SlideShare a Scribd company logo
1 of 55
Download to read offline
FLUID MECHANICS
AND MACHINERY
PUMPS
PUMP
โ– The normal duty of pump is to lift a quantity of
liquid from a low level to high level or to transfer
from one place to another place.
โ– The pump must provide energy
โ– To lift the liquid to required height against the
force of gravity
โ– To overcome the fluid resistance to flow of the
liquid through the pipe and the pump itself
PUMP
โ– Pump is defined as a device which transfers the
input mechanical energy of a motor into pressure
energy or kinetic energy.
โ– Pump is classified according to the mechanical
principal involved in transfer of energy
โ– Positive displacement pump
โ– Rotodynamic pump
CLASSIFICATION OF PUMP
PUMP
Non โ€“ Positive
Displacement Pump
Positive
Displacement Pump
Centrifugal Pump Reciprocating Pump Rotary Pump
Piston Diaphragm Gear
Pump
Vane
Pump
Lobe
Pump
Screw
Pump
APPLICATIONS OF PUMP
โ– To pump water from source to fields for agricultural and
irrigation purposes.
โ– In petroleum installations to pump oil
โ– In steam and diesel power plants to circulate feed water and
cooling water respectively
โ– Hydraulic control systems
โ– Pumping of water in buildings
โ– Fire fighting
COMPONENTS OF A CENTRIFUGAL PUMP
โ– A centrifugal pump has
the following main
components
โœ“ Impeller
โœ“ Casing
โœ“ Suction pipe with
strainer and foot
valve
โœ“ Delivery pipe
IMPELLER
โ– An impeller is a wheel or
rotor having series of
backward curved vanes
โ– An impeller is mounted on
a shaft which usually
coupled to a motor
โ– The motor provides the
required input energy to
rotate the impeller
CASING
โ– The impeller is enclosed in a
watertight casing with delivery
pipe on one side and with an
arrangement on suction side
called eye of impeller.
โ– The main functions of casing are
โ– It guides the water from entry
to exit of impeller
โ– It helps in partly converting the
kinetic energy of liquid into
pressure energy
SUCTION PIPE
โ– The pipe which connect
the sump to the eye of
impeller is called suction
pipe
โ– It caries the liquid to be
lifted by the pump
โ– The suction pipe at inlet
is provided with strainer
and foot valve.
STRAINER & FOOT VALVE
โ– The function of strainer is to
prevent the entry of debris
into the pump.
โ– The foot valve is a non
return valve which allows
the flow of water only in
upward direction
โ– The valve does not allow
the liquid to drain out from
the suction pipe
WORKING OF CENTRIFUGAL PUMP
WORKING OF CENTRIFUGAL PUMP
โ– It works on the principle that when a certain mass
of fluid is made to rotate along the impeller from
the central axis of rotation, it impresses a
centrifugal head
โ– It causes the water to move radially outwards at
high velocity and causes the water to rise to a
higher level
โ– The motion of water is restricted by casing of
pump, it results into pressure build up.
STEPS INVOLVED IN OPERATION OF CENTRIFUGAL PUMP
โ– The delivery valve is closed.
โ– The priming of the pump is carried out
โœ“ Priming involves the filling of liquid in suction
pipe and casing up to the level of delivery valve, so
that no air pockets are left in the systems
โœ“ If any air or gas pockets are left in this portion of
pump, it may result into no delivery of liquid by the
pump
STEPS INVOLVED IN OPERATION OF CENTRIFUGAL PUMP
โ– The pump shaft and impeller is now rotated with the help
of an external source of power like motor
โœ“ The rotation of impeller inside a casing produces a
forced vortex which is responsible in imparting the
centrifugal head to the liquid
โœ“ It also creates vacuum at the eye of impeller
and causes liquid to rise into suction pipe from the
sump
STEPS INVOLVED IN OPERATION OF CENTRIFUGAL PUMP
โ– The speed of impeller should be sufficient to produce the
centrifugal head such that it can initiate the discharge from
delivery pipe.
โ– The delivery valve is opened and the liquid is lifted and
discharged through the delivery pipe due to its high pressure
โ– The liquid is continuously sucked from the sump to impeller eye
and it is delivered from the casing of the pump through the
delivery pipe.
โ– Before stopping the pump, it is necessary to close the delivery
pipe otherwise the back flow of liquid will take place
CAVITATION
โ– It is defined as the phenomenon of formation of vapour bubbles of
a flowing liquid in a region
โ– The pressure of the liquid falls below its vapour pressure the
liquid will vapourise and flow will no longer will be continues.
โ– These vapour bubbles travel into the region of higher pressure,
they suddenly collapse on metallic surfaces and the surroundings
liquid rushes to fill the cavities of vapour bubble
โ– The severe rush of liquid causes the development of extremely
high pressure
โ– Prolonged cavitation causes erosion and pitting of metals
โ– Prolonged cavitation causes severe vibrations and noise
TYPES OF CASING
โ– The shape of casing is designed such a way to reduce the
loss of kinetic head to minimum. Based on the shape of
casing it is classified
โ– Volute Casing (Constant Velocity)
โ– Vortex Casing (Variable Velocity)
โ– Diffuser (Turbine)
VOLUTE CASING
โ– The cross section is designed to give a constant velocity in the
volute of spiral shape
โ– The centrifugal pump with volute
casing round the impeller of gradually
increasing area from point A and B
โ– The loss of energy is reduced
compared with circular casing
โ– The conversion of kinetic energy into
pressure energy is not possible, so
there is only slight improvement in
efficiency
VORTEX CASING
โ– The overall diameter of the pump is large compared volute casing.
โ– The increase in diameter will provide
an annular space between the
impeller and volute passage.
โ– The annular space called vortex
chamber, there is a free vortex in
which the velocity of liquid falls as it
passes into this chamber from
impeller outlet entry of volute passage
โ– Due to decreases in velocity the pressure increases radially from centre
outwards
โ– The pump is bulky and expensive (due to excessive dimension)
DIFFUSER CASING
โ– The diffuser casing is similar to volute and
vortex casing, but a diffuser ring with guide
vanes is fixed in annular space
โ– The function of guide vanes is to guide the
liquid leaving the impeller in streamlined
diverging passages into the volute chamber
from where it flows to the delivery pipe.
โ– The guide vanes passages have an increasing
in cross sectional which reduces the velocity
of flow, hence the partial kinetic energy(K.E)
is converted into pressure energy(P.E)
โ– The conversion of K.E to P.E takes place in
volute chamber of increasing cross sectional
area
TYPES OF IMPELLERS
โ– Depending on the
viscosity of liquid
the impellers are
selected
โ– Closed Impeller
โ– Semi Open Impeller
โ– Open Impeller
TYPES OF IMPELLERS
