EECT 6325- VLSI Design
Term Project: Trivium
Team Members:
Ozgen Sumer Lacin UTD ID: 2021227875
Muhammad Mohid Nabil UTD ID: 2021258403
Instructor: Dr. Jeyavijayan Rajendran
T.A: Vahid Moalemi
Table of Contents
Abstract.........................................................................................................................................................4
Introduction ..................................................................................................................................................4
Block Diagram of the System........................................................................................................................4
Building Blocks: Gates and registers used in the System..............................................................................5
Flip Flop.....................................................................................................................................................5
XOR Gate...................................................................................................................................................8
AND gate.................................................................................................................................................10
Schematic of the Trivium Stream (Complete Design).................................................................................11
Layout of Trivium ........................................................................................................................................13
Results.........................................................................................................................................................16
Simulation Results of the Schematic.......................................................................................................16
Simulation Results of the Layout ............................................................................................................19
Appendix .....................................................................................................................................................23
HSPICE Netlist (.sp file) for Schematic Simulation ..................................................................................23
HSPICE Netlist (.sp file) for Layout Simulation........................................................................................37
Figure 1: Block Diagram of the Trivium Stream............................................................................................5
Figure 2: Schematic of Dynamic FF...............................................................................................................6
Figure 3: Layout of Dynamic FF.....................................................................................................................7
Figure 4: Block Diagram of FF .......................................................................................................................7
Figure 5: Input Propagation when 10 FFs are cascaded...............................................................................8
Figure 6: Schematic of XOR Gate ..................................................................................................................9
Figure 7: Layout of XOR gate.........................................................................................................................9
Figure 8: Block of XOR.................................................................................................................................10
Figure 9: Schematics of NAND and Inverter gates......................................................................................10
Figure 10: Layout of NAND and Inverter gates...........................................................................................11
Figure 11: Complete Schematic of the Design............................................................................................11
Figure 12: Zoomed version of the transition point from Section A to Section B........................................12
Figure 13: Zoom out version of the Layout.................................................................................................13
Figure 14: Zoomed in version of the layout with pin names ......................................................................13
Figure 15: FFs with XOR attached...............................................................................................................14
Figure 16: End of layout with output pin labeled .......................................................................................14
Figure 17: Propagation of bits via FFs.........................................................................................................17
Figure 18: AND operation waveform..........................................................................................................17
Figure 19: XOR function..............................................................................................................................18
Figure 20: Clock to Q delay(tcq)..................................................................................................................19
Figure 21: Propagation Waveform of bits...................................................................................................20
Figure 22: AND Function.............................................................................................................................20
Figure 23: XOR Function..............................................................................................................................21
Figure 24: Waveform till 700ns...................................................................................................................21
Abstract
In this project, we designed a Trivium stream cipher, a hardware oriented synchronous stream cipher
which aims to provide a flexible trade-off between speed and area. For this design, we used three basic
gates and a FF register. Logic gates employed for this project are NAND, Inverter, and an XOR. We first
implemented the circuit in the schematic level and did pre-layout simulations then we draw layout and
performed post layout simulations. We decided to choose area optimization that’s why transistor sizes
are kept as small as possible especially for FF design. This report gives an overview about Trivium
stream cipher, explains the design metric, and shows the block diagram, circuit schematic and layout of
the complete design together with the simulation results as results and discussion part.
Introduction
Trivium is a stream cipher key designed to generate a cipher key by using minimum gate count in
hardware and provide fast results. It was first introduced in Profile II of the eStream competition by its
authors Christophe De Cannière and Bart Preneel. It is not patented and specified as International
Standard under ISO/IEC. Trivium generates up to 264
bits of output by using 80 bit secret key and 80 bit
initial values (IV). Even though it is a simple eSTREAM entrant, it is shown to have notable resistance to
cryptanalysis and performance. Trivium works as following: Initially secret key and initial values are
introduced into Trivium cipher key to create internal state then state is updated repeatedly and key
stream bits are generated. 288-bit internal state consists of three shift registers of different lengths. At
each round, a bit is shifted into all these three shift registers and one bit of output is produced. In the
initialization stage, key and IV values are written into the shift registers and rest of the values are kept
fixed as either 0s or 1s. The cipher state is then update 4*288 = 1152 times so that bits in the internal
state depend on the bits of the key and the IV in a complex nonlinear way.
