Įʌȩ IJȠ ȕ, įȘȜĮįȒ  =    = 4.
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
21
]ĬǼȂǹ 4_8443
Į) ȃĮ ȕȡİȓIJİ IJȠȣȢ ʌȡĮȖȝĮIJȚțȠȪȢ ĮȡȚșȝȠȪȢ x ȖȚĮ IJȠȣȢ
ȠʌȠȓȠȣȢ ȚıȤȪİȚ x  4  2. (ȂȠȞȐįİȢ 10)
ȕ) ĬİȦȡȠȪȝİ ʌȡĮȖȝĮIJȚțȩ ĮȡȚșȝȩ x ʌȠȣ Ș ĮʌȩıIJĮıȒ
IJȠȣ Įʌȩ IJȠ 4 ıIJȠȞ ȐȟȠȞĮ IJȦȞ ʌȡĮȖȝĮIJȚțȫȞ ĮȡȚș-
ȝȫȞ İȓȞĮȚ ȝȚțȡȩIJİȡȘ Įʌȩ 2.
i) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ Ș ĮʌȩıIJĮıȘ IJȠȣ IJȡȚʌȜȐıȚȠȣ
IJȠȣ ĮȡȚșȝȠȪ ĮȣIJȠȪ Įʌȩ IJȠ 4 İȓȞĮȚ ȝİȖĮȜȪIJİȡȘ
IJȠȣ 2 țĮȚ ȝȚțȡȩIJİȡȘ IJȠȣ 14. (ȂȠȞȐįİȢ 5)
ii) ȃĮ ȕȡİȓIJİ ȝİIJĮȟȪ ʌȠȚȦȞ ȠȡȓȦȞ ʌİȡȚȑȤİIJĮȚ Ș
IJȚȝȒ IJȘȢ ĮʌȩıIJĮıȘȢ IJȠȣ 3x Įʌȩ IJȠ 19.
(ȂȠȞȐįİȢ 10)
ȁȪıȘ
Į) x  4  2  2  x  4  2 
2 + 4  x  4 + 4  2 + 4  2  x  6, ȐȡĮ
x  2, 6
( ).
ȕ) i) DzȤȠȣȝİ x  4  2 țĮȚĮʌȩİȡȫIJȘȝĮ(Į)ʌȡȠțȪʌIJİȚ
2  x  6  23 3x  63 6  3x 18 
6  4  3x  4 18 4  2  3x  4 14,
ȐȡĮ 3x  4  0  3x  4 = 3x  4. ȉİȜȚțȐ,
2  3x  4 14, įȘȜĮįȒ Ș ĮʌȩıIJĮıȘ IJȠȣ 3x
Įʌȩ IJȠ 4 İȓȞĮȚ ȝİȖĮȜȪIJİȡȘ IJȠȣ 2 țĮȚ ȝȚțȡȩIJİ-
ȡȘ IJȠȣ 14.
ii) DzȤȠȣȝİ
6  3x 18  6 19  3x 19 1819 
13 3x 19  1, ȐȡĮ
3x 19  0  3x 19 = 19  3x. ȈȣȞİʌȫȢ
119  3x 131 3x 19 13, įȘȜĮįȒ Ș
ĮʌȩıIJĮıȘ IJȠȣ 3x Įʌȩ IJȠ 19 İȓȞĮȚ ȝİȖĮȜȪIJİȡȘ
IJȠȣ 1 țĮȚ ȝȚțȡȩIJİȡȘ IJȠȣ 13.
]ĬǼȂǹ 4_8453
īȚĮ IJȠȣȢ ʌȡĮȖȝĮIJȚțȠȪȢ ĮȡȚșȝȠȪȢ ,   ȚıȤȪİȚ ȩIJȚ
•   2 1
•   3  2
Į) ȃĮ ĮʌȠįİȚȤșİȓ ȩIJȚ 1   3. (ȂȠȞȐįİȢ 4)
ȕ) ȃĮ ȕȡİșİȓ ȝİIJĮȟȪ ʌȠȚȦȞ ĮȡȚșȝȫȞ ȕȡȓıțİIJĮȚ Ƞ ȕ.
(ȂȠȞȐįİȢ 5)
Ȗ) ȃĮ ȕȡİșİȓ ȝİIJĮȟȪ ʌȠȚȦȞ ĮȡȚșȝȫȞ ȕȡȓıțİIJĮȚ Ș ʌĮ-
ȡȐıIJĮıȘ 2  3. (ȂȠȞȐįİȢ 7)
į) ȃĮ ȕȡİșİȓ ȝİIJĮȟȪ ʌȠȚȦȞ ĮȡȚșȝȫȞ ȕȡȓıțİIJĮȚ Ș
ʌĮȡȐıIJĮıȘ


. (ȂȠȞȐįİȢ 9)
ȁȪıȘ
Į)   2 1 1   2 1
2 1   2 + 2 1+ 2 1   3
ȕ)   3  2  2    3 2 
3 2    3+ 2 1   5, ȐȡĮ Ƞ ȕ ȕȡȓıțİIJĮȚ
ȝİIJĮȟȪ IJȦȞ ĮȡȚșȝȫȞ 1 țĮȚ 5.
Ȗ) 1   3
2
21 2  23 2  2  6 țĮȚ
1   5
 3
( )
 31 3  35  15  3  3.
ǼʌȠȝȑȞȦȢ
2  2  6
15  3  3




+
( )
2 + 15
( ) 2 + 3
( ) 6 + 3
( )
13 2  3  3, ȐȡĮ Ș ʌĮȡȐıIJĮıȘ 2  3
ȕȡȓıțİIJĮȚ ȝİIJĮȟȪ IJȦȞ ĮȡȚșȝȫȞ 13 țĮȚ 3.
į) 1 5
1, , 5#0 1
1
1 1
5
1
5
1
1
ǼʌȠȝȑȞȦȢ
1   3
1
5

1

1







( ) 1
5



 3, ȐȡĮ Ș ʌĮȡȐ-
ıIJĮıȘ


ȕȡȓıțİIJĮȚ ȝİIJĮȟȪ IJȦȞ ĮȡȚșȝȫȞ
1
5
țĮȚ 3.
22
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
¢˜–•Œ ˆ¢‘ƒš‘£˜™ž  ‘¢˜…šž 
2Į ĬǼȂǹȉǹ
]ĬǼȂǹ 2_936
ǻȓȞİIJĮȚ Ș ʌĮȡȐıIJĮıȘ:
 = x  4 + x +1
( ) x  4  x +1
( )
Į) īȚĮ ʌȠȚİȢ IJȚȝȑȢ IJȠȣ x ȠȡȓȗİIJĮȚ Ș ʌĮȡȐıIJĮıȘ A; ȃĮ
ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ. (ȂȠȞȐįİȢ 12)
ȕ) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ Ș ʌĮȡȐıIJĮıȘ A İȓȞĮȚ ıIJĮșİȡȒ,
įȘȜĮįȒ ĮȞİȟȐȡIJȘIJȘ IJȠȣ x. (ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į) ȆȡȑʌİȚ x  4  0  x  4 țĮȚ x +1 0  x  1.
DZȡĮ Ș ʌĮȡȐıIJĮıȘ ȠȡȓȗİIJĮȚ ȖȚĮ x  4.
ȕ)  = x  4 + x +1
( ) x  4  x +1
( )=
= x  4
( )
2
 x +1
( )
2
= x  4  x +1
( )= 5
]ĬǼȂǹ 2_938
Į) ȃĮ įİȓȟİIJİ ȩIJȚ: 3 30
3
 4 (ȂȠȞȐįİȢ 12)
ȕ) ȃĮ ıȣȖțȡȓȞİIJİ IJȠȣȢ ĮȡȚșȝȠȪȢ 30
3
țĮȚ 6  30
3
.
(ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į) DzȤȠȣȝİ
3 30
3
 4  33
 30
3
3
 43
 27  30  64,
ʌȠȣ ȚıȤȪİȚ.
ȕ) DzıIJȦ 30
3
 6  30
3
 30
3
+ 30
3
 6 
2 30
3
 6  30
3

6
2
 30
3
 3
30
3
3
 33
 30  27, ʌȠȣ ȚıȤȪİȚ. ǼʌȠȝȑȞȦȢ
Ș ĮȡȤȚțȒ ȝĮȢ ȣʌȩșİıȘ ȒIJĮȞ ıȦıIJȒ, ȐȡĮ
30
3
 6  30
3
.
]ĬǼȂǹ 2_944
ǻȓȞİIJĮȚ Ș ʌĮȡȐıIJĮıȘ:  = x  4 + 6  x
Į) īȚĮ ʌȠȚİȢ IJȚȝȑȢ IJȠȣ x ȠȡȓȗİIJĮȚ Ș ʌĮȡȐıIJĮıȘ A; ȃĮ
ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ țĮȚ ȞĮ ȖȡȐȥİ-
IJİ IJȠ ıȪȞȠȜȠ IJȦȞ įȣȞĮIJȫȞ IJȚȝȫȞ IJȠȣ x ıİ ȝȠȡijȒ
įȚĮıIJȒȝĮIJȠȢ. (ȂȠȞȐįİȢ 13)
ȕ) īȚĮ x = 5, ȞĮ ĮʌȠįİȓȟİIJİ ȩIJȚ: 2
+  6 = 0
(ȂȠȞȐįİȢ 12)
ȁȪıȘ
Į) ȆȡȑʌİȚ x  4  0  x  4 țĮȚ 6  x  0  x  6.
DZȡĮ x  4, 6

 
.
ȕ) īȚĮ x = 5 İȓȞĮȚ  = 5 4 + 6 5 = 1 + 1 = 2
țĮȚ 2
+  6 = 22
+ 2  6 = 4 + 2  6 = 0.
]ĬǼȂǹ 2_947
ǻȓȞİIJĮȚ Ș ʌĮȡȐıIJĮıȘ:  = x2
+ 4  x  4
Į) īȚĮ ʌȠȚİȢ IJȚȝȑȢ IJȠȣ x ȠȡȓȗİIJĮȚ Ș ʌĮȡȐıIJĮıȘ A; ȃĮ
ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ țĮȚ ȞĮ ȖȡȐȥİ-
IJİ IJȠ ıȪȞȠȜȠ IJȦȞ įȣȞĮIJȫȞ IJȚȝȫȞ IJȠȣ x ıİ ȝȠȡijȒ
įȚĮıIJȒȝĮIJȠȢ. (ȂȠȞȐįİȢ 12)
ȕ) īȚĮ x = 4, ȞĮ ĮʌȠįİȓȟİIJİ ȩIJȚ:
2
  = 2 10  5
( ) (ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į) ȆȡȑʌİȚ x  4  0  x  4 țĮȚ x2
+ 4  0, ʌȠȣ
ȚıȤȪİȚ ȖȚĮ țȐșİ x . DZȡĮ x  4, + 

 ).
ȕ) īȚĮ x = 4 İȓȞĮȚ  = 42
+ 4  4  4 = 20 țĮȚ
2
  = 20
( )
2
 20 = 20  45 =
= 210  2 5 = 2 10  5
( ).
]ĬǼȂǹ 2_950
ǻȓȞİIJĮȚ Ș ʌĮȡȐıIJĮıȘ:  = 1 x  x4
4
Į) īȚĮ ʌȠȚİȢ IJȚȝȑȢ IJȠȣ x ȠȡȓȗİIJĮȚ Ș ʌĮȡȐıIJĮıȘ A; ȃĮ
ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ țĮȚ ȞĮ ȖȡȐȥİ-
IJİ IJȠ ıȪȞȠȜȠ IJȦȞ įȣȞĮIJȫȞ IJȚȝȫȞ IJȠȣ x ıİ ȝȠȡijȒ
įȚĮıIJȒȝĮIJȠȢ. (ȂȠȞȐįİȢ 13)
ȕ) īȚĮ x = 3, ȞĮ ĮʌȠįİȓȟİIJİ ȩIJȚ:
3
+ 2
+ +1= 0 (ȂȠȞȐįİȢ 12)
ȁȪıȘ
Į) ȆȡȑʌİȚ 1 x  0  x 1 țĮȚ x4
 0, ʌȠȣ ȚıȤȪİȚ
ȖȚĮ țȐșİ x . DZȡĮ x  , 1
( 
.
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
23
ȕ) īȚĮ x = 3 İȓȞĮȚ:
 = 1 3
( ) 3
( )
4
4
= 4  3= 1 țĮȚ
3
+ 2
+ +1= 1
( )
3
+ 1
( )
2
+ 1
( )+1=
= 1+11+1= 0.
]ĬǼȂǹ 2_952
ǻȓȞİIJĮȚ Ș ʌĮȡȐıIJĮıȘ:  = x  2
( )
5
5
.
Į) īȚĮ ʌȠȚİȢ IJȚȝȑȢ IJȠȣ x ȠȡȓȗİIJĮȚ Ș ʌĮȡȐıIJĮıȘ B; ȃĮ
ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ țĮȚ ȞĮ ȖȡȐȥİIJİ
IJȠ ıȪȞȠȜȠ IJȦȞ įȣȞĮIJȫȞ IJȚȝȫȞ IJȠȣ x ȣʌȩ ȝȠȡijȒ
įȚĮıIJȒȝĮIJȠȢ. (ȂȠȞȐįİȢ 13)
ȕ) īȚĮ x = 4, ȞĮ ĮʌȠįİȓȟİIJİ ȩIJȚ: 2
+ 6 = 4
(ȂȠȞȐįİȢ 12)
ȁȪıȘ
Į) ȆȡȑʌİȚ x  2
( )
5
 0  x  2  0  x  2.
DZȡĮ x  2, + 

 ).
ȕ) īȚĮ x = 4 İȓȞĮȚ  = 4  2
( )
5
5
= 25
5
= 2 țĮȚ
2
+ 6 = 22
+ 62 = 16 = 24
= 4
.
]ĬǼȂǹ 2_955
ǻȓȞȠȞIJĮȚ ȠȚ ĮȡȚșȝȠȓ:  = 2
( )
6
țĮȚ  = 2
3
( )
6
Į) ȃĮ įİȓȟİIJİ ȩIJȚ:   = 4 (ȂȠȞȐįİȢ 13)
ȕ) ȃĮ įȚĮIJȐȟİIJİ Įʌȩ IJȠȞ ȝȚțȡȩIJİȡȠ ıIJȠȞ ȝİȖĮȜȪIJİȡȠ
IJȠȣȢ ĮȡȚșȝȠȪȢ: 2, 1, 2
3
(ȂȠȞȐįİȢ 12)
ȁȪıȘ
Į)   = 2
( )
6
 2
3
( )
6
= 2
( )
23
 2
3
( )
23
=
= 2
2






3
 2
3
3






2
= 23
 22
= 8 4 = 4
ȕ) ǼȓȞĮȚ 1 2  1
3
 2
3
1 2
3
țĮȚ Įʌȩ IJȠ
İȡȫIJȘȝĮ (Į) ȑȤȠȣȝİ
  = 4  0      2
( )
6
 2
3
( )
6

2
( )
6
6  2
3
( )
6
6  2  2
3
. DZȡĮ
1 2
3
 2.
]ĬǼȂǹ 2_1276
ǻȓȞİIJĮȚ Ș ʌĮȡȐıIJĮıȘ:
 =
x2
+ 4x + 4
x + 2
+
x2
 6x + 9
x  3
.
Į) ȃĮ ȕȡİșȠȪȞ ȠȚ IJȚȝȑȢ ʌȠȣ ʌȡȑʌİȚ ȞĮ ʌȐȡİȚ IJȠ x,
ȫıIJİ Ș ʌĮȡȐıIJĮıȘ Ȁ ȞĮ ȑȤİȚ ȞȩȘȝĮ ʌȡĮȖȝĮIJȚțȠȪ
ĮȡȚșȝȠȪ. (ȂȠȞȐįİȢ 12)
ȕ) ǹȞ 2  x  3, ȞĮ ĮʌȠįİȓȟİIJİ ȩIJȚ ʌĮȡȐıIJĮıȘ Ȁ
ıIJĮșİȡȒ, įȘȜĮįȒ ĮȞİȟȐȡIJȘIJȘ IJȠȣ x. (ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į) ȉĮ ȣʌȩȡȡȚȗĮ İȓȞĮȚ IJȑȜİȚĮ IJİIJȡȐȖȦȞĮ, İʌȠȝȑȞȦȢ ȠȚ
ĮȡȚșȝȘIJȑȢ ȠȡȓȗȠȞIJĮȚ ȖȚĮ țȐșİ IJȚȝȒ IJȠȣ x. īȚĮ IJȠȣȢ
ʌĮȡȠȞȠȝĮıIJȑȢ ʌȡȑʌİȚ x + 2  0  x  2 țĮȚ
x  3 0  x  3. ȉİȜȚțȐ, x   2, 3
{ }.
ȕ) ǹʌȩ IJȘȞ ĮȞȚıȠIJȚțȒ ıȤȑıȘ ȑȤȠȣȝİ
2  x  x + 2  0 țĮȚ x  3 x  3 0.
 =
x + 2
( )
2
x + 2
+
x  3
( )
2
x  3
=

x  2
x  2

x 3
x 3

x 3!0
x2#0 x  2
x  2
x 3
x 3
 1 1 0,
ıIJĮșİȡȒ.
]ĬǼȂǹ 2_1300
ǻȓȞȠȞIJĮȚ ȠȚ ĮȡȚșȝȘIJȚțȑȢ ʌĮȡĮıIJȐıİȚȢ:
A = 2
( )
6
, B = 3
3
( )
6
,  = 6
6
( )
6
.
Į) ȃĮ įİȓȟİIJİ ȩIJȚ: A+ B +  = 23. (ȂȠȞȐįİȢ 13)
ȕ) ȃĮ ıȣȖțȡȓȞİIJİ IJȠȣȢ ĮȡȚșȝȠȪȢ:
3
3
țĮȚ 6
6
.
ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ.
(ȂȠȞȐįİȢ 12)
ȁȪıȘ
Į) A+ B +  = 2
( )
6
+ 3
3
( )
6
+ 6
6
( )
6
=
= 2
6
2
+ 3
6
3
+ 6 = 23
+ 32
+ 6 = 8+ 9 + 6 = 23
ȕ) ǹijȠȪ B = 9 țĮȚ  = 6, ȑȤȠȣȝİ B  , ȐȡĮ
3
3
( )
6
 6
6
( )
6
, ȠʌȩIJİ, ĮijȠȪ ȠȚ ĮȡȚșȝȠȓ 3
3
țĮȚ
6
6
İȓȞĮȚ șİIJȚțȠȓ, ıȣȝʌİȡĮȓȞȠȣȝİ ȩIJȚ 3
3
 6
6
.
24
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
]ĬǼȂǹ 2_3382
ǻȓȞİIJĮȚ Ș ʌĮȡȐıIJĮıȘ:  =
3
5  3
+
5
5 + 3
.
Į) ȃĮ įİȓȟİIJİ ȩIJȚ:  = 4. (ȂȠȞȐįİȢ 12)
ȕ) ȃĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ: x +  = 1. (ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į)  =
3
5  3
+
5
5 + 3
=
=
3
5  3

5 + 3
5 + 3
+
5
5 + 3

5  3
5  3
=
=
15 + 3
2
5
2
 3
2
+
5
2
 15
5
2
 3
2
=
=
15 + 3
5 3
+
5 15
5 3
=
8
2
= 4
ȕ) x   1
4
x  4  1
x + 4 = 1  x + 4 = 1
( ) x = 3  x = 5
( )
]ĬǼȂǹ 2_4311
ǻȓȞȠȞIJĮȚ ȠȚ ʌĮȡĮıIJȐıİȚȢ  = x  2
( )
2
țĮȚ
B = 2  x
( )
3
3
, ȩʌȠȣ x ʌȡĮȖȝĮIJȚțȩȢ ĮȡȚșȝȩȢ.
Į) īȚĮ ʌȠȚİȢ IJȚȝȑȢ IJȠȣ x ȠȡȓȗİIJĮȚ Ș ʌĮȡȐıIJĮıȘ A;
(ȂȠȞȐįİȢ 7)
ȕ) īȚĮ ʌȠȚİȢ IJȚȝȑȢ IJȠȣ x ȠȡȓȗİIJĮȚ Ș ʌĮȡȐıIJĮıȘ B;
(ȂȠȞȐįİȢ 8)
Ȗ) NĮ įİȓȟİIJİ ȩIJȚ, ȖȚĮ țȐșİ x  2, ȚıȤȪİȚ A = B.
(ȂȠȞȐįİȢ 10)
ȁȪıȘ
Į) ȆȡȑʌİȚ x  2
( )
2
 0, ʌȠȣ ȚıȤȪİȚ ȖȚĮ țȐșİ x .
ȕ) ȆȡȑʌİȚ 2  x
( )
3
 0  2  x  0  2  x  x  2.
DZȡĮ Ș ʌĮȡȐıIJĮıȘ B ȠȡȓȗİIJĮȚ ȖȚĮ țȐșİ
x  , 2
( 
.
Ȗ) īȚĮ țȐșİ x  2 ȠȡȓȗȠȞIJĮȚ țĮȚ ȠȚ įȪȠ ʌĮȡĮıIJȐıİȚȢ
ǹ țĮȚ B țĮȚ ȖȡȐijȠȞIJĮȚ
A  x 2

 
2
 x 2 
x 2
x 2

  2 x țĮȚ
B = 2  x
( )
3
3
= 2  x.
DZȡĮ ȖȚĮ țȐșİ x  2 İȓȞĮȚ A = B.
]ĬǼȂǹ 2_4314
ǹȞ İȓȞĮȚ  = 5
3
,  = 3,  = 5
6
, IJȩIJİ:
Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ    = 15 (ȂȠȞȐįİȢ 15)
ȕ) ȃĮ ıȣȖțȡȓȞİIJİ IJȠȣȢ ĮȡȚșȝȠȪȢ ǹ, Ǻ. (ȂȠȞȐįİȢ 10)
ȁȪıȘ
Į)    = 5
3
 3 5
6
= 5
1
3
3
1
2
5
1
6
=
= 5
2
6
5
1
6
3
1
2
= 5
2
6
+
1
6
3
1
2
= 5
3
6
3
1
2
= 5
1
2
3
1
2
= 53
( )
1
2 =
= 15
1
2
= 15
ȕ) īȡȐijȠȣȝİ ʌȡȫIJĮ IJȠȣȢ ǹ, Ǻ ȦȢ ȡȓȗİȢ ȝİ IJȐȟȘ ȓıȘ
ȝİ IJȠ Ǽ.Ȁ.Ȇ. IJȦȞ IJȐȟİȦȞ IJȦȞ ȡȚȗȫȞ, ȫıIJİ ȞĮ
ıȣȖțȡȓȞȠȣȝİ ȝİIJȐ IJĮ ȣʌȩȡȡȚȗĮ:
•  = 5
3
= 52
23
= 25
6
•  = 3 = 33
23
= 27
6
ǹijȠȪ 25  27, șĮ İȓȞĮȚ 25
6
 27
6
, ȐȡĮ   .
]ĬǼȂǹ 2_4316
ǹȞ İȓȞĮȚ A = 2  3, B = 2 + 3, IJȩIJİ:
Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ A B = 1. (ȂȠȞȐįİȢ 12)
ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ IJȚȝȒ IJȘȢ ʌĮȡȐıIJĮıȘȢ
 = 2
+ 2
. (ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į) AB = 2  3
( ) 2 + 3
( )= 22
 3
2
= 4  3= 1
ȕ)  = 2
+ 2
= A+ B
( )
2
 2AB =
= 2  3 + 2 + 3
( )
2
 21= 42
 2 = 16  2 = 14
]ĬǼȂǹ 2_8173
ȈIJȠȞ ʌȓȞĮțĮ IJȘȢ IJȐȟȘȢ ıĮȢ İȓȞĮȚ ȖȡĮȝȝȑȞİȢ ȠȚ ʌĮȡĮ-
țȐIJȦ ʌȜȘȡȠijȠȡȓİȢ (ʌȡȠıİȖȖȓıİȚȢ):
2  1,41
3  1,73
5  2,24
7  2,64
Į) ȃĮ İʌȚȜȑȟİIJİ ȑȞĮȞ IJȡȩʌȠ, ȫıIJİ ȞĮ ĮȟȚȠʌȠȚȒıİIJİ IJĮ
ʌĮȡĮʌȐȞȦ įİįȠȝȑȞĮ (ȩʌȠȚĮ șİȦȡİȓIJİ țĮIJȐȜȜȘȜĮ)
țĮȚ ȞĮ ȣʌȠȜȠȖȓıİIJİ ȝİ ʌȡȠıȑȖȖȚıȘ İțĮIJȠıIJȠȪ IJȠȣȢ
ĮȡȚșȝȠȪȢ 20, 45 țĮȚ 80. (ȂȠȞȐįİȢ 12)
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
25
ȕ) ǹȞ įİȞ ȣʌȒȡȤĮȞ ıIJȠȞ ʌȓȞĮțĮ ȠȚ ʌȡȠıİȖȖȚıIJȚțȑȢ IJȚ-
ȝȑȢ IJȦȞ ȡȚȗȫȞ ʌȫȢ șĮ ȝʌȠȡȠȪıĮIJİ ȞĮ ȣʌȠȜȠȖȓıİIJİ
IJȘȞ IJȚȝȒ IJȘȢ ʌĮȡȐıIJĮıȘȢ
3 20 + 80
45  5
;
(ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į) DzȤȠȣȝİ
20 = 45 = 4  5 = 2 5  22,24 = 4,48,
45 = 95 = 9  5 = 3 5  32,24 = 6,72,
80 = 165 = 16  5 = 4 5  42,24 = 8,96.
ȕ)
3 20 + 80
45  5
=
3 45 + 165
95  5
=
=
3 4 5 + 16 5
9  5  5
=
32 5 + 4 5
3 5  5
=
=
6 5 + 4 5
2 5
=
10 5
2 5
= 5
2Į ĬǼȂǹȉǹ
]ĬǼȂǹ 2_485
ǻȓȞİIJĮȚ Ș İȟȓıȦıȘ x = x + 2
1, ȝİ ʌĮȡȐȝİIJȡȠ
 .
Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ Ș ʌĮȡĮʌȐȞȦ İȟȓıȦıȘ ȖȡȐijİIJĮȚ
ȚıȠįȪȞĮȝĮ:  1
( )x =  1
( )  +1
( ),  
(ȂȠȞȐįİȢ 8)
ȕ) ȃĮ ȕȡİȓIJİ IJȚȢ IJȚȝȑȢ IJȠȣ Ȝ ȖȚĮ IJȚȢ ȠʌȠȓİȢ Ș ʌĮȡĮʌȐ-
ȞȦ İȟȓıȦıȘ ȑȤİȚ ĮțȡȚȕȫȢ ȝȓĮ ȜȪıȘ IJȘȞ ȠʌȠȓĮ țĮȚ
ȞĮ ȕȡİȓIJİ. (ȂȠȞȐįİȢ 8)
Ȗ) īȚĮ ʌȠȚĮ IJȚȝȒ IJȠȣ Ȝ Ș ʌĮȡĮʌȐȞȦ İȟȓıȦıȘ İȓȞĮȚ
IJĮȣIJȩIJȘIJĮ ıIJȠ ıȪȞȠȜȠ IJȦȞ ʌȡĮȖȝĮIJȚțȫȞ ĮȡȚș-
ȝȫȞ; ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ.
(ȂȠȞȐįİȢ 9)
ȁȪıȘ
Į) x = x + 2
1 x  x = 2
1
 1
( )x =  1
( )  +1
( )
ȕ) ȆȡȑʌİȚ  1 0    1. īȚĮ   1 Ș ȜȪıȘ İȓȞĮȚ
x =
 1
( )  +1
( )
 1
 x =  +1.
Ȗ) īȚĮ ȞĮ İȓȞĮȚ Ș İȟȓıȦıȘ IJĮȣIJȩIJȘIJĮ, ʌȡȑʌİȚ ȞĮ İȓȞĮȚ
IJȘȢ ȝȠȡijȒȢ 0x = 0, ȐȡĮ ʌȡȑʌİȚ  1= 0   = 1
țĮȚ  1
( )  +1
( )= 0   = 1   = 1
( ).
DZȡĮ  = 1.
]ĬǼȂǹ 2_507
ǻȓȞİIJĮȚ Ș İȟȓıȦıȘ: 2
 9
( )x = 2
 3, ȝİ ʌĮȡȐȝİIJȡȠ
  1
( )
Į) ǼʌȚȜȑȖȠȞIJĮȢ IJȡİȚȢ įȚĮijȠȡİIJȚțȑȢ IJȚȝȑȢ ȖȚĮ IJȠ Ȝ, ȞĮ
ȖȡȐȥİIJİ IJȡİȚȢ İȟȚıȫıİȚȢ. (ȂȠȞȐįİȢ 6)
ȕ) ȃĮ ʌȡȠıįȚȠȡȓıİIJİ IJȚȢ IJȚȝȑȢ IJȠȣ  , ȫıIJİ Ș
1
( ) ȞĮ ȑȤİȚ ȝȓĮ țĮȚ ȝȠȞĮįȚțȒ ȜȪıȘ. (ȂȠȞȐįİȢ 9)
Ȗ) ȃĮ ȕȡİȓIJİ IJȘȞ IJȚȝȒ IJȠȣ  , ȫıIJİ Ș ȝȠȞĮįȚțȒ
ȜȪıȘ IJȘȢ 1
( ) ȞĮ ȚıȠȪIJĮȚ ȝİ 4. (ȂȠȞȐįİȢ 10)
ȁȪıȘ
Į) īȚĮ  = 0,  = 1țĮȚ  = 2 Ș 1
( ) ȖȓȞİIJĮȚ
ĮȞIJȓıIJȠȚȤĮ 9x = 0, 8x = 2 țĮȚ 5x = 2.
ȕ) Ǿ 1
( ) ȑȤİȚ ȝȠȞĮįȚțȒ ȜȪıȘ ĮȞ țĮȚ ȝȩȞȠ ĮȞ
2
 9  0    3
( )  + 3
( ) 0    ±3.
Ȗ) īȚĮ   ±3 Ș ȝȠȞĮįȚțȒ ȜȪıȘ IJȘȢ 1
( ) İȓȞĮȚ
2
 9
( )x = 2
 3  x =
2
 3
2
 9

x =
   3
( )
  3
( )  + 3
( )
 x =

 + 3
. ȆȡȑʌİȚ

 + 3
= 4   = 4  + 3
( )  = 4 +12 
3 = 12   = 4.
•‡˜ŒžŒ•˜Œ 1ÌÖ ”‘…š¡¨
26
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
]ĬǼȂǹ 2_1055
ǻȓȞİIJĮȚ Ș İȟȓıȦıȘ: 2
1
( )x =  +1
( )  + 2
( ), ȝİ
ʌĮȡȐȝİIJȡȠ  .
Į) ȃĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ ȖȚĮ  = 1 țĮȚ ȖȚĮ  = 1.
(ȂȠȞȐįİȢ 12)
ȕ) īȚĮ ʌȠȚİȢ IJȚȝȑȢ IJȠȣ Ȝ Ș İȟȓıȦıȘ ȑȤİȚ ȝȠȞĮįȚțȒ
ȜȪıȘ; ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ.
(ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į) īȚĮ  = 1 Ș İȟȓıȦıȘ ȖȓȞİIJĮȚ
11
( )x = 1+1
( ) 1+ 2
( ) 0x = 6, ĮįȪȞĮIJȘ.
īȚĮ  = 1 Ș İȟȓıȦıȘ ȖȓȞİIJĮȚ
11
( )x = 1+1
( ) 1+ 2
( ) 0x = 0  x .
ȕ) Ǿ İȟȓıȦıȘ ȑȤİȚ ȝȠȞĮįȚțȒ ȜȪıȘ ȩIJĮȞ Ƞ ıȣȞIJİ-
ȜİıIJȒȢ IJȠȣ ĮȖȞȫıIJȠȣ įİȞ İȓȞĮȚ ȝȘįȑȞ, įȘȜĮįȒ
2
1 0  2
 1   ±1.
]ĬǼȂǹ 2_4302
ǻȓȞİIJĮȚ Ș İȟȓıȦıȘ  + 3
( )x = 2
 9, ȝİ ʌĮȡȐȝİIJȡȠ
 .
Į) ȃĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ ıIJȚȢ ʌĮȡĮțȐIJȦ ʌİȡȚʌIJȫıİȚȢ:
i) ȩIJĮȞ  = 1, (ȂȠȞȐįİȢ 5)
ii) ȩIJĮȞ  = 3. (ȂȠȞȐįİȢ 8)
ȕ) ȃĮ ȕȡİȓIJİ IJȚȢ IJȚȝȑȢ IJȠȣ Į, ȖȚĮ IJȚȢ ȠʌȠȓİȢ Ș İȟȓıȦ-
ıȘ ȑȤİȚ ȝȠȞĮįȚțȒ ȜȪıȘ țĮȚ ȞĮ ʌȡȠıįȚȠȡȓıİIJİ IJȘ
ȜȪıȘ ĮȣIJȒ. (ȂȠȞȐįİȢ 12)
ȁȪıȘ
Į) i) īȚĮ  = 1 Ș İȟȓıȦıȘ ȖȓȞİIJĮȚ
1+ 3
( )x = 12
 9  4x = 8  x = 2.
ii) īȚĮ  = 3 Ș İȟȓıȦıȘ ȖȓȞİIJĮȚ
3+ 3
( )x = 3
( )
2
 9  0x = 0 țĮȚ İȓȞĮȚ ĮȩȡȚ-
ıIJȘ (Ȓ IJĮȣIJȩIJȘIJĮ), įȘȜĮįȒ x .
ȕ) īȚĮ ȞĮ ȑȤİȚ Ș İȟȓıȦıȘ ȝȠȞĮįȚțȒ ȜȪıȘ, ʌȡȑʌİȚ
 + 3 0    3.
DZȡĮ ȖȚĮ țȐșİ   ,  3
( ) 3, + 
( )Ș İȟȓıȦıȘ
ȑȤİȚ ȝȠȞĮįȚțȒ ȜȪıȘ, Ș ȠʌȠȓĮ İȓȞĮȚ:
 + 3
( )x = 2
 9   + 3
( )x =   3
( )  + 3
( )
x =
  3
( )  + 3
( )
 + 3
 x =   3.
2Į ĬǼȂǹȉǹ
]ĬǼȂǹ 2_481
ǻȓȞİIJĮȚ Ș İȟȓıȦıȘ x2
 2x + 4  1
( )= 0, ȝİ ʌĮȡȐ-
ȝİIJȡȠ  .
Į) ȃĮ ȕȡİȓIJİ IJȘ įȚĮțȡȓȞȠȣıĮ IJȘȢ İȟȓıȦıȘȢ.
(ȂȠȞȐįİȢ 8)
ȕ) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ Ș ʌĮȡĮʌȐȞȦ İȟȓıȦıȘ ȑȤİȚ ȡȓ-
ȗİȢ ʌȡĮȖȝĮIJȚțȑȢ ȖȚĮ țȐșİ  . (ȂȠȞȐįİȢ 8)
Ȗ) ǹȞ x1
, x2
İȓȞĮȚ ȠȚ ȡȓȗİȢ IJȘȢ ʌĮȡĮʌȐȞȦ İȟȓıȦıȘȢ,
IJȩIJİ ȞĮ ȕȡİȓIJİ ȖȚĮ ʌȠȚĮ IJȚȝȒ IJȠȣ Ȝ ȚıȤȪİȚ:
x1
+ x2
= x1
x2
(ȂȠȞȐįİȢ 9)
ȁȪıȘ
Į) Ǿ İȟȓıȦıȘ İȓȞĮȚ IJȘȢ ȝȠȡijȒȢ x2
+ x +  = 0 ȝİ
 = 1,  = 2 țĮȚ  = 4  1
( ). Ǿ įȚĮțȡȓȞȠȣıȐ
IJȘȢ İȓȞĮȚ  = 2
 4 = 2
( )
2
 44  1
( )=
= 42
16 +16 = 2  4
( )
2
.
ȕ) ǹʌȩ IJȠ İȡȫIJȘȝĮ (Į) ʌȡȠțȪʌIJİȚ ȩIJȚ
 = 2  4
( )
2
 0, ȐȡĮ Ș İȟȓıȦıȘ ȑȤİȚ
ʌȡĮȖȝĮIJȚțȑȢ ȡȓȗİȢ ȖȚĮ țȐșİ  .
Ȗ) ǼȓȞĮȚ x1
+ x2
= S = 2 țĮȚ x1
x2
= P = 4  1
( ),
ȠʌȩIJİ Ș İȟȓıȦıȘ ȖȓȞİIJĮȚ
x1
+ x2
= x1
x2
 2 = 4  1
( )
2 = 4  4  2 = 4   = 2.
]ĬǼȂǹ 2_483
Į) ȃĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ 2x 1 = 3.
(ȂȠȞȐįİȢ 12)
•‡˜ŒžŒ•˜Œ 2ÌÖ ”‘…š¡¨
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
27
ȕ) ǹȞ Į, ȕ ȝİ    İȓȞĮȚ ȠȚ ȡȓȗİȢ IJȘȢ İȟȓıȦıȘȢ IJȠȣ
İȡȦIJȒȝĮIJȠȢ (Į), IJȩIJİ ȞĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ
x2
+ x + 3= 0. (ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į) 2x 1 = 3 2x 1= 3  2x 1= 3
( )
x = 2  x = 1
( )
ȕ) ǼʌİȚįȒ   , İȓȞĮȚ  = 1țĮȚ  = 2.
Ǿ İȟȓıȦıȘ ȖȓȞİIJĮȚ x2
+ 2x + 3= 0 ȝİ
įȚĮțȡȓȞȠȣıĮ  = 22
 4 1
( )3= 16 țĮȚ ȡȓȗİȢ
x1,2
=
2 ± 16
2 1
( )

x1
=
2  4
2
=
6
2
= 3
x2
=
2 + 4
2
=
2
2
= 1







.
]ĬǼȂǹ 2_493
Į) ȃĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ x  2 = 3.
(ȂȠȞȐįİȢ 10)
ȕ) ȃĮ ıȤȘȝĮIJȓıİIJİ İȟȓıȦıȘ įİȣIJȑȡȠȣ ȕĮșȝȠȪ ȝİ ȡȓ-
ȗİȢ IJȚȢ ȡȓȗİȢ IJȘȢ İȟȓıȦıȘȢ IJȠȣ Į) İȡȦIJȒȝĮIJȠȢ.
(ȂȠȞȐįİȢ 15)
ȁȪıȘ
Į) x  2 = 3  x  2 = 3  x  2 =  3
( )
x = 2 + 3  x = 2  3
( )
ȕ) īȚĮ x1
= 2 + 3 țĮȚ
x2
= 2  3, İȓȞĮȚ x1
+ x2
= 4 țĮȚ
x1
x2
= 2 + 3
( ) 2  3
( )= 22
 3
2
= 4  3= 1.
ȂȚĮ įİȣIJİȡȠȕȐșȝȚĮ İȟȓıȦıȘ ȝİ ȡȓȗİȢ x1
, x2
İȓȞĮȚ
Ș x2
 x1
+ x2
( )x + x1
x2
= 0  x2
 4x +1= 0.
]ĬǼȂǹ 2_496
ǻȓȞİIJĮȚ Ș İȟȓıȦıȘ x2
+ 2x + 4  1
( )= 0, ȝİ ʌĮȡȐ-
ȝİIJȡȠ  .
Į) ȃĮ ȕȡİȓIJİ IJȘ įȚĮțȡȓȞȠȣıĮ IJȘȢ İȟȓıȦıȘȢ.
(ȂȠȞȐįİȢ 8)
ȕ) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ Ș ʌĮȡĮʌȐȞȦ İȟȓıȦıȘ ȑȤİȚ ȡȓ-
ȗİȢ ʌȡĮȖȝĮIJȚțȑȢ ȖȚĮ țȐșİ  . (ȂȠȞȐįİȢ 8)
Ȗ) ǹȞ x1
, x2
İȓȞĮȚ ȠȚ ȡȓȗİȢ IJȘȢ ʌĮȡĮʌȐȞȦ İȟȓıȦıȘȢ,
IJȩIJİ ȞĮ ȕȡİȓIJİ ȖȚĮ ʌȠȚĮ IJȚȝȒ IJȠȣ Ȝ ȚıȤȪİȚ:
x1
+ x2
( )
2
+ x1
x2
+5 = 0 (ȂȠȞȐįİȢ 9)
ȁȪıȘ
Į) Ǿ įȚĮțȡȓȞȠȣıĮ İȓȞĮȚ  = 2
( )
2
 414  1
( )=
= 42
16 +16 = 2  4
( )
2
.
ȕ) Ǿ İȟȓıȦıȘ ȑȤİȚ ʌȡĮȖȝĮIJȚțȑȢ ȡȓȗİȢ ĮȞ țĮȚ ȝȩȞȠ ĮȞ
  0  2  4
( )
2
 0, ʌȠȣ ȚıȤȪİȚ ȖȚĮ țȐșİ  .
Ȗ) ǼȓȞĮȚ x1
+ x2
= 2 țĮȚ x1
x2
= 4  1
( ).DZȡĮ
x1
+ x2
( )
2
+ x1
x2
+5 = 0 
2
( )
2
+ 4  1
( )+5 = 0  2
( )
2
+ 4 +1= 0 
2 +1
( )
2
= 0  2 +1= 0   = 
1
2
.
]ĬǼȂǹ 2_1005
ǻȓȞȠȞIJĮȚ ȠȚ ʌĮȡĮıIJȐıİȚȢ  =
1+ x
x 1
țĮȚ  =
2
x2
 x
,
ȩʌȠȣ Ƞ x İȓȞĮȚ ʌȡĮȖȝĮIJȚțȩȢ ĮȡȚșȝȩȢ.
Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ ȖȚĮ ȞĮ ȠȡȓȗȠȞIJĮȚ IJĮȣIJȩȤȡȠȞĮ ȠȚ
ʌĮȡĮıIJȐıİȚȢ ,  ʌȡȑʌİȚ: x  1  x  0.
(ȂȠȞȐįİȢ 12)
ȕ) ȃĮ ȕȡİȓIJİ IJȚȢ IJȚȝȑȢ IJȠȣ x ȖȚĮ IJȚȢ ȠʌȠȓİȢ ȚıȤȪİȚ
 = . (ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į) ȆȡȑʌİȚ x 1 0  x2
 x  0
( )
x 1 0  x x 1
( ) 0
( )
x 1 0  x  0
( )
x  1  x  0
( ).
ȕ)  =  
1+ x
x 1
=
2
x2
 x

x 1+ x
( )
x x 1
( )

