SlideShare a Scribd company logo
1 of 29
Download to read offline
Properties Of
Definite Integral
Properties Of
         Definite Integral
                    n 1   b
                x 
1 a
     b
         x dx  
          n

                 n  1 a
                       
Properties Of
         Definite Integral
                    n 1   b
                x 
1 a
     b
         x dx  
          n

                 n  1 a
                       
2 a kf  x dx k a f  x dx
     b                 b
                                    can only factorise constants 
Properties Of
          Definite Integral
                     n 1   b
                 x 
1 a
     b
          x dx  
           n

                  n  1 a
                        
2 a kf  x dx k a f  x dx
     b                  b
                                           can only factorise constants 

3 a  f  x   g  x dx  a f  x dx  a g  x dx
      b                         b               b
Properties Of
             Definite Integral
                        n 1     b
                    x 
1 a
     b
             x dx  
              n

                     n  1 a
                           
2 a kf  x dx k a f  x dx
     b                       b
                                             can only factorise constants 

3 a  f  x   g  x dx  a f  x dx  a g  x dx
      b                              b           b




4 a f  x dx  a f  x dx  c f  x dx
         b               c               b
5 a x n dx  0
     b
5 a x n dx  0
     b
                    , if f  x   0 for a  x  b
5 a x n dx  0
     b
                    , if f  x   0 for a  x  b
            0      , if f  x   0 for a  x  b
5 a x n dx  0
     b
                        , if f  x   0 for a  x  b
            0          , if f  x   0 for a  x  b

6 a f  x dx  a g  x dx
     b              b
5 a x n dx  0
     b
                        , if f  x   0 for a  x  b
            0          , if f  x   0 for a  x  b

6 a f  x dx  a g  x dx
     b              b
                                  , if f  x   g  x  for a  x  b
5 a x n dx  0
     b
                            , if f  x   0 for a  x  b
            0              , if f  x   0 for a  x  b

6 a f  x dx  a g  x dx
     b              b
                                      , if f  x   g  x  for a  x  b

7 a f  x dx   b f  x dx
     b                  a
5 a x n dx  0
        b
                              , if f  x   0 for a  x  b
             0               , if f  x   0 for a  x  b

6 a f  x dx  a g  x dx
        b             b
                                        , if f  x   g  x  for a  x  b

7 a f  x dx   b f  x dx
        b                 a



    a
8  f  x   0 ,       if f  x  is odd
   a
5 a x n dx  0
        b
                              , if f  x   0 for a  x  b
             0               , if f  x   0 for a  x  b

6 a f  x dx  a g  x dx
        b             b
                                        , if f  x   g  x  for a  x  b

7 a f  x dx   b f  x dx
        b                 a



    a
8  f  x   0 ,       if f  x  is odd
   a
    a             a
9  f  x   2 f  x  ,        if f  x  is even
   a             0
5 a x n dx  0
        b
                              , if f  x   0 for a  x  b
             0               , if f  x   0 for a  x  b

6 a f  x dx  a g  x dx
        b             b
                                        , if f  x   g  x  for a  x  b

7 a f  x dx   b f  x dx
        b                 a



    a
8  f  x   0 ,       if f  x  is odd                 NOTE :
   a
    a             a                                         odd  odd  even
9  f  x   2 f  x  ,        if f  x  is even      odd  even  odd
   a
                                                            even  even  even
                  0
2
e.g. (i)  6 x 2 dx
         1
2                      2
e.g. (i)  6 x 2 dx      1 x 3 
                       6
         1                3 1 
2                       2
e.g. (i)  6 x 2 dx      1 x 3 
                       6
         1                3 1 
                       223  13 
                       14
2                       2
e.g. (i)  6 x 2 dx      1 x 3 
                       6
         1                3 1 
                       223  13 
                       14
         5
    ii   3 xdx
         0
2                       2
e.g. (i)  6 x 2 dx      1 x 3 
                       6
         1                3 1 
                       223  13 
                       14
         5            5   1
    ii   3 xdx   x dx3

