SlideShare a Scribd company logo
General  Solutions  for  Unsymmetrical  Bending  of  Beams  with  Arbitrary  Cross  Sections  
                                                                                                                 y

                                                                                                   M                 My
                                                                 y
                                                                                                       dA
                                                                                                             z
                                                                                                                     θ
                                                                                               α        yθ
                                                          z                            x   z
                                                                                                       Mz
                                                          P
                                                                                               P
                                       Figure 1 A Beam with An Arbitrary Cross Section
Consider  a  cantilever  beam  subjected  to  an  end  force  P  acting  in  the  plane  inclined  at  an  angle   θ   to  the  y-­‐‑
axis  as  shown.    The  bending  moment  M,  produced  by  the  force  P,  is  oriented  in  the  direction  making  an  
angle   θ   to  the  z-­‐‑axis  as  shown.    The  components  of  M  in  the  y  and  z-­‐‑directions,  denoted  by   M y   and   M z ,  
respectively,  are  given  by  
                                                My = M sinθ          Mz = M cosθ                                                    (a)  
Consider  the  special  case  where   θ = 90 .    From  (a)  we  have My = M   and   Mz = 0 ,  then  the  beam  would  
                                                      


deflect  in  the  xz  plane,  and  the  neutral  axis  would  coincide  with  the  y-­‐‑aixs.    With  the  “cross  sections  
remain  plane”  assumption,  we  have  
                                                                  z
                                                     ε x = κ z z =                                                             (b)  
                                                                         ρz
where   κ z   and   ρ z   are  the  curvature  and  radius  of  curvature,  respectively,  of  the  beam  in  the  xz  plane.    On  
the  other  hand,  if   θ = 0 ,  then   Mz = M   and   My = 0 ,  the  beam  would  deflect  in  the  xy  plane  and  the  
neutral  axis  would  coincide  with  the  z-­‐‑aixs.    Again,  with  the  “cross  sections  remain  plane”  assumption,  
we  have  
                                                                              y
                                                          ε x = −κ y y = −                                                          (c)  
                                                                             ρy
where   κ y   and   ρ y   are  the  curvature  and  radius  of  curvature,  respectively,  of  the  beam  in  the  yz  plane.    It  
is  noted  that  the  negative  sign  in  (c)  indicates  that  a  line  element  located  above  the  z-­‐‑axis  would  be  under  
compression  when  a  positive   M z   is  applied.  
Now  consider  the  general  cases  in  which  the  value  of  angle   θ is  arbitrary.    Since  the  “cross  sections  
remain  plane”  assumption  is  still  valid,  we  can  express  the  strain  in  the  x  direction  in  the  following  linear  
equation  in  y  and  z:  
                                                ε x = aʹ′ + bʹ′y + cʹ′z                                                    (d)  
where   aʹ′ ,   bʹ′ ,  and   cʹ′   are  constants.    The  stress  is  then  given  by  
                                                        σ x = Eε x = a + by + cz                                                    (e)  
where   E   is  the  Young’s  modulus  and   a = Eaʹ′ ,   b = Ebʹ′ ,  and   c = Ec ʹ′ .    For  a  beam  subjected  to  pure  
bending,  the  stress  resultant  over  the  cross  section  must  vanish,  i.e.,  
                                            ∫ σ x dA = a ∫ dA + b∫ ydA + c ∫ zdA = 0                                                (f)  
If  the  origin  of  the  coordinate  system  coincides  with  the  centroid  of  the  cross  section,  then

                                                y=
                                                      ∫ ydA = 0,      z=
                                                                             ∫ zdA = 0   
                                                       ∫ dA                   ∫ dA

                                                                         1
Consequently,   a = 0   and  (e)  becomes  
                                                           σ x = by + cz                                                          (g)  
The  resultant  moments  on  the  cross  section  are  given  by  
                                      M y = ∫ σ x zdA = b ∫ yzdA + c ∫ z 2 dA = bI yz + cI y                                      (h)  
                                   M z = − ∫ σ x ydA = −b ∫ y 2 dA − c ∫ yzdA = −bI z − cI yz                                      (i)  
where  
                                         I y = ∫ z 2 dA , I z = ∫ y 2 dA , I yz = ∫ yzdA   
are  the  moments  of  inertia  of  the  cross  section.    Solving  (h)  and  (i)  simultaneously  yields  
                                           M z I y + M y I yz      M y I z + M z I yz
                                     b=−                 2
                                                              , c=                 2
                                                                                                                                   (j)  
                                             I y I z − I yz            I y I z − I yz
Substituting  (j)  into  (g)  gives  
                                                  M z I y + M y I yz           M y I z + M z I yz
                                         σx = −                 2
                                                                        y+                    2
                                                                                                    z                             (k)  
                                                     IyIz − I   yz                I y I z − I yz
The  neutral  axis,  by  definition,  is  the  line  along  which  stress  vanishes.    Thus,  by  setting   σ x = 0   in  (k),  we  
have  
                                         y M y I z + M z I yz I yz + I z tan θ I z + I yz cot θ
                              tan α =     =                  =                =                                                    (l)  
                                         z M z I y + M y I yz I y + I yz tan θ I yz + I y cot θ
in  which   α (see  Fig.  1)  is  the  angle  measured  clockwise  from  the  z-­‐‑axis  to  the  neutral  axis,  and    
                                                       My                  M
                                               tan θ =    ,    or    cotθ = z                                                    (m)  
                                                       Mz                  My
Combining  (k)  and  (m)  and  eliminating   M y ,  we  obtain  the  following  simplified  equation  in  terms  of   M z   
and  angle   α   for  calculating  the  stresses:  
                                                             Mz (y − z tanα )
                                                    σx = −                                                                        (n)  
                                                              I z − I yz tan α
If  the  y-­‐‑  and  z-­‐‑axes  coincide  with  the  principal  axes,  then   I yz = 0   and  (l)  reduces  to    
                                                                       Iz
                                                        tan α =           tan θ   
                                                                       Iy
which  is  the  same  as  (6-­‐‑19)  in  the  textbook.    Furthermore,  if   θ = 0   (i.e.,   Mz = M   and   My = 0 ),  then   α = 0   
and  (n)  becomes  
                                                                        Mz y
                                                           σx = −              
                                                                         Iz
  