โ– In closed type impeller the vanes of impeller are cast between two
circular disc.
โœ“ This type of impeller are mostly used for clear water with low
viscosity free from dirt.
โ– In semi open type impeller the vanes are covered with plate on one side.
โœ“ This type of impeller are mostly used in sewage installations, sugar
and pulp industry with small amount of debris.
โ– In open type impeller the vanes are don not have any cover plate.
โœ“ This type of impeller is less efficient and used deal with liquids
which contain suspend solids like sand etcโ€ฆ
TYPES OF VANES
โ– There are three types vanes according to the shape of vane
โœ“ Curved forward vane โœ“ Curved backward vane โœ“ Radial vane
VARIOUS HEADS OF A CENTRIFUGAL PUMP
โ– Suction Head (hs):
It represents the vertical
distance between the top surface
level of sump and the centre of
impeller.
โ– Delivery Head (hd):
It represents the vertical
distance between the centre of
impeller and the discharge.
VARIOUS HEADS OF A CENTRIFUGAL PUMP
โ– Static Head (Hs):
It is the sum of suction
head and delivery head.
It represents the vertical
distance between the top
surface level of sump to the
discharge level in delivery
tank.
๐‘ฏ๐’” = ๐’‰๐’” + ๐’‰๐’…
VARIOUS HEADS OF A CENTRIFUGAL PUMP
The total head against which
the pump has to work is called as
gross head
๐‘ฏ๐’ˆ = ๐‘ฏ๐’” + ๐’‰๐’‡๐’” + ๐’‰๐’‡๐’… +
๐•๐ฌ
๐Ÿ
๐Ÿ๐’ˆ
+
๐•๐
๐Ÿ
๐Ÿ๐’ˆ
โ– Gross Head (Hg):
The pump is required to work
against the static head and the
other losses like friction losses in
pipes and head corresponding to
kinetic energy due to suction and
delivery velocity of liquid.
VARIOUS HEADS OF A CENTRIFUGAL PUMP
๐‘ฏ๐’Ž = ๐‘ฏ๐’” + ๐’‰๐’‡๐’” + ๐’‰๐’‡๐’… +
๐•๐
๐Ÿ
๐Ÿ๐’ˆ
โ– Manometric Head (Hm):
It is defined as the minimum
amount of head against which the
pump has to work to deliver the
required discharge.
Note:
The manometric head does not
include the friction loss head in
impeller and casing of the pump
LOSSES IN PUMPS
โ– Various losses which occurs during the operation of centrifugal
pump are
โœ“ Hydraulic Losses:
โžข Losses in Pump:
๏† Loss of head due to friction in impeller
๏† Loss of head due to shock and eddy from inlet to exit of impeller
๏† Loss of head due in guide vanes due to diffusion and in casing
โžข Other Hydraulic Losses:
๏† Friction loss in suction and delivery pipes
๏† Loss of heads in bends, fittings, valves etc.
Theses losses represents the loss of head in pump installation
LOSSES IN PUMPS
โœ“ Mechanical Loss:
Due to disc friction in impeller, friction in bearings and
other mechanical parts of the pump
โœ“ Leakage Loss:
A certain amount of energy is lost due to liquid which
leaks from high pressure side to low pressure side of
pump
The liquid is leaked through the glands, stuffing box etc.
WORK DONE BY IMPELLER
โ– The liquid enters the impeller at its centre and leaves at
its outer periphery
โ– Assumptions
โœ“ Liquid enters the impeller eye in radial direction, the whirl
component ๐‘ฝ๐’˜๐Ÿ(of absolute velocity ๐‘ฝ๐Ÿ) is zero and flow
component ๐‘ฝ๐’‡๐Ÿis equal to absolute velocity ๐‘ฝ๐Ÿ and ๐œถ = ๐ŸŽ
โœ“ No loss of energy in the impeller due to friction
โœ“ No loss due to shock at entry
โœ“ There is uniform velocity distribution in the narrow passages
formed between two adjacent
WORK DONE BY IMPELLER
WORK DONE BY IMPELLER
๐’–๐Ÿ & ๐’–๐Ÿ โ†’ ๐‘ท๐’†๐’“๐’Š๐’‘๐’‰๐’†๐’“๐’‚๐’ ๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐’๐’‡ ๐’•๐’‰๐’† ๐’Š๐’Ž๐’‘๐’†๐’๐’๐’†๐’“ ๐’‚๐’• ๐’Š๐’๐’๐’†๐’• & ๐’๐’–๐’•๐’๐’†๐’•
๐‘ฝ๐Ÿ & ๐‘ฝ๐Ÿ โ†’ ๐‘จ๐’ƒ๐’”๐’๐’๐’–๐’•๐’† ๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐’๐’‡ ๐’•๐’‰๐’† ๐’๐’Š๐’’๐’–๐’Š๐’… ๐’‚๐’• ๐’Š๐’๐’๐’†๐’• & ๐’๐’–๐’•๐’๐’†๐’•
๐‘ฝ๐’“๐Ÿ& ๐‘ฝ๐’“๐Ÿ โ†’ ๐‘น๐’†๐’๐’‚๐’•๐’Š๐’—๐’† ๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐’๐’‡ ๐’•๐’‰๐’†๐’๐’Š๐’’๐’–๐’Š๐’… ๐’‚๐’• ๐’Š๐’๐’๐’†๐’• & ๐’๐’–๐’•๐’๐’†๐’•
๐‘ฝ๐’˜๐Ÿ& ๐‘ฝ๐’˜๐Ÿ โ†’ ๐‘พ๐’‰๐’Š๐’“๐’ ๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐’๐’‡ ๐’•๐’‰๐’† ๐’๐’Š๐’’๐’–๐’Š๐’… ๐’‚๐’• ๐’Š๐’๐’๐’†๐’• & ๐’๐’–๐’•๐’๐’†๐’•
๐œถ & ๐œท โ†’ ๐‘ฎ๐’–๐’Š๐’…๐’† ๐‘ฉ๐’๐’‚๐’…๐’† ๐’‚๐’๐’ˆ๐’๐’† ๐’‚๐’• ๐’Š๐’๐’๐’†๐’• & ๐’๐’–๐’•๐’๐’†๐’•
๐œฝ & ๐“ โ†’ ๐‘ฝ๐’‚๐’๐’† ๐’‚๐’๐’ˆ๐’๐’† ๐’‚๐’• ๐’Š๐’๐’๐’†๐’• & ๐’๐’–๐’•๐’๐’†๐’•
๐’…๐Ÿ & ๐’…๐Ÿ โ†’ ๐‘ซ๐’Š๐’‚๐’Ž๐’†๐’•๐’†๐’“ ๐’๐’‡ ๐’Š๐’Ž๐’‘๐’†๐’๐’๐’†๐’“ ๐’‚๐’• ๐’Š๐’๐’๐’†๐’• & ๐’๐’–๐’•๐’๐’†๐’•
๐Ž โ†’ ๐‘จ๐’๐’ˆ๐’–๐’๐’‚๐’“ ๐’—๐’†๐’๐’๐’„๐’Š๐’•๐’š
๐Ž =
๐Ÿ ร— ๐… ร— ๐‘ต
๐Ÿ”๐ŸŽ
WORK DONE BY IMPELLER
โ– While passing through the impeller, the velocity of whirl
changes and there is a change of moment of momentum
๐‘ด๐’๐’Ž๐’†๐’๐’•๐’–๐’Ž ๐’‚๐’• ๐‘ฐ๐’๐’๐’†๐’• = แˆถ
๐’Ž ร— ๐‘ฝ๐’˜๐Ÿ
= ๐† ร— ๐’‚ ร— ๐‘ฝ๐Ÿ ร— ๐‘ฝ๐’˜๐Ÿ ๐‘ธ = ๐’‚ ร— ๐‘ฝ
= ๐† ร— ๐‘ธ ร— ๐‘ฝ๐’˜๐Ÿ
๐’”๐’‘๐’†๐’„๐’Š๐’‡๐’Š๐’„ ๐’˜๐’†๐’Š๐’ˆ๐’‰๐’• ๐’˜ = ๐† ร— ๐’ˆ
=
๐’˜
๐’ˆ
ร— ๐‘ธ ร— ๐‘ฝ๐’˜๐Ÿ
๐‘พ๐’†๐’Š๐’ˆ๐’‰๐’• ๐’๐’‡ ๐’๐’Š๐’’๐’–๐’Š๐’… ๐‘พ = ๐’˜ ร— ๐‘ธ
๐‘ด๐’๐’Ž๐’†๐’๐’•๐’–๐’Ž ๐’‚๐’• ๐‘ฐ๐’๐’๐’†๐’• =
๐‘พ
๐’ˆ
ร— ๐‘ฝ๐’˜๐Ÿ
WORK DONE BY IMPELLER
โ– Similarly
๐‘ด๐’๐’Ž๐’†๐’๐’•๐’–๐’Ž ๐’‚๐’• ๐’๐’–๐’•๐’๐’†๐’• =
๐‘พ
๐’ˆ
ร— ๐‘ฝ๐’˜๐Ÿ
๐‘จ๐’๐’ˆ๐’–๐’๐’‚๐’“ ๐‘ด๐’๐’Ž๐’†๐’๐’•๐’–๐’Ž ๐’‚๐’• ๐’Š๐’๐’๐’†๐’• =
๐‘พ
๐’ˆ
ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’“๐Ÿ
๐‘จ๐’๐’ˆ๐’–๐’๐’‚๐’“ ๐‘ด๐’๐’Ž๐’†๐’๐’•๐’–๐’Ž ๐’‚๐’• ๐’๐’–๐’•๐’๐’†๐’• =
๐‘พ
๐’ˆ
ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’“๐Ÿ
WORK DONE BY IMPELLER
๐‘ป๐’๐’“๐’’๐’–๐’† ๐‘ป = ๐‘น๐’‚๐’•๐’† ๐’๐’‡ ๐’„๐’‰๐’‚๐’๐’ˆ๐’† ๐’๐’‡ ๐’Ž๐’๐’Ž๐’†๐’๐’•๐’–๐’Ž
๐‘ป =
๐‘พ
๐’ˆ
ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’“๐Ÿ โˆ’๐‘ฝ๐’˜๐Ÿ ร— ๐’“๐Ÿ
๐‘พ๐’๐’“๐’Œ ๐‘ซ๐’๐’๐’† = ๐‘ป๐’๐’“๐’’๐’–๐’† ร— ๐‘จ๐’๐’ˆ๐’–๐’๐’‚๐’“ ๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š
๐‘พ. ๐‘ซ =
๐‘พ
๐’ˆ
ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’“๐Ÿ โˆ’๐‘ฝ๐’˜๐Ÿ ร— ๐’“๐Ÿ ร— ๐Ž
๐‘พ. ๐‘ซ =
๐‘พ
๐’ˆ
ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’“๐Ÿร— ๐Ž โˆ’ ๐‘ฝ๐’˜๐Ÿ ร— ๐’“๐Ÿร— ๐Ž
WORK DONE BY IMPELLER
๐‘พ. ๐‘ซ =
๐‘พ
๐’ˆ
ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’“๐Ÿร— ๐Ž โˆ’ ๐‘ฝ๐’˜๐Ÿ ร— ๐’“๐Ÿร— ๐Ž ๐’– = ๐’“ ร— ๐Ž
๐‘พ. ๐‘ซ =
๐‘พ
๐’ˆ
ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ โˆ’๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ
โ– Since the centrifugal pump is the reverse of turbine
๐‘พ. ๐‘ซ = โˆ’
๐‘พ
๐’ˆ
ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ โˆ’๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ
๐‘พ. ๐‘ซ =
๐‘พ
๐’ˆ
ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ โˆ’๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ
WORK DONE BY IMPELLER
โ– If ๐œถ = ๐Ÿ—๐ŸŽยฐ ๐’•๐’‰๐’†๐’ ๐‘ฝ๐’˜๐Ÿ = ๐ŸŽ
๐‘พ. ๐‘ซ ๐’‘๐’†๐’“ ๐’”๐’†๐’„ =
๐‘พ
๐’ˆ
ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ
๐‘พ. ๐‘ซ ๐’‘๐’†๐’“ ๐’”๐’†๐’„
๐‘ผ๐’๐’Š๐’• ๐‘พ๐’†๐’Š๐’ˆ๐’•๐’‰ ๐’๐’‡ ๐’˜๐’‚๐’•๐’†๐’“ ๐’‘๐’†๐’“ ๐’”๐’†๐’„
=
๐‘พ
๐’ˆ
ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ
๐‘พ
๐‘พ. ๐‘ซ ๐’‘๐’†๐’“ ๐’”๐’†๐’„