Block Diagram of the System
Figure 1 shows the block diagram of the Trivium stream cipher. As can be seen, 288 bits are divided
mainly into three regions. All these regions are connected to each other with XOR and AND gates. These
gates take certain outputs from the corresponding states as defined in the algorithm and give them to
other register or logical gates as an input. These gates create the non-linear combination of taps. If there
were no XOR and AND gates in the system, it was just going to shift the values introduced to the system
till output.
Figure 1: Block Diagram of the Trivium Stream
Building Blocks: Gates and registers used in the System
There are 3 gates and 1 register used in the design of the Trivium. These gates are NAND, Inverter and
XOR whereas the register is Flip Flop. Each of these elements will be explained briefly and their
waveforms will be given.
Flip Flop
For this project, we designed a dynamic Flip Flop. There was no restriction on the type of the FF
however we decided to choose this FF type due to its smaller area compared to static CMOS
implementation. Typical static FF uses 18 transistors whereas the dynamic FF employs 10 transistors and
this configuration saves from area dramatically. The capacitors in the original design were replaced with
PMOS and NMOS transistors to make the FF asynchronous. Original usage of asynchronous reset FF is to
pull down the output voltage to ground whenever the reset is applied independent of CLK, or the data
stored in the FF. We use this function of reset to load initial values in parallel. This saves a lot of time
since we have 288 bits to initialize. Loading them 1 by 1 with shifting method would take really long
that’s why we exploit this feature of reset to save time. The schematic of the dynamic FF we designed is
given in Figure 2. Additional transistors are just for creating signals such as CLK, reset and IV rather than
a part of the generic dynamic FF design. Including all these, the total transistor count reaches up to 16.
The layout of the dynamic FF is shown in Figure 2 with necessary dimensions. Total size of the layout is
7.3µm x 5.39µm. All PMOS transistors are 560nm and NMOS transistor are 280nm in this FF design.
Block diagram of the structure is created for easy connection in the schematic.
Figure 2: Schematic of Dynamic FF
Figure 3: Layout of Dynamic FF
Figure 4: Block Diagram of FF
FFs are connected back to back and propagation is obtained successfully as shown in Figure 5. For the
size of the graph, here we show just 10 FFs connected back to back but in the real case where there are
288 FFs we get a smooth propagation of the input signal fed into the system.
Figure 5: Input Propagation when 10 FFs are cascaded
.
XOR Gate
There are 11 XOR gates in total in the system. These gates are used for addition over Galois Field 2 (GF2)
in the Trivium stream cipher. We came up with a custom XOR design instead of using a static CMOS
design due to the same reasons stated above for FF such as decreasing the area while achieving
reasonable delay and energy. The schematic and layout of the XOR gate are shown in Figure 6 and
Figure 7 respectively. As it is seen XOR gate has a total area of 5.710µm*3.280 µm. Width of PMOS and
NMOS are 2.16µm and 780nm respectively.
Figure 6: Schematic of XOR Gate
Figure 7: Layout of XOR gate
Figure 8: Block of XOR
AND gate
AND gate is constructed by using one NAND gate and an inverter appended to its output. These gates
are instantiated from the library we created for our Lab assignments. Schematics and layouts of NAND
and Inverter are given below.
Figure 9: Schematics of NAND and Inverter gates
Sizes of all of the transistors in NAND gate are 840nm whereas in inverter PMOS is 1.18 µm and NMOS is
280nm.
Figure 10: Layout of NAND and Inverter gates
Schematic of the Trivium Stream (Complete Design)
The complete schematic is built by adding all 288 FFs back to back and placing AND and XOR gates to the
corresponding places respectively. The snapshot of the complete schematic is shown below but this
image doesn’t show the elements clearly due to poor aspect ratio of the diagram however to give a
better view to the reader we also show the zoomed version of the critical part of our system where FFs,
XORs and AND gates exist.
Figure 11: Complete Schematic of the Design
Figure 12: Zoomed version of the transition point from Section A to Section B
Figure 12 shows a critical part of the design. We basically divided the 288 bits into three sections A, B
and C, we introduced secret keys to A, initial values (IVs) to B and the static inputs (0s and 1s) to C.
Complexity of the design lies in the part between these sections where sections (A, B and C) are
interacting with each other and this section is basically where we implement the algorithm. Based on
the algorithm provided to us, specific outputs should be XOR’ed or AND then provided as an input to
another FF. For example, in Figure 12 output of 91st
and 92nd
FFs are fed into NAND gate then inverted
(AND operation) and provided as an input to an XOR gate whereas the other this XOR gate is actually
coming from the output of the 1st
XOR gate where 93rd
and 66th
state bits are the inputs.