2
x x 1
( )
= 0 
x2
 x 2
x x 1

 
 0
x 1,x 0
x2
 x 2  0
Ǿ įȚĮțȡȓȞȠȣıĮ İȓȞĮȚ  = 12
 41 2
( )= 9 țĮȚ ȠȚ
28
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
ȡȓȗİȢ x1,2
=
1± 9
2

x1
=
1 3
2
= 2
x2
=
1+ 3
2
= 1







.
Ǿ ȜȪıȘ x = 1 ĮʌȠȡȡȓʌIJİIJĮȚ, ȐȡĮ x = 2.
]ĬǼȂǹ 2_1007
Į) ȃĮ ȕȡİȓIJİ IJȚȢ ȡȓȗİȢ IJȘȢ İȟȓıȦıȘȢ: 2x2
+10x = 12.
(ȂȠȞȐįİȢ 15)
ȕ) ȃĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ:
2x2
+10x 12
x  2
= 0.
(ȂȠȞȐįİȢ 10)
ȁȪıȘ
Į) 2x2
+10x = 12  2x2
+10x 12 = 0.
Ǿ įȚĮțȡȓȞȠȣıĮ İȓȞĮȚ
 = 102
 4 2
( ) 12
( )= 100  96 = 4 țĮȚ ȠȚ ȡȓȗİȢ
x1, 2
=
10 ± 4
2 2
( )

x1
=
10 + 2
4
=
8
4
= 2
x2
=
10  2
4
=
12
4
= 3







.
ȕ) ǼȓȞĮȚ
2x2
+10x 12
x  2
= 0
x2
 2x2
+10x 12 = 0 
x = 2,
,  x = 3, 
( ) x = 3.
]ĬǼȂǹ 2_1093
ǻȓȞȠȞIJĮȚ ȠȚ ĮȡȚșȝȠȓ:  =
1
5+ 5
,  =
1
5 5
.
Į) ȃĮ įİȓȟİIJİ ȩIJȚ:
i) +  =
1
2
(ȂȠȞȐįİȢ 8)
ii)   =
1
20
(ȂȠȞȐįİȢ 8)
ȕ) ȃĮ țĮIJĮıțİȣȐıİIJİ ȝȚĮ İȟȓıȦıȘ 2Ƞȣ ȕĮșȝȠȪ ȝİ
ȡȓȗİȢ IJȠȣȢ ĮȡȚșȝȠȪȢ A țĮȚ B. (ȂȠȞȐįİȢ 9)
ȁȪıȘ
Į) i) +  =
1
5+ 5
+
1
5 5
=
=
1
5+ 5

5 5
5 5
+
1
5 5

5+ 5
5+ 5
=
=
5 5
52
 5
( )
2
+
5+ 5
52
 5
( )
2
=
5 5
255
+
5+ 5
255
=
=
5 5 +5+ 5
20
=
10
20
=
1
2
.
ii)   =
1
5+ 5

1
5 5
=
1
52
 5
( )
2
=
1
255
=
1
20
ȕ) S = +  =
1
2
țĮȚ P =  =
1
20
țĮȚ
țĮIJĮıțİȣȐȗȠȣȝİ IJȘȞ İȟȓıȦıȘ 2Ƞȣ ȕĮșȝȠȪ ʌȠȣ
įȓȞİIJĮȚ Įʌȩ IJȘ ıȤȑıȘ
x2
 Sx + P = 0  x2

1
2
x +
1
20
= 0.
]ĬǼȂǹ 2_1275
ǻȓȞİIJĮȚ IJȠ IJȡȚȫȞȣȝȠ 2x2
+5x 1.
Į) ȃĮ įİȓȟİIJİ ȩIJȚ IJȠ IJȡȚȫȞȣȝȠ ȑȤİȚ įȪȠ ȐȞȚıİȢ țĮȚ
ʌȡĮȖȝĮIJȚțȑȢ ȡȓȗİȢ, x1
țĮȚ x2
. (ȂȠȞȐįİȢ 6)
ȕ) ȃĮ ȕȡİȓIJİ IJȘȞ IJȚȝȒ IJȦȞ ʌĮȡĮıIJȐıİȦȞ: x1
+ x2
,
x1
 x2
țĮȚ
1
x1
+
1
x2
. (ȂȠȞȐįİȢ 9)
Ȗ) ȃĮ ʌȡȠıįȚȠȡȓıİIJİ ȝȚĮ İȟȓıȦıȘ 2Ƞȣ ȕĮșȝȠȪ ȝİ
ȡȓȗİȢ IJȠȣȢ ĮȡȚșȝȠȪȢ
1
x1
țĮȚ
1
x2
. (ȂȠȞȐįİȢ 10)
ȁȪıȘ
Į)  = 2,  = 5,  = 1, ȠʌȩIJİ
 = 2
 4 = 52
 42 1
( )= 25+8 = 33 0,
ȐȡĮ IJȠ IJȡȚȫȞȣȝȠ ȑȤİȚ įȪȠ ȐȞȚıİȢ țĮȚ ʌȡĮȖȝĮIJȚ-
țȑȢ ȡȓȗİȢ.
ȕ) DzȤȠȣȝİ x1
+ x2
= S = 


= 
5
2
,
x1
x2
= P =


= 
1
2
țĮȚ
1
x1
+
1
x2
=
x1
+ x2
x1
x2
=
S
P
=

5
2

1
2
= 5.
Ȗ) ǺȡȓıțȠȣȝİ IJȠ ȐșȡȠȚıȝĮ țĮȚ IJȠ ȖȚȞȩȝİȞȠ IJȦȞ
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
29
ȡȚȗȫȞ
1
x1
țĮȚ
1
x2
:
S =
1
x1
+
1
x2
= 5 țĮȚ P =
1
x1

1
x2
=
1
x1
x2
=
1

1
2
= 2
țĮȚ ȝȓĮ İȟȓıȦıȘ 2Ƞȣ ȕĮșȝȠȪ ȝİ IJȚȢ ʌĮȡĮʌȐȞȦ
ȡȓȗİȢ İȓȞĮȚ x2
 Sx + P = 0  x2
5x  2 = 0.
]ĬǼȂǹ 2_1298
DzıIJȦ Į, ȕ ʌȡĮȖȝĮIJȚțȠȓ ĮȡȚșȝȠȓ ȖȚĮ IJȠȣȢ ȠʌȠȓȠȣȢ
ȚıȤȪȠȣȞ:
 +  = 2 țĮȚ 2
 + 2
= 30
Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ:   = 15. (ȂȠȞȐįİȢ 10)
ȕ) ȃĮ țĮIJĮıțİȣȐıİIJİ İȟȓıȦıȘ įİȣIJȑȡȠȣ ȕĮșȝȠȪ ȝİ
ȡȓȗİȢ IJȠȣȢ ĮȡȚșȝȠȪȢ Į, ȕ țĮȚ ȞĮ IJȠȣȢ ȕȡİȓIJİ.
(ȂȠȞȐįİȢ 15)
ȁȪıȘ
Į) 2
 2
 30 

  30
 2
2 = 30   = 15
ȕ) ǺȡȓıțȠȣȝİ IJȠ ȐșȡȠȚıȝĮ țĮȚ IJȠ ȖȚȞȩȝİȞȠ IJȦȞ Į
țĮȚ ȕ: S =  +  = 2 țĮȚ P =  = 15 țĮȚ ȝȓĮ
İȟȓıȦıȘ 2Ƞȣ ȕĮșȝȠȪ ȝİ IJȚȢ ʌĮȡĮʌȐȞȦ ȡȓȗİȢ İȓȞĮȚ
x2
 Sx + P = 0  x2
 2x 15 = 0, ȝİ
 = 2
( )
2
 41 15
( )= 4 + 60 = 64  0 țĮȚ ȡȓȗİȢ
x1,2
=
 2
( )± 64
2
=
2 ±8
2

x1
=
2 8
2
=
6
2
= 3
x2
=
2 +8
2
=
10
2
= 5







.
DZȡĮ  = 3 țĮȚ  = 5 Ȓ  = 5 țĮȚ  = 3.
]ĬǼȂǹ 2_1509
ǻȓȞİIJĮȚ Ș İȟȓıȦıȘ x2
  1
( )x + 6 = 0, 1
( ) ȝİ ʌĮ-
ȡȐȝİIJȡȠ  .
Į) ǹȞ Ș ʌĮȡĮʌȐȞȦ İȟȓıȦıȘ ȑȤİȚ ȜȪıȘ IJȠ 1, ȞĮ ȕȡİȓ-
IJİ IJȠ Ȝ. (ȂȠȞȐįİȢ 13)
ȕ) īȚĮ  = 2 ȞĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ 1
( ).
(ȂȠȞȐįİȢ 12)
ȁȪıȘ
Į) īȚĮ x = 1 Ș 1
( ) ȖȡȐijİIJĮȚ
12
  1
( )1+ 6 = 0 1  +1+ 6 = 0   = 8.
ȕ) īȚĮ  = 2 Ș 1
( ) ȖȡȐijİIJĮȚ
x2
 2 1
( )x + 6 = 0  x2
 x + 6 = 0.
 = 1,  = 1,  = 6,  = 2
 4 =
= 1
( )
2
 416 = 1 24 = 23 0, ĮįȪȞĮIJȘ.
]ĬǼȂǹ 2_3839
ǻȓȞİIJĮȚ Ș İȟȓıȦıȘ x2
  1
( )x 1= 0, ȝİ ʌĮȡȐȝİIJȡȠ
  0.
Į) ȃĮ ȕȡİȓIJİ IJȘȞ IJȚȝȒ IJȠȣ Ȝ ȖȚĮ IJȘȞ ȠʌȠȓĮ Ș İȟȓıȦıȘ
ȑȤİȚ ȡȓȗĮ IJȠȞ ĮȡȚșȝȩ í2. (ȂȠȞȐįİȢ 12)
ȕ) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ Ș İȟȓıȦıȘ ȑȤİȚ ʌȡĮȖȝĮIJȚțȑȢ
ȡȓȗİȢ ȖȚĮ țȐșİ   0. (ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į) ǹȞIJȚțĮșȚıIJȠȪȝİ ȩʌȠȣ x IJȠ 2:
 2
( )
2
  1
( ) 2
( )1= 0 
4 + 2  1
( )1= 0  4 + 2  3= 0 
6 = 3  =
1
2
.
ȕ) īȚĮ   0 Ș İȟȓıȦıȘ İȓȞĮȚ 2Ƞȣ ȕĮșȝȠȪ.
ǺȡȓıțȠȣȝİ IJȘ įȚĮțȡȓȞȠȣıĮ IJȠȣ IJȡȚȦȞȪȝȠȣ
x2
  1
( )x 1 ȝİ
 = ,  =   1
( ),  = 1,
 =   1
( )

 

2
 4 1
( )=  1
( )
2
+ 4 =
= 2
 2 +1+ 4 = 2
+ 2 +1=  +1
( )
2
 0.
DZȡĮ ȖȚĮ țȐșİ   0 ȚıȤȪİȚ   0, İʌȠȝȑȞȦȢ Ș İȟȓ-
ıȦıȘ ȑȤİȚ ʌȡĮȖȝĮIJȚțȑȢ ȡȓȗİȢ.
]ĬǼȂǹ 2_3847
ǻȓȞİIJĮȚ Ș İȟȓıȦıȘ  + 2
( )x2
+ 2x +  1= 0, ȝİ
ʌĮȡȐȝİIJȡȠ   2. ȃĮ ȕȡİȓIJİ IJȚȢ IJȚȝȑȢ IJȠȣ Ȝ ȖȚĮ IJȚȢ
ȠʌȠȓİȢ:
Į) Ș İȟȓıȦıȘ ȑȤİȚ įȣȠ ȡȓȗİȢ ʌȡĮȖȝĮIJȚțȑȢ țĮȚ ȐȞȚıİȢ,
(ȂȠȞȐįİȢ 13)
ȕ) IJȠ ȐșȡȠȚıȝĮ IJȦȞ ȡȚȗȫȞ IJȘȢ İȟȓıȦıȘȢ İȓȞĮȚ ȓıȠ
ȝİ 2. (ȂȠȞȐįİȢ 12)
30
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
ȁȪıȘ
Ǿ İȟȓıȦıȘ İȓȞĮȚ įİȣIJȑȡȠȣ ȕĮșȝȠȪ, İʌİȚįȒ   2.
DzȤȠȣȝİ  =  + 2,  = 2,  =  1,
 = 2
( )
2
 4  + 2
( )  1
( )=
= 42
 4 2
  + 2  2
( )=
= 42
 42
 4 +8 = 4 +8.
Į) ȆȡȑʌİȚ   0  4 +8  0  4  8    2,
ȐȡĮ Ș İȟȓıȦıȘ ȑȤİȚ įȪȠ ʌȡĮȖȝĮIJȚțȑȢ, ȐȞȚıİȢ ȡȓȗİȢ
ȖȚĮ țȐșİ   , 2
( ).
ȕ) x1
+ x2
= S = 


= 
2
 + 2
. ȆȡȑʌİȚ ȞĮ ȚıȤȪİȚ
S = 2  
2
 + 2
= 2  2 = 2  + 2
( )
2 = 2 + 4  4 = 4   = 1.
Ǿ IJȚȝȒ IJȠȣ Ȝ İȓȞĮȚ įİțIJȒ, ĮijȠȪ 1 , 2
( ).
]ĬǼȂǹ 2_3857
DzıIJȦ Į, ȕ ʌȡĮȖȝĮIJȚțȠȓ ĮȡȚșȝȠȓ ȖȚĮ IJȠȣȢ ȠʌȠȓȠȣȢ
ȚıȤȪȠȣȞ  = 4 țĮȚ 2
 + 2
= 20.
Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ  +  = 5. (ȂȠȞȐįİȢ 10)
ȕ) ȃĮ țĮIJĮıțİȣȐıİIJİ İȟȓıȦıȘ 2Ƞȣ ȕĮșȝȠȪ ȝİ ȡȓȗİȢ
IJȠȣȢ ĮȡȚșȝȠȪȢ Į, ȕ țĮȚ ȞĮ IJȠȣȢ ȕȡİȓIJİ.
(ȂȠȞȐįİȢ 15)
ȁȪıȘ
Į) 2
 2
 20 

  20
4
4  + 
( )= 20   +  = 5
ȕ) Ǿ İȟȓıȦıȘ ʌȠȣ ȗȘIJȐȝİ ȑȤİȚ S =  +  = 5 țĮȚ
P =  = 4.
ǼʌȠȝȑȞȦȢ Ș İȟȓıȦıȘ İȓȞĮȚ IJȘȢ ȝȠȡijȒȢ
x2
 Sx + P = 0, įȘȜĮįȒ x2
5x + 4 = 0.
 = 5
( )
2
 414 = 2516 = 9  0, ȠʌȩIJİ
x1,2
=
 5
( )± 9
2
=
5± 3
2

x1
=
5 3
2
=
2
2
= 1
x2
=
5+ 3
2
=
8
2
= 4







.
DZȡĮ  = 1 țĮȚ  = 4 Ȓ  = 4 țĮȚ  = 1.
]ĬǼȂǹ 2_3863
DzıIJȦ Į, ȕ ʌȡĮȖȝĮIJȚțȠȓ ĮȡȚșȝȠȓ ȖȚĮ IJȠȣȢ ȠʌȠȓȠȣȢ
ȚıȤȪȠȣȞ:  +  = 1țĮȚ 3
 + 22
2
+ 3
= 12
Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ:   = 12. (ȂȠȞȐįİȢ 10)
ȕ) ȃĮ țĮIJĮıțİȣȐıİIJİ İȟȓıȦıȘ 2Ƞȣ ȕĮșȝȠȪ ȝİ ȡȓȗİȢ
IJȠȣȢ ĮȡȚșȝȠȪȢ Į, ȕ țĮȚ ȞĮ IJȠȣȢ ȕȡİȓIJİ.
(ȂȠȞȐįİȢ 15)
ȁȪıȘ
Į) 3
 + 22
2
+ 3
= 12 
 2
+ 2 + 2
( )= 12    + 
( )
2
= 12 
  1
( )
2
= 12   = 12
ȕ) ȂȚĮ IJȑIJȠȚĮ İȟȓıȦıȘ İȓȞĮȚ Ș
x2
  + 
( )x +  = 0, įȘȜĮįȒ Ș İȟȓıȦıȘ
x2
+ x 12 = 0. Ǿ İȟȓıȦıȘ ĮȣIJȒ ȑȤİȚ
 = 12
 41 12
( )= 1+ 48 = 49  0, ȐȡĮ
x1,2
=
1± 49
2
=
1± 7
2

x1
=
1 7
2
=
8
2
= 4
x2
=
1+ 7
2
=
6
2
= 3







.
DzIJıȚ,  = 4,  = 3
( ) Ȓ  = 3,  = 4
( ).
]ĬǼȂǹ 2_4306
Į) ȃĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ 2x2
 x  6 = 0. 1
( )
(ȂȠȞȐįİȢ 9)
ȕ) ȃĮ ȜȪıİIJİ IJȘȞ ĮȞȓıȦıȘ x 1  2. 2
( )
(ȂȠȞȐįİȢ 9)
Ȗ) ȃĮ İȟİIJȐıİIJİ ĮȞ ȣʌȐȡȤȠȣȞ IJȚȝȑȢ IJȠȣ x ʌȠȣ ȚțĮȞȠ-
ʌȠȚȠȪȞ IJĮȣIJȩȤȡȠȞĮ IJȚȢ ıȤȑıİȚȢ 1
( ) țĮȚ 2
( ).
(ȂȠȞȐįİȢ 7)
ȁȪıȘ
Į)  = 2,  = 1,  = 6. DZȡĮ
 = 2
 4 = 1
( )
2
 42 6
( )= 1+ 48 = 49  0,
ȠʌȩIJİ
x1,2
=
 ± 
2
=
 1
( )± 49
22
=
1± 7
4

x1
= 2
x2
= 
3
2





.
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
31
ȕ) x 1  2  2  x 1 2 
2 +1 x 1+1 2 +1 1 x  3. DZȡĮ
x  1, 3
( ).
Ȗ) ǼȟİIJȐȗȠȣȝİ ĮȞ ȠȚ ȜȪıİȚȢ IJȘȢ İȟȓıȦıȘȢ 1
( ) ĮȞȒțȠȣȞ
ıIJȠ ıȪȞȠȜȠ IJȦȞ ȜȪıİȦȞ IJȘȢ ĮȞȓıȦıȘȢ 2
( ):

3
2
 1, 3
( ), İȞȫ 2  1, 3
( ).
DZȡĮ Ș ȝȩȞȘ IJȚȝȒ IJȠȣ x ʌȠȣ ȚțĮȞȠʌȠȚİȓ IJȚȢ 1
( ) țĮȚ
2
( ) İȓȞĮȚ Ș 2.
]ĬǼȂǹ 2_4308
Į) ȃĮ ȕȡİȓIJİ ȖȚĮ ʌȠȚİȢ IJȚȝȑȢ IJȠȣ x Ș ʌĮȡȐıIJĮıȘ:
 =
2x2
1
x2
 x
+
1
1 x
ȑȤİȚ ȞȩȘȝĮ ʌȡĮȖȝĮIJȚțȠȪ ĮȡȚșȝȠȪ. (ȂȠȞȐįİȢ 10)
ȕ) īȚĮ IJȚȢ IJȚȝȑȢ IJȠȣ x ʌȠȣ ȕȡȒțĮIJİ ıIJȠ Į) İȡȫIJȘȝĮ,
ȞĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ:
2x2
1
x2
 x
+
1
1 x
= 0 (ȂȠȞȐįİȢ 15)
ȁȪıȘ
Į) ȆȡȑʌİȚ
x2
 x  0  x x 1
( ) 0  x  0  x  1
( ) țĮȚ
1 x  0  x  1. ȉİȜȚțȐ, x   0, 1
{ }.
ȕ) īȚĮ x   0, 1
{ }:
2x2
1
x2
 x
+
1
1 x
= 0 
2x2
1
x x 1
( )

1
x 1
= 0 
x x 1
( ) 2x2
1
x x 1
( )
 x x 1
( ) 1
x 1
= x x 1
( )0 
2x2
1 x = 0  2x2
 x 1= 0.
 = 2,  = 1,  = 1, ȐȡĮ
 = 2
 4 = 1
( )
2
 42 1
( )= 9  0, ȠʌȩIJİ
x1,2
=
 ± 
2
=
 1
( )± 9
22
=
1± 3
4

x1
= 1,
x2
= 
1
2
, 





.
]ĬǼȂǹ 2_4309
ǻȓȞİIJĮȚ ȠȡșȠȖȫȞȚȠ ȝİ ʌİȡȓȝİIJȡȠ  = 20cm țĮȚ İȝ-
ȕĮįȩ E = 24cm2
.
Į) ȃĮ țĮIJĮıțİȣȐıİIJİ ȝȓĮ İȟȓıȦıȘ 2Ƞȣ ȕĮșȝȠȪ ʌȠȣ
ȑȤİȚ ȦȢ ȡȓȗİȢ IJĮ ȝȒțȘ IJȦȞ ʌȜİȣȡȫȞ ĮȣIJȠȪ IJȠȣ Ƞȡ-
șȠȖȦȞȓȠȣ. (ȂȠȞȐįİȢ 15)
ȕ) ȃĮ ȕȡİȓIJİ IJĮ ȝȒțȘ IJȦȞ ʌȜİȣȡȫȞ IJȠȣ ȠȡșȠȖȦȞȓȠȣ.
(ȂȠȞȐįİȢ 10)
ȁȪıȘ
Į) ǹȞ x, y İȓȞĮȚ ȠȚ ʌȜİȣȡȑȢ IJȠȣ ȠȡșȠȖȦȞȓȠȣ, IJȩIJİ:
 2x  2y
20
2x  2y  20 x  y  10 1
( )
E = xy  xy = 24 2
( )
ȅȚ x țĮȚ y İȓȞĮȚ ȡȓȗİȢ IJȘȢ İȟȓıȦıȘȢ ʌȠȣ ȗȘIJȐȝİ,
İʌȠȝȑȞȦȢ S = x + y = 10 țĮȚ P = xy = 24.
DZȡĮ ȝȓĮ İȟȓıȦıȘ ȝİ ȡȓȗİȢ IJĮ ȝȒțȘ IJȦȞ ʌȜİȣȡȫȞ
ĮȣIJȠȪ IJȠȣ ȠȡșȠȖȦȞȓȠȣ İȓȞĮȚ
x2
Sx  P  0
P24
S10
x2
10x  24  0.
ȕ) ȉĮ ȝȒțȘ IJȦȞ ʌȜİȣȡȫȞ IJȠȣ ȠȡșȠȖȦȞȓȠȣ İȓȞĮȚ ȠȚ
ȜȪıİȚȢ IJȘȢ İȟȓıȦıȘȢ x2
10x + 24 = 0.
 = 1,  = 10,  = 24, ȐȡĮ
 = 2
 4 = 10
( )
2
 4124 =
= 100  96 = 4  0, ȠʌȩIJİ
x1,2
=
 ± 
2
=
 10
( )± 4
21
=
10 ± 2
2

x1
=
12
2
= 6
x2
=
8
2
= 4







.
DZȡĮ ȠȚ ʌȜİȣȡȑȢ IJȠȣ ȠȡșȠȖȦȞȓȠȣ İȓȞĮȚ 6cm țĮȚ 4cm.
]ĬǼȂǹ 2_4310
ǻȓȞȠȞIJĮȚ įȪȠ ʌȡĮȖȝĮIJȚțȠȓ ĮȡȚșȝȠȓ Į, ȕ IJȑIJȠȚȠȚ ȫıIJİ
 +  = 12 țĮȚ 2
+ 2
= 272.
Į) Ȃİ IJȘ ȕȠȒșİȚĮ IJȘȢ IJĮȣIJȩIJȘIJĮȢ
 + 
( )
2
= 2
+ 2 + 2
, ȞĮ įİȓȟİIJİ ȩIJȚ
  = 64. (ȂȠȞȐįİȢ 8)
ȕ) ȃĮ țĮIJĮıțİȣȐıİIJİ ȝȚĮ İȟȓıȦıȘ 2Ƞȣ ȕĮșȝȠȪ ʌȠȣ
ȑȤİȚ ȡȓȗİȢ IJȠȣȢ ĮȡȚșȝȠȪȢ Į, ȕ. (ȂȠȞȐįİȢ 10)
Ȗ) ȃĮ ʌȡȠıįȚȠȡȓıİIJİ IJȠȣȢ ĮȡȚșȝȠȪȢ Į, ȕ.
(ȂȠȞȐįİȢ 7)
32
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
ȁȪıȘ
Į)  + 
( )
2
= 2
+ 2 + 2

2  

 
2 2
 2

  2
 2
272
 12
2 = 122
 272  2 = 144  272 
2 = 128   = 64
ȕ) ȉȠ ȐșȡȠȚıȝĮ IJȦȞ ȡȚȗȫȞ IJȘȢ ȗȘIJȠȪȝİȞȘȢ İȟȓıȦıȘȢ
İȓȞĮȚ S =  +  = 12 țĮȚ IJȠ ȖȚȞȩȝİȞȠ IJȦȞ ȡȚȗȫȞ
IJȘȢ İȓȞĮȚ P =  = 64.
DZȡĮ ȝȓĮ IJȑIJȠȚĮ İȟȓıȦıȘ İȓȞĮȚ Ș
x2
Sx  P  0
P 64
S12
x2
12x 64  0.
Ȗ) ȁȪȞȠȣȝİ IJȘ įİȣIJİȡȠȕȐșȝȚĮ İȟȓıȦıȘ ʌȠȣ ʌȡȠȑțȣȥİ:
 = 12
( )
2
 41 64
( )= 144 + 256 = 400  0, ȐȡĮ
x1,2
=
 12
( )± 400
2

x1
=
12 + 20
2
= 16
x2
=
12  20
2
= 4







.
DZȡĮ  = 16 țĮȚ  = 4 Ȓ  = 4 țĮȚ  = 16.
]ĬǼȂǹ 2_4313
ǻȓȞȠȞIJĮȚ ȠȚ ĮȡȚșȝȠȓ: A =
1
3 7
, B =
1
3+ 7
Į) ȃĮ įİȓȟİIJİ ȩIJȚ A+ B = 3 țĮȚ A B =
1
2
.
(ȂȠȞȐįİȢ 12)
ȕ) ȃĮ țĮIJĮıțİȣȐıİIJİ ȝȚĮ İȟȓıȦıȘ 2Ƞȣ ȕĮșȝȠȪ ʌȠȣ
ȑȤİȚ ȡȓȗİȢ IJȠȣȢ ĮȡȚșȝȠȪȢ ǹ, Ǻ. (ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į) A+ B =
1
3 7
+
1
3+ 7
=
=
1 3+ 7
( )
3 7
( ) 3+ 7
( )
+
1 3 7
( )
3 7
( ) 3+ 7
( )
=
=
3+ 7
( )+ 3 7
( )
3 7
( ) 3+ 7
( )
=
3+ 7 + 3 7
32
 7
2
=
=
6
9  7
=
6
2
= 3 țĮȚ
AB =
1
3 7

1
3+ 7
=
11
3 7
( ) 3+ 7
( )
=
=
1
32
 7
2
=
1
9  7
=
1
2
.
ȕ) Ǿ ȗȘIJȠȪȝİȞȘ İȟȓıȦıȘ İȓȞĮȚ IJȘȢ ȝȠȡijȒȢ
x2
 Sx + P = 0 ȝİ S = A+ B = 3 țĮȚ
P = AB =
1
2
. DZȡĮ x2
 3x +
1
2
= 0.
]ĬǼȂǹ 2_4317
ǻȓȞİIJĮȚ Ș İȟȓıȦıȘ  + 2
( )x2
+ 2x +  1= 0, ȝİ
ʌĮȡȐȝİIJȡȠ   2.
Į) ȃĮ ȕȡİȓIJİ IJȚȢ IJȚȝȑȢ IJȠȣ Ȝ ȖȚĮ IJȚȢ ȠʌȠȓİȢ Ș İȟȓıȦıȘ
ȑȤİȚ įȣȠ ȡȓȗİȢ ʌȡĮȖȝĮIJȚțȑȢ țĮȚ ȐȞȚıİȢ.
(ȂȠȞȐįİȢ 12)
ȕ) ǹȞ x1
, x2
İȓȞĮȚ ȠȚ ȡȓȗİȢ IJȘȢ ʌĮȡĮʌȐȞȦ İȟȓıȦıȘȢ
ȞĮ ȕȡİȓIJİ IJȠ Ȝ ȫıIJİ x1
 x2
= 3. (ȂȠȞȐįİȢ 13)
ȁȪıȘ
Į) īȚĮ IJȘȞ İȟȓıȦıȘ  + 2
( )x2
+ 2x +  1= 0
ȚıȤȪİȚ ȩIJȚ   2   + 2  0, ȐȡĮ İȓȞĮȚ įİȣIJİȡȠ-
ȕȐșȝȚĮ. ǺȡȓıțȠȣȝİ IJȘ įȚĮțȡȓȞȠȣıȐ IJȘȢ:
 =  + 2,  = 2 țĮȚ  =  1, ȠʌȩIJİ
 = 2
( )
2
 4  + 2
( )  1
( )=
= 42
 4 2
  + 2  2
( )=
= 42
 4 2
+   2
( )=
= 42
 42
 4 +8 = 4 +8.
īȚĮ ȞĮ ȑȤİȚ Ș İȟȓıȦıȘ įȪȠ ȡȓȗİȢ ʌȡĮȖȝĮIJȚțȑȢ țĮȚ
ȐȞȚıİȢ, ʌȡȑʌİȚ
  0  4 +8  0  4  8    2. DZȡĮ ȖȚĮ
țȐșİ   , 2
( ) Ș İȟȓıȦıȘ ȑȤİȚ įȪȠ ȡȓȗİȢ
ʌȡĮȖȝĮIJȚțȑȢ țĮȚ ȐȞȚıİȢ.
ȕ) īȚĮ   , 2
( ) ȑȤȠȣȝİ P = x1
x2
=
 1
 + 2
, ȠʌȩIJİ
 1
 + 2
= 3  1= 3  + 2
( )
 1= 3  6  4 = 5   = 
5
4
.
ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ
33
4Į ĬǼȂǹȉǹ
]ĬǼȂǹ 4_1890
ǻȓȞİIJĮȚ Ș İȟȓıȦıȘ
 + 2
( )x2
+ 2 + 3
( )x +   2 = 0 1
( ),
ȝİ ʌĮȡȐȝİIJȡȠ   2.
Į) ȃĮ įİȓȟİIJİ ȩIJȚ Ș įȚĮțȡȓȞȠȣıĮ IJȘȢ İȟȓıȦıȘȢ 1
( )
İȓȞĮȚ:  = 12 + 25 (ȂȠȞȐįİȢ 6)
ȕ) ȃĮ ȕȡİȓIJİ IJȚȢ IJȚȝȑȢ IJȠȣ   2, ȫıIJİ Ș İȟȓıȦıȘ
1
( ) ȞĮ ȑȤİȚ įȪȠ ȡȓȗİȢ ʌȡĮȖȝĮIJȚțȑȢ țĮȚ ȐȞȚıİȢ.
(ȂȠȞȐįİȢ 7)
Ȗ) ȃĮ İțijȡȐıİIJİ ȦȢ ıȣȞȐȡIJȘıȘ IJȠȣ Ȝ IJȠ ȐșȡȠȚıȝĮ
IJȦȞ ȡȚȗȫȞ S = x1
+ x2
țĮȚ IJȠ ȖȚȞȩȝİȞȠ IJȦȞ ȡȚȗȫȞ
P = x1
x2
. (ȂȠȞȐįİȢ 4)
į) ȃĮ İȟİIJȐıİIJİ ĮȞ ȣʌȐȡȤİȚ IJȚȝȒ IJȠȣ Ȝ ȫıIJİ ȖȚĮ IJȚȢ
ȡȓȗİȢ x1
, x2
IJȘȢ İȟȓıȦıȘȢ 1
( ) ȞĮ ȚıȤȪİȚ Ș ıȤȑıȘ:
x1
+ x2
1
( )
2
+ x1
x2
+ 3
( )
2
= 0 (ȂȠȞȐįİȢ 8)
ȁȪıȘ
Ǿ İȟȓıȦıȘ İȓȞĮȚ IJȘȢ ȝȠȡijȒȢ x2
+ x +  = 0 ȝİ
 =  + 2,  = 2 + 3 țĮȚ  =   2.
Į) Ǿ įȚĮțȡȓȞȠȣıĮ IJȘȢ İȟȓıȦıȘȢ 1
( ) İȓȞĮȚ:
 = 2
 4 = 2 + 3
( )
2
 4  + 2
( )   2
( )=
= 2
( )
2
+ 23 2
( )+ 32
 4 2
 4
( )=
= 42
+12 + 9  42
+16 = 12 + 25.
ȕ) īȚĮ ȞĮ ȑȤİȚ Ș 1
( ) įȪȠ ʌȡĮȖȝĮIJȚțȑȢ țĮȚ ȐȞȚıİȢ
ȡȓȗİȢ, ʌȡȑʌİȚ   2 țĮȚ
  0 12 + 25  0 12  25    
25
12
.
TİȜȚțȐ,   
25
12
,  2