๐‘ผ๐’๐’Š๐’• ๐‘พ๐’†๐’Š๐’ˆ๐’•๐’‰ ๐’๐’‡ ๐’˜๐’‚๐’•๐’†๐’“๐’‘๐’†๐’“ ๐’”๐’†๐’„
=
๐Ÿ
๐’ˆ
ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ
WORK DONE BY IMPELLER
โ– If ๐‘ฝ๐’˜๐Ÿ โ‰  ๐ŸŽ
๐‘พ. ๐‘ซ ๐’‘๐’†๐’“ ๐’”๐’†๐’„ =
๐‘พ
๐’ˆ
ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ โˆ’๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ
๐‘พ. ๐‘ซ ๐’‘๐’†๐’“ ๐’”๐’†๐’„
๐‘ผ๐’๐’Š๐’• ๐‘พ๐’†๐’Š๐’ˆ๐’•๐’‰ ๐’๐’‡ ๐’˜๐’‚๐’•๐’†๐’“๐’‘๐’†๐’“ ๐’”๐’†๐’„
=
๐‘พ
๐’ˆ
ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ โˆ’๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ
๐‘พ
=
๐Ÿ
๐’ˆ
ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ โˆ’๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ
โ– The above equation is Euler Momentum Equation for centrifugal
pump
EFFICIENCY OF THE CENTRIFUGAL PUMP
โ– Manometric efficiency
โ– Volumetric efficiency
โ– Mechanical efficiency
โ– Overall efficiency
MANOMETRIC EFFICIENCY
The ratio of the manometric head developed by the
pump to the head imparted by the impeller to the liquid is
known as manometric efficiency
๐œผ๐’Ž๐’‚๐’๐’ =
๐‘ด๐’‚๐’๐’๐’Ž๐’†๐’•๐’“๐’Š๐’„ ๐‘ฏ๐’†๐’‚๐’…
๐‘ฏ๐’†๐’‚๐’… ๐‘ฐ๐’Ž๐’‘๐’‚๐’“๐’•๐’†๐’… ๐’ƒ๐’š ๐’Š๐’Ž๐’‘๐’†๐’๐’๐’†๐’“ ๐’•๐’ ๐‘ณ๐’Š๐’’๐’–๐’Š๐’…
๐œผ๐’Ž๐’‚๐’๐’ =
๐‘ฏ๐’Ž
๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ
๐’ˆ
๐œผ๐’Ž๐’‚๐’๐’ =
๐’ˆ ร— ๐‘ฏ๐’Ž
๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ
VOLUMETRIC EFFICIENCY
The ratio of the actual liquid discharged per second
from the pump to the total liquid discharge per second
passing through the impeller.
๐œผ๐‘ฝ๐’๐’ =
actual liquid discharged at the pump outlet per second
๐‘ฏ๐’†๐’‚๐’… ๐‘ฐ๐’Ž๐’‘๐’‚๐’“๐’•๐’†๐’… ๐’ƒ๐’š ๐’Š๐’Ž๐’‘๐’†๐’๐’๐’†๐’“ ๐’•๐’ ๐‘ณ๐’Š๐’’๐’–๐’Š๐’…
๐œผ๐‘ฝ๐’๐’ =
๐‘ธ
๐‘ธ + ๐’’
MECHANICAL EFFICIENCY
The ratio of the power delivered by the impeller to the
liquid to the power input to the pump shaft is known as
mechanical efficiency
๐œผ๐’Ž๐’†๐’„๐’‰ =
Power delivered by the impeller to the liquid
Power input to the pump shaft
๐œผ๐’Ž๐’†๐’„๐’‰ =
๐‘พ๐’๐’“๐’Œ๐’…๐’๐’๐’† ๐’ƒ๐’š ๐’Š๐’Ž๐’‘๐’†๐’๐’๐’†๐’“ ๐’‘๐’†๐’“ ๐’”๐’†๐’„
๐‘บ๐’‰๐’‚๐’‡๐’• ๐’‘๐’๐’˜๐’†๐’“
๐œผ๐’Ž๐’†๐’„๐’‰ =
๐‘พ
๐’ˆ
ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ
๐‘ท
๐‘พ๐’‰๐’†๐’“๐’†, ๐‘พ = ๐’˜ ร— ๐‘ธ = ๐† ร— ๐’ˆ ร— ๐‘ธ
OVERALL EFFICIENCY
The ratio of the power output of pump to the power input
to the pump is known as overall efficiency
๐œผ๐จ =
Power output of pump
Power input to the pump shaft
๐œผ๐’ =
๐† ร— ๐’ˆ ร— ๐‘ธ ร— ๐‘ฏ๐’Ž
๐‘ท
๐œผ๐’ = ๐œผ๐’Ž๐’‚๐’๐’ ร— ๐œผ๐’Ž๐’†๐’„๐’‰ ร— ๐œผ๐‘ฝ๐’๐’
TYPES OF PERFORMANCE CHARACTERISTIC CURVES
โ– Main characteristics curves
โ– Operating characteristics curves
โ– Iso โ€“ efficiency (or) Muschel curves
โ– Constant head and Constant discharge curves
The performance characteristics curves are broadly divided to
four categories
MAIN CHARACTERISTICS CURVES
โ– Main characteristics curves are obtained by test run at constant speed
and the discharge is varied by means of delivery valve.
โ– At each discharge, the manometric head ๐‘ฏ๐’Ž and input power ๐‘ท are
measured and the overall efficiency ๐œผ๐’ is calculated
โ– Test curves are plotted between ๐‘ฏ๐’Ž ๐‘ฝ๐’” ๐‘ธ, ๐‘ท ๐‘ฝ๐’” ๐‘ธ ๐’‚๐’๐’… ๐œผ๐’ ๐‘ฝ๐’” ๐‘ธ is shown
figure for that constant speed. The test are repeated for different speed.
OPERATING CHARACTERISTICS CURVES
โ– The pumps are designed for
maximum efficiency at the given
speed called design speed
โ– The pumps are test run at design
speed as provided by the
manufacturer of the pump
โ– The discharge is varied as discussed
in main characteristic curve and the
head and power input is measured
โ– The overall efficiency of the pump is
calculated
โ– The performance curve thus
obtained at design speed are called
operating characteristics curves
ISO โ€“ EFFICIENCY (OR) MUSCHEL CURVES
โ– Constant efficiency curves are useful in
predicting the performance on entire
operations and its best performance
โ– The curves are plotted between
๐‘ฏ๐’Ž ๐‘ฝ๐’” ๐‘ธ ๐’‚๐’๐’… ๐œผ๐’ ๐‘ฝ๐’” ๐‘ธ
โ– Draw a line on ๐œผ๐’ ๐‘ฝ๐’” ๐‘ธ representing
constant efficiency line.
โ– The points at which the constant efficiency
line cuts the constant speed lines the
discharges are noted
ISO โ€“ EFFICIENCY (OR) MUSCHEL CURVES
โ– At the given discharge and speed the
๐‘ฏ๐’Ž is noted from ๐‘ฏ๐’Ž ๐‘ฝ๐’” ๐‘ธ graph.
โ– The values of ๐‘ฏ๐’Ž & ๐‘ธ at constant
efficiency is projected in graph
โ– The points corresponding to same overall
efficiency are then joined with a smooth
curve as shown in figure
โ– These curves represents iso โ€“ efficiency
curves. The curves help to locate the
region where the pump would operate at
maximum efficiency
CONSTANT HEAD AND CONSTANT DISCHARGE CURVES
โ– Often centrifugal pump is draw
required to operate variable speed
than the design speed.
โ– It is necessary to the performance
curves of a pump at variable speed
so that these curves can be used to
predict the performance.
โ– The delivery valves opening is fixed
and kept constant during the test on
pump.
โ– Then operated at variable speed. For
each speed ๐‘ฏ๐’Ž, ๐‘ธ ๐’‚๐’๐’… ๐‘ท๐’Š are measured
โ– The graph ๐‘ฏ ๐‘ฝ๐’” ๐‘ต, ๐‘ท๐’Š ๐‘ฝ๐’” ๐‘ต ๐’‚๐’๐’… ๐‘ธ ๐‘ฝ๐’” ๐‘ต ๐’‚๐’“๐’† ๐’…๐’“๐’‚๐’˜๐’.
SPECIFIC SPEED OF THE PUMP
โ– The specific speed of a centrifugal pump is defined as the
speed of a geometrically similar pump which would deliver
discharge of one cubic meter per second under a head of one
metre.
โ– Discharge
๐‘ธ = ๐‘จ๐’“๐’†๐’‚ ร— ๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐’๐’‡ ๐‘ญ๐’๐’๐’˜
๐‘ธ = ๐… ร— ๐’… ร— ๐’ƒ ร— ๐‘ฝ๐’‡
โ– The Width โ€œbโ€ is proportional to the diameter of the impeller
๐‘ธ โˆ ๐’…๐Ÿ
ร— ๐‘ฝ๐’‡ ๐‘ฌ๐’’ โ€ฆ โ€ฆ โ€ฆ . . โ‘ 
SPECIFIC SPEED OF THE PUMP
โ– Peripheral velocity
๐’– =
๐… ร— ๐’… ร— ๐‘ต
๐Ÿ”๐ŸŽ
โ– The velocity โ€œuโ€ is proportional to the diameter and speed of
the impeller
๐’– โˆ ๐’…๐‘ต
๐’… โˆ
๐’–
๐‘ต ๐‘ฌ๐’’ โ€ฆ โ€ฆ โ€ฆ . . โ‘ก
SPECIFIC SPEED OF THE PUMP
โ– The tangential velocity โ€œ๐’–โ€ of the impeller and flow velocity
๐‘ฝ๐’‡๐Ÿ are proportional to manometric head ๐‘ฏ๐’Ž
๐’– โˆ ๐‘ฏ๐’Ž ๐‘ฌ๐’’ โ€ฆ โ€ฆ โ€ฆ . . โ‘ข
๐‘ฝ๐’‡ โˆ ๐‘ฏ๐’Ž ๐‘ฌ๐’’ โ€ฆ โ€ฆ โ€ฆ . . โ‘ฃ
โ– From ๐‘ฌ๐’’ โ€ฆ โ€ฆ โ€ฆ . . โ‘ก
๐’… โˆ
๐’–
๐‘ต
๐’”๐’–๐’ƒ ๐‘ฌ๐’’ โ‘ข ๐’Š๐’ โ‘ก
๐’… โˆ
๐‘ฏ๐’Ž
๐‘ต
๐‘ฌ๐’’ โ€ฆ โ€ฆ โ€ฆ . . โ‘ค
SPECIFIC SPEED OF THE PUMP
โ– From ๐‘ฌ๐’’ โ€ฆ โ€ฆ โ€ฆ . . โ‘  โ‘ฃ โ‘ค
๐‘ธ โˆ ๐’…๐Ÿ
ร— ๐‘ฝ๐’‡ ๐‘ฝ๐’‡ โˆ ๐‘ฏ๐’Ž
๐’… โˆ
๐‘ฏ๐’Ž
๐‘ต
๐’”๐’–๐’ƒ ๐‘ฌ๐’’ โ‘ฃ & โ‘ค ๐’Š๐’ โ‘ 
๐‘ธ โˆ
๐‘ฏ๐’Ž
๐‘ต
๐Ÿ
ร— ๐‘ฏ๐’Ž
๐‘ธ โˆ
๐‘ฏ๐’Ž
เต—
๐Ÿ‘
๐Ÿ
๐‘ต๐Ÿ
๐‘ธ = ๐‘ฒ
๐‘ฏ๐’Ž
เต—
๐Ÿ‘
๐Ÿ
๐‘ต๐Ÿ
๐‘ฌ๐’’ โ€ฆ โ€ฆ โ€ฆ . . โ‘ฅ
SPECIFIC SPEED OF THE PUMP
โ– From the definition at ๐‘ต = ๐‘ต๐’” ๐’˜๐’‰๐’†๐’ ๐‘ธ = ๐Ÿ ฮค
๐’Ž๐Ÿ‘
๐’” ๐’‚๐’๐’… ๐‘ฏ๐’Ž = ๐Ÿ ๐’Ž
๐‘ธ = ๐‘ฒ
๐‘ฏ๐’Ž
เต—
๐Ÿ‘
๐Ÿ
๐‘ต๐Ÿ
๐Ÿ = ๐‘ฒ
๐Ÿ เต—
๐Ÿ‘
๐Ÿ
๐‘ต๐’”
๐Ÿ
๐‘ฒ = ๐‘ต๐’”
๐Ÿ ๐‘ฌ๐’’ โ€ฆ โ€ฆ โ€ฆ . . โ‘ฆ
๐’”๐’–๐’ƒ ๐‘ฌ๐’’ โ‘ฆ ๐’Š๐’ โ‘ฅ
๐‘ธ = ๐‘ต๐’”
๐Ÿ
๐‘ฏ๐’Ž
เต—
๐Ÿ‘
๐Ÿ
๐‘ต๐Ÿ
๐‘ต๐’” =
๐‘ต ร— ๐‘ธ
๐‘ฏ เต—
๐Ÿ‘
๐Ÿ’
THANK YOU