Example:  
A  5.0  m  long  simply-­‐‑supported  beam  is  subjected  to  a  force   P = 4  kN   at  a  point  that  is  2.0  m  away  from  
the  far  end,  as  shown  in  the  figure.    The  dimensions  of  the  L-­‐‑shaped  cross  section  are  shown  in  the  figure.    
If  the  force  P  is  applied  in  an  inclined  plane  making  a  10°  angle  with  the  y-­‐‑axis,  determine  the  locations  
and  magnitudes  of  the  maximum  tensile  and  compressive  stresses  in  the  beam.    
Solution:  
(a) Locate  the  centroid  of  the  cross  section  (in  terms  of  distances   y 0   and   z0   measured  from  point  A):  
                                           (120 × 10)(60) + (70 × 10)(5 )
                                      y0 =                                = 39.74  mm
                                              (120 × 10) + (70 × 10)
                                                                                        
                                           (120 × 10)(5) + (70 × 10)(45)
                                      z0 =                                = 19.74  mm
                                              (120 × 10) + (70 × 10)

                                                                           2
P            y
                                                                                             10



                                                                                                  B


                                                                                                          10  mm



                      2  m     P                                               120  mm


                                                                               α
                                                                          z         M
                                                                              10
                                                                                                                   10  mm
                                            3  m                                                            y0


                                                                                     A
                                                                                             z0
                                                                                                          80  mm
                     Figure 2 Umsymmetric Bending of A Simply-Supported Beam
(b) Determine  the  moments  of  inertia:  
                 (120)(10)3                               (10)(70)3
          Iy =                + (120)(10)(19.74 − 5)2 +           + (10)(70)(45 − 19.74 )2 = 1.003 × 106   mm 4   
                     12                                    12
                 (10)(120)3                              (70)(10)3
          Iz =              + (10)(120)(60 − 39.74 )2 +            + (70)(10)(39.74 − 5)2 = 2.783 × 106   mm 4   
                     12                                     12
            I yz = (10)(1120)(60 − 39.74 )(19.74 − 5) + (70)(10)(5 − 39.74)(19.74 − 45) = 0.973 × 106   mm 4   
(c) Determine  the  neutral  axis:  
    Since   θ = −10   (i.e.,  positive   θ   measured  clockwise  from  the  z  axis),  we  have,  from  (l),    
                                     I yz + I z tan θ 0.973 × 10 6 + 2.783 × 10 6 × tan − 10(        )
                          tan α =                    =                                        = 0.580   
                                     I y + I yz tan θ 1.003 × 10 6 + 0.973 × 10 6 × tan − 10(        )
    The  neutral  axis  thus  is  oriented  at  the  angle  
                                      α = tan−1 (0.580) = 0.526  rad = 30.12   
(d) Determine  the  maximum  stresses  in  the  beam:  
    The  maximum  bending  moment  along  the  beam  occurs  at  the  point  where  the  load  P  is  applied,  i.e.,  
                                  Pab (4.0 )(2.0)(3.0)
                        Mmax =           =                     = 4.8  kN ⋅ m = 4.8 × 106   N ⋅ mm   
                                    L             5.0
    where   L = 5.0  m ,   a = 2.0  m ,  and   b = 3.0  m .    The  y  and  z  components  of  this  moment  are  
                                     My = Mmax sin θ = −0.834 × 106   N ⋅ mm   
                                         Mz = Mmax cos θ = 4.727 × 106   N ⋅ mm   
     From  Fig.2  it  is  easy  to  see  that  the  two  locations  denoted  by  A  and  B  are  the  farthest  from  the  neutral  
     axis,  hence  would  experience  the  highest  tensile  or  compressive  stresses.    The  y  and  z  coordinates  of  
     those  two  points  are   A(−39.74 ,  19.74 )   and   B(80.26 ,  9.74 ) ,  respectively.    The  maximum  tensile  stress,  
     occurs  at  point  A,  is  given  by  




                                                                      3
M z (y − z tan α )
                                 σx = −
                                             I z − I yz tan α

                                      =−
                                            (4.727 × 10 )[− 39.74 − (19.74)tan(30.12 )]  
                                                           6                                         


                                               2.783 × 10 − (0.973 × 10 )tan(30.12 )
                                                               6                      6          