         0            0
2                             2
e.g. (i)  6 x 2 dx       1 x 3 
                        6
         1                 3 1 
                        223  13 
                        14
         5             5   1
    ii   3 xdx   x dx 3

         0             0
                                   5
                       3 
                               4
                       x    3
                       4  0
2                             2
e.g. (i)  6 x 2 dx       1 x 3 
                        6
         1                 3 1 
                        223  13 
                        14
         5             5   1
    ii   3 xdx   x dx 3

         0             0
                                   5
                       3 
                               4
                       x    3
                       4  0

                       x x 0
                       3 3 5
                       4
2                              2
e.g. (i)  6 x 2 dx       1 x 3 
                        6
         1                 3 1 
                        223  13 
                        14
         5              5   1
    ii   3 xdx   x dx  3

         0              0
                                    5
                        3 
                                4
                       x     3
                        4  0

                       x x 0
                        3 3 5
                        4
                       5 5  0 
                        3 3
                        4
                        153 5
                      
                          4
2
iii   sin 5 xdx
     2
2
iii   sin 5 xdx  0   odd function 5  odd function
    2
2
iii   sin 5 xdx  0           odd function 5  odd function
        2

    1
iv  x 3  2 x 2  x  1dx
    1
2
iii   sin 5 xdx  0          odd function 5  odd function
        2

    1                             1
iv  x 3  2 x 2  x  1dx  2 2 x 2  1dx
    1                            0
2
iii   sin 5 xdx  0          odd function 5  odd function
        2

    1                             1
iv  x 3  2 x 2  x  1dx  2 2 x 2  1dx
    1                            0
                                              1

                               2 x 3  x
                                   2
                                 3
                                         0
                                          
2
iii   sin 5 xdx  0          odd function 5  odd function
        2

    1                             1
iv  x 3  2 x 2  x  1dx  2 2 x 2  1dx
    1                            0
                                              1

                              2 x 3  x
                                    2
                                  3
                                        0
                                         
                              2 1  1  0
                                   2 3
                                        
                                 3      
                               10
                             
                                3
2
iii   sin 5 xdx  0          odd function 5  odd function
        2

    1                             1
iv  x 3  2 x 2  x  1dx  2 2 x 2  1dx
    1                            0
                                              1

                              2 x 3  x
                                    2
                                  3
                                        0
                                         
                              2 1  1  0
                                   2 3
                                        
                                 3      
                               10
                             
                                3


    Exercise 11C; 1bce, 2adf, 3ab (i, iii), 4bcf, 5, 6ac, 7df, 8b,
                            12b, 13*

More Related Content

Similar to 11X1 T16 02 definite integral (2011)

11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)Nigel Simmons
 
X2 T01 08 factoring complex expressions
X2 T01 08 factoring complex expressionsX2 T01 08 factoring complex expressions
X2 T01 08 factoring complex expressionsNigel Simmons
 
Day 6 review jeopardy
Day 6   review jeopardyDay 6   review jeopardy
Day 6 review jeopardylgemgnani
 
Pc12 sol c04_4-1
Pc12 sol c04_4-1Pc12 sol c04_4-1
Pc12 sol c04_4-1Garden City
 
11X1 T09 07 primitive functions
11X1 T09 07 primitive functions11X1 T09 07 primitive functions
11X1 T09 07 primitive functionsNigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
Pc12 sol c04_ptest
Pc12 sol c04_ptestPc12 sol c04_ptest
Pc12 sol c04_ptestGarden City
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)Nigel Simmons
 
X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)Nigel Simmons
 
X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)Nigel Simmons
 
Mathematics presentation trigonometry and circle
Mathematics presentation   trigonometry and circleMathematics presentation   trigonometry and circle
Mathematics presentation trigonometry and circleDewi Setiyani Putri
 
VIT - Mathematics -2010 Unsolved Paper
VIT - Mathematics -2010 Unsolved PaperVIT - Mathematics -2010 Unsolved Paper
VIT - Mathematics -2010 Unsolved PaperVasista Vinuthan
 