More Related Content

Similar to UNIT-IV FMM.PUMPS the mechanical principal involved in transfer of energy

Fmm unit iv
Fmm unit   ivFmm unit   iv
Fmm unit ivKawinKit
ย 
Slurry pumps introduction
Slurry pumps introductionSlurry pumps introduction
Slurry pumps introductionshekuit
ย 
Suction modes and force mode pumps
Suction modes and force mode pumps Suction modes and force mode pumps
Suction modes and force mode pumps Moudud Hasan
ย 
multi stage pump
multi stage pumpmulti stage pump
multi stage pumpjaimin kemkar
ย 
Detailed presentation on pumps
Detailed presentation on pumpsDetailed presentation on pumps
Detailed presentation on pumpsAmmar Qazi
ย 
Centrifugal pump
Centrifugal pumpCentrifugal pump
Centrifugal pumpKawinKit
ย 
presentation on hydraulic pump
presentation on  hydraulic pumppresentation on  hydraulic pump
presentation on hydraulic pumpAyush Upadhyay
ย 
Lect.9 centifugal pump ppt. 2021.pdf
Lect.9 centifugal pump ppt.  2021.pdfLect.9 centifugal pump ppt.  2021.pdf
Lect.9 centifugal pump ppt. 2021.pdffabmovieKhatri
ย 
Centrifugal pumps
Centrifugal pumpsCentrifugal pumps
Centrifugal pumpsAdnan Ali Cheema
ย 
Pumps and pipes
Pumps and pipes   Pumps and pipes
Pumps and pipes Dipesh Jain
ย 
Hydraulic Pumps
Hydraulic PumpsHydraulic Pumps
Hydraulic PumpsSarthak Muttha
ย 
Robot Drives ctuatorsahshjwjjsjjajjsj.pp
Robot Drives ctuatorsahshjwjjsjjajjsj.ppRobot Drives ctuatorsahshjwjjsjjajjsj.pp
Robot Drives ctuatorsahshjwjjsjjajjsj.ppTejasJawanjal1
ย 
Various types of Pumps in mechanical engineering.pptx
Various types of Pumps in mechanical engineering.pptxVarious types of Pumps in mechanical engineering.pptx
Various types of Pumps in mechanical engineering.pptxhariprasad279825
ย 
pumps and puming stations.pptx
pumps and puming stations.pptxpumps and puming stations.pptx
pumps and puming stations.pptxAnnaJoseph31
ย 
Pumps in hydraulic system
Pumps in hydraulic systemPumps in hydraulic system
Pumps in hydraulic systemAshish Kamble
ย 
Centrifugalpump
CentrifugalpumpCentrifugalpump
Centrifugalpumpkevin Baldha
ย 
POSITIVE DISPLACEMENT PUMP
POSITIVE DISPLACEMENT PUMPPOSITIVE DISPLACEMENT PUMP
POSITIVE DISPLACEMENT PUMPUbaid ur Rehman
ย 

Similar to UNIT-IV FMM.PUMPS the mechanical principal involved in transfer of energy (20)

Fmm unit iv
Fmm unit   ivFmm unit   iv
Fmm unit iv
ย 
Slurry pumps introduction
Slurry pumps introductionSlurry pumps introduction
Slurry pumps introduction
ย 
Suction modes and force mode pumps
Suction modes and force mode pumps Suction modes and force mode pumps
Suction modes and force mode pumps
ย 
multi stage pump
multi stage pumpmulti stage pump
multi stage pump
ย 
Detailed presentation on pumps
Detailed presentation on pumpsDetailed presentation on pumps
Detailed presentation on pumps
ย 
Centrifugal pump
Centrifugal pumpCentrifugal pump
Centrifugal pump
ย 
presentation on hydraulic pump
presentation on  hydraulic pumppresentation on  hydraulic pump
presentation on hydraulic pump
ย 
Positive Displacement Pumps
Positive Displacement PumpsPositive Displacement Pumps
Positive Displacement Pumps
ย 
Lect.9 centifugal pump ppt. 2021.pdf
Lect.9 centifugal pump ppt.  2021.pdfLect.9 centifugal pump ppt.  2021.pdf
Lect.9 centifugal pump ppt. 2021.pdf
ย 
Centrifugal pumps
Centrifugal pumpsCentrifugal pumps
Centrifugal pumps
ย 
Pumps and pipes
Pumps and pipes   Pumps and pipes
Pumps and pipes
ย 
Hydraulic Pumps
Hydraulic PumpsHydraulic Pumps
Hydraulic Pumps
ย 
Robot Drives ctuatorsahshjwjjsjjajjsj.pp
Robot Drives ctuatorsahshjwjjsjjajjsj.ppRobot Drives ctuatorsahshjwjjsjjajjsj.pp
Robot Drives ctuatorsahshjwjjsjjajjsj.pp
ย 
Various types of Pumps in mechanical engineering.pptx
Various types of Pumps in mechanical engineering.pptxVarious types of Pumps in mechanical engineering.pptx
Various types of Pumps in mechanical engineering.pptx
ย 
pumps and puming stations.pptx
pumps and puming stations.pptxpumps and puming stations.pptx
pumps and puming stations.pptx
ย 
Pumps in hydraulic system
Pumps in hydraulic systemPumps in hydraulic system
Pumps in hydraulic system
ย 
Centrifugal pumps
Centrifugal pumpsCentrifugal pumps
Centrifugal pumps
ย 
Centrifugalpump
CentrifugalpumpCentrifugalpump
Centrifugalpump
ย 
Water pump
Water pumpWater pump
Water pump
ย 
POSITIVE DISPLACEMENT PUMP
POSITIVE DISPLACEMENT PUMPPOSITIVE DISPLACEMENT PUMP
POSITIVE DISPLACEMENT PUMP
ย 

More from rknatarajan

UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
ย 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
ย 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
ย 
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSUNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSrknatarajan
ย 
UNIT - III.ppt
UNIT - III.pptUNIT - III.ppt
UNIT - III.pptrknatarajan
ย 
UNIT - V.ppt
UNIT - V.pptUNIT - V.ppt
UNIT - V.pptrknatarajan
ย 
UNIT - I.ppt
UNIT - I.pptUNIT - I.ppt
UNIT - I.pptrknatarajan
ย 
UNIT - II.ppt
UNIT - II.pptUNIT - II.ppt
UNIT - II.pptrknatarajan
ย 
UNIT - IV.ppt
UNIT - IV.pptUNIT - IV.ppt
UNIT - IV.pptrknatarajan
ย 
unit 5.ppt
unit 5.pptunit 5.ppt
unit 5.pptrknatarajan
ย 
unit 4.ppt
unit 4.pptunit 4.ppt
unit 4.pptrknatarajan
ย 
unit 3.ppt
unit 3.pptunit 3.ppt
unit 3.pptrknatarajan
ย 
unit 2.pptx
unit 2.pptxunit 2.pptx
unit 2.pptxrknatarajan
ย 
unit 1.pptx
unit 1.pptxunit 1.pptx
unit 1.pptxrknatarajan
ย 
types of gears - bearings
types of gears - bearingstypes of gears - bearings
types of gears - bearingsrknatarajan
ย 
DTS Unit i
DTS Unit   iDTS Unit   i
DTS Unit irknatarajan
ย 
Mechanism1
Mechanism1Mechanism1
Mechanism1rknatarajan
ย 
Kinematics fundamentals lecture_2
Kinematics fundamentals lecture_2Kinematics fundamentals lecture_2
Kinematics fundamentals lecture_2rknatarajan
ย 
Unit 3 machine vision
Unit 3 machine vision Unit 3 machine vision
Unit 3 machine vision rknatarajan
ย 
Robotics - unit-2 - end effector
Robotics - unit-2 - end effectorRobotics - unit-2 - end effector
Robotics - unit-2 - end effectorrknatarajan
ย 