                                                N
                                      = 109.0 × 106   
                                                     = 109.0  MPa
                                              mm 2
     The  maximum  compressive  stress,  occurs  at  point  B,  is  given  by  
                                  M (y − z tan α )
                          σx = − z
                                    I z − I yz tan α

                                          =−
                                               (4.727 × 10 )[80.26 − (9.74)tan(30.12 )]   
                                                               6                                 


                                                2.783 × 10 − (0.973 × 10 )tan(30.12 )
                                                               6                      6          


                                                         N
                                          = −159.0 × 106      = −159.0  MPa
                                                        mm 2
(e) Solve  the  same  problem  by  using  the  method  outlined  in  Section  6-­‐‑5  of  the  textbook:  
    The  principal  axes  are  denoted  as  Y  and  Z,  respectively,  in  Fig.3.    The  directions  of  the  principal  axes  
    and  the  principal  moments  of  inertia  of  the  cross  section  can  be  obtained  by  using  (A-­‐‑11)  and  (A-­‐‑12)  
    in  the  textbook.    Let   β   be  the  angle  between  the  principal  axis  and  y-­‐‑axis  (see  Fig.2),  then  from  (A-­‐‑11)  
                                                      2 I yz                 2(0.973 × 106 )
                        tan 2θ p = tan 2 β = −                     =−                               = 1.093   
                                                     Iy − Iz            1.003 × 10 6 − 2.783 × 10 6
     and  
                                              1
                                                   β = tan −1 (1.093) = 23.8   
                                              2
     The  principal  moments  of  inertia  can  be  obtained  by  substituting  the  value  of   β   in  (A-­‐‑10),  or  using  
     (A-­‐‑12):  
                                                                    P                 y
                                                     Y
                                                                              10



                                                                                  B

                                                                          β
                                                                                            π
                                                                                                 −β
                                                                                             2




                                           ψ          α
                                  z                                M
                                                    10
                                               β


                                      Z
                                                                    A

                                          Figure 3 Neutral Axis and Principal Axes




                                                                              4
2
                          Iy + Iz     ⎛ I y − I z ⎞ 2          6    4                     6    4
            I max,min =               ⎜ 2 ⎟ + I yz = 3.212 × 10   mm ,          0.574 × 10   mm ,   
                                    ± ⎜           ⎟
                            2         ⎝           ⎠
Thus,  
                                IY = 0.574 × 106   mm 4      I Z = 3.212 × 106   mm 4   
The  components  of  M  in  the  Y  and  Z  directions,  respectively,  are  now  given  by  
                                    MY = M sin(β − 10 ) = 1.143 × 106   N ⋅ mm
                                                                                       
                                    MZ = M cos(β − 10 ) = 4.662 × 106   N ⋅ mm
The  angle   ψ ,  which  determines  the  orientation  of  neutral  axis  and  is  measured  clockwise  from  the  Z-­‐‑
axis  as  shown  in  Fig.3,  is  given  by  
                                        Y M I    I
                                                                   (
                              tan ψ = = Y Z = Z tan β − 10 = 1.374   
                                        Z MZ I Y I Y
                                                                              )
from  which  
                                             ψ = tan −1 (1.374 ) = 53.9   
It  can  be  seen  from  Fig.3  that  
                                                 α = ψ − β = 30.1   
which  matches  the  value  obtained  previously.    With  respect  to  the  principal  axes,  the  stresses  are  
given  by  
                                            M Z M Y
                                       σ x = Y − Z   
                                             IY        IZ
At  point  A,  the  coordinates  are  
                                YA = y A cos β + z A sin β = −28.4  mm
                                                                           
                                Z A = − y A sin β + z A cos β = 34.1  mm
and  the  stress  is  given  by  
                   MY Z MZY (1.143 × 10 3 )(34.1) (4.662 × 10 3 )(− 28.4 )
            σx =          −       =                      −                      = 109.0  MPa   
                     IY       IZ        0.574 × 106             3.212 × 106
At  point  B,  the  coordinates  are  
                                  YB = y B cos β + zB sin β = 77.4  mm
                                                                              
                                  ZB = − y B sin β + zB cos β = −23.5  mm
and  the  stress  is  given  by  
                  M Z M Y (1.143 × 10 3 )(− 23.5 ) (4.662 × 10 3 )(77.4 )
           σx = Y − Z =                                   −                    = −159.0  MPa   
                    IY       IZ          0.574 × 106            3.212 × 106




                                                               5

More Related Content

What's hot

Stress at a point
Stress at a point Stress at a point
Stress at a point Usman
 
75 سؤال فى الكود المصري لتصميم وتنفيذ المنشآت الخرسانية اصدار 2018
75 سؤال فى الكود المصري لتصميم وتنفيذ المنشآت الخرسانية اصدار 201875 سؤال فى الكود المصري لتصميم وتنفيذ المنشآت الخرسانية اصدار 2018
75 سؤال فى الكود المصري لتصميم وتنفيذ المنشآت الخرسانية اصدار 2018
Karim Gaber
 
Lec3 principle virtual_work_method
Lec3 principle virtual_work_methodLec3 principle virtual_work_method
Lec3 principle virtual_work_method
Mahdi Damghani
 