11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)Nigel Simmons
 
Pc12 sol c04_review
Pc12 sol c04_reviewPc12 sol c04_review
Pc12 sol c04_reviewGarden City
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)Nigel Simmons
 

Similar to 11X1 T16 02 definite integral (2011) (20)

11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)X2 T01 08 factorising complex expressions (2010)
X2 T01 08 factorising complex expressions (2010)
 
X2 T01 08 factoring complex expressions
X2 T01 08 factoring complex expressionsX2 T01 08 factoring complex expressions
X2 T01 08 factoring complex expressions
 
Day 6 review jeopardy
Day 6   review jeopardyDay 6   review jeopardy
Day 6 review jeopardy
 
Q2
Q2Q2
Q2
 
Pc12 sol c04_4-1
Pc12 sol c04_4-1Pc12 sol c04_4-1
Pc12 sol c04_4-1
 
11X1 T09 07 primitive functions
11X1 T09 07 primitive functions11X1 T09 07 primitive functions
11X1 T09 07 primitive functions
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
Pc12 sol c04_ptest
Pc12 sol c04_ptestPc12 sol c04_ptest
Pc12 sol c04_ptest
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
 
X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)X2 T01 08 factorising complex expressions (2011)
X2 T01 08 factorising complex expressions (2011)
 
X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)X2 t01 08 factorising complex expressions (2012)
X2 t01 08 factorising complex expressions (2012)
 
Mathematics presentation trigonometry and circle
Mathematics presentation   trigonometry and circleMathematics presentation   trigonometry and circle
Mathematics presentation trigonometry and circle
 
VIT - Mathematics -2010 Unsolved Paper
VIT - Mathematics -2010 Unsolved PaperVIT - Mathematics -2010 Unsolved Paper
VIT - Mathematics -2010 Unsolved Paper
 
Pc12 sol c04_cp
Pc12 sol c04_cpPc12 sol c04_cp
Pc12 sol c04_cp
 
Pc12 sol c04_cp
Pc12 sol c04_cpPc12 sol c04_cp
Pc12 sol c04_cp
 
11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)
 
Pc12 sol c04_review
Pc12 sol c04_reviewPc12 sol c04_review
Pc12 sol c04_review
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 

Recently uploaded

Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 

Recently uploaded (20)

Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 

11X1 T16 02 definite integral (2011)