Layout of Trivium
Figure 13: Zoom out version of the Layout
Figure 14: Zoomed in version of the layout with pin names
Figure 15: FFs with XOR attached
Figure 16: End of layout with output pin labeled
Our layout’s aspect ratio is 400. We designed our layout in rectangular form that’s why its length is 400
time bigger than its width. We tried not to create off-paths so that we wouldn’t deviate from the
rectangular shape and not increase the area. Putting everything in square form would be a nicer
approach and look more compact but since we didn’t have a requirement on the area we instantiated all
the layouts back to back and got this form.
Total Area of this design is: 10.39µm*2093µm= 0.0213 〖mm〗^2
DRC Results
LVS Results
Results
Note: Before we discuss any simulation results, we would like to state that due to technical problems
related to our quota on H drive we couldn’t run a simulation longer than 700ns. University provides
2.0GB of storage on H drive to graduate students and every time we ran the simulations for 4*288
cycles (which is equal to 1152ns for our simulations, CLK period was 1ns) just to initialize the keys, we
filled all our quota provided to us and eventually lost both of our spaces. Simulations were taking
more than 2GB therefore not giving results after 700ns for our case. Even though we deleted all the
unnecessary files on our H drive after we are done analyzing the results and start a new run for each
analysis, eventually both of us lost our access to the shared folders and just left with 200MB. We
talked to IT Service and they got back to us after 5 days and the additional space provided to us was
still not enough to run a complete simulation to see if our chip is capable of creating the cipher key or
not. All 2GB of storage was filled with unknown data that neither us nor them could find. We
explained this situation also to Prof. Rajendran. Due to insufficient storage provided to us, in this and
next section where we also include the post layout simulations, functionality of each basic block
together with a 700ns simulation results will be shown to prove that our design works but just can’t
complete the required simulation time due to space issues and we would be able to achieve the
required output values if we had enough storage.
Simulation Results of the Schematic
Before we implemented our layout, we did pre-layout simulations to see if our circuit is working fine or
not. That’s why we built our circuit on Cadence Virtuoso and extracted the netlist from Analog
environment and loaded this netlist into HSPICE. This model doesn’t include the parasitic capacitances
coming from the metal layer connections that’s why we expect a smaller delay compared to the post-
layout simulations. Simulation results show that our circuit works fine and is able to propagate the
introduced secret keys and initial values to the output without any loss. It is worthwile to mention here
one more time that all the secret key and initial values are introduced in parallel by exploiting the reset
function in FF. It only takes one clock cycle for us to initialize all these values into the system.
Simulation results for both schematic and layout were divided into three main sections which are: bit
propagation, AND function and XOR function outputs. After we run our simulations, we checked specific
outputs to prove that our circuit works in correct way. The net names put in the graph indicates specific
output nodes and explained in a detailed way in the following.
1) Propagation Function
In this waveform, we measured 8 different output values which are 1st
, 10th
, 20th
, 30th
, 70th
103rd
, 178th
and 288th
outputs of the FFs. Net names corresponding to these outputs are net3901, net3824, net3768,
net 3782, net 3355, net 2977, net 3124 and net q respectively as can also be seen from the figure below.
These values are written in the same order in the graph. For example, CLK is the green pulse followed by
net3901 (the yellow pulse) then net3824 (the blue pulse) and so on. As it is seen from the graph, output
of each of these FFs are propagated without any problems to the primary output.
Figure 17: Propagation of bits via FFs
2) AND Function
To implement the AND function, we used a NAND gate and an Inverter. To show the functionality of this
function, we took the outputs of 91st
and 92nd
FFs and provided as an input to our NAND gate. Output of
this NAND gate is given as an input to inverter and output of the inverter gave us the AND function.
Waveform below proves that initial value (K1=1 and rest is 0) is propagated to the 91st
and 92nd
FF
without any problem and AND operation is performed correctly.
Figure 18: AND operation waveform
In Figure 18, pink and red pulses (net 3243 and net 3236) are the inputs to NAND gate and the blue
pulse(net 1847) is the output of NAND whereas the yellow pulse in the bottom of the graph is the
output of the inverter. As it is seen, our bits are being ANDed without any problem as well.