شرح برنامج البروكون
شرح برنامج البروكونشرح برنامج البروكون
شرح برنامج البروكون
Bahzad5
 
Deflection
DeflectionDeflection
Deflection
Shivendra Nandan
 
Principale of super position and maxwell reciprocal therom
Principale of super position and maxwell reciprocal therom Principale of super position and maxwell reciprocal therom
Principale of super position and maxwell reciprocal therom
KEVINMISTRY8
 
Shear Force and Bending Moment Diagram
Shear Force and Bending Moment DiagramShear Force and Bending Moment Diagram
Shear Force and Bending Moment Diagram
Amos David
 
7 stress transformations
7 stress transformations7 stress transformations
7 stress transformationsMohamed Yaser
 
Single degree freedom free vibration
Single degree freedom free vibrationSingle degree freedom free vibration
Single degree freedom free vibration
Dr.Vikas Deulgaonkar
 
Bending stresses in beams
Bending stresses in beamsBending stresses in beams
Bending stresses in beams
Dr. Bhimsen Soragaon
 
Centroids moments of inertia
Centroids moments of inertiaCentroids moments of inertia
Centroids moments of inertiacoolzero2012
 
Chapter 20
Chapter 20Chapter 20
Chapter 20
LK Education
 
Equilibrium & equation of equilibrium in 3D
Equilibrium & equation of equilibrium in 3DEquilibrium & equation of equilibrium in 3D
Equilibrium & equation of equilibrium in 3Dimoinul007
 
Nonlinear Beam theory
Nonlinear Beam theoryNonlinear Beam theory
Nonlinear Beam theory
Robin Jain
 
L 2 degree of redundancy of plane truss
L 2 degree of redundancy of plane trussL 2 degree of redundancy of plane truss
L 2 degree of redundancy of plane truss
Dr. OmPrakash
 
shear centre
shear centreshear centre
shear centre
Venkatesh Ca
 
FEM of Beams.pptx
FEM of Beams.pptxFEM of Beams.pptx
FEM of Beams.pptx
wondimu8
 
Moment of Inertia
Moment of InertiaMoment of Inertia
Moment of Inertia
Devraj152002
 

What's hot (20)

Stress at a point
Stress at a point Stress at a point
Stress at a point
 
75 سؤال فى الكود المصري لتصميم وتنفيذ المنشآت الخرسانية اصدار 2018
75 سؤال فى الكود المصري لتصميم وتنفيذ المنشآت الخرسانية اصدار 201875 سؤال فى الكود المصري لتصميم وتنفيذ المنشآت الخرسانية اصدار 2018
75 سؤال فى الكود المصري لتصميم وتنفيذ المنشآت الخرسانية اصدار 2018
 
Lec3 principle virtual_work_method
Lec3 principle virtual_work_methodLec3 principle virtual_work_method
Lec3 principle virtual_work_method
 
شرح برنامج البروكون
شرح برنامج البروكونشرح برنامج البروكون
شرح برنامج البروكون
 
Deflection
DeflectionDeflection
Deflection
 
Principale of super position and maxwell reciprocal therom
Principale of super position and maxwell reciprocal therom Principale of super position and maxwell reciprocal therom
Principale of super position and maxwell reciprocal therom
 
Shear Force and Bending Moment Diagram
Shear Force and Bending Moment DiagramShear Force and Bending Moment Diagram
Shear Force and Bending Moment Diagram
 
Friction
FrictionFriction
Friction
 
7 stress transformations
7 stress transformations7 stress transformations
7 stress transformations
 
Single degree freedom free vibration
Single degree freedom free vibrationSingle degree freedom free vibration
Single degree freedom free vibration
 
Bending stresses in beams
Bending stresses in beamsBending stresses in beams
Bending stresses in beams
 
Centroids moments of inertia
Centroids moments of inertiaCentroids moments of inertia
Centroids moments of inertia
 
Chapter 20
Chapter 20Chapter 20
Chapter 20
 
Equilibrium & equation of equilibrium in 3D
Equilibrium & equation of equilibrium in 3DEquilibrium & equation of equilibrium in 3D
Equilibrium & equation of equilibrium in 3D
 
Nonlinear Beam theory
Nonlinear Beam theoryNonlinear Beam theory
Nonlinear Beam theory
 
L 2 degree of redundancy of plane truss
L 2 degree of redundancy of plane trussL 2 degree of redundancy of plane truss
L 2 degree of redundancy of plane truss
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
shear centre
shear centreshear centre
shear centre
 
FEM of Beams.pptx
FEM of Beams.pptxFEM of Beams.pptx
FEM of Beams.pptx
 
Moment of Inertia
Moment of InertiaMoment of Inertia
Moment of Inertia
 

Similar to Unsymmetrical bending

Beam theory
Beam theoryBeam theory
Beam theory
bissla19
 
Lecture 02
Lecture 02Lecture 02
Lecture 02
Lucian Nicolau
 
Engg. mathematics iii
Engg. mathematics iiiEngg. mathematics iii
Engg. mathematics iii
manoj302009
 
Unit1
Unit1Unit1
12 quadric surfaces
12 quadric surfaces12 quadric surfaces
12 quadric surfacesmath267
 