  • 2. Properties Of Definite Integral n 1 b x  1 a b x dx   n  n  1 a 
  • 3. Properties Of Definite Integral n 1 b x  1 a b x dx   n  n  1 a  2 a kf  x dx k a f  x dx b b can only factorise constants 
  • 4. Properties Of Definite Integral n 1 b x  1 a b x dx   n  n  1 a  2 a kf  x dx k a f  x dx b b can only factorise constants  3 a  f  x   g  x dx  a f  x dx  a g  x dx b b b
  • 5. Properties Of Definite Integral n 1 b x  1 a b x dx   n  n  1 a  2 a kf  x dx k a f  x dx b b can only factorise constants  3 a  f  x   g  x dx  a f  x dx  a g  x dx b b b 4 a f  x dx  a f  x dx  c f  x dx b c b
  • 6. 5 a x n dx  0 b
  • 7. 5 a x n dx  0 b , if f  x   0 for a  x  b
  • 8. 5 a x n dx  0 b , if f  x   0 for a  x  b 0 , if f  x   0 for a  x  b
  • 9. 5 a x n dx  0 b , if f  x   0 for a  x  b 0 , if f  x   0 for a  x  b 6 a f  x dx  a g  x dx b b
  • 10. 5 a x n dx  0 b , if f  x   0 for a  x  b 0 , if f  x   0 for a  x  b 6 a f  x dx  a g  x dx b b , if f  x   g  x  for a  x  b
  • 11. 5 a x n dx  0 b , if f  x   0 for a  x  b 0 , if f  x   0 for a  x  b 6 a f  x dx  a g  x dx b b , if f  x   g  x  for a  x  b 7 a f  x dx   b f  x dx b a
  • 12. 5 a x n dx  0 b , if f  x   0 for a  x  b 0 , if f  x   0 for a  x  b 6 a f  x dx  a g  x dx b b , if f  x   g  x  for a  x  b 7 a f  x dx   b f  x dx b a a 8  f  x   0 , if f  x  is odd a
  • 13. 5 a x n dx  0 b , if f  x   0 for a  x  b 0 , if f  x   0 for a  x  b 6 a f  x dx  a g  x dx b b , if f  x   g  x  for a  x  b 7 a f  x dx   b f  x dx b a a 8  f  x   0 , if f  x  is odd a a a 9  f  x   2 f  x  , if f  x  is even a 0
  • 14. 5 a x n dx  0 b , if f  x   0 for a  x  b 0 , if f  x   0 for a  x  b 6 a f  x dx  a g  x dx b b , if f  x   g  x  for a  x  b 7 a f  x dx   b f  x dx b a a 8  f  x   0 , if f  x  is odd NOTE : a a a odd  odd  even 9  f  x   2 f  x  , if f  x  is even odd  even  odd a even  even  even 0
  • 15. 2 e.g. (i)  6 x 2 dx 1
  • 16. 2 2 e.g. (i)  6 x 2 dx 1 x 3   6 1  3 1 
  • 17. 2 2 e.g. (i)  6 x 2 dx 1 x 3   6 1  3 1   223  13   14
  • 18. 2 2 e.g. (i)  6 x 2 dx 1 x 3   6 1  3 1   223  13   14 5 ii   3 xdx 0
  • 19. 2 2 e.g. (i)  6 x 2 dx 1 x 3   6 1  3 1   223  13   14 5 5 1 ii   3 xdx   x dx3 0 0
  • 20. 2 2 e.g. (i)  6 x 2 dx 1 x 3   6 1  3 1   223  13   14 5 5 1 ii   3 xdx   x dx 3 0 0 5 3  4  x  3 4  0
  • 21. 2 2 e.g. (i)  6 x 2 dx 1 x 3   6 1  3 1   223  13   14 5 5 1 ii   3 xdx   x dx 3 0 0 5 3  4  x  3 4  0  x x 0 3 3 5 4
  • 22. 2 2 e.g. (i)  6 x 2 dx 1 x 3   6 1  3 1   223  13   14 5 5 1 ii   3 xdx   x dx 3 0 0 5 3  4  x  3 4  0  x x 0 3 3 5 4  5 5  0  3 3 4 153 5  4
  • 23. 2 iii   sin 5 xdx 2
  • 24. 2 iii   sin 5 xdx  0 odd function 5  odd function 2
  • 25. 2 iii   sin 5 xdx  0 odd function 5  odd function 2 1 iv  x 3  2 x 2  x  1dx 1
  • 26. 2 iii   sin 5 xdx  0 odd function 5  odd function 2 1 1 iv  x 3  2 x 2  x  1dx  2 2 x 2  1dx 1 0
  • 27. 2 iii   sin 5 xdx  0 odd function 5  odd function 2 1 1 iv  x 3  2 x 2  x  1dx  2 2 x 2  1dx 1 0 1  2 x 3  x 2 3  0 
  • 28. 2 iii   sin 5 xdx  0 odd function 5  odd function 2 1 1 iv  x 3  2 x 2  x  1dx  2 2 x 2  1dx 1 0 1  2 x 3  x 2 3  0   2 1  1  0 2 3   3  10  3
  • 29. 2 iii   sin 5 xdx  0 odd function 5  odd function 2 1 1 iv  x 3  2 x 2  x  1dx  2 2 x 2  1dx 1 0 1  2 x 3  x 2 3  0   2 1  1  0 2 3   3  10  3 Exercise 11C; 1bce, 2adf, 3ab (i, iii), 4bcf, 5, 6ac, 7df, 8b, 12b, 13*