More from rknatarajan (20)

UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
ย 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
ย 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
ย 
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICSUNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
UNIT-IFLUID PROPERTIES & FLOW CHARACTERISTICS
ย 
UNIT - III.ppt
UNIT - III.pptUNIT - III.ppt
UNIT - III.ppt
ย 
UNIT - V.ppt
UNIT - V.pptUNIT - V.ppt
UNIT - V.ppt
ย 
UNIT - I.ppt
UNIT - I.pptUNIT - I.ppt
UNIT - I.ppt
ย 
UNIT - II.ppt
UNIT - II.pptUNIT - II.ppt
UNIT - II.ppt
ย 
UNIT - IV.ppt
UNIT - IV.pptUNIT - IV.ppt
UNIT - IV.ppt
ย 
unit 5.ppt
unit 5.pptunit 5.ppt
unit 5.ppt
ย 
unit 4.ppt
unit 4.pptunit 4.ppt
unit 4.ppt
ย 
unit 3.ppt
unit 3.pptunit 3.ppt
unit 3.ppt
ย 
unit 2.pptx
unit 2.pptxunit 2.pptx
unit 2.pptx
ย 
unit 1.pptx
unit 1.pptxunit 1.pptx
unit 1.pptx
ย 
types of gears - bearings
types of gears - bearingstypes of gears - bearings
types of gears - bearings
ย 
DTS Unit i
DTS Unit   iDTS Unit   i
DTS Unit i
ย 
Mechanism1
Mechanism1Mechanism1
Mechanism1
ย 
Kinematics fundamentals lecture_2
Kinematics fundamentals lecture_2Kinematics fundamentals lecture_2
Kinematics fundamentals lecture_2
ย 
Unit 3 machine vision
Unit 3 machine vision Unit 3 machine vision
Unit 3 machine vision
ย 
Robotics - unit-2 - end effector
Robotics - unit-2 - end effectorRobotics - unit-2 - end effector
Robotics - unit-2 - end effector
ย 

Recently uploaded

CLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference ModalCLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference ModalSwarnaSLcse
ย 
5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...archanaece3
ย 
Augmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxAugmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxMustafa Ahmed
ย 
โ˜Ž๏ธLooking for Abortion Pills? Contact +27791653574.. ๐Ÿ’Š๐Ÿ’ŠAvailable in Gaborone ...
โ˜Ž๏ธLooking for Abortion Pills? Contact +27791653574.. ๐Ÿ’Š๐Ÿ’ŠAvailable in Gaborone ...โ˜Ž๏ธLooking for Abortion Pills? Contact +27791653574.. ๐Ÿ’Š๐Ÿ’ŠAvailable in Gaborone ...
โ˜Ž๏ธLooking for Abortion Pills? Contact +27791653574.. ๐Ÿ’Š๐Ÿ’ŠAvailable in Gaborone ...mikehavy0
ย 
History of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & ModernizationHistory of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & ModernizationEmaan Sharma
ย 
01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...
01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...
01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...AshwaniAnuragi1
ย 
Geometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdfGeometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdfJNTUA
ย 
Dynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxDynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxMustafa Ahmed
ย 
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfInstruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfEr.Sonali Nasikkar
ย 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelDrAjayKumarYadav4
ย 
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdfInvolute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdfJNTUA
ย 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxMustafa Ahmed
ย 
engineering chemistry power point presentation
engineering chemistry  power point presentationengineering chemistry  power point presentation
engineering chemistry power point presentationsj9399037128
ย 
Introduction-to- Metrology and Quality.pptx
Introduction-to- Metrology and Quality.pptxIntroduction-to- Metrology and Quality.pptx
Introduction-to- Metrology and Quality.pptxProfASKolap
ย 
Developing a smart system for infant incubators using the internet of things ...
Developing a smart system for infant incubators using the internet of things ...Developing a smart system for infant incubators using the internet of things ...
Developing a smart system for infant incubators using the internet of things ...IJECEIAES
ย 
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...Amil baba
ย 
Databricks Generative AI Fundamentals .pdf
Databricks Generative AI Fundamentals  .pdfDatabricks Generative AI Fundamentals  .pdf
Databricks Generative AI Fundamentals .pdfVinayVadlagattu
ย 
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...josephjonse
ย 
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024EMMANUELLEFRANCEHELI
ย 
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdflitvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdfAlexander Litvinenko
ย 

Recently uploaded (20)

CLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference ModalCLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference Modal
ย 
5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...
ย 
Augmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxAugmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptx
ย 
โ˜Ž๏ธLooking for Abortion Pills? Contact +27791653574.. ๐Ÿ’Š๐Ÿ’ŠAvailable in Gaborone ...
โ˜Ž๏ธLooking for Abortion Pills? Contact +27791653574.. ๐Ÿ’Š๐Ÿ’ŠAvailable in Gaborone ...โ˜Ž๏ธLooking for Abortion Pills? Contact +27791653574.. ๐Ÿ’Š๐Ÿ’ŠAvailable in Gaborone ...
โ˜Ž๏ธLooking for Abortion Pills? Contact +27791653574.. ๐Ÿ’Š๐Ÿ’ŠAvailable in Gaborone ...
ย 
History of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & ModernizationHistory of Indian Railways - the story of Growth & Modernization
History of Indian Railways - the story of Growth & Modernization
ย 
01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...
01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...
01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...
ย 
Geometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdfGeometric constructions Engineering Drawing.pdf
Geometric constructions Engineering Drawing.pdf
ย 
Dynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptxDynamo Scripts for Task IDs and Space Naming.pptx
Dynamo Scripts for Task IDs and Space Naming.pptx
ย 
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfInstruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
ย 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata Model
ย 
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdfInvolute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
Involute of a circle,Square, pentagon,HexagonInvolute_Engineering Drawing.pdf
ย 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptx
ย 
engineering chemistry power point presentation
engineering chemistry  power point presentationengineering chemistry  power point presentation
engineering chemistry power point presentation
ย 
Introduction-to- Metrology and Quality.pptx
Introduction-to- Metrology and Quality.pptxIntroduction-to- Metrology and Quality.pptx
Introduction-to- Metrology and Quality.pptx
ย 
Developing a smart system for infant incubators using the internet of things ...
Developing a smart system for infant incubators using the internet of things ...Developing a smart system for infant incubators using the internet of things ...
Developing a smart system for infant incubators using the internet of things ...
ย 
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
ย 
Databricks Generative AI Fundamentals .pdf
Databricks Generative AI Fundamentals  .pdfDatabricks Generative AI Fundamentals  .pdf
Databricks Generative AI Fundamentals .pdf
ย 
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
ย 
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
ย 
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdflitvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
ย 