	  2, + 
( ).
Ȗ) ǼȓȞĮȚ S = 


= 
2 + 3
 + 2
țĮȚ P =


=
  2
 + 2
.
į) x1
+ x2
1
( )
2
+ x1
x2
+ 3
( )
2
= 0 
x1
+ x2
1= 0  x1
x2
+ 3= 0
( )

2 + 3
 + 2
1= 0 
  2
 + 2
+ 3= 0





 
3 5
 + 2
= 0 
4 + 4
 + 2
= 0





 
 = 
5
3
  = 1





 , 
.
DZȡĮ įİȞ ȣʌȐȡȤİȚ   ȫıIJİ ȞĮ ȚıȤȪİȚ Ș įȠıȝȑȞȘ
ıȤȑıȘ.
]ĬǼȂǹ 4_1955
ȉȑııİȡȚȢ ĮșȜȘIJȑȢ, Ƞ ǹȡȖȪȡȘȢ, Ƞ ǺĮıȓȜȘȢ, Ƞ īȚȫȡȖȠȢ
țĮȚ Ƞ ǻȘȝȒIJȡȘȢ IJİȡȝȐIJȚıĮȞ ıİ ȑȞĮȞ ĮȖȫȞĮ įȡȩȝȠȣ
ȝİ ĮȞIJȓıIJȠȚȤȠȣȢ ȤȡȩȞȠȣȢ (ıİ ȜİʌIJȐ) t
, t
, t
țĮȚ t
,
ȖȚĮ IJȠȣȢ ȠʌȠȓȠȣȢ ȚıȤȪȠȣȞ ȠȚ ıȤȑıİȚȢ:
t
 tB
, t
=
t
+ 2t
3
țĮȚ t
 t
= t
 t
.
Į) i) ȃĮ įİȓȟİIJİ ȩIJȚ: t
=
t
+ t
2
. (ȂȠȞȐįİȢ 5)
ii) ȃĮ ȕȡİȓIJİ IJȘ ıİȚȡȐ ȝİ IJȘȞ ȠʌȠȓĮ IJİȡȝȐIJȚıĮȞ ȠȚ
ĮșȜȘIJȑȢ. ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ.
(ȂȠȞȐįİȢ 10)
ȕ) ǻȓȞİIJĮȚ İʌȚʌȜȑȠȞ ȩIJȚ ȚıȤȪİȚ:
t
+ t
= 6 țĮȚ t
t
= 8
i) ȃĮ ȖȡȐȥİIJİ ȝȓĮ İȟȓıȦıȘ 2Ƞȣ ȕĮșȝȠȪ ʌȠȣ ȑȤİȚ
ȡȓȗİȢ IJȠȣȢ ĮȡȚșȝȠȪȢ t
țĮȚ t
. (ȂȠȞȐįİȢ 5)
ii) ȃĮ ȕȡİȓIJİ IJȠȣȢ ȤȡȩȞȠȣȢ IJİȡȝĮIJȚıȝȠȪ IJȦȞ IJİı-
ıȐȡȦȞ ĮșȜȘIJȫȞ. (ȂȠȞȐįİȢ 5)
ȁȪıȘ
Į) i) DzȤȠȣȝİ t
 t
= t
 t
 t
 t
=
( t
 t
Ȓ
t
 t
= t
 t )
t
= t
( , ĮįȪȞĮIJȘ, Ȓ t
=
t
+ t
2


 .
ȉİȜȚțȐ, t
=
t
+ t
2
.
ii) ǿıȤȪİȚ t
 t
 t
.ǹȞĮȗȘIJȠȪȝİ IJȘ șȑıȘ IJȠȣ t
:
• DzıIJȦ t
 t

t
+ 2t
3
 t

t
+ 2t
 3t
 t
 t
,
ȐIJȠʌȠ, ȐȡĮ t
 t
. ǵȝȦȢ, ĮȞ
t
= t
 tA
= tB
, ȐIJȠʌȠ, ȐȡĮ t
 t
.
• DzıIJȦ t
 t

t
+ 2t
3

t
+ t
2

2t
+ 4t
 3t
+ 3t

4t
 3t
 3t
 2t
 t
 t
, ʌȠȣ ȚıȤȪİȚ
Įʌȩ ȣʌȩșİıȘ, ȐȡĮ t
 t
.
ȉİȜȚțȐ, t
 t
 t
 t
, įȘȜĮįȒ ʌȡȫIJȠȢ
Algebra 1 Exercises Solutions Guide
Algebra 1 Exercises Solutions Guide
Algebra 1 Exercises Solutions Guide
Algebra 1 Exercises Solutions Guide
Algebra 1 Exercises Solutions Guide
Algebra 1 Exercises Solutions Guide
Algebra 1 Exercises Solutions Guide
Algebra 1 Exercises Solutions Guide
Algebra 1 Exercises Solutions Guide

More Related Content

What's hot

Suspension state space controller design-lqr
Suspension state space controller design-lqrSuspension state space controller design-lqr
Suspension state space controller design-lqrMinhhau Tran
 
01บทนำ
01บทนำ01บทนำ
01บทนำDoc Edu
 
IIT-JEE Mains 2017 Online Physics Previous Paper Day 2
IIT-JEE Mains 2017 Online Physics Previous Paper Day 2IIT-JEE Mains 2017 Online Physics Previous Paper Day 2
IIT-JEE Mains 2017 Online Physics Previous Paper Day 2Eneutron
 
الحجاب في الشرع والفطرة بين الدليل والقول الدخيل
الحجاب في الشرع والفطرة بين الدليل والقول الدخيلالحجاب في الشرع والفطرة بين الدليل والقول الدخيل
الحجاب في الشرع والفطرة بين الدليل والقول الدخيلمبارك الدوسري
 
Vivaravakasa niyamam oru padanam
Vivaravakasa  niyamam  oru padanamVivaravakasa  niyamam  oru padanam
Vivaravakasa niyamam oru padanamLalith Babu
 
Dr sugam desi bird project
Dr sugam desi bird projectDr sugam desi bird project
Dr sugam desi bird projectABINITKAR
 
05งานและพลังงาน
05งานและพลังงาน05งานและพลังงาน
05งานและพลังงานDoc Edu
 
Seerat unnabi - Mufti Zia ud Din - Abul Hasanat Research Academy
Seerat unnabi - Mufti Zia ud Din - Abul Hasanat Research AcademySeerat unnabi - Mufti Zia ud Din - Abul Hasanat Research Academy
Seerat unnabi - Mufti Zia ud Din - Abul Hasanat Research AcademyMuhammad Nabeel Musharraf
 
VS Election Request
VS Election Request VS Election Request
VS Election Request comradevs
 
Kerala right to service act 2012
Kerala right to service act 2012Kerala right to service act 2012
Kerala right to service act 2012Lalith Babu
 
15ไฟฟ้าสถิต
15ไฟฟ้าสถิต15ไฟฟ้าสถิต
15ไฟฟ้าสถิตDoc Edu
 
ゲーム理論BASIC 第25回 -動的な情報不完備ゲーム-
ゲーム理論BASIC 第25回 -動的な情報不完備ゲーム-ゲーム理論BASIC 第25回 -動的な情報不完備ゲーム-
ゲーム理論BASIC 第25回 -動的な情報不完備ゲーム-ssusere0a682
 
Organization Performance at Accenture
Organization Performance at AccentureOrganization Performance at Accenture
Organization Performance at AccentureFrancesco Serio
 

What's hot (18)

Suspension state space controller design-lqr
Suspension state space controller design-lqrSuspension state space controller design-lqr
Suspension state space controller design-lqr
 
01บทนำ
01บทนำ01บทนำ
01บทนำ
 
Ficha 2 Funciones
Ficha 2 FuncionesFicha 2 Funciones
Ficha 2 Funciones
 
IIT-JEE Mains 2017 Online Physics Previous Paper Day 2
IIT-JEE Mains 2017 Online Physics Previous Paper Day 2IIT-JEE Mains 2017 Online Physics Previous Paper Day 2
IIT-JEE Mains 2017 Online Physics Previous Paper Day 2
 
Revenue guide 2021 - ildm revenue guide 2021 of kerala Land revenue departmen...
Revenue guide 2021 - ildm revenue guide 2021 of kerala Land revenue departmen...Revenue guide 2021 - ildm revenue guide 2021 of kerala Land revenue departmen...
Revenue guide 2021 - ildm revenue guide 2021 of kerala Land revenue departmen...
 
الحجاب في الشرع والفطرة بين الدليل والقول الدخيل
الحجاب في الشرع والفطرة بين الدليل والقول الدخيلالحجاب في الشرع والفطرة بين الدليل والقول الدخيل
الحجاب في الشرع والفطرة بين الدليل والقول الدخيل
 
Vivaravakasa niyamam oru padanam
Vivaravakasa  niyamam  oru padanamVivaravakasa  niyamam  oru padanam
Vivaravakasa niyamam oru padanam
 
Dr sugam desi bird project
Dr sugam desi bird projectDr sugam desi bird project
Dr sugam desi bird project
 
05งานและพลังงาน
05งานและพลังงาน05งานและพลังงาน
05งานและพลังงาน
 
Kerala Co opetative Department Citizen Charter uploaded by James Joseph Adhik...
Kerala Co opetative Department Citizen Charter uploaded by James Joseph Adhik...Kerala Co opetative Department Citizen Charter uploaded by James Joseph Adhik...
Kerala Co opetative Department Citizen Charter uploaded by James Joseph Adhik...
 
College raging2
College raging2College raging2
College raging2
 
Vadaka karar bi party plain form 3 sheets
Vadaka karar bi party  plain form 3 sheetsVadaka karar bi party  plain form 3 sheets
Vadaka karar bi party plain form 3 sheets
 
Seerat unnabi - Mufti Zia ud Din - Abul Hasanat Research Academy
Seerat unnabi - Mufti Zia ud Din - Abul Hasanat Research AcademySeerat unnabi - Mufti Zia ud Din - Abul Hasanat Research Academy
Seerat unnabi - Mufti Zia ud Din - Abul Hasanat Research Academy
 
VS Election Request
VS Election Request VS Election Request
VS Election Request
 
Kerala right to service act 2012
Kerala right to service act 2012Kerala right to service act 2012
Kerala right to service act 2012
 
15ไฟฟ้าสถิต
15ไฟฟ้าสถิต15ไฟฟ้าสถิต
15ไฟฟ้าสถิต
 
ゲーム理論BASIC 第25回 -動的な情報不完備ゲーム-
ゲーム理論BASIC 第25回 -動的な情報不完備ゲーム-ゲーム理論BASIC 第25回 -動的な情報不完備ゲーム-
ゲーム理論BASIC 第25回 -動的な情報不完備ゲーム-
 
Organization Performance at Accenture
Organization Performance at AccentureOrganization Performance at Accenture
Organization Performance at Accenture
 

Similar to Algebra 1 Exercises Solutions Guide

Federated Tensor Factorization for Computational Phenotyping
Federated Tensor Factorization for Computational PhenotypingFederated Tensor Factorization for Computational Phenotyping
Federated Tensor Factorization for Computational PhenotypingYejin Kim
 
ゲーム理論 BASIC 演習89 -安全保障理事会決議における投票力指数-
ゲーム理論 BASIC 演習89 -安全保障理事会決議における投票力指数-ゲーム理論 BASIC 演習89 -安全保障理事会決議における投票力指数-
ゲーム理論 BASIC 演習89 -安全保障理事会決議における投票力指数-ssusere0a682
 
Mpc 006 - 02-02 types of correlation
Mpc 006 - 02-02 types of correlationMpc 006 - 02-02 types of correlation
Mpc 006 - 02-02 types of correlationVasant Kothari
 
SUEC 高中 Adv Maths (Permutation) (Part 1).pptx
SUEC 高中 Adv Maths (Permutation) (Part 1).pptxSUEC 高中 Adv Maths (Permutation) (Part 1).pptx
SUEC 高中 Adv Maths (Permutation) (Part 1).pptxtungwc
 
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 8 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 8 Rombel 32018 Geometri Transformasi Perkalian 5 Isometri Kelompok 8 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 8 Rombel 3Yosia Adi Setiawan
 
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 1 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 1 Rombel 32018 Geometri Transformasi Perkalian 5 Isometri Kelompok 1 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 1 Rombel 3Yosia Adi Setiawan
 
Penjelasan Integral Lipat dua dan Penerapan pada momen inersia
Penjelasan Integral Lipat dua dan Penerapan pada momen inersiaPenjelasan Integral Lipat dua dan Penerapan pada momen inersia
Penjelasan Integral Lipat dua dan Penerapan pada momen inersiabisma samudra
 
Diapositiva de Estudio: SolPrac2Am4.pptx
Diapositiva de Estudio:  SolPrac2Am4.pptxDiapositiva de Estudio:  SolPrac2Am4.pptx
Diapositiva de Estudio: SolPrac2Am4.pptxjorgejvc777
 
텍스트 랭크 알고리즘을 이용한 실시간 이슈 데이터 분석법
텍스트 랭크 알고리즘을 이용한 실시간 이슈 데이터 분석법텍스트 랭크 알고리즘을 이용한 실시간 이슈 데이터 분석법
텍스트 랭크 알고리즘을 이용한 실시간 이슈 데이터 분석법Seungwoo Yeom
 
ゲーム理論 BASIC 演習43 -湖水汚水ゲーム:ナッシュ均衡
混合戦略まで考えた支配戦略-
ゲーム理論 BASIC 演習43 -湖水汚水ゲーム:ナッシュ均衡
混合戦略まで考えた支配戦略-ゲーム理論 BASIC 演習43 -湖水汚水ゲーム:ナッシュ均衡
混合戦略まで考えた支配戦略-
ゲーム理論 BASIC 演習43 -湖水汚水ゲーム:ナッシュ均衡
混合戦略まで考えた支配戦略-ssusere0a682
 
Finding the general term (not constant)
Finding the general term (not constant)Finding the general term (not constant)
Finding the general term (not constant)AjayQuines
 
Conjuntos e intervalos-1.pptx
Conjuntos e intervalos-1.pptxConjuntos e intervalos-1.pptx
Conjuntos e intervalos-1.pptxYehileenMoreira
 
Eカードをゲーム理論で分析
Eカードをゲーム理論で分析Eカードをゲーム理論で分析
Eカードをゲーム理論で分析ssusere0a682
 
Θεωρία - Ορισμοί - Προτάσεις 2021 - Γ Λυκείου
Θεωρία - Ορισμοί - Προτάσεις 2021 - Γ Λυκείου Θεωρία - Ορισμοί - Προτάσεις 2021 - Γ Λυκείου
Θεωρία - Ορισμοί - Προτάσεις 2021 - Γ Λυκείου Μάκης Χατζόπουλος
 
Ejercicios Estructuras Discretas II
Ejercicios Estructuras Discretas IIEjercicios Estructuras Discretas II
Ejercicios Estructuras Discretas IIYiovannerParra
 
Folding Cheat Sheet #2 - second in a series
Folding Cheat Sheet #2 - second in a seriesFolding Cheat Sheet #2 - second in a series
Folding Cheat Sheet #2 - second in a seriesPhilip Schwarz
 
Folding Cheat Sheet #2 - second in a series
Folding Cheat Sheet #2 - second in a seriesFolding Cheat Sheet #2 - second in a series
Folding Cheat Sheet #2 - second in a seriesPhilip Schwarz
 

Similar to Algebra 1 Exercises Solutions Guide (20)

Federated Tensor Factorization for Computational Phenotyping
Federated Tensor Factorization for Computational PhenotypingFederated Tensor Factorization for Computational Phenotyping
Federated Tensor Factorization for Computational Phenotyping
 
Sets
SetsSets
Sets
 
ゲーム理論 BASIC 演習89 -安全保障理事会決議における投票力指数-
ゲーム理論 BASIC 演習89 -安全保障理事会決議における投票力指数-ゲーム理論 BASIC 演習89 -安全保障理事会決議における投票力指数-
ゲーム理論 BASIC 演習89 -安全保障理事会決議における投票力指数-
 
Mpc 006 - 02-02 types of correlation
Mpc 006 - 02-02 types of correlationMpc 006 - 02-02 types of correlation
Mpc 006 - 02-02 types of correlation
 
15 Factorización LU.pdf
15 Factorización LU.pdf15 Factorización LU.pdf
15 Factorización LU.pdf
 
SUEC 高中 Adv Maths (Permutation) (Part 1).pptx
SUEC 高中 Adv Maths (Permutation) (Part 1).pptxSUEC 高中 Adv Maths (Permutation) (Part 1).pptx
SUEC 高中 Adv Maths (Permutation) (Part 1).pptx
 
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 8 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 8 Rombel 32018 Geometri Transformasi Perkalian 5 Isometri Kelompok 8 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 8 Rombel 3
 
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 1 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 1 Rombel 32018 Geometri Transformasi Perkalian 5 Isometri Kelompok 1 Rombel 3
2018 Geometri Transformasi Perkalian 5 Isometri Kelompok 1 Rombel 3
 
Penjelasan Integral Lipat dua dan Penerapan pada momen inersia
Penjelasan Integral Lipat dua dan Penerapan pada momen inersiaPenjelasan Integral Lipat dua dan Penerapan pada momen inersia
Penjelasan Integral Lipat dua dan Penerapan pada momen inersia
 
Diapositiva de Estudio: SolPrac2Am4.pptx
Diapositiva de Estudio:  SolPrac2Am4.pptxDiapositiva de Estudio:  SolPrac2Am4.pptx
Diapositiva de Estudio: SolPrac2Am4.pptx
 
Graphical method
Graphical methodGraphical method
Graphical method
 
텍스트 랭크 알고리즘을 이용한 실시간 이슈 데이터 분석법
텍스트 랭크 알고리즘을 이용한 실시간 이슈 데이터 분석법텍스트 랭크 알고리즘을 이용한 실시간 이슈 데이터 분석법
텍스트 랭크 알고리즘을 이용한 실시간 이슈 데이터 분석법
 
ゲーム理論 BASIC 演習43 -湖水汚水ゲーム:ナッシュ均衡
混合戦略まで考えた支配戦略-
ゲーム理論 BASIC 演習43 -湖水汚水ゲーム:ナッシュ均衡
混合戦略まで考えた支配戦略-ゲーム理論 BASIC 演習43 -湖水汚水ゲーム:ナッシュ均衡
混合戦略まで考えた支配戦略-
ゲーム理論 BASIC 演習43 -湖水汚水ゲーム:ナッシュ均衡
混合戦略まで考えた支配戦略-
 
Finding the general term (not constant)
Finding the general term (not constant)Finding the general term (not constant)
Finding the general term (not constant)
 
Conjuntos e intervalos-1.pptx
Conjuntos e intervalos-1.pptxConjuntos e intervalos-1.pptx
Conjuntos e intervalos-1.pptx
 
Eカードをゲーム理論で分析
Eカードをゲーム理論で分析Eカードをゲーム理論で分析
Eカードをゲーム理論で分析
 
Θεωρία - Ορισμοί - Προτάσεις 2021 - Γ Λυκείου
Θεωρία - Ορισμοί - Προτάσεις 2021 - Γ Λυκείου Θεωρία - Ορισμοί - Προτάσεις 2021 - Γ Λυκείου
Θεωρία - Ορισμοί - Προτάσεις 2021 - Γ Λυκείου
 
Ejercicios Estructuras Discretas II
Ejercicios Estructuras Discretas IIEjercicios Estructuras Discretas II
Ejercicios Estructuras Discretas II
 
Folding Cheat Sheet #2 - second in a series
Folding Cheat Sheet #2 - second in a seriesFolding Cheat Sheet #2 - second in a series
Folding Cheat Sheet #2 - second in a series
 
Folding Cheat Sheet #2 - second in a series
Folding Cheat Sheet #2 - second in a seriesFolding Cheat Sheet #2 - second in a series
Folding Cheat Sheet #2 - second in a series
 

More from Big Brain's Team Big Brain's Team

Η ΧΡΗΣΗ ΤΩΝ ΣΧΟΛΙΚΩΝ ΒΙΒΛΙΩΝ ΦΥΣΙΚΗΣ (ΕΠΙΣΤΗΜΗΣ) ΑΠΟ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥΣ ΜΕΣΑ ...
Η ΧΡΗΣΗ ΤΩΝ ΣΧΟΛΙΚΩΝ ΒΙΒΛΙΩΝ ΦΥΣΙΚΗΣ (ΕΠΙΣΤΗΜΗΣ) ΑΠΟ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥΣ ΜΕΣΑ ...Η ΧΡΗΣΗ ΤΩΝ ΣΧΟΛΙΚΩΝ ΒΙΒΛΙΩΝ ΦΥΣΙΚΗΣ (ΕΠΙΣΤΗΜΗΣ) ΑΠΟ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥΣ ΜΕΣΑ ...
Η ΧΡΗΣΗ ΤΩΝ ΣΧΟΛΙΚΩΝ ΒΙΒΛΙΩΝ ΦΥΣΙΚΗΣ (ΕΠΙΣΤΗΜΗΣ) ΑΠΟ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥΣ ΜΕΣΑ ...Big Brain's Team Big Brain's Team
 
203203 πληροφορική Α,Β,Γ ΓΥΜΝΑΣΊΟΥ.pdf
203203 πληροφορική Α,Β,Γ ΓΥΜΝΑΣΊΟΥ.pdf203203 πληροφορική Α,Β,Γ ΓΥΜΝΑΣΊΟΥ.pdf
203203 πληροφορική Α,Β,Γ ΓΥΜΝΑΣΊΟΥ.pdfBig Brain's Team Big Brain's Team
 
ΑΠΟ ΤΟΝ ΜΕΤΑΦΕΜΙΝΙΣΤΙΚΟ ΛΟΓΟ ΣΤΟΝ ΜΕΤΑΦΕΜΙΝΙΣΤΙΚΟ ΣΕΞΙΣΜΟ.pdf
ΑΠΟ ΤΟΝ ΜΕΤΑΦΕΜΙΝΙΣΤΙΚΟ ΛΟΓΟ ΣΤΟΝ ΜΕΤΑΦΕΜΙΝΙΣΤΙΚΟ ΣΕΞΙΣΜΟ.pdfΑΠΟ ΤΟΝ ΜΕΤΑΦΕΜΙΝΙΣΤΙΚΟ ΛΟΓΟ ΣΤΟΝ ΜΕΤΑΦΕΜΙΝΙΣΤΙΚΟ ΣΕΞΙΣΜΟ.pdf
ΑΠΟ ΤΟΝ ΜΕΤΑΦΕΜΙΝΙΣΤΙΚΟ ΛΟΓΟ ΣΤΟΝ ΜΕΤΑΦΕΜΙΝΙΣΤΙΚΟ ΣΕΞΙΣΜΟ.pdfBig Brain's Team Big Brain's Team
 
102030 The Secrets of Great G-Spot Orgasms and Female Ejaculation_ The Best ...
102030  The Secrets of Great G-Spot Orgasms and Female Ejaculation_ The Best ...102030  The Secrets of Great G-Spot Orgasms and Female Ejaculation_ The Best ...
102030 The Secrets of Great G-Spot Orgasms and Female Ejaculation_ The Best ...Big Brain's Team Big Brain's Team
 
Copy of 122161092-Το-είναι-και-το-μηδέν-Ζαν-Πολ-Σάρτρ.pdf
Copy of 122161092-Το-είναι-και-το-μηδέν-Ζαν-Πολ-Σάρτρ.pdfCopy of 122161092-Το-είναι-και-το-μηδέν-Ζαν-Πολ-Σάρτρ.pdf
Copy of 122161092-Το-είναι-και-το-μηδέν-Ζαν-Πολ-Σάρτρ.pdfBig Brain's Team Big Brain's Team
 
313649724-εξελικτική-ψυχολογία-FELDMAN-S-ROBERT-2ος-τόμος.pdf
313649724-εξελικτική-ψυχολογία-FELDMAN-S-ROBERT-2ος-τόμος.pdf313649724-εξελικτική-ψυχολογία-FELDMAN-S-ROBERT-2ος-τόμος.pdf
313649724-εξελικτική-ψυχολογία-FELDMAN-S-ROBERT-2ος-τόμος.pdfBig Brain's Team Big Brain's Team
 
102030 AΓΙΟΥ ΙΩΑΝΝΟΥ ΧΡΥΣΟΣΤΟΜΟΥ-ΕΠΙΣΤΟΛΕΣ ΠΡΟΣ ΟΛΥΜΠΙΑΔΑ.pdf
102030  AΓΙΟΥ ΙΩΑΝΝΟΥ ΧΡΥΣΟΣΤΟΜΟΥ-ΕΠΙΣΤΟΛΕΣ ΠΡΟΣ ΟΛΥΜΠΙΑΔΑ.pdf102030  AΓΙΟΥ ΙΩΑΝΝΟΥ ΧΡΥΣΟΣΤΟΜΟΥ-ΕΠΙΣΤΟΛΕΣ ΠΡΟΣ ΟΛΥΜΠΙΑΔΑ.pdf
102030 AΓΙΟΥ ΙΩΑΝΝΟΥ ΧΡΥΣΟΣΤΟΜΟΥ-ΕΠΙΣΤΟΛΕΣ ΠΡΟΣ ΟΛΥΜΠΙΑΔΑ.pdfBig Brain's Team Big Brain's Team
 
Kami Export - 2o-diaforikes-exisoseis-migadikes-sinartiseis-tipologio.pdf
Kami Export - 2o-diaforikes-exisoseis-migadikes-sinartiseis-tipologio.pdfKami Export - 2o-diaforikes-exisoseis-migadikes-sinartiseis-tipologio.pdf
Kami Export - 2o-diaforikes-exisoseis-migadikes-sinartiseis-tipologio.pdfBig Brain's Team Big Brain's Team
 
246983480-Η-Ουσία-Του-Χριστιανισμού-pdf.pdf
246983480-Η-Ουσία-Του-Χριστιανισμού-pdf.pdf246983480-Η-Ουσία-Του-Χριστιανισμού-pdf.pdf
246983480-Η-Ουσία-Του-Χριστιανισμού-pdf.pdfBig Brain's Team Big Brain's Team
 
Θέματα θεωρίας που θα πρέπει να ξέρω.pdf
Θέματα θεωρίας που θα πρέπει να ξέρω.pdfΘέματα θεωρίας που θα πρέπει να ξέρω.pdf
Θέματα θεωρίας που θα πρέπει να ξέρω.pdfBig Brain's Team Big Brain's Team
 
Θέματα θεωρίας που θα πρέπει να ξέρω.pdf
Θέματα θεωρίας που θα πρέπει να ξέρω.pdfΘέματα θεωρίας που θα πρέπει να ξέρω.pdf
Θέματα θεωρίας που θα πρέπει να ξέρω.pdfBig Brain's Team Big Brain's Team
 
Η ΠΕΡΊΠΤΩΣΗ ΤΗΣ ΠΡΌΣΘΕΣΗΣ ΚΑΙ ΤΗΣ ΑΦΑΊΡΕΣΗΣ.pdf
Η ΠΕΡΊΠΤΩΣΗ ΤΗΣ ΠΡΌΣΘΕΣΗΣ ΚΑΙ ΤΗΣ ΑΦΑΊΡΕΣΗΣ.pdfΗ ΠΕΡΊΠΤΩΣΗ ΤΗΣ ΠΡΌΣΘΕΣΗΣ ΚΑΙ ΤΗΣ ΑΦΑΊΡΕΣΗΣ.pdf
Η ΠΕΡΊΠΤΩΣΗ ΤΗΣ ΠΡΌΣΘΕΣΗΣ ΚΑΙ ΤΗΣ ΑΦΑΊΡΕΣΗΣ.pdfBig Brain's Team Big Brain's Team
 

More from Big Brain's Team Big Brain's Team (20)

Η ΧΡΗΣΗ ΤΩΝ ΣΧΟΛΙΚΩΝ ΒΙΒΛΙΩΝ ΦΥΣΙΚΗΣ (ΕΠΙΣΤΗΜΗΣ) ΑΠΟ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥΣ ΜΕΣΑ ...
Η ΧΡΗΣΗ ΤΩΝ ΣΧΟΛΙΚΩΝ ΒΙΒΛΙΩΝ ΦΥΣΙΚΗΣ (ΕΠΙΣΤΗΜΗΣ) ΑΠΟ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥΣ ΜΕΣΑ ...Η ΧΡΗΣΗ ΤΩΝ ΣΧΟΛΙΚΩΝ ΒΙΒΛΙΩΝ ΦΥΣΙΚΗΣ (ΕΠΙΣΤΗΜΗΣ) ΑΠΟ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥΣ ΜΕΣΑ ...
Η ΧΡΗΣΗ ΤΩΝ ΣΧΟΛΙΚΩΝ ΒΙΒΛΙΩΝ ΦΥΣΙΚΗΣ (ΕΠΙΣΤΗΜΗΣ) ΑΠΟ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥΣ ΜΕΣΑ ...
 
203203 πληροφορική Α,Β,Γ ΓΥΜΝΑΣΊΟΥ.pdf
203203 πληροφορική Α,Β,Γ ΓΥΜΝΑΣΊΟΥ.pdf203203 πληροφορική Α,Β,Γ ΓΥΜΝΑΣΊΟΥ.pdf
203203 πληροφορική Α,Β,Γ ΓΥΜΝΑΣΊΟΥ.pdf
 
ΚΕΦ_1_ΤΥΠΟΛΟΓΙΟ.pdf
ΚΕΦ_1_ΤΥΠΟΛΟΓΙΟ.pdfΚΕΦ_1_ΤΥΠΟΛΟΓΙΟ.pdf
ΚΕΦ_1_ΤΥΠΟΛΟΓΙΟ.pdf
 
ΗΘΙΚΉ.pdf
ΗΘΙΚΉ.pdfΗΘΙΚΉ.pdf
ΗΘΙΚΉ.pdf
 
ΑΠΟ ΤΟΝ ΜΕΤΑΦΕΜΙΝΙΣΤΙΚΟ ΛΟΓΟ ΣΤΟΝ ΜΕΤΑΦΕΜΙΝΙΣΤΙΚΟ ΣΕΞΙΣΜΟ.pdf
ΑΠΟ ΤΟΝ ΜΕΤΑΦΕΜΙΝΙΣΤΙΚΟ ΛΟΓΟ ΣΤΟΝ ΜΕΤΑΦΕΜΙΝΙΣΤΙΚΟ ΣΕΞΙΣΜΟ.pdfΑΠΟ ΤΟΝ ΜΕΤΑΦΕΜΙΝΙΣΤΙΚΟ ΛΟΓΟ ΣΤΟΝ ΜΕΤΑΦΕΜΙΝΙΣΤΙΚΟ ΣΕΞΙΣΜΟ.pdf
ΑΠΟ ΤΟΝ ΜΕΤΑΦΕΜΙΝΙΣΤΙΚΟ ΛΟΓΟ ΣΤΟΝ ΜΕΤΑΦΕΜΙΝΙΣΤΙΚΟ ΣΕΞΙΣΜΟ.pdf
 
102030 The Secrets of Great G-Spot Orgasms and Female Ejaculation_ The Best ...
102030  The Secrets of Great G-Spot Orgasms and Female Ejaculation_ The Best ...102030  The Secrets of Great G-Spot Orgasms and Female Ejaculation_ The Best ...
102030 The Secrets of Great G-Spot Orgasms and Female Ejaculation_ The Best ...
 
45446686-PG-089ΠΑΤΡΟΛΟΓΙΑ.pdf
45446686-PG-089ΠΑΤΡΟΛΟΓΙΑ.pdf45446686-PG-089ΠΑΤΡΟΛΟΓΙΑ.pdf
45446686-PG-089ΠΑΤΡΟΛΟΓΙΑ.pdf
 
221658682-Ζωη-Σε-Αλλους-Κοσμους.pdf
221658682-Ζωη-Σε-Αλλους-Κοσμους.pdf221658682-Ζωη-Σε-Αλλους-Κοσμους.pdf
221658682-Ζωη-Σε-Αλλους-Κοσμους.pdf
 
45425424-PG-090ΠΑΤΡΟΛΟΓΙΑ.pdf
45425424-PG-090ΠΑΤΡΟΛΟΓΙΑ.pdf45425424-PG-090ΠΑΤΡΟΛΟΓΙΑ.pdf
45425424-PG-090ΠΑΤΡΟΛΟΓΙΑ.pdf
 
Copy of 122161092-Το-είναι-και-το-μηδέν-Ζαν-Πολ-Σάρτρ.pdf
Copy of 122161092-Το-είναι-και-το-μηδέν-Ζαν-Πολ-Σάρτρ.pdfCopy of 122161092-Το-είναι-και-το-μηδέν-Ζαν-Πολ-Σάρτρ.pdf
Copy of 122161092-Το-είναι-και-το-μηδέν-Ζαν-Πολ-Σάρτρ.pdf
 
313649724-εξελικτική-ψυχολογία-FELDMAN-S-ROBERT-2ος-τόμος.pdf
313649724-εξελικτική-ψυχολογία-FELDMAN-S-ROBERT-2ος-τόμος.pdf313649724-εξελικτική-ψυχολογία-FELDMAN-S-ROBERT-2ος-τόμος.pdf
313649724-εξελικτική-ψυχολογία-FELDMAN-S-ROBERT-2ος-τόμος.pdf
 
102030 AΓΙΟΥ ΙΩΑΝΝΟΥ ΧΡΥΣΟΣΤΟΜΟΥ-ΕΠΙΣΤΟΛΕΣ ΠΡΟΣ ΟΛΥΜΠΙΑΔΑ.pdf
102030  AΓΙΟΥ ΙΩΑΝΝΟΥ ΧΡΥΣΟΣΤΟΜΟΥ-ΕΠΙΣΤΟΛΕΣ ΠΡΟΣ ΟΛΥΜΠΙΑΔΑ.pdf102030  AΓΙΟΥ ΙΩΑΝΝΟΥ ΧΡΥΣΟΣΤΟΜΟΥ-ΕΠΙΣΤΟΛΕΣ ΠΡΟΣ ΟΛΥΜΠΙΑΔΑ.pdf
102030 AΓΙΟΥ ΙΩΑΝΝΟΥ ΧΡΥΣΟΣΤΟΜΟΥ-ΕΠΙΣΤΟΛΕΣ ΠΡΟΣ ΟΛΥΜΠΙΑΔΑ.pdf
 
102030 Οι Εβραίοι, όλη η αλήθεια.pdf
102030  Οι Εβραίοι, όλη η αλήθεια.pdf102030  Οι Εβραίοι, όλη η αλήθεια.pdf
102030 Οι Εβραίοι, όλη η αλήθεια.pdf
 
Kami Export - 2o-diaforikes-exisoseis-migadikes-sinartiseis-tipologio.pdf
Kami Export - 2o-diaforikes-exisoseis-migadikes-sinartiseis-tipologio.pdfKami Export - 2o-diaforikes-exisoseis-migadikes-sinartiseis-tipologio.pdf
Kami Export - 2o-diaforikes-exisoseis-migadikes-sinartiseis-tipologio.pdf
 
Patsiomitou_S_2021_Creativity_and_skills.pdf
Patsiomitou_S_2021_Creativity_and_skills.pdfPatsiomitou_S_2021_Creativity_and_skills.pdf
Patsiomitou_S_2021_Creativity_and_skills.pdf
 
246983480-Η-Ουσία-Του-Χριστιανισμού-pdf.pdf
246983480-Η-Ουσία-Του-Χριστιανισμού-pdf.pdf246983480-Η-Ουσία-Του-Χριστιανισμού-pdf.pdf
246983480-Η-Ουσία-Του-Χριστιανισμού-pdf.pdf
 
Θέματα θεωρίας που θα πρέπει να ξέρω.pdf
Θέματα θεωρίας που θα πρέπει να ξέρω.pdfΘέματα θεωρίας που θα πρέπει να ξέρω.pdf
Θέματα θεωρίας που θα πρέπει να ξέρω.pdf
 
ΟΔΗΓΙΕΣ ΑΝΑ ΚΕΦΑΛΑΙΟ.pdf
ΟΔΗΓΙΕΣ ΑΝΑ ΚΕΦΑΛΑΙΟ.pdfΟΔΗΓΙΕΣ ΑΝΑ ΚΕΦΑΛΑΙΟ.pdf
ΟΔΗΓΙΕΣ ΑΝΑ ΚΕΦΑΛΑΙΟ.pdf
 
Θέματα θεωρίας που θα πρέπει να ξέρω.pdf
Θέματα θεωρίας που θα πρέπει να ξέρω.pdfΘέματα θεωρίας που θα πρέπει να ξέρω.pdf
Θέματα θεωρίας που θα πρέπει να ξέρω.pdf
 
Η ΠΕΡΊΠΤΩΣΗ ΤΗΣ ΠΡΌΣΘΕΣΗΣ ΚΑΙ ΤΗΣ ΑΦΑΊΡΕΣΗΣ.pdf
Η ΠΕΡΊΠΤΩΣΗ ΤΗΣ ΠΡΌΣΘΕΣΗΣ ΚΑΙ ΤΗΣ ΑΦΑΊΡΕΣΗΣ.pdfΗ ΠΕΡΊΠΤΩΣΗ ΤΗΣ ΠΡΌΣΘΕΣΗΣ ΚΑΙ ΤΗΣ ΑΦΑΊΡΕΣΗΣ.pdf
Η ΠΕΡΊΠΤΩΣΗ ΤΗΣ ΠΡΌΣΘΕΣΗΣ ΚΑΙ ΤΗΣ ΑΦΑΊΡΕΣΗΣ.pdf
 

Recently uploaded

BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024Janet Corral
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 

Recently uploaded (20)

BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
General AI for Medical Educators April 2024
General AI for Medical Educators April 2024General AI for Medical Educators April 2024
General AI for Medical Educators April 2024
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 