C Sanchez Reduction Saetas
C Sanchez Reduction SaetasC Sanchez Reduction Saetas
C Sanchez Reduction SaetasMiguel Morales
 
A. Micu - Tests of Heterotic – F-Theory Duality with Fluxes
A. Micu - Tests of Heterotic – F-Theory Duality with FluxesA. Micu - Tests of Heterotic – F-Theory Duality with Fluxes
A. Micu - Tests of Heterotic – F-Theory Duality with Fluxes
SEENET-MTP
 
Moh'r circle2
Moh'r circle2Moh'r circle2
Moh'r circle2
Sagar Aglawe
 
Figures
FiguresFigures
Figures
Drradz Maths
 
TRACING OF CURVE (CARTESIAN AND POLAR)
TRACING OF CURVE (CARTESIAN AND POLAR)TRACING OF CURVE (CARTESIAN AND POLAR)
TRACING OF CURVE (CARTESIAN AND POLAR)
Smit Shah
 
21 lagrange multipliers
21 lagrange multipliers21 lagrange multipliers
21 lagrange multipliersmath267
 
Complex numbers org.ppt
Complex numbers org.pptComplex numbers org.ppt
Complex numbers org.pptOsama Tahir
 
Cg
CgCg
002 equation of_a_line
002 equation of_a_line002 equation of_a_line
002 equation of_a_linephysics101
 
ComplexNumber.ppt
ComplexNumber.pptComplexNumber.ppt
ComplexNumber.ppt
SanjayShuklaITMU
 
Sheet1 simplified
Sheet1 simplifiedSheet1 simplified
Sheet1 simplified
marwan a
 

Similar to Unsymmetrical bending (20)

Beam theory
Beam theoryBeam theory
Beam theory
 
Lecture 02
Lecture 02Lecture 02
Lecture 02
 
Engg. mathematics iii
Engg. mathematics iiiEngg. mathematics iii
Engg. mathematics iii
 
Em03 t
Em03 tEm03 t
Em03 t
 
Unit1
Unit1Unit1
Unit1
 
12 quadric surfaces
12 quadric surfaces12 quadric surfaces
12 quadric surfaces
 
C Sanchez Reduction Saetas
C Sanchez Reduction SaetasC Sanchez Reduction Saetas
C Sanchez Reduction Saetas
 
A. Micu - Tests of Heterotic – F-Theory Duality with Fluxes
A. Micu - Tests of Heterotic – F-Theory Duality with FluxesA. Micu - Tests of Heterotic – F-Theory Duality with Fluxes
A. Micu - Tests of Heterotic – F-Theory Duality with Fluxes
 
Day 04
Day 04Day 04
Day 04
 
Moh'r circle2
Moh'r circle2Moh'r circle2
Moh'r circle2
 
Figures
FiguresFigures
Figures
 
TRACING OF CURVE (CARTESIAN AND POLAR)
TRACING OF CURVE (CARTESIAN AND POLAR)TRACING OF CURVE (CARTESIAN AND POLAR)
TRACING OF CURVE (CARTESIAN AND POLAR)
 
Normal
NormalNormal
Normal
 
21 lagrange multipliers
21 lagrange multipliers21 lagrange multipliers
21 lagrange multipliers
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
Complex numbers org.ppt
Complex numbers org.pptComplex numbers org.ppt
Complex numbers org.ppt
 
Cg
CgCg
Cg
 
002 equation of_a_line
002 equation of_a_line002 equation of_a_line
002 equation of_a_line
 
ComplexNumber.ppt
ComplexNumber.pptComplexNumber.ppt
ComplexNumber.ppt
 
Sheet1 simplified
Sheet1 simplifiedSheet1 simplified
Sheet1 simplified
 

Recently uploaded

ÔN TẬP CỤM THÀNH NGỮ TIẾNG ANH CỰC HAY.docx
ÔN TẬP CỤM THÀNH NGỮ TIẾNG ANH CỰC HAY.docxÔN TẬP CỤM THÀNH NGỮ TIẾNG ANH CỰC HAY.docx
ÔN TẬP CỤM THÀNH NGỮ TIẾNG ANH CỰC HAY.docx
ngochaavk33a
 
SOCIOLOGY PPT. SOCIAL SECURITY POWER POINT
SOCIOLOGY PPT. SOCIAL SECURITY POWER POINTSOCIOLOGY PPT. SOCIAL SECURITY POWER POINT
SOCIOLOGY PPT. SOCIAL SECURITY POWER POINT
ssuser8d5e2d1
 
Collocation thường gặp trong đề thi THPT Quốc gia.pdf
Collocation thường gặp trong đề thi THPT Quốc gia.pdfCollocation thường gặp trong đề thi THPT Quốc gia.pdf
Collocation thường gặp trong đề thi THPT Quốc gia.pdf
ngochaavk33a
 
Ethical_dilemmas_MDI_Gurgaon-Business Ethics Case 1.pptx
Ethical_dilemmas_MDI_Gurgaon-Business Ethics Case 1.pptxEthical_dilemmas_MDI_Gurgaon-Business Ethics Case 1.pptx
Ethical_dilemmas_MDI_Gurgaon-Business Ethics Case 1.pptx
TANMAYJAIN511570
 
