This document discusses clustering of uncertain data objects. It first provides background on clustering uncertain data and challenges involved. It then reviews various existing approaches for clustering uncertain data, including using soft classifiers and probabilistic databases. The document proposes combining k-means clustering with Voronoi diagrams and indexing techniques to improve the performance and efficiency of clustering uncertain datasets. It outlines a plan to integrate k-means with Voronoi diagrams and indexing to reduce execution time and increase clustering performance and results for uncertain data. Finally, it concludes that combining clustering with indexing approaches can better handle uncertain data clustering challenges.