Algebra 1 Exercises Solutions Guide

  • 1. Δημήτρης Διαμαντίδης, Γεωργία Ευθυμίου Αναστάσιος Κουπετώρης, Ιωάννης Σταμπόλας Άλγεβρα Α΄ Λυκείου Εκφωνήσεις και λύσεις όλων των ασκήσεων της Τράπεζας Θεμάτων ανά θεματική Ενότητα Ιούλιος 2014 1ο Μέρος Το παρόν ένθετο διατίθεται μαζί με το βιβλίο Άλγεβρα Α΄ Λυκείου, α΄ τόμος (ISBN 978-960-16-4807-1).
  • 2.
  • 3. 3 ˆ•¢˜•©¡š• ‘ ȆǿĬǹȃȅȉǾȉǼȈ 2Į ĬǼȂǹȉǹ 2_1003 5 2_1102 5 2_1287 5 2_1506 6 2_1520 6 2_3383 6 2_3384 7 2_3878 7 2_497 7 2_499 8 4Į ĬǼȂǹȉǹ 4_1868 8 4_1936 9 4_2064 10 4_2073 10 4_2080 11 4_6144 11 ȆȇǹīȂǹȉǿȀȅǿ ǹȇǿĬȂȅǿ: ȉǹȊȉȅȉǾȉǼȈ – ȂǼĬȅǻȅǿ ǹȆȅǻǼǿȄǾȈ – ȆǹȇǹīȅȃȉȅȆȅǿǾȈǾ 2Į ĬǼȂǹȉǹ 2_1070 12 2_1080 13 2_3874 13 ǻǿǹȉǹȄǾ ȆȇǹīȂǹȉǿȀȍȃ ǹȇǿĬȂȍȃ 2Į ĬǼȂǹȉǹ 2_486 13 2_487 14 2_506 14 2_1092 14 2_1541 14 2_3852 15 2_3870 15 2_4299 15 2_7519 16 ǹȆȅȁȊȉǾ ȉǿȂǾ ȆȇǹīȂǹȉǿȀȅȊ ǹȇǿĬȂȅȊ 2Į ĬǼȂǹȉǹ 2_504 16 2_509 16 2_996 16 2_1009 17 2_1062 17 2_1074 17 2_1089 17 2_1091 18 2_1273 18 2_1544 18 2_2702 18 4Į ĬǼȂǹȉǹ 4_2287 19 4_2301 19 4_2302 19 4_4946 20 4_7791 20 4_8443 21 4_8453 21 ȇǿǽǼȈ ȆȇǹīȂǹȉǿȀȍȃ ǹȇǿĬȂȍȃ 2Į ĬǼȂǹȉǹ 2_936 22 2_938 22 2_944 22 2_947 22 2_950 22 2_952 23 2_955 23 2_1276 23 2_1300 23 2_3382 24
  • 4. 4 ȆİȡȚİȤȩȝİȞĮ 2_4311 24 2_4314 24 2_4316 24 2_8173 24 ǼȄǿȈȍȈǼǿȈ 1Ƞȣ ǺǹĬȂȅȊ 2Į ĬǼȂǹȉǹ 2_485 25 2_507 25 2_1055 26 2_4302 26 ǼȄǿȈȍȈǼǿȈ 2Ƞȣ ǺǹĬȂȅȊ 2Į ĬǼȂǹȉǹ 2_481 26 2_483 26 2_493 27 2_496 27 2_1005 27 2_1007 28 2_1093 28 2_1275 28 2_1298 29 2_1509 29 2_3839 29 2_3847 29 2_3857 30 2_3863 30 2_4306 30 2_4308 31 2_4309 31 2_4310 31 2_4313 32 2_4317 32 4Į ĬǼȂǹȉǹ 4_1890 33 4_1955 33 4_2055 34 4_2081 34 4_2332 35 4_4551 35 4_4654 36 4_4659 36 4_4665 37 4_4667 37 4_4681 38 4_4835 38 4_4857 39 4_4903 39 4_4957 40 4_4962 40 4_4970 40 4_4975 41 4_4992 42 4_5317 42 4_6223 43 4_7263 43 4_7510 44 4_7515 45 4_7516 45 4_7940 46
  • 5. ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ 5 ˆ˜…‘ ¡£—£•Œ 2Į ĬǼȂǹȉǹ ]ĬǼȂǹ 2_1003 DzȞĮ țȠȣIJȓ ʌİȡȚȑȤİȚ ȐıʌȡİȢ, ȝĮȪȡİȢ, țȩțțȚȞİȢ țĮȚ ʌȡȐıȚȞİȢ ȝʌȐȜİȢ. ȅȚ ȐıʌȡİȢ İȓȞĮȚ 5, ȠȚ ȝĮȪȡİȢ İȓ- ȞĮȚ 9, İȞȫ ȠȚ țȩțțȚȞİȢ țĮȚ ȠȚ ʌȡȐıȚȞİȢ ȝĮȗȓ İȓȞĮȚ 16. ǼʌȚȜȑȖȠȣȝİ ȝȚĮ ȝʌȐȜĮ ıIJȘȞ IJȪȤȘ. ǻȓȞȠȞIJĮȚ IJĮ ʌĮȡĮ- țȐIJȦ İȞįİȤȩȝİȞĮ: ǹ: Ș ȝʌȐȜĮ ʌȠȣ İʌȚȜȑȖȠȣȝİ İȓȞĮȚ ǹȈȆȇǾ K: Ș ȝʌȐȜĮ ʌȠȣ İʌȚȜȑȖȠȣȝİ İȓȞĮȚ KOKKINH Ȇ: Ș ȝʌȐȜĮ ʌȠȣ İʌȚȜȑȖȠȣȝİ İȓȞĮȚ ȆȇǹȈǿȃǾ Į) ȋȡȘıȚȝȠʌȠȚȫȞIJĮȢ IJĮ ǹ, Ȁ țĮȚ Ȇ ȞĮ ȖȡȐȥİIJİ ıIJȘ ȖȜȫııĮ IJȦȞ ıȣȞȩȜȦȞ IJĮ İȞįİȤȩȝİȞĮ: i) Ǿ ȝʌȐȜĮ ʌȠȣ İʌȚȜȑȖȠȣȝİ įİȞ İȓȞĮȚ ȐıʌȡȘ, ii) Ǿ ȝʌȐȜĮ ʌȠȣ İʌȚȜȑȖȠȣȝİ İȓȞĮȚ țȩțțȚȞȘ Ȓ ʌȡȐ- ıȚȞȘ. (ȂȠȞȐįİȢ 13) ȕ) ȃĮ ȕȡİȓIJİ IJȘȞ ʌȚșĮȞȩIJȘIJĮ ʌȡĮȖȝĮIJȠʌȠȓȘıȘȢ țĮșİ- ȞȩȢ Įʌȩ IJĮ įȪȠ İȞįİȤȩȝİȞĮ IJȠȣ İȡȦIJȒȝĮIJȠȢ (Į). (ȂȠȞȐįİȢ 12) ȁȪıȘ Į) i) , ii) ȕ) īȚĮ ȞĮ ȕȡȠȪȝİ IJȘȞ ʌȚșĮȞȩIJȘIJĮ ʌȡĮȖȝĮIJȠʌȠȓȘıȘȢ IJȠȣ İȞįİȤȠȝȑȞȠȣ , ȕȡȓıțȠȣȝİ ʌȡȫIJĮ IJȘȞ ʌȚșĮ- ȞȩIJȘIJĮ ʌȡĮȖȝĮIJȠʌȠȓȘıȘȢ IJȠȣ A: P ( )= ( ) ( ) = 5 5+ 9 +16 = 5 30 = 1 6 , ȐȡĮ P ( )= 1 P ( )= 1 1 6 = 6 6 1 6 = 5 6 . īȚĮ IJȘȞ ʌȚșĮȞȩIJȘIJĮ ʌȡĮȖȝĮIJȠʌȠȓȘıȘȢ IJȠȣ İȞįİ- ȤȠȝȑȞȠȣ ȑȤȠȣȝİ P ( )= ( ) ( ) = 16 5+ 9 +16 = 16 30 = 8 15 . ]ĬǼȂǹ 2_1102 ǻȓȞȠȞIJĮȚ įȪȠ İȞįİȤȩȝİȞĮ A, B İȞȩȢ įİȚȖȝĮIJȚțȠȪ ȤȫȡȠȣ țĮȚ ȠȚ ʌȚșĮȞȩIJȘIJİȢ: P ( )= 3 4 , P ( )= 5 8 țĮȚ P ( )= 1 4 Į) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ P ( ). (ȂȠȞȐįİȢ 9) ȕ) i) ȃĮ ʌĮȡĮıIJȒıİIJİ ȝİ įȚȐȖȡĮȝȝĮ Venn țĮȚ ȞĮ ȖȡȐȥİIJİ ıIJȘ ȖȜȫııĮ IJȦȞ ıȣȞȩȜȦȞ IJȠ İȞįİȤȩ- ȝİȞȠ: «A Ȓ B». (ȂȠȞȐįİȢ 7) ii) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ ʌȚșĮȞȩIJȘIJĮ ʌȡĮȖȝĮIJȠʌȠȓ- ȘıȘȢ IJȠȣ ʌĮȡĮʌȐȞȦ İȞįİȤȠȝȑȞȠȣ. (ȂȠȞȐįİȢ 9) ȁȪıȘ Į) P ( )= 5 8 P ( ) P ( )= 5 8 3 4 P ( )= 5 8 P ( )= 3 4 5 8 P ( )= 1 8 ȕ) i) ǿıȤȪİȚ P ( ) 0, țĮȚ P ( )= P B ( ) P A B ( ) P B A ( )= = 1 4 1 8 = 1 8 0 B A . ȉȠ İȞįİȤȩȝİȞȠ «A Ȓ B» ʌĮȡȚıIJȐȞİIJĮȚ ȝİ ȤȡȒ- ıȘ įȚĮȖȡȐȝȝĮIJȠȢ Venn ȦȢ İȟȒȢ: țĮȚ ȝİ ȤȡȒıȘ IJȘȢ ȖȜȫııĮȢ IJȦȞ ıȣȞȩȜȦȞ ȑȤȠȣ- ȝİ . ii) P ( )= P ( )+ P ( ) P ( )= = 3 4 + 1 4 1 8 = 6 8 + 2 8 1 8 = 7 8 ]ĬǼȂǹ 2_1287 ǻȓȞİIJĮȚ Ƞ ʌȓȞĮțĮȢ: 1 2 3 1 11 12 13 2 21 22 23 3 31 32 33 ǼʌȚȜȑȖȠȣȝİ IJȣȤĮȓĮ ȑȞĮȞ Įʌȩ IJȠȣȢ İȞȞȑĮ įȚȥȒijȚȠȣȢ ĮȡȚșȝȠȪȢ IJȠȣ ʌĮȡĮʌȐȞȦ ʌȓȞĮțĮ. ȃĮ ȕȡİȓIJİ IJȘȞ ʌȚșĮȞȩIJȘIJĮ ʌȡĮȖȝĮIJȠʌȠȓȘıȘȢ IJȦȞ ʌĮȡĮțȐIJȦ İȞįİȤȠȝȑȞȦȞ:
  • 6. 6 ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ ǹ: Ƞ įȚȥȒijȚȠȢ ȞĮ İȓȞĮȚ ȐȡIJȚȠȢ (ȂȠȞȐįİȢ 7) Ǻ: Ƞ įȚȥȒijȚȠȢ ȞĮ İȓȞĮȚ ȐȡIJȚȠȢ țĮȚ ʌȠȜȜĮʌȜȐıȚȠ IJȠȣ 3 (ȂȠȞȐįİȢ 9) ī: Ƞ įȚȥȒijȚȠȢ ȞĮ İȓȞĮȚ ȐȡIJȚȠȢ Ȓ ʌȠȜȜĮʌȜȐıȚȠ IJȠȣ 3 (ȂȠȞȐįİȢ 9) ȁȪıȘ ȅ įİȚȖȝĮIJȚțȩȢ ȤȫȡȠȢ İȓȞĮȚ = 11, 12, 13, 21, 22, 23, 31, 32, 33 { }țĮȚ ȑȤȠȣȝİ = 12, 22, 32 { }, = 12 { } țĮȚ = 12, 21, 22, 32, 33 { }. DZȡĮ P ( )= ( ) ( ) = 3 9 = 1 3 , P ( )= ( ) ( ) = 1 9 țĮȚ P ( )= ( ) ( ) = 5 9 . ]ĬǼȂǹ 2_1506 ǻȓȞİIJĮȚ IJȠ ıȪȞȠȜȠ = 1, 2, 3, 4, 5, 6 { } țĮȚ IJĮ ȣʌȠ- ıȪȞȠȜȐ IJȠȣ = 1, 2, 4, 5 { }țĮȚ = 2, 4, 6 { }. Į) ȃĮ ʌĮȡĮıIJȒıİIJİ ıIJȠ ȓįȚȠ įȚȐȖȡĮȝȝĮ Venn, ȝİ ȕĮıȚțȩ ıȪȞȠȜȠ IJȠ ȍ, IJĮ ıȪȞȠȜĮ ǹ țĮȚ Ǻ. ȀĮIJȩ- ʌȚȞ, ȞĮ ʌȡȠıįȚȠȡȓıİIJİ IJĮ ıȪȞȠȜĮ , , ǹǯ țĮȚ Bǯ. (ȂȠȞȐįİȢ 13) ȕ) ǼʌȚȜȑȖȠȣȝİ IJȣȤĮȓĮ ȑȞĮ ıIJȠȚȤİȓȠ IJȠȣ . ȃĮ ȕȡİȓIJİ IJȚȢ ʌȚșĮȞȩIJȘIJİȢ IJȦȞ İȞįİȤȠȝȑȞȦȞ: i) ȃĮ ȝȘȞ ʌȡĮȖȝĮIJȠʌȠȚȘșİȓ IJȠ İȞįİȤȩȝİȞȠ ǹ. (ȂȠȞȐįİȢ 4) ii) ȃĮ ʌȡĮȖȝĮIJȠʌȠȚȘșȠȪȞ ıȣȖȤȡȩȞȦȢ IJĮ İȞįİȤȩ- ȝİȞĮ ǹ țĮȚ Ǻ. (ȂȠȞȐįİȢ 4) iii) ȃĮ ʌȡĮȖȝĮIJȠʌȠȚȘșİȓ ȑȞĮ IJȠȣȜȐȤȚıIJȠȞ Įʌȩ IJĮ İȞįİȤȩȝİȞĮ ǹ, Ǻ. (ȂȠȞȐįİȢ 4) ȁȪıȘ Į) = 1, 2, 4, 5, 6 { }, = 2, 4 { }, = 3, 6 { } țĮȚ = 1, 3, 5 { }. ȕ) i) P ( )= ( ) ( ) = 2 6 = 1 3 ii) P ( )= ( ) ( ) = 2 6 = 1 3 iii) P ( )= ( ) ( ) = 5 6 ]ĬǼȂǹ 2_1520 ǹʌȩ IJȠȣȢ ıʌȠȣįĮıIJȑȢ İȞȩȢ ȍįİȓȠȣ, IJȠ 50% ȝĮșĮȓ- ȞİȚ ʌȚȐȞȠ, IJȠ 40% ȝĮșĮȓȞİȚ țȚșȐȡĮ, İȞȫ IJȠ 10% IJȦȞ ıʌȠȣįĮıIJȫȞ ȝĮșĮȓȞİȚ țĮȚ IJĮ įȪȠ ĮȣIJȐ ȩȡȖĮȞĮ. ǼʌȚ- ȜȑȖȠȣȝİ IJȣȤĮȓĮ ȑȞĮȞ ıʌȠȣįĮıIJȒ IJȠȣ ȍįİȓȠȣ. ȅȡȓ- ȗȠȣȝİ IJĮ İȞįİȤȩȝİȞĮ: A: Ƞ ıʌȠȣįĮıIJȒȢ ĮȣIJȩȢ ȝĮșĮȓȞİȚ ʌȚȐȞȠ B: Ƞ ıʌȠȣįĮıIJȒȢ ĮȣIJȩȢ ȝĮșĮȓȞİȚ țȚșȐȡĮ ȃĮ ȕȡİȓIJİ IJȘȞ ʌȚșĮȞȩIJȘIJĮ ʌȡĮȖȝĮIJȠʌȠȓȘıȘȢ IJȠȣ İȞ- įİȤȠȝȑȞȠȣ: Į) ȅ ıʌȠȣįĮıIJȒȢ ĮȣIJȩȢ ȞĮ ȝĮșĮȓȞİȚ ȑȞĮ IJȠȣȜȐȤȚ- ıIJȠȞ Įʌȩ IJĮ įȪȠ ʌĮȡĮʌȐȞȦ ȩȡȖĮȞĮ. (ȂȠȞȐįİȢ 12) ȕ) ȅ ıʌȠȣįĮıIJȒȢ ĮȣIJȩȢ ȞĮ ȝȘ ȝĮșĮȓȞİȚ țĮȞȑȞĮ Įʌȩ IJĮ įȪȠ ʌĮȡĮʌȐȞȦ ȩȡȖĮȞĮ. (ȂȠȞȐįİȢ 13) ȁȪıȘ ǿıȤȪİȚ P ( )= 50 100 , P ( )= 40 100 țĮȚ P ( )= 10 100 . Į) P ( )= P ( )+ P ( ) P ( )= = 50 100 + 40 100 10 100 = 80 100 ȕ) P ( ) ( )= 1 P ( )= = 1 80 100 = 100 100 80 100 = 20 100 ]ĬǼȂǹ 2_3383 ȉȠ 70% IJȦȞ țĮIJȠȓțȦȞ ȝȚĮȢ ʌȩȜȘȢ ȑȤİȚ ĮȣIJȠțȓȞȘIJȠ, IJȠ 40% ȑȤİȚ ȝȘȤĮȞȐțȚ țĮȚ IJȠ 20% ȑȤİȚ țĮȚ ĮȣIJȠțȓ- ȞȘIJȠ țĮȚ ȝȘȤĮȞȐțȚ. ǼʌȚȜȑȖȠȣȝİ IJȣȤĮȓĮ ȑȞĮȞ țȐIJȠȚțȠ ĮȣIJȒȢ IJȘȢ ʌȩȜȘȢ. ȅȡȓȗȠȣȝİ IJĮ İȞįİȤȩȝİȞĮ: A: Ƞ țȐIJȠȚțȠȢ ȞĮ ȑȤİȚ ĮȣIJȠțȓȞȘIJȠ M: Ƞ țȐIJȠȚțȠȢ ȞĮ ȑȤİȚ ȝȘȤĮȞȐțȚ
  • 7. ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ 7 Į) ȃĮ İțijȡȐıİIJİ ȜİțIJȚțȐ IJĮ İȞįİȤȩȝİȞĮ: i) ii) iii) (ȂȠȞȐįİȢ 9) ȕ) ȃĮ ȕȡİȓIJİ IJȘȞ ʌȚșĮȞȩIJȘIJĮ Ƞ țȐIJȠȚțȠȢ ʌȠȣ İʌȚȜȑ- ȤșȘțİ: i) ȃĮ ȝȘȞ ȑȤİȚ ȝȘȤĮȞȐțȚ. (ȂȠȞȐįİȢ 7) ii) ȃĮ ȝȘȞ ȑȤİȚ ȠȪIJİ ȝȘȤĮȞȐțȚ ȠȪIJİ ĮȣIJȠțȓȞȘIJȠ. (ȂȠȞȐįİȢ 9) ȁȪıȘ Į) i) ȅ țȐIJȠȚțȠȢ ȑȤİȚ ĮȣIJȠțȓȞȘIJȠ Ȓ ȝȘȤĮȞȐțȚ. ii) ȅ țȐIJȠȚțȠȢ ȑȤİȚ ȝȩȞȠ ȝȘȤĮȞȐțȚ. iii) ȅ țȐIJȠȚțȠȢ įİȞ ȑȤİȚ ȝȘȤĮȞȐțȚ. ȕ) i) P ( )= 1 P ( )= 1 40 100 = 100 100 40 100 = 60 100 ii) ǹȡȤȚțȐ ȕȡȓıțȠȣȝİ P ( )= P ( )+ P ( ) P ( )= = 70 100 + 40 100 20 100 = 90 100 , ȐȡĮ P ( ) ( )= 1 P ( )= = 1 90 100 = 100 100 90 100 = 10 100 . ]ĬǼȂǹ 2_3384 ǹʌȩ IJȠȣȢ 180 ȝĮșȘIJȑȢ İȞȩȢ ȜȣțİȓȠȣ, 20 ȝĮșȘIJȑȢ ıȣȝȝİIJȑȤȠȣȞ ıIJȘ șİĮIJȡȚțȒ ȠȝȐįĮ, 30 ȝĮșȘIJȑȢ ıȣȝ- ȝİIJȑȤȠȣȞ ıIJȘȞ ȠȝȐįĮ ıIJȓȕȠȣ, İȞȫ 10 ȝĮșȘIJȑȢ ıȣȝ- ȝİIJȑȤȠȣȞ țĮȚ ıIJȚȢ įȪȠ ȠȝȐįİȢ. ǼʌȚȜȑȖȠȣȝİ IJȣȤĮȓĮ ȑȞĮȞ ȝĮșȘIJȒ IJȠȣ ȜȣțİȓȠȣ. ȅȡȓȗȠȣȝİ IJĮ İȞįİȤȩȝİȞĮ: A: Ƞ ȝĮșȘIJȒȢ ıȣȝȝİIJȑȤİȚ ıIJȘ șİĮIJȡȚțȒ ȠȝȐįĮ B: Ƞ ȝĮșȘIJȒȢ ıȣȝȝİIJȑȤİȚ ıIJȘȞ ȠȝȐįĮ ıIJȓȕȠȣ Į) ȃĮ İțijȡȐıİIJİ ȜİțIJȚțȐ IJĮ İȞįİȤȩȝİȞĮ: i) ii) iii) (ȂȠȞȐįİȢ 9) ȕ) ȃĮ ȕȡİȓIJİ IJȘȞ ʌȚșĮȞȩIJȘIJĮ Ƞ ȝĮșȘIJȒȢ ʌȠȣ İʌȚȜȑȤșȘțİ: i) NĮ ȝȘ ıȣȝȝİIJȑȤİȚ ıİ țĮȝȓĮ ȠȝȐįĮ. (ȂȠȞȐįİȢ 9) ii) NĮ ıȣȝȝİIJȑȤİȚ ȝȩȞȠ ıIJȘȞ ȠȝȐįĮ ıIJȓȕȠȣ. (ȂȠȞȐįİȢ 7) ȁȪıȘ Į) i) ȅ ȝĮșȘIJȒȢ ıȣȝȝİIJȑȤİȚ ıIJȘ șİĮIJȡȚțȒ ȠȝȐįĮ Ȓ ıIJȘȞ ȠȝȐįĮ ıIJȓȕȠȣ. ii) ȅ ȝĮșȘIJȒȢ ıȣȝȝİIJȑȤİȚ ȝȩȞȠ ıIJȘȞ ȠȝȐįĮ ıIJȓȕȠȣ. iii) ȅ ȝĮșȘIJȒȢ įİ ıȣȝȝİIJȑȤİȚ ıIJȘ șİĮIJȡȚțȒ ȠȝȐįĮ. ȕ) i) ǹȡȤȚțȐ ȕȡȓıțȠȣȝİ P ( )= P ( )+ P ( ) P ( )= = 20 180 + 30 180 10 180 = 40 180 = 2 9 , ȐȡĮ P ( ) ( )= 1 P ( )= 1 2 9 = 9 9 2 9 = 7 9 . ii) P ( )= P ( ) P ( )= = 30 180 10 180 = 20 180 = 1 9 ]ĬǼȂǹ 2_3878 DzȞĮ ȁȪțİȚȠ ȑȤİȚ 400 ȝĮșȘIJȑȢ Įʌȩ IJȠȣȢ ȠʌȠȓȠȣȢ ȠȚ 200 İȓȞĮȚ ȝĮșȘIJȑȢ IJȘȢ ǹǯ IJȐȟȘȢ. ǹȞ İʌȚȜȑȟȠȣȝİ IJȣ- ȤĮȓĮ ȑȞĮȞ ȝĮșȘIJȒ, Ș ʌȚșĮȞȩIJȘIJĮ ȞĮ İȓȞĮȚ ȝĮșȘIJȒȢ IJȘȢ īǯ IJȐȟȘȢ İȓȞĮȚ 20%. ȃĮ ȕȡİȓIJİ: Į) ȉȠ ʌȜȒșȠȢ IJȦȞ ȝĮșȘIJȫȞ IJȘȢ īǯ IJȐȟȘȢ. (ȂȠȞȐįİȢ 10) ȕ) ȉȠ ʌȜȒșȠȢ IJȦȞ ȝĮșȘIJȫȞ IJȘȢ Ǻǯ IJȐȟȘȢ. (ȂȠȞȐįİȢ 5) Ȗ) ȉȘȞ ʌȚșĮȞȩIJȘIJĮ Ƞ ȝĮșȘIJȒȢ ʌȠȣ İʌȚȜȑȟĮȝİ ȞĮ İȓȞĮȚ IJȘȢ Ǻǯ IJȐȟȘȢ. (ȂȠȞȐįİȢ 10) ȁȪıȘ Į) DzıIJȦ ī IJȠ İȞįİȤȩȝİȞȠ Ƞ ȝĮșȘIJȒȢ ȞĮ İȓȞĮȚ IJȘȢ īǯ IJȐȟȘȢ țĮȚ ȍ IJȠ ıȪȞȠȜȠ IJȦȞ ȝĮșȘIJȫȞ IJȠȣ ıȤȠȜİȓȠȣ. ȉȩIJİ P ( )= ( ) ( ) 20 100 = N ( ) 400 100N ( )= 20400 N ( )= 80. ȕ) ǹȞ ǹ țĮȚ Ǻ İȓȞĮȚ IJĮ İȞįİȤȩȝİȞĮ Ƞ ȝĮșȘIJȒȢ ȞĮ İȓȞĮȚ IJȘȢ ǹǯ țĮȚ IJȘȢ Ǻǯ IJȐȟȘȢ ĮȞIJȓıIJȠȚȤĮ, IJȩIJİ N ( )+ N B ( )+ N ( )= ( ) 200 + ( )+80 = 400 ( )= 120. Ȗ) P B ( )= N B ( ) N ( ) = 120 400 = 0,3 ]ĬǼȂǹ 2_497 DzȞĮ IJȘȜİȠʌIJȚțȩ ʌĮȚȤȞȓįȚ ʌĮȓȗİIJĮȚ ȝİ ȗİȪȖȘ ĮȞIJȚʌȐȜȦȞ IJȦȞ įȪȠ ijȪȜȦȞ. ȈIJȠ ʌĮȚȤȞȓįȚ ıȣȝȝİIJȑȤȠȣȞ 3 ȐȞIJȡİȢ: Ƞ ǻȘȝȒIJȡȘȢ (ǻ), Ƞ ȀȫıIJĮȢ (Ȁ), Ƞ ȂȚȤȐȜȘȢ (Ȃ) țĮȚ 2 ȖȣȞĮȓțİȢ: Ș ǼȚȡȒȞȘ (Ǽ) țĮȚ Ș ǽȦȒ (ǽ). ǼʌȚȜȑȖȠȞIJĮȚ ıIJȘȞ IJȪȤȘ ȑȞĮȢ ȐȞIJȡĮȢ țĮȚ ȝȚĮ ȖȣȞĮȓțĮ ȖȚĮ ȞĮ įȚĮȖȦ- ȞȚıIJȠȪȞ țĮȚ țĮIJĮȖȡȐijȠȞIJĮȚ IJĮ ȠȞȩȝĮIJȐ IJȠȣȢ. Į) ȃĮ ȕȡİșİȓ Ƞ įİȚȖȝĮIJȚțȩȢ ȤȫȡȠȢ IJȠȣ ʌİȚȡȐȝĮIJȠȢ. (ȂȠȞȐįİȢ 10)
  • 8. 8 ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȚȢ ʌȚșĮȞȩIJȘIJİȢ IJȦȞ ʌĮȡĮțȐIJȦ İȞįİȤȠȝȑȞȦȞ: ǹ: ȃĮ įȚĮȖȦȞȓıIJȘțĮȞ Ƞ ȀȫıIJĮȢ Ȓ Ƞ ȂȚȤȐȜȘȢ. Ǻ: ȃĮ įȚĮȖȦȞȓıIJȘțİ Ș ǽȦȒ. ī: ȃĮ ȝȘ įȚĮȖȦȞȓıIJȘțİ ȠȪIJİ Ƞ ȀȫıIJĮȢ ȠȪIJİ Ƞ ǻȘ- ȝȒIJȡȘȢ. (ȂȠȞȐįİȢ 15) ȁȪıȘ Į) DzıIJȦ ȩIJȚ İʌȚȜȑȖȠȣȝİ ʌȡȫIJĮ ȐȞIJȡĮ țĮȚ ȝİIJȐ ȖȣȞĮȓțĮ. ȅ įİȚȖȝĮIJȚțȩȢ ȤȫȡȠȢ IJȠȣ ʌİȚȡȐȝĮIJȠȢ İȓȞĮȚ = , , , , , { }. ȕ) ǹʌȩ IJȠ ȍ ȕȡȓıțȠȣȝİ ȩIJȚ = , , , { }, = , , { } țĮȚ = , { }. ǼȓȞĮȚ ( )= 6, ( )= 4, ( )= 3 țĮȚ ( )= 2.ǹʌȩ IJȠȞ țȜĮıȚțȩ ȠȡȚıȝȩ IJȘȢ ʌȚșĮȞȩIJȘIJĮȢ ȑȤȠȣȝİ ( )= ( ) ( ) = 4 6 = 2 3 , ( )= ( ) ( ) = 3 6 = 1 2 țĮȚ ( )= ( ) ( ) = 2 6 = 1 3 . ]ĬǼȂǹ 2_499 ǹʌȩ IJȠȣȢ ȝĮșȘIJȑȢ İȞȩȢ ȁȣțİȓȠȣ, IJȠ 25% ıȣȝȝİIJȑȤİȚ ıIJȘ șİĮIJȡȚțȒ ȠȝȐįĮ, IJȠ 30% ıȣȝȝİIJȑȤİȚ ıIJȘȞ ȠȝȐ- įĮ ʌȠįȠıijĮȓȡȠȣ țĮȚ IJȠ 15% IJȦȞ ȝĮșȘIJȫȞ ıȣȝȝİ- IJȑȤİȚ țĮȚ ıIJȚȢ įȪȠ ȠȝȐįİȢ. ǼʌȚȜȑȖȠȣȝİ IJȣȤĮȓĮ ȑȞĮȞ ȝĮșȘIJȒ. ǹȞ ȠȞȠȝȐıȠȣȝİ IJĮ İȞįİȤȩȝİȞĮ: ǹ: «Ƞ ȝĮșȘIJȒȢ ȞĮ ıȣȝȝİIJȑȤİȚ ıIJȘ șİĮIJȡȚțȒ ȠȝȐįĮ» țĮȚ Ǻ: «Ƞ ȝĮșȘIJȒȢ ȞĮ ıȣȝȝİIJȑȤİȚ ıIJȘȞ ȠȝȐįĮ ʌȠįȠıijĮȓ- ȡȠȣ», Į) ȞĮ İțijȡȐıİIJİ ȜİțIJȚțȐ IJĮ İȞįİȤȩȝİȞĮ: i) ii) iii) iv) (ȂȠȞȐįİȢ 12) ȕ) ȞĮ ȣʌȠȜȠȖȓıİIJİ IJȚȢ ʌȚșĮȞȩIJȘIJİȢ ʌȡĮȖȝĮIJȠʌȠȓȘ- ıȘȢ IJȦȞ İȞįİȤȠȝȑȞȦȞ i) Ƞ ȝĮșȘIJȒȢ ʌȠȣ İʌȚȜȑȤșȘțİ ȞĮ ıȣȝȝİIJȑȤİȚ ȝȩȞȠ ıIJȘȞ ȠȝȐįĮ ʌȠįȠıijĮȓȡȠȣ, ii) Ƞ ȝĮșȘIJȒȢ ʌȠȣ İʌȚȜȑȤșȘțİ ȞĮ ȝȘ ıȣȝȝİIJȑȤİȚ ıİ țĮȝȓĮ ȠȝȐįĮ. (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) i) O ȝĮșȘIJȒȢ ıȣȝȝİIJȑȤİȚ ıIJȘ șİĮIJȡȚțȒ ȠȝȐįĮ Ȓ ıIJȘȞ ȠȝȐįĮ ʌȠįȠıijĮȓȡȠȣ. ii) O ȝĮșȘIJȒȢ ıȣȝȝİIJȑȤİȚ țĮȚ ıIJȘ șİĮIJȡȚțȒ ȠȝȐ- įĮ țĮȚ ıIJȘȞ ȠȝȐįĮ ʌȠįȠıijĮȓȡȠȣ. iii) O ȝĮșȘIJȒȢ ıȣȝȝİIJȑȤİȚ ȝȩȞȠ ıIJȘȞ ȠȝȐįĮ ʌȠ- įȠıijĮȓȡȠȣ. iv) O ȝĮșȘIJȒȢ įİ ıȣȝȝİIJȑȤİȚ ıIJȘ șİĮIJȡȚțȒ ȠȝȐįĮ. ȕ) ǼȓȞĮȚ ( )= 25 100 = 0,25, ( )= 30 100 = 0,3 țĮȚ ( )= 15 100 = 0,15. i) ȉȠ İȞįİȤȩȝİȞȠ İȓȞĮȚ IJȠ țĮȚ Ș ȗȘIJȠȪȝİȞȘ ʌȚșĮȞȩIJȘIJĮ Ș ( )= ( ) ( )= = 0,3 0,15 = 0,15. ii) ȉȠ İȞįİȤȩȝİȞȠ İȓȞĮȚ IJȠ ( ) țĮȚ Ș ȗȘIJȠȪȝİȞȘ ʌȚșĮȞȩIJȘIJĮ Ș ( ) ( )= 1 ( )= = 1 ( )+ ( ) ( ) ( )= = 1 0,25+ 0,3 0,15 ( )= 0,6. 4Į ĬǼȂǹȉǹ ]ĬǼȂǹ 4_1868 Ȉİ ȑȞĮ IJȝȒȝĮ IJȘȢ ǹǯ ȁȣțİȓȠȣ țȐʌȠȚȠȚ ȝĮșȘIJȑȢ ʌĮȡĮțȠȜȠȣșȠȪȞ ȝĮșȒȝĮIJĮ ǹȖȖȜȚțȫȞ țĮȚ țȐʌȠȚȠȚ īĮȜȜȚțȫȞ. Ǿ ʌȚșĮȞȩIJȘIJĮ ȑȞĮȢ ȝĮșȘIJȒȢ ȞĮ ȝȘȞ ʌĮ- ȡĮțȠȜȠȣșİȓ īĮȜȜȚțȐ İȓȞĮȚ 0,8. Ǿ ʌȚșĮȞȩIJȘIJĮ ȑȞĮȢ ȝĮșȘIJȒȢ ȞĮ ʌĮȡĮțȠȜȠȣșİȓ ǹȖȖȜȚțȐ İȓȞĮȚ IJİIJȡĮʌȜȐ- ıȚĮ Įʌȩ IJȘȞ ʌȚșĮȞȩIJȘIJĮ ȞĮ ʌĮȡĮțȠȜȠȣșİȓ īĮȜȜȚțȐ. ȉȑȜȠȢ, Ș ʌȚșĮȞȩIJȘIJĮ ȑȞĮȢ ȝĮșȘIJȒȢ ȞĮ ʌĮȡĮțȠȜȠȣșİȓ ȝĮșȒȝĮIJĮ IJȠȣȜȐȤȚıIJȠȞ ȝȚĮȢ Įʌȩ IJȚȢ įȪȠ ȖȜȫııİȢ İȓȞĮȚ 0,9.
  • 9. ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ 9 Į) ǼʌȚȜȑȖȠȣȝİ ȑȞĮȞ ȝĮșȘIJȒ ıIJȘȞ IJȪȤȘ. i) ȆȠȚĮ İȓȞĮȚ Ș ʌȚșĮȞȩIJȘIJĮ ĮȣIJȩȢ ȞĮ ʌĮȡĮțȠȜȠȣ- șİȓ ȝĮșȒȝĮIJĮ țĮȚ IJȦȞ įȪȠ ȖȜȦııȫȞ; (ȂȠȞȐįİȢ 9) ii) ȆȠȚĮ İȓȞĮȚ Ș ʌȚșĮȞȩIJȘIJĮ ĮȣIJȩȢ ȞĮ ʌĮȡĮțȠȜȠȣ- șİȓ ȝĮșȒȝĮIJĮ ȝȩȞȠ ȝȚĮȢ Įʌȩ IJȚȢ įȪȠ ȖȜȫııİȢ; (ȂȠȞȐįİȢ 9) ȕ) ǹȞ 14 ȝĮșȘIJȑȢ ʌĮȡĮțȠȜȠȣșȠȪȞ ȝȩȞȠ ǹȖȖȜȚțȐ, ʌȩ- ıȠȚ İȓȞĮȚ ȠȚ ȝĮșȘIJȑȢ IJȠȣ IJȝȒȝĮIJȠȢ; (ȂȠȞȐįİȢ 7) ȁȪıȘ DzıIJȦ ǹ IJȠ İȞįİȤȩȝİȞȠ «Ƞ ȝĮșȘIJȒȢ ȞĮ ʌĮȡĮțȠȜȠȣ- șİȓ ǹȖȖȜȚțȐ» țĮȚ ī IJȠ İȞįİȤȩȝİȞȠ «Ƞ ȝĮșȘIJȒȢ ȞĮ ʌĮȡĮțȠȜȠȣșİȓ īĮȜȜȚțȐ». ǹʌȩ IJĮ įİįȠȝȑȞĮ ȑȤȠȣȝİ: • P ( )= 0,8 1 P ( )= 0,8 P ( )= 1 0,8 P ( )= 0,2 • P ( )= 4P ( )= 40,2 = 0,8 • P ( )= 0,9 Į) i) ȉȠ İȞįİȤȩȝİȞȠ ȞĮ ʌĮȡĮțȠȜȠȣșİȓ ȝĮșȒȝĮIJĮ țĮȚ IJȦȞ įȪȠ ȖȜȦııȫȞ İȓȞĮȚ IJȠ . DZȡĮ P ( )= P ( )+ P ( ) P ( ) 0,9 = 0,8+ 0,2 P ( ) P ( )= 1 0,9 P ( )= 0,1. ii) ȉȠ İȞįİȤȩȝİȞȠ ȞĮ ʌĮȡĮțȠȜȠȣșİȓ ȝĮșȒȝĮIJĮ ȝȩȞȠ ȝȚĮȢ Įʌȩ IJȚȢ įȪȠ ȖȜȫııİȢ İȓȞĮȚ IJȠ ( ) ( ), ȝİ IJĮ İȞįİȤȩȝİȞĮ ( ) țĮȚ ( ) ȞĮ İȓȞĮȚ ĮıȣȝȕȓȕĮıIJĮ. DZȡĮ P ( ) ( ) ( )= P ( )+ P ( )= = P ( ) P ( )+ P ( ) P ( )= = 0,8 0,1+ 0,2 0,1= 0,8. ȕ) DzıIJȦ Ȟ IJȠ ʌȜȒșȠȢ IJȦȞ ȝĮșȘIJȫȞ IJȠȣ IJȝȒȝĮIJȠȢ. ǼʌİȚįȒ Ș ʌȚșĮȞȩIJȘIJĮ ȑȞĮȢ ȝĮșȘIJȒȢ ȞĮ ʌĮȡĮțȠ- ȜȠȣșİȓ ȝȩȞȠ ǹȖȖȜȚțȐ İȓȞĮȚ P ( )= P ( ) P ( )= 0,8 0,1= 0,7, ȑȤȠȣȝİ P ( )= ( ) ( ) 0,7 = 14 0,7 = 14 = 14 0,7 = 20. ]ĬǼȂǹ 4_1936 Ǿ İȟȑIJĮıȘ ıİ ȑȞĮȞ įȚĮȖȦȞȚıȝȩ IJȦȞ ȂĮșȘȝĮIJȚțȫȞ ʌİȡȚȜȐȝȕĮȞİ įȪȠ șȑȝĮIJĮ IJĮ ȠʌȠȓĮ ȑʌȡİʌİ ȞĮ ĮʌĮ- ȞIJȒıȠȣȞ ȠȚ İȟİIJĮȗȩȝİȞȠȚ. īȚĮ ȞĮ ȕĮșȝȠȜȠȖȘșȠȪȞ ȝİ ȐȡȚıIJĮ ȑʌȡİʌİ ȞĮ ĮʌĮȞIJȒıȠȣȞ țĮȚ ıIJĮ įȪȠ șȑȝĮIJĮ, İȞȫ ȖȚĮ ȞĮ ʌİȡȐıȠȣȞ IJȘȞ İȟȑIJĮıȘ ȑʌȡİʌİ ȞĮ ĮʌĮȞIJȒ- ıȠȣȞ ıİ ȑȞĮ IJȠȣȜȐȤȚıIJȠȞ Įʌȩ IJĮ įȪȠ șȑȝĮIJĮ. ȈIJȠȞ įȚĮȖȦȞȚıȝȩ İȟİIJȐıșȘțĮȞ 100 ȝĮșȘIJȑȢ. ȈIJȠ ʌȡȫIJȠ șȑȝĮ ĮʌȐȞIJȘıĮȞ ıȦıIJȐ 60 ȝĮșȘIJȑȢ. ȈIJȠ įİȪIJİȡȠ șȑȝĮ ĮʌȐȞIJȘıĮȞ ıȦıIJȐ 50 ȝĮșȘIJȑȢ, İȞȫ țĮȚ ıIJĮ įȪȠ șȑȝĮIJĮ ĮʌȐȞIJȘıĮȞ ıȦıIJȐ 30 ȝĮșȘIJȑȢ. ǼʌȚȜȑ- ȖȠȣȝİ IJȣȤĮȓĮ ȑȞĮȞ ȝĮșȘIJȒ. Į) ȃĮ ʌĮȡĮıIJȒıİIJİ ȝİ įȚȐȖȡĮȝȝĮ Venn țĮȚ ȝİ IJȘ ȤȡȒıȘ IJȘȢ ȖȜȫııĮȢ IJȦȞ ıȣȞȩȜȦȞ (ȠȡȓȗȠȞIJĮȢ IJĮ țĮIJȐȜȜȘȜĮ İȞįİȤȩȝİȞĮ) IJĮ ʌĮȡĮʌȐȞȦ įİįȠȝȑȞĮ. (ȂȠȞȐįİȢ 13) ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ ʌȚșĮȞȩIJȘIJĮ Ƞ ȝĮșȘIJȒȢ: i) ȃĮ ĮʌȐȞIJȘıİ ıȦıIJȐ ȝȩȞȠ ıIJȠ įİȪIJİȡȠ șȑȝĮ. ii) ȃĮ ȕĮșȝȠȜȠȖȘșİȓ ȝİ ȐȡȚıIJĮ. iii) ȃĮ ȝȘȞ ĮʌȐȞIJȘıİ ıȦıIJȐ ıİ țĮȞȑȞĮ șȑȝĮ. iv) ȃĮ ʌȑȡĮıİ IJȘȞ İȟȑIJĮıȘ. (ȂȠȞȐįİȢ 12) ȁȪıȘ Į) ȅȡȓȗȠȣȝİ IJĮ İȞįİȤȩȝİȞĮ =