CHUYÊN ĐỀ READING ÔN THI HSG THPT HAY.docx
CHUYÊN ĐỀ READING ÔN THI HSG THPT HAY.docxCHUYÊN ĐỀ READING ÔN THI HSG THPT HAY.docx
CHUYÊN ĐỀ READING ÔN THI HSG THPT HAY.docx
ngochaavk33a
 
UNIVERSAL HUMAN VALUES- Harmony in the Nature
UNIVERSAL HUMAN VALUES- Harmony in the NatureUNIVERSAL HUMAN VALUES- Harmony in the Nature
UNIVERSAL HUMAN VALUES- Harmony in the Nature
Chandrakant Divate
 
Program Your Destiny eBook - Destiny University.pdf
Program Your Destiny eBook - Destiny University.pdfProgram Your Destiny eBook - Destiny University.pdf
Program Your Destiny eBook - Destiny University.pdf
Michael Herlache, MBA
 

Recently uploaded (7)

ÔN TẬP CỤM THÀNH NGỮ TIẾNG ANH CỰC HAY.docx
ÔN TẬP CỤM THÀNH NGỮ TIẾNG ANH CỰC HAY.docxÔN TẬP CỤM THÀNH NGỮ TIẾNG ANH CỰC HAY.docx
ÔN TẬP CỤM THÀNH NGỮ TIẾNG ANH CỰC HAY.docx
 
SOCIOLOGY PPT. SOCIAL SECURITY POWER POINT
SOCIOLOGY PPT. SOCIAL SECURITY POWER POINTSOCIOLOGY PPT. SOCIAL SECURITY POWER POINT
SOCIOLOGY PPT. SOCIAL SECURITY POWER POINT
 
Collocation thường gặp trong đề thi THPT Quốc gia.pdf
Collocation thường gặp trong đề thi THPT Quốc gia.pdfCollocation thường gặp trong đề thi THPT Quốc gia.pdf
Collocation thường gặp trong đề thi THPT Quốc gia.pdf
 
Ethical_dilemmas_MDI_Gurgaon-Business Ethics Case 1.pptx
Ethical_dilemmas_MDI_Gurgaon-Business Ethics Case 1.pptxEthical_dilemmas_MDI_Gurgaon-Business Ethics Case 1.pptx
Ethical_dilemmas_MDI_Gurgaon-Business Ethics Case 1.pptx
 
CHUYÊN ĐỀ READING ÔN THI HSG THPT HAY.docx
CHUYÊN ĐỀ READING ÔN THI HSG THPT HAY.docxCHUYÊN ĐỀ READING ÔN THI HSG THPT HAY.docx
CHUYÊN ĐỀ READING ÔN THI HSG THPT HAY.docx
 
UNIVERSAL HUMAN VALUES- Harmony in the Nature
UNIVERSAL HUMAN VALUES- Harmony in the NatureUNIVERSAL HUMAN VALUES- Harmony in the Nature
UNIVERSAL HUMAN VALUES- Harmony in the Nature
 
Program Your Destiny eBook - Destiny University.pdf
Program Your Destiny eBook - Destiny University.pdfProgram Your Destiny eBook - Destiny University.pdf
Program Your Destiny eBook - Destiny University.pdf
 