UNIT-IV FMM.PUMPS the mechanical principal involved in transfer of energy

  • 2. PUMP โ– The normal duty of pump is to lift a quantity of liquid from a low level to high level or to transfer from one place to another place. โ– The pump must provide energy โ– To lift the liquid to required height against the force of gravity โ– To overcome the fluid resistance to flow of the liquid through the pipe and the pump itself
  • 3. PUMP โ– Pump is defined as a device which transfers the input mechanical energy of a motor into pressure energy or kinetic energy. โ– Pump is classified according to the mechanical principal involved in transfer of energy โ– Positive displacement pump โ– Rotodynamic pump
  • 4. CLASSIFICATION OF PUMP PUMP Non โ€“ Positive Displacement Pump Positive Displacement Pump Centrifugal Pump Reciprocating Pump Rotary Pump Piston Diaphragm Gear Pump Vane Pump Lobe Pump Screw Pump
  • 5. APPLICATIONS OF PUMP โ– To pump water from source to fields for agricultural and irrigation purposes. โ– In petroleum installations to pump oil โ– In steam and diesel power plants to circulate feed water and cooling water respectively โ– Hydraulic control systems โ– Pumping of water in buildings โ– Fire fighting
  • 6. COMPONENTS OF A CENTRIFUGAL PUMP โ– A centrifugal pump has the following main components โœ“ Impeller โœ“ Casing โœ“ Suction pipe with strainer and foot valve โœ“ Delivery pipe
  • 7. IMPELLER โ– An impeller is a wheel or rotor having series of backward curved vanes โ– An impeller is mounted on a shaft which usually coupled to a motor โ– The motor provides the required input energy to rotate the impeller
  • 8. CASING โ– The impeller is enclosed in a watertight casing with delivery pipe on one side and with an arrangement on suction side called eye of impeller. โ– The main functions of casing are โ– It guides the water from entry to exit of impeller โ– It helps in partly converting the kinetic energy of liquid into pressure energy
  • 9. SUCTION PIPE โ– The pipe which connect the sump to the eye of impeller is called suction pipe โ– It caries the liquid to be lifted by the pump โ– The suction pipe at inlet is provided with strainer and foot valve.
  • 10. STRAINER & FOOT VALVE โ– The function of strainer is to prevent the entry of debris into the pump. โ– The foot valve is a non return valve which allows the flow of water only in upward direction โ– The valve does not allow the liquid to drain out from the suction pipe
  • 12. WORKING OF CENTRIFUGAL PUMP โ– It works on the principle that when a certain mass of fluid is made to rotate along the impeller from the central axis of rotation, it impresses a centrifugal head โ– It causes the water to move radially outwards at high velocity and causes the water to rise to a higher level โ– The motion of water is restricted by casing of pump, it results into pressure build up.
  • 13. STEPS INVOLVED IN OPERATION OF CENTRIFUGAL PUMP โ– The delivery valve is closed. โ– The priming of the pump is carried out โœ“ Priming involves the filling of liquid in suction pipe and casing up to the level of delivery valve, so that no air pockets are left in the systems โœ“ If any air or gas pockets are left in this portion of pump, it may result into no delivery of liquid by the pump
  • 14. STEPS INVOLVED IN OPERATION OF CENTRIFUGAL PUMP โ– The pump shaft and impeller is now rotated with the help of an external source of power like motor โœ“ The rotation of impeller inside a casing produces a forced vortex which is responsible in imparting the centrifugal head to the liquid โœ“ It also creates vacuum at the eye of impeller and causes liquid to rise into suction pipe from the sump
  • 15. STEPS INVOLVED IN OPERATION OF CENTRIFUGAL PUMP โ– The speed of impeller should be sufficient to produce the centrifugal head such that it can initiate the discharge from delivery pipe. โ– The delivery valve is opened and the liquid is lifted and discharged through the delivery pipe due to its high pressure โ– The liquid is continuously sucked from the sump to impeller eye and it is delivered from the casing of the pump through the delivery pipe. โ– Before stopping the pump, it is necessary to close the delivery pipe otherwise the back flow of liquid will take place
  • 16. CAVITATION โ– It is defined as the phenomenon of formation of vapour bubbles of a flowing liquid in a region โ– The pressure of the liquid falls below its vapour pressure the liquid will vapourise and flow will no longer will be continues. โ– These vapour bubbles travel into the region of higher pressure, they suddenly collapse on metallic surfaces and the surroundings liquid rushes to fill the cavities of vapour bubble โ– The severe rush of liquid causes the development of extremely high pressure โ– Prolonged cavitation causes erosion and pitting of metals โ– Prolonged cavitation causes severe vibrations and noise
  • 17. TYPES OF CASING โ– The shape of casing is designed such a way to reduce the loss of kinetic head to minimum. Based on the shape of casing it is classified โ– Volute Casing (Constant Velocity) โ– Vortex Casing (Variable Velocity) โ– Diffuser (Turbine)
  • 18. VOLUTE CASING โ– The cross section is designed to give a constant velocity in the volute of spiral shape โ– The centrifugal pump with volute casing round the impeller of gradually increasing area from point A and B โ– The loss of energy is reduced compared with circular casing โ– The conversion of kinetic energy into pressure energy is not possible, so there is only slight improvement in efficiency
  • 19. VORTEX CASING โ– The overall diameter of the pump is large compared volute casing. โ– The increase in diameter will provide an annular space between the impeller and volute passage. โ– The annular space called vortex chamber, there is a free vortex in which the velocity of liquid falls as it passes into this chamber from impeller outlet entry of volute passage โ– Due to decreases in velocity the pressure increases radially from centre outwards โ– The pump is bulky and expensive (due to excessive dimension)
  • 20. DIFFUSER CASING โ– The diffuser casing is similar to volute and vortex casing, but a diffuser ring with guide vanes is fixed in annular space โ– The function of guide vanes is to guide the liquid leaving the impeller in streamlined diverging passages into the volute chamber from where it flows to the delivery pipe. โ– The guide vanes passages have an increasing in cross sectional which reduces the velocity of flow, hence the partial kinetic energy(K.E) is converted into pressure energy(P.E) โ– The conversion of K.E to P.E takes place in volute chamber of increasing cross sectional area
  • 21. TYPES OF IMPELLERS โ– Depending on the viscosity of liquid the impellers are selected โ– Closed Impeller โ– Semi Open Impeller โ– Open Impeller