  • 11. , =
  • 13. . ǼȓȞĮȚ ( )= 100, ( )= 60 țĮȚ ( )= 50. ǼʌȓıȘȢ, ( )= 30, ȐȡĮ , ȠʌȩIJİ IJĮ İȞįİȤȩȝİȞĮ įİȞ İȓȞĮȚ ĮıȣȝȕȓȕĮıIJĮ. ǼʌȚʌȜȑȠȞ, ( )= ( ) ( )= = 60 30 = 30 0 țĮȚ ( )= ( ) ( )= = 50 30 = 20 0. DZȡĮ țĮȚ . ȉȠ įȚȐȖȡĮȝȝĮ Venn İȓȞĮȚ IJȠ ĮțȩȜȠȣșȠ:
  • 14. 10 ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ ȕ) ǹʌȩ IJȠȞ țȜĮıȚțȩ ȠȡȚıȝȩ IJȘȢ ʌȚșĮȞȩIJȘIJĮȢ ȑȤȠȣȝİ 60 100 0,6, 50 100 0,5 țĮȚ 30 100 0,3. i) 0,5 0,3 0,2 ii) 0,3 iii) 1 1 1 0,6 0,5 0,3 0,2 iv) P 0,6 0,5 0,3 0,8 ]ĬǼȂǹ 4_2064 Ȉİ ȝȚĮ ȠȝȐįĮ ʌȠȣ ĮʌȠIJİȜİȓIJĮȚ Įʌȩ 7 ȐȞįȡİȢ țĮȚ 13 Ȗȣ- ȞĮȓțİȢ, 4 Įʌȩ IJȠȣȢ ȐȞįȡİȢ țĮȚ 2 Įʌȩ IJȚȢ ȖȣȞĮȓțİȢ ʌĮȓ- ȗȠȣȞ ıțȐțȚ. ǼʌȚȜȑȖȠȣȝİ IJȣȤĮȓĮ ȑȞĮ Įʌȩ IJĮ ȐIJȠȝĮ ĮȣIJȐ. Į) ȃĮ ʌĮȡĮıIJȒıİIJİ ȝİ įȚȐȖȡĮȝȝĮ Venn țĮȚ ȝİ IJȘ ȤȡȒıȘ IJȘȢ ȖȜȫııĮȢ IJȦȞ ıȣȞȩȜȦȞ IJȠ İȞįİȤȩȝİȞȠ IJȠ ȐIJȠȝȠ ʌȠȣ İʌȚȜȑȤșȘțİ: i) ȞĮ İȓȞĮȚ ȐȞįȡĮȢ Ȓ ȞĮ ʌĮȓȗİȚ ıțȐțȚ, (ȂȠȞȐįİȢ 6) ii) ȞĮ ȝȘȞ İȓȞĮȚ ȐȞįȡĮȢ țĮȚ ȞĮ ʌĮȓȗİȚ ıțȐțȚ. (ȂȠȞȐįİȢ 6) ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ ʌȚșĮȞȩIJȘIJĮ IJȠ ȐIJȠȝȠ ʌȠȣ İʌȚȜȑȤșȘțİ ȞĮ İȓȞĮȚ ȖȣȞĮȓțĮ țĮȚ ȞĮ ʌĮȓȗİȚ ıțȐțȚ. (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) DzıIJȦ A IJȠ ıȪȞȠȜȠ IJȦȞ ĮȞįȡȫȞ, ī IJȠ ıȪȞȠȜȠ IJȦȞ ȖȣȞĮȚțȫȞ țĮȚ Ȉ IJȠ ıȪȞȠȜȠ IJȦȞ ĮIJȩȝȦȞ ʌȠȣ ʌĮȓȗȠȣȞ ıțȐțȚ. i) ȉȠ İȞįİȤȩȝİȞȠ İȓȞĮȚ IJȠ . ii) ȉȠ İȞįİȤȩȝİȞȠ İȓȞĮȚ IJȠ , ĮijȠȪ . ǼʌȓıȘȢ, İȓȞĮȚ 4 țĮȚ 2 , ȠʌȩIJİ IJĮ įȚĮȖȡȐȝȝĮIJĮ Venn ȖȚĮ IJĮ İȡȦIJȒȝĮIJĮ (i) țĮȚ (ii) İȓȞĮȚ IJĮ ĮțȩȜȠȣșĮ: i) ii) ȕ) ǼȓȞĮȚ 7, 13 țĮȚ 7 13 20, ȩʌȠȣ ȍ İȓȞĮȚ Ƞ įİȚȖȝĮIJȚțȩȢ ȤȫȡȠȢ IJȠȣ ʌİȚȡȐȝĮIJȠȢ. ȉȠ İȞįİȤȩȝİȞȠ ȞĮ İȓȞĮȚ ȖȣȞĮȓțĮ țĮȚ ȞĮ ʌĮȓȗİȚ ıțȐțȚ İȓȞĮȚ IJȠ ȝİ 2. ǼʌȠȝȑȞȦȢ Įʌȩ IJȠȞ țȜĮıȚțȩ ȠȡȚıȝȩ IJȘȢ ʌȚșĮȞȩIJȘIJĮȢ ȑȤȠȣȝİ 2 20 0,1. ]ĬǼȂǹ 4_2073 ȅȚ įȡȐıIJİȢ ȝȚĮȢ țȜȠʌȒȢ įȚȑijȣȖĮȞ ȝ’ ȑȞĮ ĮȣIJȠțȓȞȘIJȠ țĮȚ ȝİIJȐ Įʌȩ IJȘȞ țĮIJȐșİıȘ įȚĮijȩȡȦȞ ȝĮȡIJȪȡȦȞ ȑȖȚ- Ȟİ ȖȞȦıIJȩ ȩIJȚ Ƞ IJİIJȡĮȥȒijȚȠȢ ĮȡȚșȝȩȢ IJȘȢ ʌȚȞĮțȓįĮȢ IJȠȣ ĮȣIJȠțȚȞȒIJȠȣ İȓȤİ ʌȡȫIJȠ țĮȚ IJȑIJĮȡIJȠ ȥȘijȓȠ IJȠ 2. ȉȠ įİȪIJİȡȠ ȥȘijȓȠ ȒIJĮȞ 6 Ȓ 8 Ȓ 9 țĮȚ IJȠ IJȡȓIJȠ ȥȘijȓȠ IJȠȣ ȒIJĮȞ 4 Ȓ 7. Į) Ȃİ ȤȡȒıȘ įİȞįȡȠįȚĮȖȡȐȝȝĮIJȠȢ, ȞĮ ʌȡȠıįȚȠȡȓıİ- IJİ IJȠ ıȪȞȠȜȠ IJȦȞ įȣȞĮIJȫȞ ĮȡȚșȝȫȞ IJȘȢ ʌȚȞĮțȓįĮȢ IJȠȣ ĮȣIJȠțȚȞȒIJȠȣ. (ȂȠȞȐįİȢ 13) ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȚȢ ʌȚșĮȞȩIJȘIJİȢ IJȦȞ ʌĮȡĮțȐIJȦ İȞįİȤȠȝȑȞȦȞ:
  • 15. ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ 11 ǹ: ȉȠ IJȡȓIJȠ ȥȘijȓȠ IJȠȣ ĮȡȚșȝȠȪ IJȘȢ ʌȚȞĮțȓįĮȢ İȓȞĮȚ IJȠ 7. Ǻ: ȉȠ įİȪIJİȡȠ ȥȘijȓȠ IJȠȣ ĮȡȚșȝȠȪ IJȘȢ ʌȚȞĮțȓįĮȢ İȓȞĮȚ 6 Ȓ 8. ī: ȉȠ įİȪIJİȡȠ ȥȘijȓȠ IJȠȣ ĮȡȚșȝȠȪ IJȘȢ ʌȚȞĮțȓįĮȢ įİȞ İȓȞĮȚ ȠȪIJİ 8 ȠȪIJİ 9. (ȂȠȞȐįİȢ 12) ȁȪıȘ Į) ȉȠ ıȪȞȠȜȠ IJȦȞ įȣȞĮIJȫȞ ĮȡȚșȝȫȞ IJȘȢ ʌȚȞĮțȓįĮȢ IJȠȣ ĮȣIJȠțȚȞȒIJȠȣ İȓȞĮȚ = 2642, 2672, 2842, 2872, 2942, 2972 { }. ȕ) = 2672, 2872, 2972 { }, ȐȡĮ P ( )= ( ) ( ) = 3 6 = 1 2 . = 2642, 2672, 2842, 2872 { }, ȐȡĮ P ( )= ( ) ( ) = 4 6 = 2 3 . = 2642, 2672 { }, ȐȡĮ P ( )= ( ) ( ) = 2 6 = 1 3 . ]ĬǼȂǹ 4_2080 ǹʌȩ ȝȚĮ ȑȡİȣȞĮ ȝİIJĮȟȪ ȝĮșȘIJȫȞ İȞȩȢ ȁȣțİȓȠȣ IJȘȢ ȤȫȡĮȢ, ʌȡȠȑțȣȥİ ȩIJȚ IJȠ 80% IJȦȞ ȝĮșȘIJȫȞ ʌȓȞİȚ ȖȐȜĮ Ȓ IJȡȫİȚ įȣȠ ijȑIJİȢ ȥȦȝȓ ȝİ ȕȠȪIJȣȡȠ țĮȚ ȝȑȜȚ ıIJȠ ıʌȓIJȚ IJȠ ʌȡȦȓ. ǼʌȚȜȑȖȠȣȝİ ȑȞĮȞ ȝĮșȘIJȒ ıIJȘȞ IJȪȤȘ țĮȚ ȠȡȓȗȠȣȝİ IJĮ İȞįİȤȩȝİȞĮ: ǹ: Ƞ ȝĮșȘIJȒȢ ʌȓȞİȚ ȖȐȜĮ B: Ƞ ȝĮșȘIJȒȢ IJȡȫİȚ įȣȠ ijȑIJİȢ ȥȦȝȓ ȝİ ȕȠȪIJȣȡȠ țĮȚ ȝȑȜȚ ǹȞ Įʌȩ IJȠ ıȪȞȠȜȠ IJȦȞ ȝĮșȘIJȫȞ IJȠ 60% ʌȓȞİȚ ȖȐȜĮ țĮȚ IJȠ 45% IJȡȫİȚ įȣȠ ijȑIJİȢ ȥȦȝȓ ȝİ ȕȠȪIJȣȡȠ țĮȚ ȝȑȜȚ, Į) ȃĮ ȠȡȓıİIJİ ȝİ ȤȡȒıȘ IJȘȢ ȖȜȫııĮȢ IJȦȞ ıȣȞȩȜȦȞ IJĮ İȞįİȤȩȝİȞĮ: i) Ƞ ȝĮșȘIJȒȢ ȠȪIJİ ȞĮ ʌȓȞİȚ ȖȐȜĮ ȠȪIJİ ȞĮ IJȡȫİȚ įȣȠ ijȑIJİȢ ȥȦȝȓ ȝİ ȕȠȪIJȣȡȠ țĮȚ ȝȑȜȚ ii) Ƞ ȝĮșȘIJȒȢ ȞĮ ʌȓȞİȚ ȖȐȜĮ țĮȚ ȞĮ IJȡȫİȚ įȣȠ ijȑ- IJİȢ ȥȦȝȓ ȝİ ȕȠȪIJȣȡȠ țĮȚ ȝȑȜȚ iii) Ƞ ȝĮșȘIJȒȢ ȞĮ ʌȓȞİȚ ȝȩȞȠ ȖȐȜĮ. (ȂȠȞȐįİȢ 12) ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ ʌȚșĮȞȩIJȘIJĮ ʌȡĮȖȝĮIJȠʌȠȓȘ- ıȘȢ IJȦȞ İȞįİȤȠȝȑȞȦȞ IJȠȣ Į) İȡȦIJȒȝĮIJȠȢ. (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) i) = ( ) ii) iii) ȕ) ǹʌȩ IJĮ įİįȠȝȑȞĮ IJȘȢ ȐıțȘıȘȢ ȑȤȠȣȝİ ( )= 80 100 = 0,8, ( )= 60 100 = 0,6 țĮȚ ( )= 45 100 = 0,45. ǼʌȠȝȑȞȦȢ ( ) ( )= 1 ( )= 1 0,8 = 0,2, ( )= ( )+ ( ) ( ) ( )= ( )+ ( ) ( )= = 0,6 + 0,45 0,8 = 0,25 țĮȚ ( )= ( ) ( )= 0,6 0,25 = 0,35. ]ĬǼȂǹ 4_6144 ȂȚĮ ȘȝȑȡĮ, ıIJȠ IJȝȒȝĮ ǹ1 İȞȩȢ ȁȣțİȓȠȣ, IJȠ 1 4 IJȦȞ ȝĮșȘIJȫȞ įİȞ ȑȤİȚ įȚĮȕȐıİȚ ȠȪIJİ DZȜȖİȕȡĮ ȠȪIJİ īİȦȝİIJȡȓĮ, İȞȫ IJo 1 3 IJȦȞ ȝĮșȘIJȫȞ ȑȤİȚ įȚĮȕȐıİȚ țĮȚ IJĮ įȪȠ ĮȣIJȐ ȝĮșȒȝĮIJĮ. Ǿ țĮșȘȖȒIJȡȚĮ IJȦȞ ȝĮ- șȘȝĮIJȚțȫȞ İʌȚȜȑȖİȚ IJȣȤĮȓĮ ȑȞĮȞ ȝĮșȘIJȒ ȖȚĮ ȞĮ IJȠȞ İȟİIJȐıİȚ. ȅȡȓȗȠȣȝİ IJĮ İȞįİȤȩȝİȞĮ: ǹ: Ƞ ȝĮșȘIJȒȢ ȞĮ ȑȤİȚ įȚĮȕȐıİȚ DZȜȖİȕȡĮ ī: Ƞ ȝĮșȘIJȒȢ ȞĮ ȑȤİȚ įȚĮȕȐıİȚ īİȦȝİIJȡȓĮ Į) ȃĮ ʌĮȡĮıIJȒıİIJİ ȝİ įȚȐȖȡĮȝȝĮ Venn țĮȚ ȝİ ȤȡȒ- ıȘ IJȘȢ ȖȜȫııĮȢ IJȦȞ ıȣȞȩȜȦȞ IJĮ įİįȠȝȑȞĮ IJȠȣ ʌȡȠȕȜȒȝĮIJȠȢ. (ȂȠȞȐįİȢ 9) ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ ʌȚșĮȞȩIJȘIJĮ Ƞ ȝĮșȘIJȒȢ: i) ȞĮ ȑȤİȚ įȚĮȕȐıİȚ ȑȞĮ IJȠȣȜȐȤȚıIJȠȞ Įʌȩ IJĮ įȪȠ ȝĮșȒȝĮIJĮ ii) ȞĮ ȑȤİȚ įȚĮȕȐıİȚ ȑȞĮ ȝȩȞȠ Įʌȩ IJĮ įȣȠ ȝĮșȒ- ȝĮIJĮ. (ȂȠȞȐįİȢ 8)
  • 16. 12 ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ Ȗ) ǹȞ ȖȞȦȡȓȗȠȣȝİ İʌȚʌȜȑȠȞ ȩIJȚ ȠȚ ȝȚıȠȓ Įʌȩ IJȠȣȢ ȝĮșȘIJȑȢ ȑȤȠȣȞ įȚĮȕȐıİȚ īİȦȝİIJȡȓĮ, ȞĮ ȕȡİȓIJİ IJȘȞ ʌȚșĮȞȩIJȘIJĮ Ƞ ȝĮșȘIJȒȢ: i) ȞĮ ȑȤİȚ įȚĮȕȐıİȚ īİȦȝİIJȡȓĮ ii) ȞĮ ȑȤİȚ įȚĮȕȐıİȚ DZȜȖİȕȡĮ (ȂȠȞȐįİȢ 8) ȁȪıȘ Į) ȉȠ İȞįİȤȩȝİȞȠ Ƞ ȝĮșȘIJȒȢ ȞĮ ȝȘȞ ȑȤİȚ įȚĮȕȐıİȚ ȠȪIJİ DZȜȖİȕȡĮ ȠȪIJİ īİȦȝİIJȡȓĮ ʌĮȡȚıIJȐȞİIJĮȚ ȝİ ȤȡȒıȘ įȚĮȖȡȐȝȝĮIJȠȢ Venn ȦȢ İȟȒȢ: țĮȚ ȝİ ȤȡȒıȘ IJȘȢ ȖȜȫııĮȢ IJȦȞ ıȣȞȩȜȦȞ ȑȤȠȣȝİ P 1 4 , İȞȫ ȖȚĮ IJȠ İȞįİȤȩȝİȞȠ Ƞ ȝĮșȘIJȒȢ ȞĮ ȑȤİȚ įȚĮȕȐıİȚ țĮȚ IJĮ įȪȠ ȝĮșȒȝĮIJĮ ȑȤȠȣȝİ: ȝİ P 1 3 . ȕ) i) P 1 P 1 1 4 4 4 1 4 3 4 ii) P P P P P P P P P 3 4 1 3 9 12 4 12 5 12 Ȗ) i) P 1 2 1 2 ii) P P P P 3 4 P 1 2 1 3 P 3 4 1 2 1 3 P 9 12 6 12 4 12 P 7 12 ˆ¢‘ƒš‘£˜™¡˜ ‘¢˜…š¡˜: £‘¨£¡£—£•Œ – š•…¡„¡˜ ‘ˆ¡„•˜‡—Œ – ˆ‘¢‘ƒ¡ £¡ˆ¡˜—Œ— 2Į ĬǼȂǹȉǹ ]ĬǼȂǹ 2_1070 ǻȓȞȠȞIJĮȚ ȠȚ ʌȡĮȖȝĮIJȚțȠȓ ĮȡȚșȝȠȓ Į, ȕ, Ȗ, į ȝİ 0 țĮȚ ȫıIJİ ȞĮ ȚıȤȪȠȣȞ: 4 țĮȚ 1 4 Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ 3 țĮȚ 5 . (ȂȠȞȐįİȢ 10) ȕ) ȃĮ ȕȡİȓIJİ IJȘȞ IJȚȝȒ IJȘȢ ʌĮȡȐıIJĮıȘȢ: (ȂȠȞȐįİȢ 15) ȁȪıȘ Į) ǯǼȤȠȣȝİ 4 4 4 3 țĮȚ 1 4 4 4 5 .
  • 17. ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ 13 ȕ) ȆȡȑʌİȚ 0 ( ) 0 0 ( ), ʌȠȣ ȚıȤȪİȚ. DzȤȠȣȝİ: = + = 3 + 5 = = 3 + 5 = 4 4 = 1. ]ĬǼȂǹ 2_1080 DzıIJȦ x, y ʌȡĮȖȝĮIJȚțȠȓ ĮȡȚșȝȠȓ ȫıIJİ ȞĮ ȚıȤȪİȚ: 4x +5y x 4y = 2. Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ: y = 2x. (ȂȠȞȐįİȢ 12) ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ IJȚȝȒ IJȘȢ ʌĮȡȐıIJĮıȘȢ: = 2x2 + 3y2 + xy xy . (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) 4x 5y x 4y 2 x 4 y 4x 5y 2 x 4y 4x +5y = 2x +8y 3y = 6x y = 2x ȕ) 2x2 3y2 xy xy y2x 2x2 3 2x 2 x 2x x 2x = 2x2 +12x2 + 2x2 2x2 = 16x2 2x2 = 8 ]ĬǼȂǹ 2_3874 ǻȓȞȠȞIJĮȚ ȠȚ ȝȘ ȝȘįİȞȚțȠȓ ʌȡĮȖȝĮIJȚțȠȓ ĮȡȚșȝȠȓ Į, ȕ ȝİ ȖȚĮ IJȠȣȢ ȠʌȠȓȠȣȢ ȚıȤȪİȚ: 2 +1 2 +1 = Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ ȠȚ ĮȡȚșȝȠȓ Į țĮȚ ȕ İȓȞĮȚ ĮȞIJȓ- ıIJȡȠijȠȚ. (ȂȠȞȐįİȢ 13) ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ IJȚȝȒ IJȘȢ ʌĮȡȐıIJĮıȘȢ: = 22 3 ( ) 8 2 ( ) 25 (ȂȠȞȐįİȢ 12) ȁȪıȘ Į) 2 +1 2 +1 = 2 + = 2 + 2 2 = 0 = = 1, ȐȡĮ ȠȚ ĮȡȚșȝȠȓ Į, ȕ İȓȞĮȚ ĮȞIJȓıIJȡȠijȠȚ. ȕ) = 22 3 ( ) 8 2 ( ) 25 = 22 24 2 25 25 = 22 24 23 25 = = 22 23 24 25 = 1 1 = 1 = 1 „˜‘£‘‡— ˆ¢‘ƒš‘£˜™ž  ‘¢˜…šž  2Į ĬǼȂǹȉǹ ]ĬǼȂǹ 2_486 ǹȞ 0 1, IJȩIJİ Į) ȞĮ ĮʌȠįİȓȟİIJİ ȩIJȚ: 3 , (ȂȠȞȐįİȢ 13) ȕ) ȞĮ įȚĮIJȐȟİIJİ Įʌȩ IJȠȞ ȝȚțȡȩIJİȡȠ ʌȡȠȢ IJȠȞ ȝİȖĮȜȪ- IJİȡȠ IJȠȣȢ ĮȡȚșȝȠȪȢ: 0, 3 , 1, , 1 (ȂȠȞȐįİȢ 12) ȁȪıȘ Į) 3 3 0 2 1 ( ) 0 1 ( ) +1 ( ) 0. ǹʌȩ IJȘ ıȤȑıȘ 0 1 ȑȤȠȣȝİ 0 țĮȚ 0 1 +1 01 0 +1 țĮȚ 1 1 0. ǹʌȩ IJȠȞ țĮȞȩȞĮ ʌȡȠıȒȝȦȞ IJȠȣ ʌȠȜȜĮʌȜĮıȚĮıȝȠȪ ʌȡȠțȪʌIJİȚ 1 ( ) +1 ( ) 0. ȕ) ǹʌȩ IJȠ İȡȫIJȘȝĮ (Į) ȑȤȠȣȝİ 3 . ǼʌȓıȘȢ, 0 0 3 țĮȚ 0 1 1 1. DZȡĮ ȠȚ ĮȡȚșȝȠȓ įȚĮIJȐııȠȞIJĮȚ ȦȢ İȟȒȢ: 0 3 1 1 .
  • 18. 14 ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ ]ĬǼȂǹ 2_487 Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ ȖȚĮ ȠʌȠȚȠȣıįȒʌȠIJİ ʌȡĮȖȝĮIJȚ- țȠȪȢ ĮȡȚșȝȠȪȢ x, y ȚıȤȪİȚ: x 1 ( ) 2 + y + 3 ( ) 2 = x2 + y2 2x + 6y +10 (ȂȠȞȐįİȢ 12) ȕ) ȃĮ ȕȡİȓIJİ IJȠȣȢ ĮȡȚșȝȠȪȢ x, y ȫıIJİ: x2 + y2 2x + 6y +10 = 0. (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) x 1 ( ) 2 + y + 3 ( ) 2 = x2 2x +1 ( )+ y2 + 6y + 9 ( )= = x2 + y2 2x + 6y +10 ȕ) x2 y2 2x 6y 10 0 ( ) x 1 ( ) 2 + y + 3 ( ) 2 = 0 x 1= 0 y + 3= 0 ( ) x = 1 y = 3 ( ) ]ĬǼȂǹ 2_506 ǹȞ 2 x 3 țĮȚ 1 y 2, ȞĮ ȕȡİȓIJİ ȝİIJĮȟȪ ʌȠȚȦȞ ȠȡȓȦȞ ȕȡȓıțİIJĮȚ Ș IJȚȝȒ țĮșİȝȚȐȢ Įʌȩ IJȚȢ ʌĮȡĮțȐIJȦ ʌĮȡĮıIJȐıİȚȢ: Į) x + y (ȂȠȞȐįİȢ 5) ȕ) 2x 3y (ȂȠȞȐįİȢ 10) Ȗ) x y (ȂȠȞȐįİȢ 10) ȁȪıȘ Į) 2 x 3 1 y 2 () 3 x y 5 ȕ) 2 x 3 1 y 2 3 2 4 2x 6 6 3y 3 () 2 2x 3y 3 Ȗ) 2 x 3 1 y 2 1, y,2#0 2 x 3 1 2 1 y 1 1 x y 3 ]ĬǼȂǹ 2_1092 ǹʌȩ IJȠ ȠȡșȠȖȫȞȚȠ ABZH ĮijĮȚȡȑșȘțİ IJȠ IJİIJȡȐȖȦȞȠ īǻǼǾ ʌȜİȣȡȐȢ y. Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ Ș ʌİȡȓȝİIJȡȠȢ IJȠȣ ȖȡĮȝȝȠıțȚ- ĮıȝȑȞȠȣ ıȤȒȝĮIJȠȢ ǼǽǺǹīǻ ʌȠȣ ĮʌȑȝİȚȞİ įȓȞİIJĮȚ Įʌȩ IJȘ ıȤȑıȘ: = 2x + 4y (ȂȠȞȐįİȢ 10) ȕ) ǹȞ ȚıȤȪİȚ 5 x 8 țĮȚ 1 y 2, ȞĮ ȕȡİȓIJİ ȝİIJĮ- ȟȪ ʌȠȚȦȞ ĮȡȚșȝȫȞ ȕȡȓıțİIJĮȚ Ș IJȚȝȒ IJȘȢ ʌİȡȚȝȑIJȡȠȣ IJȠȣ ʌĮȡĮʌȐȞȦ ȖȡĮȝȝȠıțȚĮıȝȑȞȠȣ ıȤȒȝĮIJȠȢ. (ȂȠȞȐįİȢ 15) ȁȪıȘ Į) ǹʌȩ IJȠ ıȤȒȝĮ ȑȤȠȣȝİ = x y țĮȚ = 2y, ȐȡĮ Ș ʌİȡȓȝİIJȡȠȢ İȓȞĮȚ = + + + + + = = x + 2y + x y + y + y + y = 2x + 4y. ȕ) ǹʌȩ IJȚȢ ĮȞȚıȠIJȚțȑȢ ıȤȑıİȚȢ ʌȠȣ įȓȞȠȞIJĮȚ ȑȤȠȣȝİ 5 ! x ! 8 2 2 5 ! 2x ! 2 8 10 ! 2x !16 1 1! y ! 2 4 4 1! 4y ! 4 2 4 ! 4y ! 8 2 . ȆȡȠıșȑIJȠȣȝİ țĮIJȐ ȝȑȜȘ IJȚȢ ıȤȑıİȚȢ 1 ( ), 2 ( )țĮȚ ȑȤȠȣȝİ 10 + 4 2x + 4y 16 +8 14 24. ]ĬǼȂǹ 2_1541 ȅȡșȠȖȫȞȚȠ ʌĮȡĮȜȜȘȜȩȖȡĮȝȝȠ ȑȤİȚ ȝȒțȠȢ x İțĮIJȠ- ıIJȐ țĮȚ ʌȜȐIJȠȢ y İțĮIJȠıIJȐ, ĮȞIJȓıIJȠȚȤĮ. ǹȞ ȖȚĮ IJĮ ȝȒțȘ x țĮȚ y ȚıȤȪİȚ: 4 x 7 țĮȚ 2 y 3, IJȩIJİ: Į) ȃĮ ȕȡİȓIJİ IJĮ ȩȡȚĮ ȝİIJĮȟȪ IJȦȞ ȠʌȠȓȦȞ ʌİȡȚȑȤİIJĮȚ Ș IJȚȝȒ IJȘȢ ʌİȡȚȝȑIJȡȠȣ IJȠȣ ȠȡșȠȖȦȞȓȠȣ ʌĮȡĮȜȜȘ- ȜȠȖȡȐȝȝȠȣ. (ȂȠȞȐįİȢ 10) ȕ) ǹȞ IJȠ x ȝİȚȦșİȓ țĮIJȐ 1 țĮȚ IJȠ y IJȡȚʌȜĮıȚĮıIJİȓ, ȞĮ ȕȡİȓIJİ IJĮ ȩȡȚĮ ȝİIJĮȟȪ IJȦȞ ȠʌȠȓȦȞ ʌİȡȚȑȤİIJĮȚ Ș IJȚȝȒ IJȘȢ ʌİȡȚȝȑIJȡȠȣ IJȠȣ ȞȑȠȣ ȠȡșȠȖȦȞȓȠȣ ʌĮȡĮȜ- ȜȘȜȠȖȡȐȝȝȠȣ. (ȂȠȞȐįİȢ 15) ȁȪıȘ Į) ȉȠ ȠȡșȠȖȫȞȚȠ ȝİ įȚĮıIJȐıİȚȢ x țĮȚ y ȑȤİȚ ʌİȡȓȝİ- IJȡȠ = 2x + 2y = 2 x + y ( ).
  • 19. ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ 15 ȆȡȠıșȑIJȠȣȝİ țĮIJȐ ȝȑȜȘ IJȚȢ ıȤȑıİȚȢ IJȘȢ ȣʌȩșİ- ıȘȢ țĮȚ ȑȤȠȣȝİ 4 2 x y 7 3 6 x y 10 2 26 2 x + y ( ) 210 12 20. ȕ) ȉȠ ȞȑȠ ȠȡșȠȖȫȞȚȠ ȑȤİȚ įȚĮıIJȐıİȚȢ x 1 țĮȚ 3y țĮȚ șĮ ȑȤİȚ ȞȑĮ ʌİȡȓȝİIJȡȠ = 2 x 1 ( )+ 2 3y ( )= 2x 2 + 6y = 2x + 6y 2. DzȤȠȣȝİ 4 x 7 2 24 2x 27 8 2x 14 1 ( ) 2 y 3 6 62 6y 6312 6y 18 2 ( ). ȆȡȠıșȑIJȠȣȝİ țĮIJȐ ȝȑȜȘ IJȚȢ ıȤȑıİȚȢ 1 ( ), 2 ( )țĮȚ ȑȤȠȣȝİ 812 2x 6y 14 18 20 2x 6y 32 2 20 2 2x + 6y 2 32 2 18 30. ]ĬǼȂǹ 2_3852 īȚĮ IJȠȣȢ ʌȡĮȖȝĮIJȚțȠȪȢ ĮȡȚșȝȠȪȢ Į, ȕ ȚıȤȪȠȣȞ 2 4 țĮȚ 4 3. ȃĮ ȕȡİȓIJİ IJĮ ȩȡȚĮ ȝİIJĮ- ȟȪ IJȦȞ ȠʌȠȓȦȞ ʌİȡȚȑȤİIJĮȚ Ș IJȚȝȒ țĮșİȝȚȐȢ Įʌȩ IJȚȢ ʌĮȡĮıIJȐıİȚȢ: Į) 2 (ȂȠȞȐįİȢ 12) ȕ) 2 2 (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) 4 3 2 8 2 6 6 2 8 DzȤȠȣȝİ 2 4 6 2 8 8 2 12. ȕ) 2 4 8 2 12 28 2 ( ) 412 16 2 2 48 ]ĬǼȂǹ 2_3870 ǻȓȞȠȞIJĮȚ ȠȚ ʌĮȡĮıIJȐıİȚȢ: K = 22 + 2 + 9 țĮȚ = 2 3 ( ), ȩʌȠȣ , Į) ȃĮ įİȓȟİIJİ ȩIJȚ: K = 2 + 2 + 2 ( )+ 2 6 + 9 ( ) (ȂȠȞȐįİȢ 3) ȕ) ȃĮ įİȓȟİIJİ ȩIJȚ: Ȁ • ȁ, ȖȚĮ țȐșİ IJȚȝȒ IJȦȞ Į, ȕ. (ȂȠȞȐįİȢ 10) Ȗ) īȚĮ ʌȠȚİȢ IJȚȝȑȢ IJȦȞ Į, ȕ ȚıȤȪİȚ Ș ȚıȩIJȘIJĮ K = ; ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ. (ȂȠȞȐįİȢ 12) ȁȪıȘ Į) K = 22 + 2 + 9 2 3 ( )= = 22 + 2 + 9 6 + 2 = = 2 + 2 + 2 + 9 6 + 2 = = 2 + 2 + 2 ( )+ 2 6 + 9 ( ) ȕ) K = + ( ) 2 + 3 ( ) 2 0, ȦȢ ȐșȡȠȚıȝĮ ȝȘ ĮȡȞȘIJȚțȫȞ ȩȡȦȞ, ȐȡĮ K . Ȗ) K = K = 0 + ( ) 2 + 3 ( ) 2 = 0 + = 0 3= 0 = 3 = 3 . ]ĬǼȂǹ 2_4299 ǹȞ ȖȚĮ IJȠȣȢ ʌȡĮȖȝĮIJȚțȠȪȢ ĮȡȚșȝȠȪȢ x țĮȚ y ȚıȤȪȠȣȞ 3 x 5 țĮȚ 2 y 1, ȞĮ ȕȡİȓIJİ IJĮ ȩȡȚĮ ȝİIJĮȟȪ IJȦȞ ȠʌȠȓȦȞ ȕȡȓıțȠȞIJĮȚ ȠȚ IJȚȝȑȢ IJȦȞ ʌĮȡĮıIJȐıİȦȞ: Į) y x (ȂȠȞȐįİȢ 12) ȕ) x2 + y2 (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) ǿıȤȪİȚ 3 x 5 1 ( ) 3 x 5 5 x 3 2 y 1 5 x 3 + ( ) 7 y x 4 ȕ) ǺȡȓıțȠȣȝİ IJȚȢ ĮțȡĮȓİȢ IJȚȝȑȢ IJȦȞ x2 țĮȚ y2 : 3 x 5 3,x,5#0 32 x2 52 9 x2 25 1 ( ) 2 y 1 1 2 y 1 1 y 2 1, y,2#0 12 y ( ) 2 22 1 y2 4 2 ( ) 1 ( )+ 2 ( ) 9 x2 25 1 y2 4 + ( ) 10 x2 + y2 29