Unsymmetrical bending

  • 1. General  Solutions  for  Unsymmetrical  Bending  of  Beams  with  Arbitrary  Cross  Sections   y M My y dA z θ α yθ z x z Mz P P Figure 1 A Beam with An Arbitrary Cross Section Consider  a  cantilever  beam  subjected  to  an  end  force  P  acting  in  the  plane  inclined  at  an  angle   θ  to  the  y-­‐‑ axis  as  shown.    The  bending  moment  M,  produced  by  the  force  P,  is  oriented  in  the  direction  making  an   angle   θ  to  the  z-­‐‑axis  as  shown.    The  components  of  M  in  the  y  and  z-­‐‑directions,  denoted  by   M y  and   M z ,   respectively,  are  given  by     My = M sinθ Mz = M cosθ   (a)   Consider  the  special  case  where   θ = 90 .    From  (a)  we  have My = M  and   Mz = 0 ,  then  the  beam  would    deflect  in  the  xz  plane,  and  the  neutral  axis  would  coincide  with  the  y-­‐‑aixs.    With  the  “cross  sections   remain  plane”  assumption,  we  have   z   ε x = κ z z =   (b)   ρz where   κ z  and   ρ z  are  the  curvature  and  radius  of  curvature,  respectively,  of  the  beam  in  the  xz  plane.    On   the  other  hand,  if   θ = 0 ,  then   Mz = M  and   My = 0 ,  the  beam  would  deflect  in  the  xy  plane  and  the   neutral  axis  would  coincide  with  the  z-­‐‑aixs.    Again,  with  the  “cross  sections  remain  plane”  assumption,   we  have   y   ε x = −κ y y = −   (c)   ρy where   κ y  and   ρ y  are  the  curvature  and  radius  of  curvature,  respectively,  of  the  beam  in  the  yz  plane.    It   is  noted  that  the  negative  sign  in  (c)  indicates  that  a  line  element  located  above  the  z-­‐‑axis  would  be  under   compression  when  a  positive   M z  is  applied.   Now  consider  the  general  cases  in  which  the  value  of  angle   θ is  arbitrary.    Since  the  “cross  sections   remain  plane”  assumption  is  still  valid,  we  can  express  the  strain  in  the  x  direction  in  the  following  linear   equation  in  y  and  z:     ε x = aʹ′ + bʹ′y + cʹ′z   (d)   where   aʹ′ ,   bʹ′ ,  and   cʹ′  are  constants.    The  stress  is  then  given  by     σ x = Eε x = a + by + cz   (e)   where   E  is  the  Young’s  modulus  and   a = Eaʹ′ ,   b = Ebʹ′ ,  and   c = Ec ʹ′ .    For  a  beam  subjected  to  pure   bending,  the  stress  resultant  over  the  cross  section  must  vanish,  i.e.,     ∫ σ x dA = a ∫ dA + b∫ ydA + c ∫ zdA = 0   (f)   If  the  origin  of  the  coordinate  system  coincides  with  the  centroid  of  the  cross  section,  then   y= ∫ ydA = 0, z= ∫ zdA = 0   ∫ dA ∫ dA 1
  • 2. Consequently,   a = 0  and  (e)  becomes     σ x = by + cz   (g)   The  resultant  moments  on  the  cross  section  are  given  by     M y = ∫ σ x zdA = b ∫ yzdA + c ∫ z 2 dA = bI yz + cI y   (h)     M z = − ∫ σ x ydA = −b ∫ y 2 dA − c ∫ yzdA = −bI z − cI yz   (i)   where     I y = ∫ z 2 dA , I z = ∫ y 2 dA , I yz = ∫ yzdA   are  the  moments  of  inertia  of  the  cross  section.    Solving  (h)  and  (i)  simultaneously  yields   M z I y + M y I yz M y I z + M z I yz   b=− 2 , c= 2   (j)   I y I z − I yz I y I z − I yz Substituting  (j)  into  (g)  gives   M z I y + M y I yz M y I z + M z I yz   σx = − 2 y+ 2 z   (k)   IyIz − I yz I y I z − I yz The  neutral  axis,  by  definition,  is  the  line  along  which  stress  vanishes.    Thus,  by  setting   σ x = 0  in  (k),  we   have   y M y I z + M z I yz I yz + I z tan θ I z + I yz cot θ   tan α = = = =   (l)   z M z I y + M y I yz I y + I yz tan θ I yz + I y cot θ in  which   α (see  Fig.  1)  is  the  angle  measured  clockwise  from  the  z-­‐‑axis  to  the  neutral  axis,  and     My M   tan θ = ,    or    cotθ = z   (m)   Mz My Combining  (k)  and  (m)  and  eliminating   M y ,  we  obtain  the  following  simplified  equation  in  terms  of   M z   and  angle   α  for  calculating  the  stresses:   Mz (y − z tanα )   σx = −   (n)   I z − I yz tan α If  the  y-­‐‑  and  z-­‐‑axes  coincide  with  the  principal  axes,  then   I yz = 0  and  (l)  reduces  to     Iz   tan α = tan θ   Iy which  is  the  same  as  (6-­‐‑19)  in  the  textbook.    Furthermore,  if   θ = 0  (i.e.,   Mz = M  and   My = 0 ),  then   α = 0   and  (n)  becomes   Mz y   σx = −   Iz   Example:   A  5.0  m  long  simply-­‐‑supported  beam  is  subjected  to  a  force   P = 4  kN  at  a  point  that  is  2.0  m  away  from   the  far  end,  as  shown  in  the  figure.    The  dimensions  of  the  L-­‐‑shaped  cross  section  are  shown  in  the  figure.     If  the  force  P  is  applied  in  an  inclined  plane  making  a  10°  angle  with  the  y-­‐‑axis,  determine  the  locations   and  magnitudes  of  the  maximum  tensile  and  compressive  stresses  in  the  beam.     Solution:   (a) Locate  the  centroid  of  the  cross  section  (in  terms  of  distances   y 0  and   z0  measured  from  point  A):   (120 × 10)(60) + (70 × 10)(5 ) y0 = = 39.74  mm (120 × 10) + (70 × 10)     (120 × 10)(5) + (70 × 10)(45) z0 = = 19.74  mm (120 × 10) + (70 × 10) 2