  • 22. TYPES OF IMPELLERS โ– In closed type impeller the vanes of impeller are cast between two circular disc. โœ“ This type of impeller are mostly used for clear water with low viscosity free from dirt. โ– In semi open type impeller the vanes are covered with plate on one side. โœ“ This type of impeller are mostly used in sewage installations, sugar and pulp industry with small amount of debris. โ– In open type impeller the vanes are don not have any cover plate. โœ“ This type of impeller is less efficient and used deal with liquids which contain suspend solids like sand etcโ€ฆ
  • 23. TYPES OF VANES โ– There are three types vanes according to the shape of vane โœ“ Curved forward vane โœ“ Curved backward vane โœ“ Radial vane
  • 24. VARIOUS HEADS OF A CENTRIFUGAL PUMP โ– Suction Head (hs): It represents the vertical distance between the top surface level of sump and the centre of impeller. โ– Delivery Head (hd): It represents the vertical distance between the centre of impeller and the discharge.
  • 25. VARIOUS HEADS OF A CENTRIFUGAL PUMP โ– Static Head (Hs): It is the sum of suction head and delivery head. It represents the vertical distance between the top surface level of sump to the discharge level in delivery tank. ๐‘ฏ๐’” = ๐’‰๐’” + ๐’‰๐’…
  • 26. VARIOUS HEADS OF A CENTRIFUGAL PUMP The total head against which the pump has to work is called as gross head ๐‘ฏ๐’ˆ = ๐‘ฏ๐’” + ๐’‰๐’‡๐’” + ๐’‰๐’‡๐’… + ๐•๐ฌ ๐Ÿ ๐Ÿ๐’ˆ + ๐•๐ ๐Ÿ ๐Ÿ๐’ˆ โ– Gross Head (Hg): The pump is required to work against the static head and the other losses like friction losses in pipes and head corresponding to kinetic energy due to suction and delivery velocity of liquid.
  • 27. VARIOUS HEADS OF A CENTRIFUGAL PUMP ๐‘ฏ๐’Ž = ๐‘ฏ๐’” + ๐’‰๐’‡๐’” + ๐’‰๐’‡๐’… + ๐•๐ ๐Ÿ ๐Ÿ๐’ˆ โ– Manometric Head (Hm): It is defined as the minimum amount of head against which the pump has to work to deliver the required discharge. Note: The manometric head does not include the friction loss head in impeller and casing of the pump
  • 28. LOSSES IN PUMPS โ– Various losses which occurs during the operation of centrifugal pump are โœ“ Hydraulic Losses: โžข Losses in Pump: ๏† Loss of head due to friction in impeller ๏† Loss of head due to shock and eddy from inlet to exit of impeller ๏† Loss of head due in guide vanes due to diffusion and in casing โžข Other Hydraulic Losses: ๏† Friction loss in suction and delivery pipes ๏† Loss of heads in bends, fittings, valves etc. Theses losses represents the loss of head in pump installation
  • 29. LOSSES IN PUMPS โœ“ Mechanical Loss: Due to disc friction in impeller, friction in bearings and other mechanical parts of the pump โœ“ Leakage Loss: A certain amount of energy is lost due to liquid which leaks from high pressure side to low pressure side of pump The liquid is leaked through the glands, stuffing box etc.
  • 30. WORK DONE BY IMPELLER โ– The liquid enters the impeller at its centre and leaves at its outer periphery โ– Assumptions โœ“ Liquid enters the impeller eye in radial direction, the whirl component ๐‘ฝ๐’˜๐Ÿ(of absolute velocity ๐‘ฝ๐Ÿ) is zero and flow component ๐‘ฝ๐’‡๐Ÿis equal to absolute velocity ๐‘ฝ๐Ÿ and ๐œถ = ๐ŸŽ โœ“ No loss of energy in the impeller due to friction โœ“ No loss due to shock at entry โœ“ There is uniform velocity distribution in the narrow passages formed between two adjacent
  • 31. WORK DONE BY IMPELLER
  • 32. WORK DONE BY IMPELLER ๐’–๐Ÿ & ๐’–๐Ÿ โ†’ ๐‘ท๐’†๐’“๐’Š๐’‘๐’‰๐’†๐’“๐’‚๐’ ๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐’๐’‡ ๐’•๐’‰๐’† ๐’Š๐’Ž๐’‘๐’†๐’๐’๐’†๐’“ ๐’‚๐’• ๐’Š๐’๐’๐’†๐’• & ๐’๐’–๐’•๐’๐’†๐’• ๐‘ฝ๐Ÿ & ๐‘ฝ๐Ÿ โ†’ ๐‘จ๐’ƒ๐’”๐’๐’๐’–๐’•๐’† ๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐’๐’‡ ๐’•๐’‰๐’† ๐’๐’Š๐’’๐’–๐’Š๐’… ๐’‚๐’• ๐’Š๐’๐’๐’†๐’• & ๐’๐’–๐’•๐’๐’†๐’• ๐‘ฝ๐’“๐Ÿ& ๐‘ฝ๐’“๐Ÿ โ†’ ๐‘น๐’†๐’๐’‚๐’•๐’Š๐’—๐’† ๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐’๐’‡ ๐’•๐’‰๐’†๐’๐’Š๐’’๐’–๐’Š๐’… ๐’‚๐’• ๐’Š๐’๐’๐’†๐’• & ๐’๐’–๐’•๐’๐’†๐’• ๐‘ฝ๐’˜๐Ÿ& ๐‘ฝ๐’˜๐Ÿ โ†’ ๐‘พ๐’‰๐’Š๐’“๐’ ๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐’๐’‡ ๐’•๐’‰๐’† ๐’๐’Š๐’’๐’–๐’Š๐’… ๐’‚๐’• ๐’Š๐’๐’๐’†๐’• & ๐’๐’–๐’•๐’๐’†๐’• ๐œถ & ๐œท โ†’ ๐‘ฎ๐’–๐’Š๐’…๐’† ๐‘ฉ๐’๐’‚๐’…๐’† ๐’‚๐’๐’ˆ๐’๐’† ๐’‚๐’• ๐’Š๐’๐’๐’†๐’• & ๐’๐’–๐’•๐’๐’†๐’• ๐œฝ & ๐“ โ†’ ๐‘ฝ๐’‚๐’๐’† ๐’‚๐’๐’ˆ๐’๐’† ๐’‚๐’• ๐’Š๐’๐’๐’†๐’• & ๐’๐’–๐’•๐’๐’†๐’• ๐’…๐Ÿ & ๐’…๐Ÿ โ†’ ๐‘ซ๐’Š๐’‚๐’Ž๐’†๐’•๐’†๐’“ ๐’๐’‡ ๐’Š๐’Ž๐’‘๐’†๐’๐’๐’†๐’“ ๐’‚๐’• ๐’Š๐’๐’๐’†๐’• & ๐’๐’–๐’•๐’๐’†๐’• ๐Ž โ†’ ๐‘จ๐’๐’ˆ๐’–๐’๐’‚๐’“ ๐’—๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐Ž = ๐Ÿ ร— ๐… ร— ๐‘ต ๐Ÿ”๐ŸŽ
  • 33. WORK DONE BY IMPELLER โ– While passing through the impeller, the velocity of whirl changes and there is a change of moment of momentum ๐‘ด๐’๐’Ž๐’†๐’๐’•๐’–๐’Ž ๐’‚๐’• ๐‘ฐ๐’๐’๐’†๐’• = แˆถ ๐’Ž ร— ๐‘ฝ๐’˜๐Ÿ = ๐† ร— ๐’‚ ร— ๐‘ฝ๐Ÿ ร— ๐‘ฝ๐’˜๐Ÿ ๐‘ธ = ๐’‚ ร— ๐‘ฝ = ๐† ร— ๐‘ธ ร— ๐‘ฝ๐’˜๐Ÿ ๐’”๐’‘๐’†๐’„๐’Š๐’‡๐’Š๐’„ ๐’˜๐’†๐’Š๐’ˆ๐’‰๐’• ๐’˜ = ๐† ร— ๐’ˆ = ๐’˜ ๐’ˆ ร— ๐‘ธ ร— ๐‘ฝ๐’˜๐Ÿ ๐‘พ๐’†๐’Š๐’ˆ๐’‰๐’• ๐’๐’‡ ๐’๐’Š๐’’๐’–๐’Š๐’… ๐‘พ = ๐’˜ ร— ๐‘ธ ๐‘ด๐’๐’Ž๐’†๐’๐’•๐’–๐’Ž ๐’‚๐’• ๐‘ฐ๐’๐’๐’†๐’• = ๐‘พ ๐’ˆ ร— ๐‘ฝ๐’˜๐Ÿ
  • 34. WORK DONE BY IMPELLER โ– Similarly ๐‘ด๐’๐’Ž๐’†๐’๐’•๐’–๐’Ž ๐’‚๐’• ๐’๐’–๐’•๐’๐’†๐’• = ๐‘พ ๐’ˆ ร— ๐‘ฝ๐’˜๐Ÿ ๐‘จ๐’๐’ˆ๐’–๐’๐’‚๐’“ ๐‘ด๐’๐’Ž๐’†๐’๐’•๐’–๐’Ž ๐’‚๐’• ๐’Š๐’๐’๐’†๐’• = ๐‘พ ๐’ˆ ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’“๐Ÿ ๐‘จ๐’๐’ˆ๐’–๐’๐’‚๐’“ ๐‘ด๐’๐’Ž๐’†๐’๐’•๐’–๐’Ž ๐’‚๐’• ๐’๐’–๐’•๐’๐’†๐’• = ๐‘พ ๐’ˆ ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’“๐Ÿ
  • 35. WORK DONE BY IMPELLER ๐‘ป๐’๐’“๐’’๐’–๐’† ๐‘ป = ๐‘น๐’‚๐’•๐’† ๐’๐’‡ ๐’„๐’‰๐’‚๐’๐’ˆ๐’† ๐’๐’‡ ๐’Ž๐’๐’Ž๐’†๐’๐’•๐’–๐’Ž ๐‘ป = ๐‘พ ๐’ˆ ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’“๐Ÿ โˆ’๐‘ฝ๐’˜๐Ÿ ร— ๐’“๐Ÿ ๐‘พ๐’๐’“๐’Œ ๐‘ซ๐’๐’๐’† = ๐‘ป๐’๐’“๐’’๐’–๐’† ร— ๐‘จ๐’๐’ˆ๐’–๐’๐’‚๐’“ ๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐‘พ. ๐‘ซ = ๐‘พ ๐’ˆ ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’“๐Ÿ โˆ’๐‘ฝ๐’˜๐Ÿ ร— ๐’“๐Ÿ ร— ๐Ž ๐‘พ. ๐‘ซ = ๐‘พ ๐’ˆ ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’“๐Ÿร— ๐Ž โˆ’ ๐‘ฝ๐’˜๐Ÿ ร— ๐’“๐Ÿร— ๐Ž
  • 36. WORK DONE BY IMPELLER ๐‘พ. ๐‘ซ = ๐‘พ ๐’ˆ ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’“๐Ÿร— ๐Ž โˆ’ ๐‘ฝ๐’˜๐Ÿ ร— ๐’“๐Ÿร— ๐Ž ๐’– = ๐’“ ร— ๐Ž ๐‘พ. ๐‘ซ = ๐‘พ ๐’ˆ ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ โˆ’๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ โ– Since the centrifugal pump is the reverse of turbine ๐‘พ. ๐‘ซ = โˆ’ ๐‘พ ๐’ˆ ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ โˆ’๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ ๐‘พ. ๐‘ซ = ๐‘พ ๐’ˆ ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ โˆ’๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ
  • 37. WORK DONE BY IMPELLER โ– If ๐œถ = ๐Ÿ—๐ŸŽยฐ ๐’•๐’‰๐’†๐’ ๐‘ฝ๐’˜๐Ÿ = ๐ŸŽ ๐‘พ. ๐‘ซ ๐’‘๐’†๐’“ ๐’”๐’†๐’„ = ๐‘พ ๐’ˆ ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ ๐‘พ. ๐‘ซ ๐’‘๐’†๐’“ ๐’”๐’†๐’„ ๐‘ผ๐’๐’Š๐’• ๐‘พ๐’†๐’Š๐’ˆ๐’•๐’‰ ๐’๐’‡ ๐’˜๐’‚๐’•๐’†๐’“ ๐’‘๐’†๐’“ ๐’”๐’†๐’„ = ๐‘พ ๐’ˆ ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ ๐‘พ ๐‘พ. ๐‘ซ ๐’‘๐’†๐’“ ๐’”๐’†๐’„ ๐‘ผ๐’๐’Š๐’• ๐‘พ๐’†๐’Š๐’ˆ๐’•๐’‰ ๐’๐’‡ ๐’˜๐’‚๐’•๐’†๐’“๐’‘๐’†๐’“ ๐’”๐’†๐’„ = ๐Ÿ ๐’ˆ ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ
  • 38. WORK DONE BY IMPELLER โ– If ๐‘ฝ๐’˜๐Ÿ โ‰  ๐ŸŽ ๐‘พ. ๐‘ซ ๐’‘๐’†๐’“ ๐’”๐’†๐’„ = ๐‘พ ๐’ˆ ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ โˆ’๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ ๐‘พ. ๐‘ซ ๐’‘๐’†๐’“ ๐’”๐’†๐’„ ๐‘ผ๐’๐’Š๐’• ๐‘พ๐’†๐’Š๐’ˆ๐’•๐’‰ ๐’๐’‡ ๐’˜๐’‚๐’•๐’†๐’“๐’‘๐’†๐’“ ๐’”๐’†๐’„ = ๐‘พ ๐’ˆ ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ โˆ’๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ ๐‘พ = ๐Ÿ ๐’ˆ ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ โˆ’๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ โ– The above equation is Euler Momentum Equation for centrifugal pump
  • 39. EFFICIENCY OF THE CENTRIFUGAL PUMP โ– Manometric efficiency โ– Volumetric efficiency โ– Mechanical efficiency โ– Overall efficiency
  • 40. MANOMETRIC EFFICIENCY The ratio of the manometric head developed by the pump to the head imparted by the impeller to the liquid is known as manometric efficiency ๐œผ๐’Ž๐’‚๐’๐’ = ๐‘ด๐’‚๐’๐’๐’Ž๐’†๐’•๐’“๐’Š๐’„ ๐‘ฏ๐’†๐’‚๐’… ๐‘ฏ๐’†๐’‚๐’… ๐‘ฐ๐’Ž๐’‘๐’‚๐’“๐’•๐’†๐’… ๐’ƒ๐’š ๐’Š๐’Ž๐’‘๐’†๐’๐’๐’†๐’“ ๐’•๐’ ๐‘ณ๐’Š๐’’๐’–๐’Š๐’… ๐œผ๐’Ž๐’‚๐’๐’ = ๐‘ฏ๐’Ž ๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ ๐’ˆ ๐œผ๐’Ž๐’‚๐’๐’ = ๐’ˆ ร— ๐‘ฏ๐’Ž ๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ
  • 41. VOLUMETRIC EFFICIENCY The ratio of the actual liquid discharged per second from the pump to the total liquid discharge per second passing through the impeller. ๐œผ๐‘ฝ๐’๐’ = actual liquid discharged at the pump outlet per second ๐‘ฏ๐’†๐’‚๐’… ๐‘ฐ๐’Ž๐’‘๐’‚๐’“๐’•๐’†๐’… ๐’ƒ๐’š ๐’Š๐’Ž๐’‘๐’†๐’๐’๐’†๐’“ ๐’•๐’ ๐‘ณ๐’Š๐’’๐’–๐’Š๐’… ๐œผ๐‘ฝ๐’๐’ = ๐‘ธ ๐‘ธ + ๐’’
  • 42. MECHANICAL EFFICIENCY The ratio of the power delivered by the impeller to the liquid to the power input to the pump shaft is known as mechanical efficiency ๐œผ๐’Ž๐’†๐’„๐’‰ = Power delivered by the impeller to the liquid Power input to the pump shaft ๐œผ๐’Ž๐’†๐’„๐’‰ = ๐‘พ๐’๐’“๐’Œ๐’…๐’๐’๐’† ๐’ƒ๐’š ๐’Š๐’Ž๐’‘๐’†๐’๐’๐’†๐’“ ๐’‘๐’†๐’“ ๐’”๐’†๐’„ ๐‘บ๐’‰๐’‚๐’‡๐’• ๐’‘๐’๐’˜๐’†๐’“ ๐œผ๐’Ž๐’†๐’„๐’‰ = ๐‘พ ๐’ˆ ร— ๐‘ฝ๐’˜๐Ÿ ร— ๐’–๐Ÿ ๐‘ท ๐‘พ๐’‰๐’†๐’“๐’†, ๐‘พ = ๐’˜ ร— ๐‘ธ = ๐† ร— ๐’ˆ ร— ๐‘ธ
  • 43. OVERALL EFFICIENCY The ratio of the power output of pump to the power input to the pump is known as overall efficiency ๐œผ๐จ = Power output of pump Power input to the pump shaft ๐œผ๐’ = ๐† ร— ๐’ˆ ร— ๐‘ธ ร— ๐‘ฏ๐’Ž ๐‘ท ๐œผ๐’ = ๐œผ๐’Ž๐’‚๐’๐’ ร— ๐œผ๐’Ž๐’†๐’„๐’‰ ร— ๐œผ๐‘ฝ๐’๐’
  • 44. TYPES OF PERFORMANCE CHARACTERISTIC CURVES โ– Main characteristics curves โ– Operating characteristics curves โ– Iso โ€“ efficiency (or) Muschel curves โ– Constant head and Constant discharge curves The performance characteristics curves are broadly divided to four categories
  • 45. MAIN CHARACTERISTICS CURVES โ– Main characteristics curves are obtained by test run at constant speed and the discharge is varied by means of delivery valve. โ– At each discharge, the manometric head ๐‘ฏ๐’Ž and input power ๐‘ท are measured and the overall efficiency ๐œผ๐’ is calculated โ– Test curves are plotted between ๐‘ฏ๐’Ž ๐‘ฝ๐’” ๐‘ธ, ๐‘ท ๐‘ฝ๐’” ๐‘ธ ๐’‚๐’๐’… ๐œผ๐’ ๐‘ฝ๐’” ๐‘ธ is shown figure for that constant speed. The test are repeated for different speed.
  • 46. OPERATING CHARACTERISTICS CURVES โ– The pumps are designed for maximum efficiency at the given speed called design speed โ– The pumps are test run at design speed as provided by the manufacturer of the pump โ– The discharge is varied as discussed in main characteristic curve and the head and power input is measured โ– The overall efficiency of the pump is calculated โ– The performance curve thus obtained at design speed are called operating characteristics curves
  • 47. ISO โ€“ EFFICIENCY (OR) MUSCHEL CURVES โ– Constant efficiency curves are useful in predicting the performance on entire operations and its best performance โ– The curves are plotted between ๐‘ฏ๐’Ž ๐‘ฝ๐’” ๐‘ธ ๐’‚๐’๐’… ๐œผ๐’ ๐‘ฝ๐’” ๐‘ธ โ– Draw a line on ๐œผ๐’ ๐‘ฝ๐’” ๐‘ธ representing constant efficiency line. โ– The points at which the constant efficiency line cuts the constant speed lines the discharges are noted
  • 48. ISO โ€“ EFFICIENCY (OR) MUSCHEL CURVES โ– At the given discharge and speed the ๐‘ฏ๐’Ž is noted from ๐‘ฏ๐’Ž ๐‘ฝ๐’” ๐‘ธ graph. โ– The values of ๐‘ฏ๐’Ž & ๐‘ธ at constant efficiency is projected in graph โ– The points corresponding to same overall efficiency are then joined with a smooth curve as shown in figure โ– These curves represents iso โ€“ efficiency curves. The curves help to locate the region where the pump would operate at maximum efficiency
  • 49. CONSTANT HEAD AND CONSTANT DISCHARGE CURVES โ– Often centrifugal pump is draw required to operate variable speed than the design speed. โ– It is necessary to the performance curves of a pump at variable speed so that these curves can be used to predict the performance. โ– The delivery valves opening is fixed and kept constant during the test on pump. โ– Then operated at variable speed. For each speed ๐‘ฏ๐’Ž, ๐‘ธ ๐’‚๐’๐’… ๐‘ท๐’Š are measured โ– The graph ๐‘ฏ ๐‘ฝ๐’” ๐‘ต, ๐‘ท๐’Š ๐‘ฝ๐’” ๐‘ต ๐’‚๐’๐’… ๐‘ธ ๐‘ฝ๐’” ๐‘ต ๐’‚๐’“๐’† ๐’…๐’“๐’‚๐’˜๐’.
  • 50. SPECIFIC SPEED OF THE PUMP โ– The specific speed of a centrifugal pump is defined as the speed of a geometrically similar pump which would deliver discharge of one cubic meter per second under a head of one metre. โ– Discharge ๐‘ธ = ๐‘จ๐’“๐’†๐’‚ ร— ๐‘ฝ๐’†๐’๐’๐’„๐’Š๐’•๐’š ๐’๐’‡ ๐‘ญ๐’๐’๐’˜ ๐‘ธ = ๐… ร— ๐’… ร— ๐’ƒ ร— ๐‘ฝ๐’‡ โ– The Width โ€œbโ€ is proportional to the diameter of the impeller ๐‘ธ โˆ ๐’…๐Ÿ ร— ๐‘ฝ๐’‡ ๐‘ฌ๐’’ โ€ฆ โ€ฆ โ€ฆ . . โ‘ 
  • 51. SPECIFIC SPEED OF THE PUMP โ– Peripheral velocity ๐’– = ๐… ร— ๐’… ร— ๐‘ต ๐Ÿ”๐ŸŽ โ– The velocity โ€œuโ€ is proportional to the diameter and speed of the impeller ๐’– โˆ ๐’…๐‘ต ๐’… โˆ ๐’– ๐‘ต ๐‘ฌ๐’’ โ€ฆ โ€ฆ โ€ฆ . . โ‘ก
  • 52. SPECIFIC SPEED OF THE PUMP โ– The tangential velocity โ€œ๐’–โ€ of the impeller and flow velocity ๐‘ฝ๐’‡๐Ÿ are proportional to manometric head ๐‘ฏ๐’Ž ๐’– โˆ ๐‘ฏ๐’Ž ๐‘ฌ๐’’ โ€ฆ โ€ฆ โ€ฆ . . โ‘ข ๐‘ฝ๐’‡ โˆ ๐‘ฏ๐’Ž ๐‘ฌ๐’’ โ€ฆ โ€ฆ โ€ฆ . . โ‘ฃ โ– From ๐‘ฌ๐’’ โ€ฆ โ€ฆ โ€ฆ . . โ‘ก ๐’… โˆ ๐’– ๐‘ต ๐’”๐’–๐’ƒ ๐‘ฌ๐’’ โ‘ข ๐’Š๐’ โ‘ก ๐’… โˆ ๐‘ฏ๐’Ž ๐‘ต ๐‘ฌ๐’’ โ€ฆ โ€ฆ โ€ฆ . . โ‘ค
  • 53. SPECIFIC SPEED OF THE PUMP โ– From ๐‘ฌ๐’’ โ€ฆ โ€ฆ โ€ฆ . . โ‘  โ‘ฃ โ‘ค ๐‘ธ โˆ ๐’…๐Ÿ ร— ๐‘ฝ๐’‡ ๐‘ฝ๐’‡ โˆ ๐‘ฏ๐’Ž ๐’… โˆ ๐‘ฏ๐’Ž ๐‘ต ๐’”๐’–๐’ƒ ๐‘ฌ๐’’ โ‘ฃ & โ‘ค ๐’Š๐’ โ‘  ๐‘ธ โˆ ๐‘ฏ๐’Ž ๐‘ต ๐Ÿ ร— ๐‘ฏ๐’Ž ๐‘ธ โˆ ๐‘ฏ๐’Ž เต— ๐Ÿ‘ ๐Ÿ ๐‘ต๐Ÿ ๐‘ธ = ๐‘ฒ ๐‘ฏ๐’Ž เต— ๐Ÿ‘ ๐Ÿ ๐‘ต๐Ÿ ๐‘ฌ๐’’ โ€ฆ โ€ฆ โ€ฆ . . โ‘ฅ
  • 54. SPECIFIC SPEED OF THE PUMP โ– From the definition at ๐‘ต = ๐‘ต๐’” ๐’˜๐’‰๐’†๐’ ๐‘ธ = ๐Ÿ ฮค ๐’Ž๐Ÿ‘ ๐’” ๐’‚๐’๐’… ๐‘ฏ๐’Ž = ๐Ÿ ๐’Ž ๐‘ธ = ๐‘ฒ ๐‘ฏ๐’Ž เต— ๐Ÿ‘ ๐Ÿ ๐‘ต๐Ÿ ๐Ÿ = ๐‘ฒ ๐Ÿ เต— ๐Ÿ‘ ๐Ÿ ๐‘ต๐’” ๐Ÿ ๐‘ฒ = ๐‘ต๐’” ๐Ÿ ๐‘ฌ๐’’ โ€ฆ โ€ฆ โ€ฆ . . โ‘ฆ ๐’”๐’–๐’ƒ ๐‘ฌ๐’’ โ‘ฆ ๐’Š๐’ โ‘ฅ ๐‘ธ = ๐‘ต๐’” ๐Ÿ ๐‘ฏ๐’Ž เต— ๐Ÿ‘ ๐Ÿ ๐‘ต๐Ÿ ๐‘ต๐’” = ๐‘ต ร— ๐‘ธ ๐‘ฏ เต— ๐Ÿ‘ ๐Ÿ’