  • 20. 16 ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ ]ĬǼȂǹ 2_7519 ǻȓȞȠȞIJĮȚ ʌȡĮȖȝĮIJȚțȠȓ ĮȡȚșȝȠȓ Į, ȕ, ȝİ 0 țĮȚ 0. ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ: Į) + 4 4 (ȂȠȞȐįİȢ 12) ȕ) + 4 + 4 16 (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) + 4 4 0 2 + 4 4 2 + 4 4 2 4 + 4 0 2 ( ) 2 0, ʌȠȣ ȚıȤȪİȚ. ȕ) Ǿ ıȤȑıȘ + 4 4 1 ( ) ȚıȤȪİȚ ȖȚĮ țȐșİ 0. DZȡĮ ȚıȤȪİȚ țĮȚ ĮȞ ȩʌȠȣ Į ȕȐȜȠȣȝİ IJȠ 0, ȠʌȩIJİ + 4 4 2 ( ). ȆȠȜȜĮʌȜĮıȚȐȗȠȞIJĮȢ țĮIJȐ ȝȑȜȘ IJȚȢ 1 ( ) țĮȚ 2 ( )(ȩȜȠȚ ȠȚ ȩȡȠȚ İȓȞĮȚ șİIJȚțȠȓ), ʌĮȓȡȞȠȣȝİ + 4 + 4 16. ‘ˆ¡†¨£— £˜š— ˆ¢‘ƒš‘£˜™¡¨ ‘¢˜…š¡¨ 2Į ĬǼȂǹȉǹ ]ĬǼȂǹ 2_504 Į) ǹȞ 0, ȞĮ ĮʌȠįİȚȤșİȓ ȩIJȚ: + 1 2. (ȂȠȞȐįİȢ 15) ȕ) ǹȞ 0, ȞĮ ĮʌȠįİȚȤșİȓ ȩIJȚ: + 1 2. (ȂȠȞȐįİȢ 10) ȁȪıȘ Į) + 1 2 + 1 + 2 0 2 + 1 + 2 0 2 + 2 +1 0 0 2 + 2 +1 0 +1 ( ) 2 0, ʌȠȣ ȚıȤȪİȚ. ȕ) + 1 2 0 1 2 + 1 2, ʌȠȣ ȚıȤȪİȚ Įʌȩ IJȠ (Į). ]ĬǼȂǹ 2_509 Į) ǹȞ , 0 { }, ȞĮ ĮʌȠįİȚȤșİȓ ȩIJȚ: + 2 1 ( ) (ȂȠȞȐįİȢ 15) ȕ) ȆȩIJİ ȚıȤȪİȚ Ș ȚıȩIJȘIJĮ ıIJȘȞ 1 ( ); ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ. (ȂȠȞȐįİȢ 10) ȁȪıȘ Į) + 2 + 2 0 2 + 2 2 0 2 2 + 2 0 ( ) 2 0, ʌȠȣ ȚıȤȪİȚ. ȕ) ǹʌȩ IJȠ İȡȫIJȘȝĮ (Į) ʌȡȠțȪʌIJİȚ ȩIJȚ Ș ȚıȩIJȘIJĮ ȚıȤȪİȚ ȖȚĮ ( ) 2 = 0 = 0 = = ±. DZȡĮ Ș ȚıȩIJȘIJĮ ȚıȤȪİȚ ȩIJĮȞ ȠȚ , 0 { } İȓȞĮȚ ȓıȠȚ Ȓ ĮȞIJȓșİIJȠȚ. ]ĬǼȂǹ 2_996 ǻȓȞİIJĮȚ Ș ʌĮȡȐıIJĮıȘ: = x 1 + y 3 , ȝİ x, y ʌȡĮȖȝĮIJȚțȠȪȢ ĮȡȚșȝȠȪȢ ȖȚĮ IJȠȣȢ ȠʌȠȓȠȣȢ ȚıȤȪİȚ: 1 x 4 țĮȚ 2 y 3. ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ: Į) = x y + 2 (ȂȠȞȐįİȢ 12) ȕ) 0 4 (ȂȠȞȐįİȢ 13)
  • 21. ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ 17 ȁȪıȘ Į) 1 x 0 x 1 x 1 = x 1 țĮȚ y 3 y 3 0 y 3 = 3 y. DZȡĮ = x 1+ 3 y = x y + 2. ȕ) 1 x 4 2 y 3 1 x 4 3 y 2 (+) 2 x y 2 0 x y + 2 4 0 4 ]ĬǼȂǹ 2_1009 ǻȓȞİIJĮȚ Ș ʌĮȡȐıIJĮıȘ: = 3x 6 + 2, ȩʌȠȣ Ƞ x İȓȞĮȚ ʌȡĮȖȝĮIJȚțȩȢ ĮȡȚșȝȩȢ. Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ i) ȖȚĮ țȐșİ x 2, = 3x 4 ii) ȖȚĮ țȐșİ x 2, = 8 3x. (ȂȠȞȐįİȢ 12) ȕ) ǹȞ ȖȚĮ IJȠȞ x ȚıȤȪİȚ ȩIJȚ x 2, ȞĮ ĮʌȠįİȓȟİIJİ ȩIJȚ: 9x2 16 3x 6 + 2 = 3x + 4 (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) i) ǹȞ x 2, IJȩIJİ 3x 6 3x 6 0 3x 6 = 3x 6, ȐȡĮ = 3x 6 + 2 = 3x 4. ii) ǹȞ x 2, IJȩIJİ 3x 6 3x 6 0 3x 6 = 3x + 6, ȐȡĮ = 3x + 6 + 2 = 8 3x. ȕ) 9x2 16 3x 6 + 2 = x2 9x2 16 3x 6 + 2 = 9x2 16 3x 4 = = 3x ( ) 2 42 3x 4 = 3x 4 ( ) 3x + 4 ( ) 3x 4 = 3x + 4 ]ĬǼȂǹ 2_1062 Į) ȃĮ ȕȡİȓIJİ ȖȚĮ ʌȠȚİȢ ʌȡĮȖȝĮIJȚțȑȢ IJȚȝȑȢ IJȠȣ y ȚıȤȪİȚ: y 3 1. (ȂȠȞȐįİȢ 12) ȕ) ǹȞ x, y İȓȞĮȚ IJĮ ȝȒțȘ IJȦȞ ʌȜİȣȡȫȞ İȞȩȢ ȠȡșȠ- ȖȦȞȓȠȣ ʌĮȡĮȜȜȘȜȠȖȡȐȝȝȠȣ, ȝİ 1 x 3 țĮȚ 2 y 4, IJȩIJİ ȞĮ ȕȡİȓIJİ IJĮ ȩȡȚĮ ȝİIJĮȟȪ IJȦȞ ȠʌȠȓȦȞ ʌİȡȚȑȤİIJĮȚ Ș IJȚȝȒ IJȠȣ İȝȕĮįȠȪ E IJȠȣ Ƞȡ- șȠȖȦȞȓȠȣ. (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) y 3 1 1 y 31 1+ 3 y 3+ 31+ 3 2 y 4 ȕ) ȉȠ İȝȕĮįȩȞ E IJȠȣ ȠȡșȠȖȦȞȓȠȣ ȝİ ȝȒțȘ ʌȜİȣȡȫȞ x, y ȚıȠȪIJĮȚ ȝİ = xy. ǹijȠȪ IJĮ x, y ʌĮȓȡȞȠȣȞ șİIJȚțȑȢ IJȚȝȑȢ, ʌȠȜȜĮʌȜĮıȚȐȗȠȣȝİ țĮIJȐ ȝȑȜȘ IJȚȢ įȪȠ ĮȞȚıȠIJȚțȑȢ ıȤȑıİȚȢ țĮȚ ȑȤȠȣȝİ: 12 xy 34 2 12. ]ĬǼȂǹ 2_1074 Į) ȃĮ ȕȡİȓIJİ ȖȚĮ ʌȠȚİȢ ʌȡĮȖȝĮIJȚțȑȢ IJȚȝȑȢ IJȠȣ y ȚıȤȪİȚ: y 3 1. (ȂȠȞȐįİȢ 12) ȕ) ǹȞ x, y İȓȞĮȚ IJĮ ȝȒțȘ IJȦȞ ʌȜİȣȡȫȞ İȞȩȢ ȠȡșȠ- ȖȦȞȓȠȣ ʌĮȡĮȜȜȘȜȠȖȡȐȝȝȠȣ, ȝİ 1 x 3 țĮȚ 2 y 4, IJȩIJİ ȞĮ ĮʌȠįİȓȟİIJİ ȩIJȚ: 6 14, ȩʌȠȣ Ȇ İȓȞĮȚ Ș ʌİȡȓȝİIJȡȠȢ IJȠȣ ȠȡșȠȖȦȞȓȠȣ. (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) y 3 1 1 y 31 1+ 3 y 3+ 31+ 3 2 y 4 ȕ) Ǿ ʌİȡȓȝİIJȡȠȢ Ȇ IJȠȣ ȠȡșȠȖȦȞȓȠȣ ȝİ ȝȒțȘ ʌȜİȣȡȫȞ x, y ȚıȠȪIJĮȚ ȝİ = 2x + 2y = 2 x + y ( ). ȆȡȠıșȑIJȠȞIJĮȢ țĮIJȐ ȝȑȜȘ IJȚȢ įȪȠ ĮȞȚıȠIJȚțȑȢ ıȤȑıİȚȢ, ȑȤȠȣȝİ 1+ 2 x + y 3+ 4 3 x + y 7 23 2 x + y ( ) 27 6 14. ]ĬǼȂǹ 2_1089 īȚĮ țȐșİ ʌȡĮȖȝĮIJȚțȩ ĮȡȚșȝȩ x ȝİ IJȘȞ ȚįȚȩIJȘIJĮ 5 x 10, Į) ȞĮ ȖȡȐȥİIJİ IJȚȢ ʌĮȡĮıIJȐıİȚȢ x 5 țĮȚ x 10 ȤȦȡȓȢ ĮʌȩȜȣIJİȢ IJȚȝȑȢ, (ȂȠȞȐįİȢ 10) ȕ) ȞĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ IJȚȝȒ IJȘȢ ʌĮȡȐıIJĮıȘȢ: = x 5 x 5 + x 10 x 10 (ȂȠȞȐįİȢ 15) ȁȪıȘ Į) ǹʌȩ IJȘȞ ȣʌȩșİıȘ ȑȤȠȣȝİ 5 x x 5 0, İʌȠȝȑȞȦȢ x 5 = x 5 țĮȚ x 10 x 10 0, ȐȡĮ x 10 = x 10 ( )= x +10. ȕ) ȁĮȝȕȐȞȠȞIJĮȢ ȣʌȩȥȘ IJȠ İȡȫIJȘȝĮ (Į), Ș ʌĮȡȐ- ıIJĮıȘ ȖȡȐijİIJĮȚ = x 5 x 5 + x 10 x 10 = x 5 x 5 x 10 x 10 = 11= 0.
  • 22. 18 ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ ]ĬǼȂǹ 2_1091 ǻȓȞİIJĮȚ Ș ʌĮȡȐıIJĮıȘ: = x 1 x 2 Į) īȚĮ1 x 2, ȞĮ įİȓȟİIJİ ȩIJȚ: = 2x 3 (ȂȠȞȐįİȢ 13) ȕ) īȚĮ x 1, ȞĮ įİȓȟİIJİ ȩIJȚ Ș ʌĮȡȐıIJĮıȘ A ȑȤİȚ ıIJĮ- șİȡȒ IJȚȝȒ (ĮȞİȟȐȡIJȘIJȘ IJȠȣ x), IJȘȞ ȠʌȠȓĮ ȞĮ ʌȡȠı- įȚȠȡȓıİIJİ. (ȂȠȞȐįİȢ 12) ȁȪıȘ Į) ǹʌȩ IJȘȞ ȣʌȩșİıȘ ȑȤȠȣȝİ 1 x x 1 0, ȠʌȩIJİ x 1 = x 1 țĮȚ x 2 x 2 0, ȐȡĮ x 2 = x 2 ( ). ǼʌȠȝȑȞȦȢ Ș ʌĮȡȐıIJĮıȘ ȖȡȐ- ijİIJĮȚ = x 1 x 2 = x 1+ x 2 = 2x 3. ȕ) īȚĮ x 1 x 1 0 șĮ ȑȤȠȣȝİ țĮȚ x 2 x 2 0, İʌȠȝȑȞȦȢ x 1 = x 1 ( ) țĮȚ x 2 = x 2 ( ). DZȡĮ = x 1 x 2 = x 1 ( )+ x 2 = = x +1+ x 2 = 1. ]ĬǼȂǹ 2_1273 ǻȓȞȠȞIJĮȚ įȪȠ IJȝȒȝĮIJĮ ȝİ ȝȒțȘ x țĮȚ y, ȖȚĮ IJĮ ȠʌȠȓĮ ȚıȤȪȠȣȞ: x 3 2 țĮȚ y 6 4. Į) ȃĮ įİȓȟİIJİ ȩIJȚ: 1 x 5 țĮȚ 2 y 10. (ȂȠȞȐįİȢ 12) ȕ) ȃĮ ȕȡİșİȓ Ș ȝȚțȡȩIJİȡȘ țĮȚ Ș ȝİȖĮȜȪIJİȡȘ IJȚȝȒ ʌȠȣ ȝʌȠȡİȓ ȞĮ ʌȐȡİȚ Ș ʌİȡȓȝİIJȡȠȢ İȞȩȢ ȠȡșȠȖȦ- ȞȓȠȣ ȝİ įȚĮıIJȐıİȚȢ 2x țĮȚ y. (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) x 3 2 2 x 3 2 +3 2 + 3 x 3+ 3 2 + 31 x 5 țĮȚ y 6 4 4 y 6 4 +6 4 + 6 y 6 + 6 4 + 6 2 y 10. ȕ) ȉȠ ȠȡșȠȖȫȞȚȠ ȝİ įȚĮıIJȐıİȚȢ 2x țĮȚ y ȑȤİȚ ʌİȡȓȝİIJȡȠ = 2 2x + y ( )= 4x + 2y. ǹʌȩ IJȠ İȡȫIJȘȝĮ (Į) ȑȤȠȣȝİ 1 x 5 4 41 4x 45 4 4x 20 1 ( ) țĮȚ 2 y 10 2 22 2y 210 4 2y 20 2 ( ). ȆȡȠıșȑIJȠȣȝİ țĮIJȐ ȝȑȜȘ IJȚȢ ıȤȑıİȚȢ 1 ( ), 2 ( )țĮȚ ȑȤȠȣȝİ 4 + 4 4x + 2y 20 + 20 8 40. ȈȣȞİʌȫȢ Ș ȝȚțȡȩIJİȡȘ IJȚȝȒ ʌȠȣ ȝʌȠȡİȓ ȞĮ ʌȐȡİȚ Ș ʌİȡȓȝİ- IJȡȠȢ IJȠȣ ȠȡșȠȖȦȞȓȠȣ İȓȞĮȚ 8 țĮȚ Ș ȝİȖĮȜȪIJİȡȘ 40. ]ĬǼȂǹ 2_1544 Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ x2 + 4x +5 0 ȖȚĮ țȐșİ ʌȡĮȖ- ȝĮIJȚțȩ ĮȡȚșȝȩ x. (ȂȠȞȐįİȢ 10) ȕ) ȃĮ ȖȡȐȥİIJİ ȤȦȡȓȢ ĮʌȩȜȣIJİȢ IJȚȝȑȢ IJȘȞ ʌĮȡȐıIJĮıȘ = x2 + 4x +5 x2 + 4x + 4 . (ȂȠȞȐįİȢ 15) ȁȪıȘ Į) x2 + 4x +5 = x2 + 4x + 4 +1 5 = = x2 + 4x + 4 +1= x + 2 ( ) 2 + ( ) +1 0 ȕ) = x2 + 4x +5 x2 + 4x + 4 = = x2 + 4x +5 + ( ) x + 2 ( ) 2 + ( ) = = x2 + 4x +5 x2 4x 4 = 1 ]ĬǼȂǹ 2_2702 ǻȓȞȠȞIJĮȚ ȠȚ ʌĮȡĮıIJȐıİȚȢ: = 2x 4 țĮȚ = x 3 , ȩʌȠȣ x İȓȞĮȚ ʌȡĮȖȝĮIJȚ- țȩȢ ĮȡȚșȝȩȢ. Į) īȚĮ țȐșİ 2 x 3, ȞĮ ĮʌȠįİȓȟİIJİ ȩIJȚ + = x 1. (ȂȠȞȐįİȢ 16) ȕ) ȊʌȐȡȤİȚ x 2, 3 ) ȫıIJİ ȞĮ ȚıȤȪİȚ + = 2; ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ. (ȂȠȞȐįİȢ 9) ȁȪıȘ Į) ǹʌȩ IJȘȞ ȣʌȩșİıȘ ȑȤȠȣȝİ 2 x x 2 0, ȠʌȩIJİ x 2 = x 2 țĮȚ x 3 x 3 0, ȐȡĮ x 3 = x 3 ( ). ǼʌȠȝȑȞȦȢ ȑȤȠȣȝİ + = 2 x 2 + x 3 = 2 x 2 ( ) x 3 ( )= = 2x 4 x + 3= x 1. ȕ) + = 2 x 1= 2 x = 3 2, 3 ), ȐȡĮ įİȞ ȣʌȐȡȤİȚ IJȑIJȠȚȠȢ x.
  • 23. ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ 19 4Į ĬǼȂǹȉǹ ]ĬǼȂǹ 4_2287 ǻȓȞİIJĮȚ ȑȞĮȢ ʌȡĮȖȝĮIJȚțȩȢ ĮȡȚșȝȩȢ x ʌȠȣ ȚțĮȞȠʌȠȚİȓ IJȘ ıȤȑıȘ: d x,5 ( ) 9. Į) ȃĮ ĮʌȠįȫıİIJİ IJȘȞ ʌĮȡĮʌȐȞȦ ıȤȑıȘ ȜİțIJȚțȐ. (ȂȠȞȐįİȢ 5) ȕ) Ȃİ ȤȡȒıȘ IJȠȣ ȐȟȠȞĮ IJȦȞ ʌȡĮȖȝĮIJȚțȫȞ ĮȡȚșȝȫȞ, ȞĮ ʌĮȡĮıIJȒıİIJİ ıİ ȝȠȡijȒ įȚĮıIJȒȝĮIJȠȢ IJȠ ıȪȞȠ- ȜȠ IJȦȞ įȣȞĮIJȫȞ IJȚȝȫȞ IJȠȣ x. (ȂȠȞȐįİȢ 5) Ȗ) ȃĮ ȖȡȐȥİIJİ IJȘ ıȤȑıȘ ȝİ IJȠ ıȪȝȕȠȜȠ IJȘȢ ĮʌȩȜȣ- IJȘȢ IJȚȝȒȢ țĮȚ ȞĮ İʌȚȕİȕĮȚȫıİIJİ ȝİ ĮȜȖİȕȡȚțȩ IJȡȩ- ʌȠ IJȠ ıȣȝʌȑȡĮıȝĮ IJȠȣ İȡȦIJȒȝĮIJȠȢ (ȕ). (ȂȠȞȐįİȢ 10) į) ȃĮ ȤȡȘıȚȝȠʌȠȚȒıİIJİ IJȠ ıȣȝʌȑȡĮıȝĮ IJȠȣ İȡȦIJȒ- ȝĮIJȠȢ (Ȗ) ȖȚĮ ȞĮ įİȓȟİIJİ ȩIJȚ: x + 4 + x 14 = 18 (ȂȠȞȐįİȢ 5) ȁȪıȘ Į) Ǿ ĮʌȩıIJĮıȘ IJȠȣ ıȘȝİȓȠȣ ʌȠȣ ʌĮȡȚıIJȐȞİȚ IJȠȞ ĮȡȚșȝȩ x ıIJȠȞ ȐȟȠȞĮ IJȦȞ ʌȡĮȖȝĮIJȚțȫȞ ĮȡȚșȝȫȞ Įʌȩ IJȠ ıȘȝİȓȠ ʌȠȣ ʌĮȡȚıIJȐȞİȚ IJȠȞ ĮȡȚșȝȩ 5 İȓȞĮȚ ȝȚțȡȩIJİȡȘ Ȓ ȓıȘ IJȠȣ 9. ȕ) Ȗ) Ǿ ıȤȑıȘ ȖȡȐijİIJĮȚ x 5 9 9 x 5 9 9 +5 x 9 +5 4 x 14. į) ǹʌȩ IJȠ İȡȫIJȘȝĮ (Ȗ) ȑȤȠȣȝİ 4 x 0 x + 4 x + 4 = x + 4 țĮȚ x 14 x 14 0 x 14 = x 14 ( )= 14 x. DZȡĮ x + 4 + x 14 = x + 4 +14 x = 18. ]ĬǼȂǹ 4_2301 ǻȓȞȠȞIJĮȚ IJĮ ıȘȝİȓĮ ǹ, Ǻ țĮȚ Ȃ ʌȠȣ ʌĮȡȚıIJȐȞȠȣȞ ıIJȠȞ ȐȟȠȞĮ IJȦȞ ʌȡĮȖȝĮIJȚțȫȞ ĮȡȚșȝȫȞ IJȠȣȢ ĮȡȚș- ȝȠȪȢ 2, 7 țĮȚ x ĮȞIJȓıIJȠȚȤĮ, ȝİ 2 x 7. Į) ȃĮ įȚĮIJȣʌȫıİIJİ IJȘ ȖİȦȝİIJȡȚțȒ İȡȝȘȞİȓĮ IJȦȞ ʌĮ- ȡĮıIJȐıİȦȞ i) x + 2 (ȂȠȞȐįİȢ 4) ii) x 7 (ȂȠȞȐįİȢ 4) ȕ) Ȃİ IJȘ ȕȠȒșİȚĮ IJȠȣ ȐȟȠȞĮ ȞĮ įȫıİIJİ IJȘ ȖİȦȝİIJȡȚțȒ İȡȝȘȞİȓĮ IJȠȣ ĮșȡȠȓıȝĮIJȠȢ: x + 2 + x 7 (ȂȠȞȐįİȢ 5) Ȗ) ȃĮ ȕȡİȓIJİ IJȘȞ IJȚȝȒ IJȘȢ ʌĮȡȐıIJĮıȘȢ = x + 2 + x 7 ȖİȦȝİIJȡȚțȐ. (ȂȠȞȐįİȢ 5) į) ȃĮ İʌȚȕİȕĮȚȫıİIJİ ĮȜȖİȕȡȚțȐ IJȠ ʌȡȠȘȖȠȪȝİȞȠ ıȣȝʌȑȡĮıȝĮ. (ȂȠȞȐįİȢ 7) ȁȪıȘ Į) i) x + 2 İȓȞĮȚ Ș ĮʌȩıIJĮıȘ IJȠȣ ıȘȝİȓȠȣ M Įʌȩ IJȠ ıȘȝİȓȠ A. ii) x 7 İȓȞĮȚ Ș ĮʌȩıIJĮıȘ IJȠȣ ıȘȝİȓȠȣ M Įʌȩ IJȠ ıȘȝİȓȠ B. ȕ) ȉȠ ȐșȡȠȚıȝĮ x + 2 + x 7 ȚıȠȪIJĮȚ ȝİ IJȠ ȐșȡȠȚ- ıȝĮ IJȦȞ ĮʌȠıIJȐıİȦȞ IJȠȣ M Įʌȩ IJȠ A țĮȚ Įʌȩ IJȠ B. Ȗ) ǼʌİȚįȒ 2 x 7, IJȠ ıȘȝİȓȠ M İȓȞĮȚ İıȦIJİȡȚțȩ IJȠȣ IJȝȒȝĮIJȠȢ AB, ȠʌȩIJİ IJȠ ȐșȡȠȚıȝĮ IJȦȞ ĮʌȠ- ıIJȐıİȦȞ IJȠȣ M Įʌȩ IJȠ A țĮȚ Įʌȩ IJȠ B ȚıȠȪIJĮȚ ȝİ IJȘȞ ĮʌȩıIJĮıȘ IJȠȣ A Įʌȩ IJȠ B. DZȡĮ A = x + 2 + x 7 = 9. į) DzȤȠȣȝİ 2 x 0 x + 2 x + 2 = x + 2 țĮȚ x 7 x 7 0 x 7 = x 7 ( )= 7 x. DZȡĮ A = x + 2 + x 7 = x + 2 + 7 x = 9. ]ĬǼȂǹ 4_2302 Ȉİ ȑȞĮȞ ȐȟȠȞĮ IJĮ ıȘȝİȓĮ A, B țĮȚ M ĮȞIJȚıIJȠȚȤȠȪȞ ıIJȠȣȢ ĮȡȚșȝȠȪȢ 5, 9 țĮȚ x ĮȞIJȓıIJȠȚȤĮ. Į) ȃĮ įȚĮIJȣʌȫıİIJİ IJȘ ȖİȦȝİIJȡȚțȒ İȡȝȘȞİȓĮ IJȦȞ ʌĮ- ȡĮıIJȐıİȦȞ x 5 țĮȚ x 9 . (ȂȠȞȐįİȢ 10) ȕ) ǹȞ ȚıȤȪİȚ x 5 = x 9 , i) ȆȠȚĮ ȖİȦȝİIJȡȚțȒ ȚįȚȩIJȘIJĮ IJȠȣ ıȘȝİȓȠȣ M ĮȞĮ- ȖȞȦȡȓȗİIJİ; ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ. (ȂȠȞȐįİȢ 7) ii) Ȃİ ȤȡȒıȘ IJȠȣ ȐȟȠȞĮ, ȞĮ ʌȡȠıįȚȠȡȓıİIJİ IJȠȞ ʌȡĮȖȝĮIJȚțȩ ĮȡȚșȝȩ x ʌȠȣ ʌĮȡȚıIJȐȞİȚ IJȠ ıȘ- ȝİȓȠ M. ȃĮ İʌȚȕİȕĮȚȫıİIJİ ȝİ ĮȜȖİȕȡȚțȩ IJȡȩʌȠ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ. (ȂȠȞȐįİȢ 8)
  • 24. 20 ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ ȁȪıȘ Į) x 5 İȓȞĮȚ Ș ĮʌȩıIJĮıȘ IJȦȞ ıȘȝİȓȦȞ A țĮȚ M, įȘȜĮįȒ IJȠ ȝȒțȠȢ ( ), țĮȚ x 9 İȓȞĮȚ Ș ĮʌȩıIJĮıȘ IJȦȞ ıȘȝİȓȦȞ B țĮȚ M, įȘȜĮįȒ IJȠ ȝȒțȠȢ ( ). ȕ) i) ǹȞ ȚıȤȪİȚ x 5 = x 9 , IJȩIJİ IJȠ ıȘȝİȓȠ M ȚıĮʌȑȤİȚ Įʌȩ IJĮ A țĮȚ B, įȘȜĮįȒ IJȠ ıȘȝİȓȠ M ȕȡȓıțİIJĮȚ ıIJȠ ȝȑıȠ IJȠȣ İȣșȪȖȡĮȝȝȠȣ IJȝȒȝĮ- IJȠȢ AB. ii) ȉȠ ȝȑıȠ M ĮȞIJȚıIJȠȚȤİȓ ıIJȠȞ ĮȡȚșȝȩ 7. ǹȜȖİȕȡȚțȐ ȜȪȞȠȣȝİ IJȘȞ İȟȓıȦıȘ: x 5 = x 9 x 5 = x 9 x 5 = x + 9 ( ) 0x = 4, , 2x = 14 ( ) x = 7 ]ĬǼȂǹ 4_4946 Į) ȃĮ ȜȪıİIJİ IJȘȞ ĮȞȓıȦıȘ x 3 5. (ȂȠȞȐįİȢ 7) ȕ) ȃĮ ĮʌİȚțȠȞȓıİIJİ IJȠ ıȪȞȠȜȠ IJȦȞ ȜȪıİȦȞ IJȘȢ ĮȞȓ- ıȦıȘȢ ĮȣIJȒȢ ʌȐȞȦ ıIJȠȞ ȐȟȠȞĮ IJȦȞ ʌȡĮȖȝĮIJȚțȫȞ ĮȡȚșȝȫȞ țĮȚ ȞĮ İȡȝȘȞİȪıİIJİ IJȠ ĮʌȠIJȑȜİıȝĮ, ȝİ ȕȐıȘ IJȘ ȖİȦȝİIJȡȚțȒ ıȘȝĮıȓĮ IJȘȢ ʌĮȡȐıIJĮıȘȢ x 3 . (ȂȠȞȐįİȢ 5) Ȗ) ȃĮ ȕȡİȓIJİ ȩȜȠȣȢ IJȠȣȢ ĮțȑȡĮȚȠȣȢ ĮȡȚșȝȠȪȢ x ʌȠȣ ȚțĮȞȠʌȠȚȠȪȞ IJȘȞ ĮȞȓıȦıȘ x 3 5. (ȂȠȞȐįİȢ 5) į) ȃĮ ȕȡİȓIJİ IJȠ ʌȜȒșȠȢ IJȦȞ ĮțȑȡĮȚȦȞ ĮȡȚșȝȫȞ x ʌȠȣ ȚțĮȞȠʌȠȚȠȪȞ IJȘȞ ĮȞȓıȦıȘ x 3 5. ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ. (ȂȠȞȐįİȢ 8) ȁȪıȘ Į) x 3 5 5 x 3 5 35 x 3+5 2 x 8 x 2, 8 ȕ) ȆȡȩțİȚIJĮȚ ȖȚĮ IJȠȣȢ ĮȡȚșȝȠȪȢ ʌȠȣ ʌĮȡȚıIJȐȞȠȞIJĮȚ ıIJȠȞ ȐȟȠȞĮ IJȦȞ ʌȡĮȖȝĮIJȚțȫȞ ĮȡȚșȝȫȞ ȝİ ıȘȝİȓĮ ʌȠȣ ĮʌȑȤȠȣȞ Įʌȩ IJȠ 3 ĮʌȩıIJĮıȘ ȝȚțȡȩIJİȡȘ Ȓ ȓıȘ IJȠȣ 5. Ȗ) ȅȚ ĮțȑȡĮȚȠȚ ĮȡȚșȝȠȓ ʌȠȣ ȚțĮȞȠʌȠȚȠȪȞ IJȘȞ ĮȞȓıȦıȘ x 3 5 İȓȞĮȚ ȠȚ 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8. į) ȆȡȑʌİȚ x 2, 8 2 x 8 x 0 0 x 8 x 8 8 x 8 x 8, 8 . ȅȚ ĮțȑȡĮȚİȢ ȜȪıİȚȢ İȓȞĮȚ ȠȚ 0, ±1, ± 2, ± 3, ± 4, ±5, ± 6, ± 7, ±8. ]ĬǼȂǹ 4_7791 ǻȓȞȠȞIJĮȚ ȠȚ ʌȡĮȖȝĮIJȚțȠȓ ĮȡȚșȝȠȓ Į țĮȚ ȕ ȖȚĮ IJȠȣȢ ȠʌȠȓȠȣȢ ȚıȤȪİȚ Ș ĮȞȓıȦıȘ: 1 ( ) 1 ( ) 0. Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ IJȠ 1 İȓȞĮȚ ȝİIJĮȟȪ IJȦȞ Į, ȕ. (ȂȠȞȐįİȢ 13) ȕ) ǹȞ İʌȚʌȜȑȠȞ = 4, ȞĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ IJȚȝȒ IJȘȢ ʌĮȡȐıIJĮıȘȢ: = 1 + 1 . ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ İȓIJİ ȖİȦȝİ- IJȡȚțȐ İȓIJİ ĮȜȖİȕȡȚțȐ. (ȂȠȞȐįİȢ 12) ȁȪıȘ Į) ǹijȠȪ IJȠ ȖȚȞȩȝİȞȠ 1 ( ) 1 ( ) İȓȞĮȚ șİIJȚțȩ, ȠȚ ʌĮȡȐȖȠȞIJİȢ 1 ( ) țĮȚ 1 ( ) İȓȞĮȚ ȠȝȩıȘȝȠȚ, įȘȜĮįȒ Ȓ țĮȚ ȠȚ įȪȠ șİIJȚțȠȓ Ȓ țĮȚ ȠȚ įȪȠ ĮȡȞȘIJȚțȠȓ. • ǹȞ 1 0 1, IJȩIJİ 1 0 1, ȐȡĮ 1 . • ǹȞ 1 0 1, IJȩIJİ 1 0 1, ȐȡĮ 1 . Ȉİ țȐșİ ʌİȡȓʌIJȦıȘ IJȠ 1 İȓȞĮȚ ȝİIJĮȟȪ IJȦȞ Į, ȕ. ȕ) DzȤȠȣȝİ ȩIJȚ 1 İȓȞĮȚ Ș ĮʌȩıIJĮıȘ IJȠȣ Į Įʌȩ IJȠ 1, İȞȫ 1 İȓȞĮȚ Ș ĮʌȩıIJĮıȘ IJȠȣ ȕ Įʌȩ IJȠ 1. DZȡĮ Ș ʌĮȡȐıIJĮıȘ = 1 + 1 İțijȡȐȗİȚ IJȠ ȐșȡȠȚıȝĮ IJȦȞ ĮʌȠıIJȐıİȦȞ IJȠȣ Į Įʌȩ IJȠ 1 țĮȚ IJȠȣ ȕ Įʌȩ IJȠ 1. ǼʌİȚįȒ ȩȝȦȢ Įʌȩ IJȠ İȡȫIJȘȝĮ (Į) IJȠ 1 İȓȞĮȚ ȝİIJĮȟȪ IJȦȞ Į, ȕ, ıȣȝʌİȡĮȓȞȠȣȝİ ȩIJȚ Ș ʌĮȡȐıIJĮıȘ K İțijȡȐȗİȚ IJȘȞ ĮʌȩıIJĮıȘ IJȠȣ Į Įʌȩ IJȠ ȕ, įȘȜĮįȒ = = 4.
  • 25. ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ 21 ]ĬǼȂǹ 4_8443 Į) ȃĮ ȕȡİȓIJİ IJȠȣȢ ʌȡĮȖȝĮIJȚțȠȪȢ ĮȡȚșȝȠȪȢ x ȖȚĮ IJȠȣȢ ȠʌȠȓȠȣȢ ȚıȤȪİȚ x 4 2. (ȂȠȞȐįİȢ 10) ȕ) ĬİȦȡȠȪȝİ ʌȡĮȖȝĮIJȚțȩ ĮȡȚșȝȩ x ʌȠȣ Ș ĮʌȩıIJĮıȒ IJȠȣ Įʌȩ IJȠ 4 ıIJȠȞ ȐȟȠȞĮ IJȦȞ ʌȡĮȖȝĮIJȚțȫȞ ĮȡȚș- ȝȫȞ İȓȞĮȚ ȝȚțȡȩIJİȡȘ Įʌȩ 2. i) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ Ș ĮʌȩıIJĮıȘ IJȠȣ IJȡȚʌȜȐıȚȠȣ IJȠȣ ĮȡȚșȝȠȪ ĮȣIJȠȪ Įʌȩ IJȠ 4 İȓȞĮȚ ȝİȖĮȜȪIJİȡȘ IJȠȣ 2 țĮȚ ȝȚțȡȩIJİȡȘ IJȠȣ 14. (ȂȠȞȐįİȢ 5) ii) ȃĮ ȕȡİȓIJİ ȝİIJĮȟȪ ʌȠȚȦȞ ȠȡȓȦȞ ʌİȡȚȑȤİIJĮȚ Ș IJȚȝȒ IJȘȢ ĮʌȩıIJĮıȘȢ IJȠȣ 3x Įʌȩ IJȠ 19. (ȂȠȞȐįİȢ 10) ȁȪıȘ Į) x 4 2 2 x 4 2 2 + 4 x 4 + 4 2 + 4 2 x 6, ȐȡĮ x 2, 6 ( ). ȕ) i) DzȤȠȣȝİ x 4 2 țĮȚĮʌȩİȡȫIJȘȝĮ(Į)ʌȡȠțȪʌIJİȚ 2 x 6 23 3x 63 6 3x 18 6 4 3x 4 18 4 2 3x 4 14, ȐȡĮ 3x 4 0 3x 4 = 3x 4. ȉİȜȚțȐ, 2 3x 4 14, įȘȜĮįȒ Ș ĮʌȩıIJĮıȘ IJȠȣ 3x Įʌȩ IJȠ 4 İȓȞĮȚ ȝİȖĮȜȪIJİȡȘ IJȠȣ 2 țĮȚ ȝȚțȡȩIJİ- ȡȘ IJȠȣ 14. ii) DzȤȠȣȝİ 6 3x 18 6 19 3x 19 1819 13 3x 19 1, ȐȡĮ 3x 19 0 3x 19 = 19 3x. ȈȣȞİʌȫȢ 119 3x 131 3x 19 13, įȘȜĮįȒ Ș ĮʌȩıIJĮıȘ IJȠȣ 3x Įʌȩ IJȠ 19 İȓȞĮȚ ȝİȖĮȜȪIJİȡȘ IJȠȣ 1 țĮȚ ȝȚțȡȩIJİȡȘ IJȠȣ 13. ]ĬǼȂǹ 4_8453 īȚĮ IJȠȣȢ ʌȡĮȖȝĮIJȚțȠȪȢ ĮȡȚșȝȠȪȢ , ȚıȤȪİȚ ȩIJȚ • 2 1 • 3 2 Į) ȃĮ ĮʌȠįİȚȤșİȓ ȩIJȚ 1 3. (ȂȠȞȐįİȢ 4) ȕ) ȃĮ ȕȡİșİȓ ȝİIJĮȟȪ ʌȠȚȦȞ ĮȡȚșȝȫȞ ȕȡȓıțİIJĮȚ Ƞ ȕ. (ȂȠȞȐįİȢ 5) Ȗ) ȃĮ ȕȡİșİȓ ȝİIJĮȟȪ ʌȠȚȦȞ ĮȡȚșȝȫȞ ȕȡȓıțİIJĮȚ Ș ʌĮ- ȡȐıIJĮıȘ 2 3. (ȂȠȞȐįİȢ 7) į) ȃĮ ȕȡİșİȓ ȝİIJĮȟȪ ʌȠȚȦȞ ĮȡȚșȝȫȞ ȕȡȓıțİIJĮȚ Ș ʌĮȡȐıIJĮıȘ . (ȂȠȞȐįİȢ 9) ȁȪıȘ Į) 2 1 1 2 1 2 1 2 + 2 1+ 2 1 3 ȕ) 3 2 2 3 2 3 2 3+ 2 1 5, ȐȡĮ Ƞ ȕ ȕȡȓıțİIJĮȚ ȝİIJĮȟȪ IJȦȞ ĮȡȚșȝȫȞ 1 țĮȚ 5. Ȗ) 1 3 2 21 2 23 2 2 6 țĮȚ 1 5 3 ( ) 31 3 35 15 3 3. ǼʌȠȝȑȞȦȢ 2 2 6 15 3 3 + ( ) 2 + 15 ( ) 2 + 3 ( ) 6 + 3 ( ) 13 2 3 3, ȐȡĮ Ș ʌĮȡȐıIJĮıȘ 2 3 ȕȡȓıțİIJĮȚ ȝİIJĮȟȪ IJȦȞ ĮȡȚșȝȫȞ 13 țĮȚ 3. į) 1 5 1, , 5#0 1 1 1 1 5 1 5 1 1 ǼʌȠȝȑȞȦȢ 1 3 1 5 1 1 ( ) 1 5 3, ȐȡĮ Ș ʌĮȡȐ- ıIJĮıȘ ȕȡȓıțİIJĮȚ ȝİIJĮȟȪ IJȦȞ ĮȡȚșȝȫȞ 1 5 țĮȚ 3.