  • 3. P y 10 B 10  mm 2  m P 120  mm α z M 10 10  mm 3  m y0 A z0 80  mm Figure 2 Umsymmetric Bending of A Simply-Supported Beam (b) Determine  the  moments  of  inertia:   (120)(10)3 (10)(70)3   Iy = + (120)(10)(19.74 − 5)2 + + (10)(70)(45 − 19.74 )2 = 1.003 × 106  mm 4   12 12 (10)(120)3 (70)(10)3   Iz = + (10)(120)(60 − 39.74 )2 + + (70)(10)(39.74 − 5)2 = 2.783 × 106  mm 4   12 12   I yz = (10)(1120)(60 − 39.74 )(19.74 − 5) + (70)(10)(5 − 39.74)(19.74 − 45) = 0.973 × 106  mm 4   (c) Determine  the  neutral  axis:   Since   θ = −10  (i.e.,  positive   θ  measured  clockwise  from  the  z  axis),  we  have,  from  (l),     I yz + I z tan θ 0.973 × 10 6 + 2.783 × 10 6 × tan − 10( ) tan α = = = 0.580   I y + I yz tan θ 1.003 × 10 6 + 0.973 × 10 6 × tan − 10( ) The  neutral  axis  thus  is  oriented  at  the  angle     α = tan−1 (0.580) = 0.526  rad = 30.12   (d) Determine  the  maximum  stresses  in  the  beam:   The  maximum  bending  moment  along  the  beam  occurs  at  the  point  where  the  load  P  is  applied,  i.e.,   Pab (4.0 )(2.0)(3.0)   Mmax = = = 4.8  kN ⋅ m = 4.8 × 106  N ⋅ mm   L 5.0 where   L = 5.0  m ,   a = 2.0  m ,  and   b = 3.0  m .    The  y  and  z  components  of  this  moment  are     My = Mmax sin θ = −0.834 × 106  N ⋅ mm     Mz = Mmax cos θ = 4.727 × 106  N ⋅ mm   From  Fig.2  it  is  easy  to  see  that  the  two  locations  denoted  by  A  and  B  are  the  farthest  from  the  neutral   axis,  hence  would  experience  the  highest  tensile  or  compressive  stresses.    The  y  and  z  coordinates  of   those  two  points  are   A(−39.74 ,  19.74 )  and   B(80.26 ,  9.74 ) ,  respectively.    The  maximum  tensile  stress,   occurs  at  point  A,  is  given  by   3
  • 4. M z (y − z tan α ) σx = − I z − I yz tan α   =− (4.727 × 10 )[− 39.74 − (19.74)tan(30.12 )]   6  2.783 × 10 − (0.973 × 10 )tan(30.12 ) 6 6  N = 109.0 × 106   = 109.0  MPa mm 2 The  maximum  compressive  stress,  occurs  at  point  B,  is  given  by   M (y − z tan α ) σx = − z I z − I yz tan α   =− (4.727 × 10 )[80.26 − (9.74)tan(30.12 )]   6  2.783 × 10 − (0.973 × 10 )tan(30.12 ) 6 6  N = −159.0 × 106   = −159.0  MPa mm 2 (e) Solve  the  same  problem  by  using  the  method  outlined  in  Section  6-­‐‑5  of  the  textbook:   The  principal  axes  are  denoted  as  Y  and  Z,  respectively,  in  Fig.3.    The  directions  of  the  principal  axes   and  the  principal  moments  of  inertia  of  the  cross  section  can  be  obtained  by  using  (A-­‐‑11)  and  (A-­‐‑12)   in  the  textbook.    Let   β  be  the  angle  between  the  principal  axis  and  y-­‐‑axis  (see  Fig.2),  then  from  (A-­‐‑11)   2 I yz 2(0.973 × 106 )   tan 2θ p = tan 2 β = − =− = 1.093   Iy − Iz 1.003 × 10 6 − 2.783 × 10 6 and   1   β = tan −1 (1.093) = 23.8   2 The  principal  moments  of  inertia  can  be  obtained  by  substituting  the  value  of   β  in  (A-­‐‑10),  or  using   (A-­‐‑12):   P y Y 10 B β π −β 2 ψ α z M 10 β Z A Figure 3 Neutral Axis and Principal Axes 4
  • 5. 2 Iy + Iz ⎛ I y − I z ⎞ 2 6 4 6 4   I max,min = ⎜ 2 ⎟ + I yz = 3.212 × 10  mm ,          0.574 × 10  mm ,   ± ⎜ ⎟ 2 ⎝ ⎠ Thus,     IY = 0.574 × 106  mm 4 I Z = 3.212 × 106  mm 4   The  components  of  M  in  the  Y  and  Z  directions,  respectively,  are  now  given  by   MY = M sin(β − 10 ) = 1.143 × 106  N ⋅ mm     MZ = M cos(β − 10 ) = 4.662 × 106  N ⋅ mm The  angle   ψ ,  which  determines  the  orientation  of  neutral  axis  and  is  measured  clockwise  from  the  Z-­‐‑ axis  as  shown  in  Fig.3,  is  given  by   Y M I I   ( tan ψ = = Y Z = Z tan β − 10 = 1.374   Z MZ I Y I Y ) from  which     ψ = tan −1 (1.374 ) = 53.9   It  can  be  seen  from  Fig.3  that     α = ψ − β = 30.1   which  matches  the  value  obtained  previously.    With  respect  to  the  principal  axes,  the  stresses  are   given  by   M Z M Y   σ x = Y − Z   IY IZ At  point  A,  the  coordinates  are   YA = y A cos β + z A sin β = −28.4  mm     Z A = − y A sin β + z A cos β = 34.1  mm and  the  stress  is  given  by   MY Z MZY (1.143 × 10 3 )(34.1) (4.662 × 10 3 )(− 28.4 )   σx = − = − = 109.0  MPa   IY IZ 0.574 × 106 3.212 × 106 At  point  B,  the  coordinates  are   YB = y B cos β + zB sin β = 77.4  mm     ZB = − y B sin β + zB cos β = −23.5  mm and  the  stress  is  given  by   M Z M Y (1.143 × 10 3 )(− 23.5 ) (4.662 × 10 3 )(77.4 )   σx = Y − Z = − = −159.0  MPa   IY IZ 0.574 × 106 3.212 × 106 5