  • 26. 22 ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ ¢˜–•Œ ˆ¢‘ƒš‘£˜™ž  ‘¢˜…šž  2Į ĬǼȂǹȉǹ ]ĬǼȂǹ 2_936 ǻȓȞİIJĮȚ Ș ʌĮȡȐıIJĮıȘ: = x 4 + x +1 ( ) x 4 x +1 ( ) Į) īȚĮ ʌȠȚİȢ IJȚȝȑȢ IJȠȣ x ȠȡȓȗİIJĮȚ Ș ʌĮȡȐıIJĮıȘ A; ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ. (ȂȠȞȐįİȢ 12) ȕ) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ Ș ʌĮȡȐıIJĮıȘ A İȓȞĮȚ ıIJĮșİȡȒ, įȘȜĮįȒ ĮȞİȟȐȡIJȘIJȘ IJȠȣ x. (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) ȆȡȑʌİȚ x 4 0 x 4 țĮȚ x +1 0 x 1. DZȡĮ Ș ʌĮȡȐıIJĮıȘ ȠȡȓȗİIJĮȚ ȖȚĮ x 4. ȕ) = x 4 + x +1 ( ) x 4 x +1 ( )= = x 4 ( ) 2 x +1 ( ) 2 = x 4 x +1 ( )= 5 ]ĬǼȂǹ 2_938 Į) ȃĮ įİȓȟİIJİ ȩIJȚ: 3 30 3 4 (ȂȠȞȐįİȢ 12) ȕ) ȃĮ ıȣȖțȡȓȞİIJİ IJȠȣȢ ĮȡȚșȝȠȪȢ 30 3 țĮȚ 6 30 3 . (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) DzȤȠȣȝİ 3 30 3 4 33 30 3 3 43 27 30 64, ʌȠȣ ȚıȤȪİȚ. ȕ) DzıIJȦ 30 3 6 30 3 30 3 + 30 3 6 2 30 3 6 30 3 6 2 30 3 3 30 3 3 33 30 27, ʌȠȣ ȚıȤȪİȚ. ǼʌȠȝȑȞȦȢ Ș ĮȡȤȚțȒ ȝĮȢ ȣʌȩșİıȘ ȒIJĮȞ ıȦıIJȒ, ȐȡĮ 30 3 6 30 3 . ]ĬǼȂǹ 2_944 ǻȓȞİIJĮȚ Ș ʌĮȡȐıIJĮıȘ: = x 4 + 6 x Į) īȚĮ ʌȠȚİȢ IJȚȝȑȢ IJȠȣ x ȠȡȓȗİIJĮȚ Ș ʌĮȡȐıIJĮıȘ A; ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ țĮȚ ȞĮ ȖȡȐȥİ- IJİ IJȠ ıȪȞȠȜȠ IJȦȞ įȣȞĮIJȫȞ IJȚȝȫȞ IJȠȣ x ıİ ȝȠȡijȒ įȚĮıIJȒȝĮIJȠȢ. (ȂȠȞȐįİȢ 13) ȕ) īȚĮ x = 5, ȞĮ ĮʌȠįİȓȟİIJİ ȩIJȚ: 2 + 6 = 0 (ȂȠȞȐįİȢ 12) ȁȪıȘ Į) ȆȡȑʌİȚ x 4 0 x 4 țĮȚ 6 x 0 x 6. DZȡĮ x 4, 6 . ȕ) īȚĮ x = 5 İȓȞĮȚ = 5 4 + 6 5 = 1 + 1 = 2 țĮȚ 2 + 6 = 22 + 2 6 = 4 + 2 6 = 0. ]ĬǼȂǹ 2_947 ǻȓȞİIJĮȚ Ș ʌĮȡȐıIJĮıȘ: = x2 + 4 x 4 Į) īȚĮ ʌȠȚİȢ IJȚȝȑȢ IJȠȣ x ȠȡȓȗİIJĮȚ Ș ʌĮȡȐıIJĮıȘ A; ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ țĮȚ ȞĮ ȖȡȐȥİ- IJİ IJȠ ıȪȞȠȜȠ IJȦȞ įȣȞĮIJȫȞ IJȚȝȫȞ IJȠȣ x ıİ ȝȠȡijȒ įȚĮıIJȒȝĮIJȠȢ. (ȂȠȞȐįİȢ 12) ȕ) īȚĮ x = 4, ȞĮ ĮʌȠįİȓȟİIJİ ȩIJȚ: 2 = 2 10 5 ( ) (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) ȆȡȑʌİȚ x 4 0 x 4 țĮȚ x2 + 4 0, ʌȠȣ ȚıȤȪİȚ ȖȚĮ țȐșİ x . DZȡĮ x 4, + ). ȕ) īȚĮ x = 4 İȓȞĮȚ = 42 + 4 4 4 = 20 țĮȚ 2 = 20 ( ) 2 20 = 20 45 = = 210 2 5 = 2 10 5 ( ). ]ĬǼȂǹ 2_950 ǻȓȞİIJĮȚ Ș ʌĮȡȐıIJĮıȘ: = 1 x x4 4 Į) īȚĮ ʌȠȚİȢ IJȚȝȑȢ IJȠȣ x ȠȡȓȗİIJĮȚ Ș ʌĮȡȐıIJĮıȘ A; ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ țĮȚ ȞĮ ȖȡȐȥİ- IJİ IJȠ ıȪȞȠȜȠ IJȦȞ įȣȞĮIJȫȞ IJȚȝȫȞ IJȠȣ x ıİ ȝȠȡijȒ įȚĮıIJȒȝĮIJȠȢ. (ȂȠȞȐįİȢ 13) ȕ) īȚĮ x = 3, ȞĮ ĮʌȠįİȓȟİIJİ ȩIJȚ: 3 + 2 + +1= 0 (ȂȠȞȐįİȢ 12) ȁȪıȘ Į) ȆȡȑʌİȚ 1 x 0 x 1 țĮȚ x4 0, ʌȠȣ ȚıȤȪİȚ ȖȚĮ țȐșİ x . DZȡĮ x , 1 ( .
  • 27. ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ 23 ȕ) īȚĮ x = 3 İȓȞĮȚ: = 1 3 ( ) 3 ( ) 4 4 = 4 3= 1 țĮȚ 3 + 2 + +1= 1 ( ) 3 + 1 ( ) 2 + 1 ( )+1= = 1+11+1= 0. ]ĬǼȂǹ 2_952 ǻȓȞİIJĮȚ Ș ʌĮȡȐıIJĮıȘ: = x 2 ( ) 5 5 . Į) īȚĮ ʌȠȚİȢ IJȚȝȑȢ IJȠȣ x ȠȡȓȗİIJĮȚ Ș ʌĮȡȐıIJĮıȘ B; ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ țĮȚ ȞĮ ȖȡȐȥİIJİ IJȠ ıȪȞȠȜȠ IJȦȞ įȣȞĮIJȫȞ IJȚȝȫȞ IJȠȣ x ȣʌȩ ȝȠȡijȒ įȚĮıIJȒȝĮIJȠȢ. (ȂȠȞȐįİȢ 13) ȕ) īȚĮ x = 4, ȞĮ ĮʌȠįİȓȟİIJİ ȩIJȚ: 2 + 6 = 4 (ȂȠȞȐįİȢ 12) ȁȪıȘ Į) ȆȡȑʌİȚ x 2 ( ) 5 0 x 2 0 x 2. DZȡĮ x 2, + ). ȕ) īȚĮ x = 4 İȓȞĮȚ = 4 2 ( ) 5 5 = 25 5 = 2 țĮȚ 2 + 6 = 22 + 62 = 16 = 24 = 4 . ]ĬǼȂǹ 2_955 ǻȓȞȠȞIJĮȚ ȠȚ ĮȡȚșȝȠȓ: = 2 ( ) 6 țĮȚ = 2 3 ( ) 6 Į) ȃĮ įİȓȟİIJİ ȩIJȚ: = 4 (ȂȠȞȐįİȢ 13) ȕ) ȃĮ įȚĮIJȐȟİIJİ Įʌȩ IJȠȞ ȝȚțȡȩIJİȡȠ ıIJȠȞ ȝİȖĮȜȪIJİȡȠ IJȠȣȢ ĮȡȚșȝȠȪȢ: 2, 1, 2 3 (ȂȠȞȐįİȢ 12) ȁȪıȘ Į) = 2 ( ) 6 2 3 ( ) 6 = 2 ( ) 23 2 3 ( ) 23 = = 2 2 3 2 3 3 2 = 23 22 = 8 4 = 4 ȕ) ǼȓȞĮȚ 1 2 1 3 2 3 1 2 3 țĮȚ Įʌȩ IJȠ İȡȫIJȘȝĮ (Į) ȑȤȠȣȝİ = 4 0 2 ( ) 6 2 3 ( ) 6 2 ( ) 6 6 2 3 ( ) 6 6 2 2 3 . DZȡĮ 1 2 3 2. ]ĬǼȂǹ 2_1276 ǻȓȞİIJĮȚ Ș ʌĮȡȐıIJĮıȘ: = x2 + 4x + 4 x + 2 + x2 6x + 9 x 3 . Į) ȃĮ ȕȡİșȠȪȞ ȠȚ IJȚȝȑȢ ʌȠȣ ʌȡȑʌİȚ ȞĮ ʌȐȡİȚ IJȠ x, ȫıIJİ Ș ʌĮȡȐıIJĮıȘ Ȁ ȞĮ ȑȤİȚ ȞȩȘȝĮ ʌȡĮȖȝĮIJȚțȠȪ ĮȡȚșȝȠȪ. (ȂȠȞȐįİȢ 12) ȕ) ǹȞ 2 x 3, ȞĮ ĮʌȠįİȓȟİIJİ ȩIJȚ ʌĮȡȐıIJĮıȘ Ȁ ıIJĮșİȡȒ, įȘȜĮįȒ ĮȞİȟȐȡIJȘIJȘ IJȠȣ x. (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) ȉĮ ȣʌȩȡȡȚȗĮ İȓȞĮȚ IJȑȜİȚĮ IJİIJȡȐȖȦȞĮ, İʌȠȝȑȞȦȢ ȠȚ ĮȡȚșȝȘIJȑȢ ȠȡȓȗȠȞIJĮȚ ȖȚĮ țȐșİ IJȚȝȒ IJȠȣ x. īȚĮ IJȠȣȢ ʌĮȡȠȞȠȝĮıIJȑȢ ʌȡȑʌİȚ x + 2 0 x 2 țĮȚ x 3 0 x 3. ȉİȜȚțȐ, x 2, 3 { }. ȕ) ǹʌȩ IJȘȞ ĮȞȚıȠIJȚțȒ ıȤȑıȘ ȑȤȠȣȝİ 2 x x + 2 0 țĮȚ x 3 x 3 0. = x + 2 ( ) 2 x + 2 + x 3 ( ) 2 x 3 = x 2 x 2 x 3 x 3 x 3!0 x2#0 x 2 x 2 x 3 x 3 1 1 0, ıIJĮșİȡȒ. ]ĬǼȂǹ 2_1300 ǻȓȞȠȞIJĮȚ ȠȚ ĮȡȚșȝȘIJȚțȑȢ ʌĮȡĮıIJȐıİȚȢ: A = 2 ( ) 6 , B = 3 3 ( ) 6 , = 6 6 ( ) 6 . Į) ȃĮ įİȓȟİIJİ ȩIJȚ: A+ B + = 23. (ȂȠȞȐįİȢ 13) ȕ) ȃĮ ıȣȖțȡȓȞİIJİ IJȠȣȢ ĮȡȚșȝȠȪȢ: 3 3 țĮȚ 6 6 . ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ. (ȂȠȞȐįİȢ 12) ȁȪıȘ Į) A+ B + = 2 ( ) 6 + 3 3 ( ) 6 + 6 6 ( ) 6 = = 2 6 2 + 3 6 3 + 6 = 23 + 32 + 6 = 8+ 9 + 6 = 23 ȕ) ǹijȠȪ B = 9 țĮȚ = 6, ȑȤȠȣȝİ B , ȐȡĮ 3 3 ( ) 6 6 6 ( ) 6 , ȠʌȩIJİ, ĮijȠȪ ȠȚ ĮȡȚșȝȠȓ 3 3 țĮȚ 6 6 İȓȞĮȚ șİIJȚțȠȓ, ıȣȝʌİȡĮȓȞȠȣȝİ ȩIJȚ 3 3 6 6 .
  • 28. 24 ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ ]ĬǼȂǹ 2_3382 ǻȓȞİIJĮȚ Ș ʌĮȡȐıIJĮıȘ: = 3 5 3 + 5 5 + 3 . Į) ȃĮ įİȓȟİIJİ ȩIJȚ: = 4. (ȂȠȞȐįİȢ 12) ȕ) ȃĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ: x + = 1. (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) = 3 5 3 + 5 5 + 3 = = 3 5 3 5 + 3 5 + 3 + 5 5 + 3 5 3 5 3 = = 15 + 3 2 5 2 3 2 + 5 2 15 5 2 3 2 = = 15 + 3 5 3 + 5 15 5 3 = 8 2 = 4 ȕ) x 1 4 x 4 1 x + 4 = 1 x + 4 = 1 ( ) x = 3 x = 5 ( ) ]ĬǼȂǹ 2_4311 ǻȓȞȠȞIJĮȚ ȠȚ ʌĮȡĮıIJȐıİȚȢ = x 2 ( ) 2 țĮȚ B = 2 x ( ) 3 3 , ȩʌȠȣ x ʌȡĮȖȝĮIJȚțȩȢ ĮȡȚșȝȩȢ. Į) īȚĮ ʌȠȚİȢ IJȚȝȑȢ IJȠȣ x ȠȡȓȗİIJĮȚ Ș ʌĮȡȐıIJĮıȘ A; (ȂȠȞȐįİȢ 7) ȕ) īȚĮ ʌȠȚİȢ IJȚȝȑȢ IJȠȣ x ȠȡȓȗİIJĮȚ Ș ʌĮȡȐıIJĮıȘ B; (ȂȠȞȐįİȢ 8) Ȗ) NĮ įİȓȟİIJİ ȩIJȚ, ȖȚĮ țȐșİ x 2, ȚıȤȪİȚ A = B. (ȂȠȞȐįİȢ 10) ȁȪıȘ Į) ȆȡȑʌİȚ x 2 ( ) 2 0, ʌȠȣ ȚıȤȪİȚ ȖȚĮ țȐșİ x . ȕ) ȆȡȑʌİȚ 2 x ( ) 3 0 2 x 0 2 x x 2. DZȡĮ Ș ʌĮȡȐıIJĮıȘ B ȠȡȓȗİIJĮȚ ȖȚĮ țȐșİ x , 2 ( . Ȗ) īȚĮ țȐșİ x 2 ȠȡȓȗȠȞIJĮȚ țĮȚ ȠȚ įȪȠ ʌĮȡĮıIJȐıİȚȢ ǹ țĮȚ B țĮȚ ȖȡȐijȠȞIJĮȚ A x 2 2 x 2 x 2 x 2 2 x țĮȚ B = 2 x ( ) 3 3 = 2 x. DZȡĮ ȖȚĮ țȐșİ x 2 İȓȞĮȚ A = B. ]ĬǼȂǹ 2_4314 ǹȞ İȓȞĮȚ = 5 3 , = 3, = 5 6 , IJȩIJİ: Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ = 15 (ȂȠȞȐįİȢ 15) ȕ) ȃĮ ıȣȖțȡȓȞİIJİ IJȠȣȢ ĮȡȚșȝȠȪȢ ǹ, Ǻ. (ȂȠȞȐįİȢ 10) ȁȪıȘ Į) = 5 3 3 5 6 = 5 1 3 3 1 2 5 1 6 = = 5 2 6 5 1 6 3 1 2 = 5 2 6 + 1 6 3 1 2 = 5 3 6 3 1 2 = 5 1 2 3 1 2 = 53 ( ) 1 2 = = 15 1 2 = 15 ȕ) īȡȐijȠȣȝİ ʌȡȫIJĮ IJȠȣȢ ǹ, Ǻ ȦȢ ȡȓȗİȢ ȝİ IJȐȟȘ ȓıȘ ȝİ IJȠ Ǽ.Ȁ.Ȇ. IJȦȞ IJȐȟİȦȞ IJȦȞ ȡȚȗȫȞ, ȫıIJİ ȞĮ ıȣȖțȡȓȞȠȣȝİ ȝİIJȐ IJĮ ȣʌȩȡȡȚȗĮ: • = 5 3 = 52 23 = 25 6 • = 3 = 33 23 = 27 6 ǹijȠȪ 25 27, șĮ İȓȞĮȚ 25 6 27 6 , ȐȡĮ . ]ĬǼȂǹ 2_4316 ǹȞ İȓȞĮȚ A = 2 3, B = 2 + 3, IJȩIJİ: Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ A B = 1. (ȂȠȞȐįİȢ 12) ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ IJȚȝȒ IJȘȢ ʌĮȡȐıIJĮıȘȢ = 2 + 2 . (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) AB = 2 3 ( ) 2 + 3 ( )= 22 3 2 = 4 3= 1 ȕ) = 2 + 2 = A+ B ( ) 2 2AB = = 2 3 + 2 + 3 ( ) 2 21= 42 2 = 16 2 = 14 ]ĬǼȂǹ 2_8173 ȈIJȠȞ ʌȓȞĮțĮ IJȘȢ IJȐȟȘȢ ıĮȢ İȓȞĮȚ ȖȡĮȝȝȑȞİȢ ȠȚ ʌĮȡĮ- țȐIJȦ ʌȜȘȡȠijȠȡȓİȢ (ʌȡȠıİȖȖȓıİȚȢ): 2 1,41 3 1,73 5 2,24 7 2,64 Į) ȃĮ İʌȚȜȑȟİIJİ ȑȞĮȞ IJȡȩʌȠ, ȫıIJİ ȞĮ ĮȟȚȠʌȠȚȒıİIJİ IJĮ ʌĮȡĮʌȐȞȦ įİįȠȝȑȞĮ (ȩʌȠȚĮ șİȦȡİȓIJİ țĮIJȐȜȜȘȜĮ) țĮȚ ȞĮ ȣʌȠȜȠȖȓıİIJİ ȝİ ʌȡȠıȑȖȖȚıȘ İțĮIJȠıIJȠȪ IJȠȣȢ ĮȡȚșȝȠȪȢ 20, 45 țĮȚ 80. (ȂȠȞȐįİȢ 12)
  • 29. ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ 25 ȕ) ǹȞ įİȞ ȣʌȒȡȤĮȞ ıIJȠȞ ʌȓȞĮțĮ ȠȚ ʌȡȠıİȖȖȚıIJȚțȑȢ IJȚ- ȝȑȢ IJȦȞ ȡȚȗȫȞ ʌȫȢ șĮ ȝʌȠȡȠȪıĮIJİ ȞĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ IJȚȝȒ IJȘȢ ʌĮȡȐıIJĮıȘȢ 3 20 + 80 45 5 ; (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) DzȤȠȣȝİ 20 = 45 = 4 5 = 2 5 22,24 = 4,48, 45 = 95 = 9 5 = 3 5 32,24 = 6,72, 80 = 165 = 16 5 = 4 5 42,24 = 8,96. ȕ) 3 20 + 80 45 5 = 3 45 + 165 95 5 = = 3 4 5 + 16 5 9 5 5 = 32 5 + 4 5 3 5 5 = = 6 5 + 4 5 2 5 = 10 5 2 5 = 5 2Į ĬǼȂǹȉǹ ]ĬǼȂǹ 2_485 ǻȓȞİIJĮȚ Ș İȟȓıȦıȘ x = x + 2 1, ȝİ ʌĮȡȐȝİIJȡȠ . Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ Ș ʌĮȡĮʌȐȞȦ İȟȓıȦıȘ ȖȡȐijİIJĮȚ ȚıȠįȪȞĮȝĮ: 1 ( )x = 1 ( ) +1 ( ), (ȂȠȞȐįİȢ 8) ȕ) ȃĮ ȕȡİȓIJİ IJȚȢ IJȚȝȑȢ IJȠȣ Ȝ ȖȚĮ IJȚȢ ȠʌȠȓİȢ Ș ʌĮȡĮʌȐ- ȞȦ İȟȓıȦıȘ ȑȤİȚ ĮțȡȚȕȫȢ ȝȓĮ ȜȪıȘ IJȘȞ ȠʌȠȓĮ țĮȚ ȞĮ ȕȡİȓIJİ. (ȂȠȞȐįİȢ 8) Ȗ) īȚĮ ʌȠȚĮ IJȚȝȒ IJȠȣ Ȝ Ș ʌĮȡĮʌȐȞȦ İȟȓıȦıȘ İȓȞĮȚ IJĮȣIJȩIJȘIJĮ ıIJȠ ıȪȞȠȜȠ IJȦȞ ʌȡĮȖȝĮIJȚțȫȞ ĮȡȚș- ȝȫȞ; ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ. (ȂȠȞȐįİȢ 9) ȁȪıȘ Į) x = x + 2 1 x x = 2 1 1 ( )x = 1 ( ) +1 ( ) ȕ) ȆȡȑʌİȚ 1 0 1. īȚĮ 1 Ș ȜȪıȘ İȓȞĮȚ x = 1 ( ) +1 ( ) 1 x = +1. Ȗ) īȚĮ ȞĮ İȓȞĮȚ Ș İȟȓıȦıȘ IJĮȣIJȩIJȘIJĮ, ʌȡȑʌİȚ ȞĮ İȓȞĮȚ IJȘȢ ȝȠȡijȒȢ 0x = 0, ȐȡĮ ʌȡȑʌİȚ 1= 0 = 1 țĮȚ 1 ( ) +1 ( )= 0 = 1 = 1 ( ). DZȡĮ = 1. ]ĬǼȂǹ 2_507 ǻȓȞİIJĮȚ Ș İȟȓıȦıȘ: 2 9 ( )x = 2 3, ȝİ ʌĮȡȐȝİIJȡȠ 1 ( ) Į) ǼʌȚȜȑȖȠȞIJĮȢ IJȡİȚȢ įȚĮijȠȡİIJȚțȑȢ IJȚȝȑȢ ȖȚĮ IJȠ Ȝ, ȞĮ ȖȡȐȥİIJİ IJȡİȚȢ İȟȚıȫıİȚȢ. (ȂȠȞȐįİȢ 6) ȕ) ȃĮ ʌȡȠıįȚȠȡȓıİIJİ IJȚȢ IJȚȝȑȢ IJȠȣ , ȫıIJİ Ș 1 ( ) ȞĮ ȑȤİȚ ȝȓĮ țĮȚ ȝȠȞĮįȚțȒ ȜȪıȘ. (ȂȠȞȐįİȢ 9) Ȗ) ȃĮ ȕȡİȓIJİ IJȘȞ IJȚȝȒ IJȠȣ , ȫıIJİ Ș ȝȠȞĮįȚțȒ ȜȪıȘ IJȘȢ 1 ( ) ȞĮ ȚıȠȪIJĮȚ ȝİ 4. (ȂȠȞȐįİȢ 10) ȁȪıȘ Į) īȚĮ = 0, = 1țĮȚ = 2 Ș 1 ( ) ȖȓȞİIJĮȚ ĮȞIJȓıIJȠȚȤĮ 9x = 0, 8x = 2 țĮȚ 5x = 2. ȕ) Ǿ 1 ( ) ȑȤİȚ ȝȠȞĮįȚțȒ ȜȪıȘ ĮȞ țĮȚ ȝȩȞȠ ĮȞ 2 9 0 3 ( ) + 3 ( ) 0 ±3. Ȗ) īȚĮ ±3 Ș ȝȠȞĮįȚțȒ ȜȪıȘ IJȘȢ 1 ( ) İȓȞĮȚ 2 9 ( )x = 2 3 x = 2 3 2 9 x = 3 ( ) 3 ( ) + 3 ( ) x = + 3 . ȆȡȑʌİȚ + 3 = 4 = 4 + 3 ( ) = 4 +12 3 = 12 = 4. •‡˜ŒžŒ•˜Œ 1ÌÖ ”‘…š¡¨
  • 30. 26 ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ ]ĬǼȂǹ 2_1055 ǻȓȞİIJĮȚ Ș İȟȓıȦıȘ: 2 1 ( )x = +1 ( ) + 2 ( ), ȝİ ʌĮȡȐȝİIJȡȠ . Į) ȃĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ ȖȚĮ = 1 țĮȚ ȖȚĮ = 1. (ȂȠȞȐįİȢ 12) ȕ) īȚĮ ʌȠȚİȢ IJȚȝȑȢ IJȠȣ Ȝ Ș İȟȓıȦıȘ ȑȤİȚ ȝȠȞĮįȚțȒ ȜȪıȘ; ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ. (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) īȚĮ = 1 Ș İȟȓıȦıȘ ȖȓȞİIJĮȚ 11 ( )x = 1+1 ( ) 1+ 2 ( ) 0x = 6, ĮįȪȞĮIJȘ. īȚĮ = 1 Ș İȟȓıȦıȘ ȖȓȞİIJĮȚ 11 ( )x = 1+1 ( ) 1+ 2 ( ) 0x = 0 x . ȕ) Ǿ İȟȓıȦıȘ ȑȤİȚ ȝȠȞĮįȚțȒ ȜȪıȘ ȩIJĮȞ Ƞ ıȣȞIJİ- ȜİıIJȒȢ IJȠȣ ĮȖȞȫıIJȠȣ įİȞ İȓȞĮȚ ȝȘįȑȞ, įȘȜĮįȒ 2 1 0 2 1 ±1. ]ĬǼȂǹ 2_4302 ǻȓȞİIJĮȚ Ș İȟȓıȦıȘ + 3 ( )x = 2 9, ȝİ ʌĮȡȐȝİIJȡȠ . Į) ȃĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ ıIJȚȢ ʌĮȡĮțȐIJȦ ʌİȡȚʌIJȫıİȚȢ: i) ȩIJĮȞ = 1, (ȂȠȞȐįİȢ 5) ii) ȩIJĮȞ = 3. (ȂȠȞȐįİȢ 8) ȕ) ȃĮ ȕȡİȓIJİ IJȚȢ IJȚȝȑȢ IJȠȣ Į, ȖȚĮ IJȚȢ ȠʌȠȓİȢ Ș İȟȓıȦ- ıȘ ȑȤİȚ ȝȠȞĮįȚțȒ ȜȪıȘ țĮȚ ȞĮ ʌȡȠıįȚȠȡȓıİIJİ IJȘ ȜȪıȘ ĮȣIJȒ. (ȂȠȞȐįİȢ 12) ȁȪıȘ Į) i) īȚĮ = 1 Ș İȟȓıȦıȘ ȖȓȞİIJĮȚ 1+ 3 ( )x = 12 9 4x = 8 x = 2. ii) īȚĮ = 3 Ș İȟȓıȦıȘ ȖȓȞİIJĮȚ 3+ 3 ( )x = 3 ( ) 2 9 0x = 0 țĮȚ İȓȞĮȚ ĮȩȡȚ- ıIJȘ (Ȓ IJĮȣIJȩIJȘIJĮ), įȘȜĮįȒ x . ȕ) īȚĮ ȞĮ ȑȤİȚ Ș İȟȓıȦıȘ ȝȠȞĮįȚțȒ ȜȪıȘ, ʌȡȑʌİȚ + 3 0 3. DZȡĮ ȖȚĮ țȐșİ , 3 ( ) 3, + ( )Ș İȟȓıȦıȘ ȑȤİȚ ȝȠȞĮįȚțȒ ȜȪıȘ, Ș ȠʌȠȓĮ İȓȞĮȚ: + 3 ( )x = 2 9 + 3 ( )x = 3 ( ) + 3 ( ) x = 3 ( ) + 3 ( ) + 3 x = 3. 2Į ĬǼȂǹȉǹ ]ĬǼȂǹ 2_481 ǻȓȞİIJĮȚ Ș İȟȓıȦıȘ x2 2x + 4 1 ( )= 0, ȝİ ʌĮȡȐ- ȝİIJȡȠ . Į) ȃĮ ȕȡİȓIJİ IJȘ įȚĮțȡȓȞȠȣıĮ IJȘȢ İȟȓıȦıȘȢ. (ȂȠȞȐįİȢ 8) ȕ) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ Ș ʌĮȡĮʌȐȞȦ İȟȓıȦıȘ ȑȤİȚ ȡȓ- ȗİȢ ʌȡĮȖȝĮIJȚțȑȢ ȖȚĮ țȐșİ . (ȂȠȞȐįİȢ 8) Ȗ) ǹȞ x1 , x2 İȓȞĮȚ ȠȚ ȡȓȗİȢ IJȘȢ ʌĮȡĮʌȐȞȦ İȟȓıȦıȘȢ, IJȩIJİ ȞĮ ȕȡİȓIJİ ȖȚĮ ʌȠȚĮ IJȚȝȒ IJȠȣ Ȝ ȚıȤȪİȚ: x1 + x2 = x1 x2 (ȂȠȞȐįİȢ 9) ȁȪıȘ Į) Ǿ İȟȓıȦıȘ İȓȞĮȚ IJȘȢ ȝȠȡijȒȢ x2 + x + = 0 ȝİ = 1, = 2 țĮȚ = 4 1 ( ). Ǿ įȚĮțȡȓȞȠȣıȐ IJȘȢ İȓȞĮȚ = 2 4 = 2 ( ) 2 44 1 ( )= = 42 16 +16 = 2 4 ( ) 2 . ȕ) ǹʌȩ IJȠ İȡȫIJȘȝĮ (Į) ʌȡȠțȪʌIJİȚ ȩIJȚ = 2 4 ( ) 2 0, ȐȡĮ Ș İȟȓıȦıȘ ȑȤİȚ ʌȡĮȖȝĮIJȚțȑȢ ȡȓȗİȢ ȖȚĮ țȐșİ . Ȗ) ǼȓȞĮȚ x1 + x2 = S = 2 țĮȚ x1 x2 = P = 4 1 ( ), ȠʌȩIJİ Ș İȟȓıȦıȘ ȖȓȞİIJĮȚ x1 + x2 = x1 x2 2 = 4 1 ( ) 2 = 4 4 2 = 4 = 2. ]ĬǼȂǹ 2_483 Į) ȃĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ 2x 1 = 3. (ȂȠȞȐįİȢ 12) •‡˜ŒžŒ•˜Œ 2ÌÖ ”‘…š¡¨
  • 31. ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ 27 ȕ) ǹȞ Į, ȕ ȝİ İȓȞĮȚ ȠȚ ȡȓȗİȢ IJȘȢ İȟȓıȦıȘȢ IJȠȣ İȡȦIJȒȝĮIJȠȢ (Į), IJȩIJİ ȞĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ x2 + x + 3= 0. (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) 2x 1 = 3 2x 1= 3 2x 1= 3 ( ) x = 2 x = 1 ( ) ȕ) ǼʌİȚįȒ , İȓȞĮȚ = 1țĮȚ = 2. Ǿ İȟȓıȦıȘ ȖȓȞİIJĮȚ x2 + 2x + 3= 0 ȝİ įȚĮțȡȓȞȠȣıĮ = 22 4 1 ( )3= 16 țĮȚ ȡȓȗİȢ x1,2 = 2 ± 16 2 1 ( ) x1 = 2 4 2 = 6 2 = 3 x2 = 2 + 4 2 = 2 2 = 1 . ]ĬǼȂǹ 2_493 Į) ȃĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ x 2 = 3. (ȂȠȞȐįİȢ 10) ȕ) ȃĮ ıȤȘȝĮIJȓıİIJİ İȟȓıȦıȘ įİȣIJȑȡȠȣ ȕĮșȝȠȪ ȝİ ȡȓ- ȗİȢ IJȚȢ ȡȓȗİȢ IJȘȢ İȟȓıȦıȘȢ IJȠȣ Į) İȡȦIJȒȝĮIJȠȢ. (ȂȠȞȐįİȢ 15) ȁȪıȘ Į) x 2 = 3 x 2 = 3 x 2 = 3 ( ) x = 2 + 3 x = 2 3 ( ) ȕ) īȚĮ x1 = 2 + 3 țĮȚ x2 = 2 3, İȓȞĮȚ x1 + x2 = 4 țĮȚ x1 x2 = 2 + 3 ( ) 2 3 ( )= 22 3 2 = 4 3= 1. ȂȚĮ įİȣIJİȡȠȕȐșȝȚĮ İȟȓıȦıȘ ȝİ ȡȓȗİȢ x1 , x2 İȓȞĮȚ Ș x2 x1 + x2 ( )x + x1 x2 = 0 x2 4x +1= 0. ]ĬǼȂǹ 2_496 ǻȓȞİIJĮȚ Ș İȟȓıȦıȘ x2 + 2x + 4 1 ( )= 0, ȝİ ʌĮȡȐ- ȝİIJȡȠ . Į) ȃĮ ȕȡİȓIJİ IJȘ įȚĮțȡȓȞȠȣıĮ IJȘȢ İȟȓıȦıȘȢ. (ȂȠȞȐįİȢ 8) ȕ) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ Ș ʌĮȡĮʌȐȞȦ İȟȓıȦıȘ ȑȤİȚ ȡȓ- ȗİȢ ʌȡĮȖȝĮIJȚțȑȢ ȖȚĮ țȐșİ . (ȂȠȞȐįİȢ 8) Ȗ) ǹȞ x1 , x2 İȓȞĮȚ ȠȚ ȡȓȗİȢ IJȘȢ ʌĮȡĮʌȐȞȦ İȟȓıȦıȘȢ, IJȩIJİ ȞĮ ȕȡİȓIJİ ȖȚĮ ʌȠȚĮ IJȚȝȒ IJȠȣ Ȝ ȚıȤȪİȚ: x1 + x2 ( ) 2 + x1 x2 +5 = 0 (ȂȠȞȐįİȢ 9) ȁȪıȘ Į) Ǿ įȚĮțȡȓȞȠȣıĮ İȓȞĮȚ = 2 ( ) 2 414 1 ( )= = 42 16 +16 = 2 4 ( ) 2 . ȕ) Ǿ İȟȓıȦıȘ ȑȤİȚ ʌȡĮȖȝĮIJȚțȑȢ ȡȓȗİȢ ĮȞ țĮȚ ȝȩȞȠ ĮȞ 0 2 4 ( ) 2 0, ʌȠȣ ȚıȤȪİȚ ȖȚĮ țȐșİ . Ȗ) ǼȓȞĮȚ x1 + x2 = 2 țĮȚ x1 x2 = 4 1 ( ).DZȡĮ x1 + x2 ( ) 2 + x1 x2 +5 = 0 2 ( ) 2 + 4 1 ( )+5 = 0 2 ( ) 2 + 4 +1= 0 2 +1 ( ) 2 = 0 2 +1= 0 = 1 2 . ]ĬǼȂǹ 2_1005 ǻȓȞȠȞIJĮȚ ȠȚ ʌĮȡĮıIJȐıİȚȢ = 1+ x x 1 țĮȚ = 2 x2 x , ȩʌȠȣ Ƞ x İȓȞĮȚ ʌȡĮȖȝĮIJȚțȩȢ ĮȡȚșȝȩȢ. Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ ȖȚĮ ȞĮ ȠȡȓȗȠȞIJĮȚ IJĮȣIJȩȤȡȠȞĮ ȠȚ ʌĮȡĮıIJȐıİȚȢ , ʌȡȑʌİȚ: x 1 x 0. (ȂȠȞȐįİȢ 12) ȕ) ȃĮ ȕȡİȓIJİ IJȚȢ IJȚȝȑȢ IJȠȣ x ȖȚĮ IJȚȢ ȠʌȠȓİȢ ȚıȤȪİȚ = . (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) ȆȡȑʌİȚ x 1 0 x2 x 0 ( ) x 1 0 x x 1 ( ) 0 ( ) x 1 0 x 0 ( ) x 1 x 0 ( ). ȕ) = 1+ x x 1 = 2 x2 x x 1+ x ( ) x x 1 ( ) 2 x x 1 ( ) = 0 x2 x 2 x x 1 0 x 1,x 0 x2 x 2 0 Ǿ įȚĮțȡȓȞȠȣıĮ İȓȞĮȚ = 12 41 2 ( )= 9 țĮȚ ȠȚ
  • 32. 28 ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ ȡȓȗİȢ x1,2 = 1± 9 2 x1 = 1 3 2 = 2 x2 = 1+ 3 2 = 1 . Ǿ ȜȪıȘ x = 1 ĮʌȠȡȡȓʌIJİIJĮȚ, ȐȡĮ x = 2. ]ĬǼȂǹ 2_1007 Į) ȃĮ ȕȡİȓIJİ IJȚȢ ȡȓȗİȢ IJȘȢ İȟȓıȦıȘȢ: 2x2 +10x = 12. (ȂȠȞȐįİȢ 15) ȕ) ȃĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ: 2x2 +10x 12 x 2 = 0. (ȂȠȞȐįİȢ 10) ȁȪıȘ Į) 2x2 +10x = 12 2x2 +10x 12 = 0. Ǿ įȚĮțȡȓȞȠȣıĮ İȓȞĮȚ = 102 4 2 ( ) 12 ( )= 100 96 = 4 țĮȚ ȠȚ ȡȓȗİȢ x1, 2 = 10 ± 4 2 2 ( ) x1 = 10 + 2 4 = 8 4 = 2 x2 = 10 2 4 = 12 4 = 3 . ȕ) ǼȓȞĮȚ 2x2 +10x 12 x 2 = 0 x2 2x2 +10x 12 = 0 x = 2,
  • 33. , x = 3, ( ) x = 3. ]ĬǼȂǹ 2_1093 ǻȓȞȠȞIJĮȚ ȠȚ ĮȡȚșȝȠȓ: = 1 5+ 5 , = 1 5 5 . Į) ȃĮ įİȓȟİIJİ ȩIJȚ: i) + = 1 2 (ȂȠȞȐįİȢ 8) ii) = 1 20 (ȂȠȞȐįİȢ 8) ȕ) ȃĮ țĮIJĮıțİȣȐıİIJİ ȝȚĮ İȟȓıȦıȘ 2Ƞȣ ȕĮșȝȠȪ ȝİ ȡȓȗİȢ IJȠȣȢ ĮȡȚșȝȠȪȢ A țĮȚ B. (ȂȠȞȐįİȢ 9) ȁȪıȘ Į) i) + = 1 5+ 5 + 1 5 5 = = 1 5+ 5 5 5 5 5 + 1 5 5 5+ 5 5+ 5 = = 5 5 52 5 ( ) 2 + 5+ 5 52 5 ( ) 2 = 5 5 255 + 5+ 5 255 = = 5 5 +5+ 5 20 = 10 20 = 1 2 . ii) = 1 5+ 5 1 5 5 = 1 52 5 ( ) 2 = 1 255 = 1 20 ȕ) S = + = 1 2 țĮȚ P = = 1 20 țĮȚ țĮIJĮıțİȣȐȗȠȣȝİ IJȘȞ İȟȓıȦıȘ 2Ƞȣ ȕĮșȝȠȪ ʌȠȣ įȓȞİIJĮȚ Įʌȩ IJȘ ıȤȑıȘ x2 Sx + P = 0 x2 1 2 x + 1 20 = 0. ]ĬǼȂǹ 2_1275 ǻȓȞİIJĮȚ IJȠ IJȡȚȫȞȣȝȠ 2x2 +5x 1. Į) ȃĮ įİȓȟİIJİ ȩIJȚ IJȠ IJȡȚȫȞȣȝȠ ȑȤİȚ įȪȠ ȐȞȚıİȢ țĮȚ ʌȡĮȖȝĮIJȚțȑȢ ȡȓȗİȢ, x1 țĮȚ x2 . (ȂȠȞȐįİȢ 6) ȕ) ȃĮ ȕȡİȓIJİ IJȘȞ IJȚȝȒ IJȦȞ ʌĮȡĮıIJȐıİȦȞ: x1 + x2 , x1 x2 țĮȚ 1 x1 + 1 x2 . (ȂȠȞȐįİȢ 9) Ȗ) ȃĮ ʌȡȠıįȚȠȡȓıİIJİ ȝȚĮ İȟȓıȦıȘ 2Ƞȣ ȕĮșȝȠȪ ȝİ ȡȓȗİȢ IJȠȣȢ ĮȡȚșȝȠȪȢ 1 x1 țĮȚ 1 x2 . (ȂȠȞȐįİȢ 10) ȁȪıȘ Į) = 2, = 5, = 1, ȠʌȩIJİ = 2 4 = 52 42 1 ( )= 25+8 = 33 0, ȐȡĮ IJȠ IJȡȚȫȞȣȝȠ ȑȤİȚ įȪȠ ȐȞȚıİȢ țĮȚ ʌȡĮȖȝĮIJȚ- țȑȢ ȡȓȗİȢ. ȕ) DzȤȠȣȝİ x1 + x2 = S = = 5 2 , x1 x2 = P = = 1 2 țĮȚ 1 x1 + 1 x2 = x1 + x2 x1 x2 = S P = 5 2 1 2 = 5. Ȗ) ǺȡȓıțȠȣȝİ IJȠ ȐșȡȠȚıȝĮ țĮȚ IJȠ ȖȚȞȩȝİȞȠ IJȦȞ
  • 34. ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ 29 ȡȚȗȫȞ 1 x1 țĮȚ 1 x2 : S = 1 x1 + 1 x2 = 5 țĮȚ P = 1 x1 1 x2 = 1 x1 x2 = 1 1 2 = 2 țĮȚ ȝȓĮ İȟȓıȦıȘ 2Ƞȣ ȕĮșȝȠȪ ȝİ IJȚȢ ʌĮȡĮʌȐȞȦ ȡȓȗİȢ İȓȞĮȚ x2 Sx + P = 0 x2 5x 2 = 0. ]ĬǼȂǹ 2_1298 DzıIJȦ Į, ȕ ʌȡĮȖȝĮIJȚțȠȓ ĮȡȚșȝȠȓ ȖȚĮ IJȠȣȢ ȠʌȠȓȠȣȢ ȚıȤȪȠȣȞ: + = 2 țĮȚ 2 + 2 = 30 Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ: = 15. (ȂȠȞȐįİȢ 10) ȕ) ȃĮ țĮIJĮıțİȣȐıİIJİ İȟȓıȦıȘ įİȣIJȑȡȠȣ ȕĮșȝȠȪ ȝİ ȡȓȗİȢ IJȠȣȢ ĮȡȚșȝȠȪȢ Į, ȕ țĮȚ ȞĮ IJȠȣȢ ȕȡİȓIJİ. (ȂȠȞȐįİȢ 15) ȁȪıȘ Į) 2 2 30 30 2 2 = 30 = 15 ȕ) ǺȡȓıțȠȣȝİ IJȠ ȐșȡȠȚıȝĮ țĮȚ IJȠ ȖȚȞȩȝİȞȠ IJȦȞ Į țĮȚ ȕ: S = + = 2 țĮȚ P = = 15 țĮȚ ȝȓĮ İȟȓıȦıȘ 2Ƞȣ ȕĮșȝȠȪ ȝİ IJȚȢ ʌĮȡĮʌȐȞȦ ȡȓȗİȢ İȓȞĮȚ x2 Sx + P = 0 x2 2x 15 = 0, ȝİ = 2 ( ) 2 41 15 ( )= 4 + 60 = 64 0 țĮȚ ȡȓȗİȢ x1,2 = 2 ( )± 64 2 = 2 ±8 2 x1 = 2 8 2 = 6 2 = 3 x2 = 2 +8 2 = 10 2 = 5 . DZȡĮ = 3 țĮȚ = 5 Ȓ = 5 țĮȚ = 3. ]ĬǼȂǹ 2_1509 ǻȓȞİIJĮȚ Ș İȟȓıȦıȘ x2 1 ( )x + 6 = 0, 1 ( ) ȝİ ʌĮ- ȡȐȝİIJȡȠ . Į) ǹȞ Ș ʌĮȡĮʌȐȞȦ İȟȓıȦıȘ ȑȤİȚ ȜȪıȘ IJȠ 1, ȞĮ ȕȡİȓ- IJİ IJȠ Ȝ. (ȂȠȞȐįİȢ 13) ȕ) īȚĮ = 2 ȞĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ 1 ( ). (ȂȠȞȐįİȢ 12) ȁȪıȘ Į) īȚĮ x = 1 Ș 1 ( ) ȖȡȐijİIJĮȚ 12 1 ( )1+ 6 = 0 1 +1+ 6 = 0 = 8. ȕ) īȚĮ = 2 Ș 1 ( ) ȖȡȐijİIJĮȚ x2 2 1 ( )x + 6 = 0 x2 x + 6 = 0. = 1, = 1, = 6, = 2 4 = = 1 ( ) 2 416 = 1 24 = 23 0, ĮįȪȞĮIJȘ. ]ĬǼȂǹ 2_3839 ǻȓȞİIJĮȚ Ș İȟȓıȦıȘ x2 1 ( )x 1= 0, ȝİ ʌĮȡȐȝİIJȡȠ 0. Į) ȃĮ ȕȡİȓIJİ IJȘȞ IJȚȝȒ IJȠȣ Ȝ ȖȚĮ IJȘȞ ȠʌȠȓĮ Ș İȟȓıȦıȘ ȑȤİȚ ȡȓȗĮ IJȠȞ ĮȡȚșȝȩ í2. (ȂȠȞȐįİȢ 12) ȕ) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ Ș İȟȓıȦıȘ ȑȤİȚ ʌȡĮȖȝĮIJȚțȑȢ ȡȓȗİȢ ȖȚĮ țȐșİ 0. (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) ǹȞIJȚțĮșȚıIJȠȪȝİ ȩʌȠȣ x IJȠ 2: 2 ( ) 2 1 ( ) 2 ( )1= 0 4 + 2 1 ( )1= 0 4 + 2 3= 0 6 = 3 = 1 2 . ȕ) īȚĮ 0 Ș İȟȓıȦıȘ İȓȞĮȚ 2Ƞȣ ȕĮșȝȠȪ. ǺȡȓıțȠȣȝİ IJȘ įȚĮțȡȓȞȠȣıĮ IJȠȣ IJȡȚȦȞȪȝȠȣ x2 1 ( )x 1 ȝİ = , = 1 ( ), = 1, = 1 ( ) 2 4 1 ( )= 1 ( ) 2 + 4 = = 2 2 +1+ 4 = 2 + 2 +1= +1 ( ) 2 0. DZȡĮ ȖȚĮ țȐșİ 0 ȚıȤȪİȚ 0, İʌȠȝȑȞȦȢ Ș İȟȓ- ıȦıȘ ȑȤİȚ ʌȡĮȖȝĮIJȚțȑȢ ȡȓȗİȢ. ]ĬǼȂǹ 2_3847 ǻȓȞİIJĮȚ Ș İȟȓıȦıȘ + 2 ( )x2 + 2x + 1= 0, ȝİ ʌĮȡȐȝİIJȡȠ 2. ȃĮ ȕȡİȓIJİ IJȚȢ IJȚȝȑȢ IJȠȣ Ȝ ȖȚĮ IJȚȢ ȠʌȠȓİȢ: Į) Ș İȟȓıȦıȘ ȑȤİȚ įȣȠ ȡȓȗİȢ ʌȡĮȖȝĮIJȚțȑȢ țĮȚ ȐȞȚıİȢ, (ȂȠȞȐįİȢ 13) ȕ) IJȠ ȐșȡȠȚıȝĮ IJȦȞ ȡȚȗȫȞ IJȘȢ İȟȓıȦıȘȢ İȓȞĮȚ ȓıȠ ȝİ 2. (ȂȠȞȐįİȢ 12)
  • 35. 30 ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ ȁȪıȘ Ǿ İȟȓıȦıȘ İȓȞĮȚ įİȣIJȑȡȠȣ ȕĮșȝȠȪ, İʌİȚįȒ 2. DzȤȠȣȝİ = + 2, = 2, = 1, = 2 ( ) 2 4 + 2 ( ) 1 ( )= = 42 4 2 + 2 2 ( )= = 42 42 4 +8 = 4 +8. Į) ȆȡȑʌİȚ 0 4 +8 0 4 8 2, ȐȡĮ Ș İȟȓıȦıȘ ȑȤİȚ įȪȠ ʌȡĮȖȝĮIJȚțȑȢ, ȐȞȚıİȢ ȡȓȗİȢ ȖȚĮ țȐșİ , 2 ( ). ȕ) x1 + x2 = S = = 2 + 2 . ȆȡȑʌİȚ ȞĮ ȚıȤȪİȚ S = 2 2 + 2 = 2 2 = 2 + 2 ( ) 2 = 2 + 4 4 = 4 = 1. Ǿ IJȚȝȒ IJȠȣ Ȝ İȓȞĮȚ įİțIJȒ, ĮijȠȪ 1 , 2 ( ). ]ĬǼȂǹ 2_3857 DzıIJȦ Į, ȕ ʌȡĮȖȝĮIJȚțȠȓ ĮȡȚșȝȠȓ ȖȚĮ IJȠȣȢ ȠʌȠȓȠȣȢ ȚıȤȪȠȣȞ = 4 țĮȚ 2 + 2 = 20. Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ + = 5. (ȂȠȞȐįİȢ 10) ȕ) ȃĮ țĮIJĮıțİȣȐıİIJİ İȟȓıȦıȘ 2Ƞȣ ȕĮșȝȠȪ ȝİ ȡȓȗİȢ IJȠȣȢ ĮȡȚșȝȠȪȢ Į, ȕ țĮȚ ȞĮ IJȠȣȢ ȕȡİȓIJİ. (ȂȠȞȐįİȢ 15) ȁȪıȘ Į) 2 2 20 20 4 4 + ( )= 20 + = 5 ȕ) Ǿ İȟȓıȦıȘ ʌȠȣ ȗȘIJȐȝİ ȑȤİȚ S = + = 5 țĮȚ P = = 4. ǼʌȠȝȑȞȦȢ Ș İȟȓıȦıȘ İȓȞĮȚ IJȘȢ ȝȠȡijȒȢ x2 Sx + P = 0, įȘȜĮįȒ x2 5x + 4 = 0. = 5 ( ) 2 414 = 2516 = 9 0, ȠʌȩIJİ x1,2 = 5 ( )± 9 2 = 5± 3 2 x1 = 5 3 2 = 2 2 = 1 x2 = 5+ 3 2 = 8 2 = 4 . DZȡĮ = 1 țĮȚ = 4 Ȓ = 4 țĮȚ = 1. ]ĬǼȂǹ 2_3863 DzıIJȦ Į, ȕ ʌȡĮȖȝĮIJȚțȠȓ ĮȡȚșȝȠȓ ȖȚĮ IJȠȣȢ ȠʌȠȓȠȣȢ ȚıȤȪȠȣȞ: + = 1țĮȚ 3 + 22 2 + 3 = 12 Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ: = 12. (ȂȠȞȐįİȢ 10) ȕ) ȃĮ țĮIJĮıțİȣȐıİIJİ İȟȓıȦıȘ 2Ƞȣ ȕĮșȝȠȪ ȝİ ȡȓȗİȢ IJȠȣȢ ĮȡȚșȝȠȪȢ Į, ȕ țĮȚ ȞĮ IJȠȣȢ ȕȡİȓIJİ. (ȂȠȞȐįİȢ 15) ȁȪıȘ Į) 3 + 22 2 + 3 = 12 2 + 2 + 2 ( )= 12 + ( ) 2 = 12 1 ( ) 2 = 12 = 12 ȕ) ȂȚĮ IJȑIJȠȚĮ İȟȓıȦıȘ İȓȞĮȚ Ș x2 + ( )x + = 0, įȘȜĮįȒ Ș İȟȓıȦıȘ x2 + x 12 = 0. Ǿ İȟȓıȦıȘ ĮȣIJȒ ȑȤİȚ = 12 41 12 ( )= 1+ 48 = 49 0, ȐȡĮ x1,2 = 1± 49 2 = 1± 7 2 x1 = 1 7 2 = 8 2 = 4 x2 = 1+ 7 2 = 6 2 = 3 . DzIJıȚ, = 4, = 3 ( ) Ȓ = 3, = 4 ( ). ]ĬǼȂǹ 2_4306 Į) ȃĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ 2x2 x 6 = 0. 1 ( ) (ȂȠȞȐįİȢ 9) ȕ) ȃĮ ȜȪıİIJİ IJȘȞ ĮȞȓıȦıȘ x 1 2. 2 ( ) (ȂȠȞȐįİȢ 9) Ȗ) ȃĮ İȟİIJȐıİIJİ ĮȞ ȣʌȐȡȤȠȣȞ IJȚȝȑȢ IJȠȣ x ʌȠȣ ȚțĮȞȠ- ʌȠȚȠȪȞ IJĮȣIJȩȤȡȠȞĮ IJȚȢ ıȤȑıİȚȢ 1 ( ) țĮȚ 2 ( ). (ȂȠȞȐįİȢ 7) ȁȪıȘ Į) = 2, = 1, = 6. DZȡĮ = 2 4 = 1 ( ) 2 42 6 ( )= 1+ 48 = 49 0, ȠʌȩIJİ x1,2 = ± 2 = 1 ( )± 49 22 = 1± 7 4 x1 = 2 x2 = 3 2 .
  • 36. ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ 31 ȕ) x 1 2 2 x 1 2 2 +1 x 1+1 2 +1 1 x 3. DZȡĮ x 1, 3 ( ). Ȗ) ǼȟİIJȐȗȠȣȝİ ĮȞ ȠȚ ȜȪıİȚȢ IJȘȢ İȟȓıȦıȘȢ 1 ( ) ĮȞȒțȠȣȞ ıIJȠ ıȪȞȠȜȠ IJȦȞ ȜȪıİȦȞ IJȘȢ ĮȞȓıȦıȘȢ 2 ( ): 3 2 1, 3 ( ), İȞȫ 2 1, 3 ( ). DZȡĮ Ș ȝȩȞȘ IJȚȝȒ IJȠȣ x ʌȠȣ ȚțĮȞȠʌȠȚİȓ IJȚȢ 1 ( ) țĮȚ 2 ( ) İȓȞĮȚ Ș 2. ]ĬǼȂǹ 2_4308 Į) ȃĮ ȕȡİȓIJİ ȖȚĮ ʌȠȚİȢ IJȚȝȑȢ IJȠȣ x Ș ʌĮȡȐıIJĮıȘ: = 2x2 1 x2 x + 1 1 x ȑȤİȚ ȞȩȘȝĮ ʌȡĮȖȝĮIJȚțȠȪ ĮȡȚșȝȠȪ. (ȂȠȞȐįİȢ 10) ȕ) īȚĮ IJȚȢ IJȚȝȑȢ IJȠȣ x ʌȠȣ ȕȡȒțĮIJİ ıIJȠ Į) İȡȫIJȘȝĮ, ȞĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ: 2x2 1 x2 x + 1 1 x = 0 (ȂȠȞȐįİȢ 15) ȁȪıȘ Į) ȆȡȑʌİȚ x2 x 0 x x 1 ( ) 0 x 0 x 1 ( ) țĮȚ 1 x 0 x 1. ȉİȜȚțȐ, x 0, 1 { }. ȕ) īȚĮ x 0, 1 { }: 2x2 1 x2 x + 1 1 x = 0 2x2 1 x x 1 ( ) 1 x 1 = 0 x x 1 ( ) 2x2 1 x x 1 ( ) x x 1 ( ) 1 x 1 = x x 1 ( )0 2x2 1 x = 0 2x2 x 1= 0. = 2, = 1, = 1, ȐȡĮ = 2 4 = 1 ( ) 2 42 1 ( )= 9 0, ȠʌȩIJİ x1,2 = ± 2 = 1 ( )± 9 22 = 1± 3 4 x1 = 1,
  • 37. x2 = 1 2 , . ]ĬǼȂǹ 2_4309 ǻȓȞİIJĮȚ ȠȡșȠȖȫȞȚȠ ȝİ ʌİȡȓȝİIJȡȠ = 20cm țĮȚ İȝ- ȕĮįȩ E = 24cm2 . Į) ȃĮ țĮIJĮıțİȣȐıİIJİ ȝȓĮ İȟȓıȦıȘ 2Ƞȣ ȕĮșȝȠȪ ʌȠȣ ȑȤİȚ ȦȢ ȡȓȗİȢ IJĮ ȝȒțȘ IJȦȞ ʌȜİȣȡȫȞ ĮȣIJȠȪ IJȠȣ Ƞȡ- șȠȖȦȞȓȠȣ. (ȂȠȞȐįİȢ 15) ȕ) ȃĮ ȕȡİȓIJİ IJĮ ȝȒțȘ IJȦȞ ʌȜİȣȡȫȞ IJȠȣ ȠȡșȠȖȦȞȓȠȣ. (ȂȠȞȐįİȢ 10) ȁȪıȘ Į) ǹȞ x, y İȓȞĮȚ ȠȚ ʌȜİȣȡȑȢ IJȠȣ ȠȡșȠȖȦȞȓȠȣ, IJȩIJİ: 2x 2y 20 2x 2y 20 x y 10 1 ( ) E = xy xy = 24 2 ( ) ȅȚ x țĮȚ y İȓȞĮȚ ȡȓȗİȢ IJȘȢ İȟȓıȦıȘȢ ʌȠȣ ȗȘIJȐȝİ, İʌȠȝȑȞȦȢ S = x + y = 10 țĮȚ P = xy = 24. DZȡĮ ȝȓĮ İȟȓıȦıȘ ȝİ ȡȓȗİȢ IJĮ ȝȒțȘ IJȦȞ ʌȜİȣȡȫȞ ĮȣIJȠȪ IJȠȣ ȠȡșȠȖȦȞȓȠȣ İȓȞĮȚ x2 Sx P 0 P24 S10 x2 10x 24 0. ȕ) ȉĮ ȝȒțȘ IJȦȞ ʌȜİȣȡȫȞ IJȠȣ ȠȡșȠȖȦȞȓȠȣ İȓȞĮȚ ȠȚ ȜȪıİȚȢ IJȘȢ İȟȓıȦıȘȢ x2 10x + 24 = 0. = 1, = 10, = 24, ȐȡĮ = 2 4 = 10 ( ) 2 4124 = = 100 96 = 4 0, ȠʌȩIJİ x1,2 = ± 2 = 10 ( )± 4 21 = 10 ± 2 2 x1 = 12 2 = 6 x2 = 8 2 = 4 . DZȡĮ ȠȚ ʌȜİȣȡȑȢ IJȠȣ ȠȡșȠȖȦȞȓȠȣ İȓȞĮȚ 6cm țĮȚ 4cm. ]ĬǼȂǹ 2_4310 ǻȓȞȠȞIJĮȚ įȪȠ ʌȡĮȖȝĮIJȚțȠȓ ĮȡȚșȝȠȓ Į, ȕ IJȑIJȠȚȠȚ ȫıIJİ + = 12 țĮȚ 2 + 2 = 272. Į) Ȃİ IJȘ ȕȠȒșİȚĮ IJȘȢ IJĮȣIJȩIJȘIJĮȢ + ( ) 2 = 2 + 2 + 2 , ȞĮ įİȓȟİIJİ ȩIJȚ = 64. (ȂȠȞȐįİȢ 8) ȕ) ȃĮ țĮIJĮıțİȣȐıİIJİ ȝȚĮ İȟȓıȦıȘ 2Ƞȣ ȕĮșȝȠȪ ʌȠȣ ȑȤİȚ ȡȓȗİȢ IJȠȣȢ ĮȡȚșȝȠȪȢ Į, ȕ. (ȂȠȞȐįİȢ 10) Ȗ) ȃĮ ʌȡȠıįȚȠȡȓıİIJİ IJȠȣȢ ĮȡȚșȝȠȪȢ Į, ȕ. (ȂȠȞȐįİȢ 7)
  • 38. 32 ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ ȁȪıȘ Į) + ( ) 2 = 2 + 2 + 2 2 2 2 2 2 2 272 12 2 = 122 272 2 = 144 272 2 = 128 = 64 ȕ) ȉȠ ȐșȡȠȚıȝĮ IJȦȞ ȡȚȗȫȞ IJȘȢ ȗȘIJȠȪȝİȞȘȢ İȟȓıȦıȘȢ İȓȞĮȚ S = + = 12 țĮȚ IJȠ ȖȚȞȩȝİȞȠ IJȦȞ ȡȚȗȫȞ IJȘȢ İȓȞĮȚ P = = 64. DZȡĮ ȝȓĮ IJȑIJȠȚĮ İȟȓıȦıȘ İȓȞĮȚ Ș x2 Sx P 0 P 64 S12 x2 12x 64 0. Ȗ) ȁȪȞȠȣȝİ IJȘ įİȣIJİȡȠȕȐșȝȚĮ İȟȓıȦıȘ ʌȠȣ ʌȡȠȑțȣȥİ: = 12 ( ) 2 41 64 ( )= 144 + 256 = 400 0, ȐȡĮ x1,2 = 12 ( )± 400 2 x1 = 12 + 20 2 = 16 x2 = 12 20 2 = 4 . DZȡĮ = 16 țĮȚ = 4 Ȓ = 4 țĮȚ = 16. ]ĬǼȂǹ 2_4313 ǻȓȞȠȞIJĮȚ ȠȚ ĮȡȚșȝȠȓ: A = 1 3 7 , B = 1 3+ 7 Į) ȃĮ įİȓȟİIJİ ȩIJȚ A+ B = 3 țĮȚ A B = 1 2 . (ȂȠȞȐįİȢ 12) ȕ) ȃĮ țĮIJĮıțİȣȐıİIJİ ȝȚĮ İȟȓıȦıȘ 2Ƞȣ ȕĮșȝȠȪ ʌȠȣ ȑȤİȚ ȡȓȗİȢ IJȠȣȢ ĮȡȚșȝȠȪȢ ǹ, Ǻ. (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) A+ B = 1 3 7 + 1 3+ 7 = = 1 3+ 7 ( ) 3 7 ( ) 3+ 7 ( ) + 1 3 7 ( ) 3 7 ( ) 3+ 7 ( ) = = 3+ 7 ( )+ 3 7 ( ) 3 7 ( ) 3+ 7 ( ) = 3+ 7 + 3 7 32 7 2 = = 6 9 7 = 6 2 = 3 țĮȚ AB = 1 3 7 1 3+ 7 = 11 3 7 ( ) 3+ 7 ( ) = = 1 32 7 2 = 1 9 7 = 1 2 . ȕ) Ǿ ȗȘIJȠȪȝİȞȘ İȟȓıȦıȘ İȓȞĮȚ IJȘȢ ȝȠȡijȒȢ x2 Sx + P = 0 ȝİ S = A+ B = 3 țĮȚ P = AB = 1 2 . DZȡĮ x2 3x + 1 2 = 0. ]ĬǼȂǹ 2_4317 ǻȓȞİIJĮȚ Ș İȟȓıȦıȘ + 2 ( )x2 + 2x + 1= 0, ȝİ ʌĮȡȐȝİIJȡȠ 2. Į) ȃĮ ȕȡİȓIJİ IJȚȢ IJȚȝȑȢ IJȠȣ Ȝ ȖȚĮ IJȚȢ ȠʌȠȓİȢ Ș İȟȓıȦıȘ ȑȤİȚ įȣȠ ȡȓȗİȢ ʌȡĮȖȝĮIJȚțȑȢ țĮȚ ȐȞȚıİȢ. (ȂȠȞȐįİȢ 12) ȕ) ǹȞ x1 , x2 İȓȞĮȚ ȠȚ ȡȓȗİȢ IJȘȢ ʌĮȡĮʌȐȞȦ İȟȓıȦıȘȢ ȞĮ ȕȡİȓIJİ IJȠ Ȝ ȫıIJİ x1 x2 = 3. (ȂȠȞȐįİȢ 13) ȁȪıȘ Į) īȚĮ IJȘȞ İȟȓıȦıȘ + 2 ( )x2 + 2x + 1= 0 ȚıȤȪİȚ ȩIJȚ 2 + 2 0, ȐȡĮ İȓȞĮȚ įİȣIJİȡȠ- ȕȐșȝȚĮ. ǺȡȓıțȠȣȝİ IJȘ įȚĮțȡȓȞȠȣıȐ IJȘȢ: = + 2, = 2 țĮȚ = 1, ȠʌȩIJİ = 2 ( ) 2 4 + 2 ( ) 1 ( )= = 42 4 2 + 2 2 ( )= = 42 4 2 + 2 ( )= = 42 42 4 +8 = 4 +8. īȚĮ ȞĮ ȑȤİȚ Ș İȟȓıȦıȘ įȪȠ ȡȓȗİȢ ʌȡĮȖȝĮIJȚțȑȢ țĮȚ ȐȞȚıİȢ, ʌȡȑʌİȚ 0 4 +8 0 4 8 2. DZȡĮ ȖȚĮ țȐșİ , 2 ( ) Ș İȟȓıȦıȘ ȑȤİȚ įȪȠ ȡȓȗİȢ ʌȡĮȖȝĮIJȚțȑȢ țĮȚ ȐȞȚıİȢ. ȕ) īȚĮ , 2 ( ) ȑȤȠȣȝİ P = x1 x2 = 1 + 2 , ȠʌȩIJİ 1 + 2 = 3 1= 3 + 2 ( ) 1= 3 6 4 = 5 = 5 4 .
  • 39. ǼțijȦȞȒıİȚȢ țĮȚ ȜȪıİȚȢ ȩȜȦȞ IJȦȞ ĮıțȒıİȦȞ IJȘȢ ȉȡȐʌİȗĮȢ ĬİȝȐIJȦȞ ĮȞȐ ǼȞȩIJȘIJĮ 33 4Į ĬǼȂǹȉǹ ]ĬǼȂǹ 4_1890 ǻȓȞİIJĮȚ Ș İȟȓıȦıȘ + 2 ( )x2 + 2 + 3 ( )x + 2 = 0 1 ( ), ȝİ ʌĮȡȐȝİIJȡȠ 2. Į) ȃĮ įİȓȟİIJİ ȩIJȚ Ș įȚĮțȡȓȞȠȣıĮ IJȘȢ İȟȓıȦıȘȢ 1 ( ) İȓȞĮȚ: = 12 + 25 (ȂȠȞȐįİȢ 6) ȕ) ȃĮ ȕȡİȓIJİ IJȚȢ IJȚȝȑȢ IJȠȣ 2, ȫıIJİ Ș İȟȓıȦıȘ 1 ( ) ȞĮ ȑȤİȚ įȪȠ ȡȓȗİȢ ʌȡĮȖȝĮIJȚțȑȢ țĮȚ ȐȞȚıİȢ. (ȂȠȞȐįİȢ 7) Ȗ) ȃĮ İțijȡȐıİIJİ ȦȢ ıȣȞȐȡIJȘıȘ IJȠȣ Ȝ IJȠ ȐșȡȠȚıȝĮ IJȦȞ ȡȚȗȫȞ S = x1 + x2 țĮȚ IJȠ ȖȚȞȩȝİȞȠ IJȦȞ ȡȚȗȫȞ P = x1 x2 . (ȂȠȞȐįİȢ 4) į) ȃĮ İȟİIJȐıİIJİ ĮȞ ȣʌȐȡȤİȚ IJȚȝȒ IJȠȣ Ȝ ȫıIJİ ȖȚĮ IJȚȢ ȡȓȗİȢ x1 , x2 IJȘȢ İȟȓıȦıȘȢ 1 ( ) ȞĮ ȚıȤȪİȚ Ș ıȤȑıȘ: x1 + x2 1 ( ) 2 + x1 x2 + 3 ( ) 2 = 0 (ȂȠȞȐįİȢ 8) ȁȪıȘ Ǿ İȟȓıȦıȘ İȓȞĮȚ IJȘȢ ȝȠȡijȒȢ x2 + x + = 0 ȝİ = + 2, = 2 + 3 țĮȚ = 2. Į) Ǿ įȚĮțȡȓȞȠȣıĮ IJȘȢ İȟȓıȦıȘȢ 1 ( ) İȓȞĮȚ: = 2 4 = 2 + 3 ( ) 2 4 + 2 ( ) 2 ( )= = 2 ( ) 2 + 23 2 ( )+ 32 4 2 4 ( )= = 42 +12 + 9 42 +16 = 12 + 25. ȕ) īȚĮ ȞĮ ȑȤİȚ Ș 1 ( ) įȪȠ ʌȡĮȖȝĮIJȚțȑȢ țĮȚ ȐȞȚıİȢ ȡȓȗİȢ, ʌȡȑʌİȚ 2 țĮȚ 0 12 + 25 0 12 25 25 12 . TİȜȚțȐ, 25 12 , 2 2, + ( ). Ȗ) ǼȓȞĮȚ S = = 2 + 3 + 2 țĮȚ P = = 2 + 2 . į) x1 + x2 1 ( ) 2 + x1 x2 + 3 ( ) 2 = 0 x1 + x2 1= 0 x1 x2 + 3= 0 ( ) 2 + 3 + 2 1= 0 2 + 2 + 3= 0 3 5 + 2 = 0 4 + 4 + 2 = 0 = 5 3 = 1 , . DZȡĮ įİȞ ȣʌȐȡȤİȚ ȫıIJİ ȞĮ ȚıȤȪİȚ Ș įȠıȝȑȞȘ ıȤȑıȘ. ]ĬǼȂǹ 4_1955 ȉȑııİȡȚȢ ĮșȜȘIJȑȢ, Ƞ ǹȡȖȪȡȘȢ, Ƞ ǺĮıȓȜȘȢ, Ƞ īȚȫȡȖȠȢ țĮȚ Ƞ ǻȘȝȒIJȡȘȢ IJİȡȝȐIJȚıĮȞ ıİ ȑȞĮȞ ĮȖȫȞĮ įȡȩȝȠȣ ȝİ ĮȞIJȓıIJȠȚȤȠȣȢ ȤȡȩȞȠȣȢ (ıİ ȜİʌIJȐ) t , t , t țĮȚ t , ȖȚĮ IJȠȣȢ ȠʌȠȓȠȣȢ ȚıȤȪȠȣȞ ȠȚ ıȤȑıİȚȢ: t tB , t = t + 2t 3 țĮȚ t t = t t . Į) i) ȃĮ įİȓȟİIJİ ȩIJȚ: t = t + t 2 . (ȂȠȞȐįİȢ 5) ii) ȃĮ ȕȡİȓIJİ IJȘ ıİȚȡȐ ȝİ IJȘȞ ȠʌȠȓĮ IJİȡȝȐIJȚıĮȞ ȠȚ ĮșȜȘIJȑȢ. ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ. (ȂȠȞȐįİȢ 10) ȕ) ǻȓȞİIJĮȚ İʌȚʌȜȑȠȞ ȩIJȚ ȚıȤȪİȚ: t + t = 6 țĮȚ t t = 8 i) ȃĮ ȖȡȐȥİIJİ ȝȓĮ İȟȓıȦıȘ 2Ƞȣ ȕĮșȝȠȪ ʌȠȣ ȑȤİȚ ȡȓȗİȢ IJȠȣȢ ĮȡȚșȝȠȪȢ t țĮȚ t . (ȂȠȞȐįİȢ 5) ii) ȃĮ ȕȡİȓIJİ IJȠȣȢ ȤȡȩȞȠȣȢ IJİȡȝĮIJȚıȝȠȪ IJȦȞ IJİı- ıȐȡȦȞ ĮșȜȘIJȫȞ. (ȂȠȞȐįİȢ 5) ȁȪıȘ Į) i) DzȤȠȣȝİ t t = t t t t = ( t t Ȓ t t = t t ) t = t ( , ĮįȪȞĮIJȘ, Ȓ t = t + t 2 . ȉİȜȚțȐ, t = t + t 2 . ii) ǿıȤȪİȚ t t t .ǹȞĮȗȘIJȠȪȝİ IJȘ șȑıȘ IJȠȣ t : • DzıIJȦ t t t + 2t 3 t t + 2t 3t t t , ȐIJȠʌȠ, ȐȡĮ t t . ǵȝȦȢ, ĮȞ t = t tA = tB , ȐIJȠʌȠ, ȐȡĮ t t . • DzıIJȦ t t t + 2t 3 t + t 2 2t + 4t 3t + 3t 4t 3t 3t 2t t t , ʌȠȣ ȚıȤȪİȚ Įʌȩ ȣʌȩșİıȘ, ȐȡĮ t t . ȉİȜȚțȐ, t t t t , įȘȜĮįȒ ʌȡȫIJȠȢ