3) XOR Function
To prove the functionality of XOR, we used 93rd
bit and 66th
bit (first XOR operation of Trivium that gives
us t1). Figure 19 shows the operation. Similar to previous graphs, green pulse is the CLK pulse with 1 GHz
and yellow pulses (net3292) are the 1st
input of the XOR and white pulses (s66) are the other input. Blue
pulses are the output of our XOR gate and as it is seen, they work well and direct their result to the
required stages as well.
Figure 19: XOR function
After we observed correct functionality of all the basic blocks, we measured our delay, power energy
and EDP and power results and tabulated them. Table 1 shows the summary of our results.
Delay Energy EDP Power
Schematic
Results
325ps 0.2nJ 1.23e-29 0.78mW
Delay is measured from second clock cycle to second pulse in output because the first output pulse is
coming from the initialization part. It is calculated in Waveview software by measure tool and shown in
Figure 20.
Power and GND wire Sizing Formula is calculated as follows:
Measured power of the chip is 0.78mW.
Thus 0.78mW = VI
Thus I= 0.78mW/1.2 = 0.65mA
The current density due to electron migration is 0.5mA/µm
Thus the vdd and gnd widths are 0.65/0.5 = 1.3µm
Figure 20: Clock to Q delay(tcq)
Simulation Results of the Layout
After getting successful results from the schematic we draw the layout of our design and did post layout
simulations and compared them with circuit schematic simulations. As will be seen from the following
analyses, circuit and layout schematic simulations match and they give the same output. To provide a
good comparison, we used exactly the same nets. Three analyses are performed as in the previous case
and results are tabulated. Since detailed analyses of how we choose the nodes are explained in the
schematic simulation results section, this section will just show the graphs and prove that post layout
simulations give the same results with schematic results. The only addition done to this part is putting
the complete simulation results that we ran for 700ns. We included the Figure showing the waveform of
Multiple signals including XORs, ANDs propagation and primary output and proved that our circuit
behavior doesn’t get distorted when we run for multiple cycles as well.
1) Propagation Function
Figure 21: Propagation Waveform of bits
2) AND Function
Figure 22: AND Function
3) XOR Function
Figure 23: XOR Function
4) Complete Simulation
Simulation time was set to 1440 (4cycle to initialize and 1 cycle to create one bit of key stream) ns
however due to storage issues and simulation stopped displaying results after 700ns.
Figure 24: Waveform till 700ns
Delay Energy EDP Power Power and
GND Wire
Sizing
Layout Results 339ps 0.3nJ 101.7e-21 1.18mW 1.16µm
Conclusion
In this Term Project, we designed Trivium Stream cipher by optimizing the area of the layout. Circuit
schematic and Layout are both built in Cadence Virtuoso and simulated using HSPICE simulator. Results
showed that designed circuit functions as expected but due to storage problems we couldn’t run our
simulation more than 3 clock cycles but in that 3 clock cycles we showed that both schematic and layout
simulations provided satisfactory outputs. Delay, area, energy, power, EDP and Power and GND rails
Wire sizing are measured in tabulated. Total area of the chip is measured as 0.0213 𝑚𝑚2
.
(10.39µm*2093µm). Total power consumption and energy consumption are measured to be 1.18mW,
and 0.3nJ respectively. Total number of 4736 transistors are used in this design.
Appendix
HSPICE Netlist (.sp file) for Schematic Simulation
** Generated for: hspiceD
** Generated on: Apr 29 19:43:06 2016
** Design library name: Oz
** Design cell name: Triviumproject
** Design view name: schematic
*.include "/home/cad/kits/IBM_CMRF8SF-
LM013/IBM_PDK/cmrf8sf/V1.2.0.0LM/HSPICE/models/model013.lib_inc"
.TEMP 25
.OPTION
+ ARTIST=2
+ INGOLD=2
+ MEASOUT=1
+ PARHIER=LOCAL
+ PSF=2
** Library name: Oz
** Cell name: inverter
** View name: schematic
.subckt inverter gnd in out vdd
mt1 out in vdd vdd pfet l=120e-9 w=1.08e-6 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=251.2e-3
nrs=251.2e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0
panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0
mt0 out in gnd gnd nfet l=120e-9 w=280e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=1.1064
nrs=1.1064 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0
panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0
.ends inverter
** End of subcircuit definition.
** Library name: Oz
** Cell name: NAND
** View name: schematic
.subckt NAND a b gnd out vdd
mt3 net018 b gnd gnd nfet l=120e-9 w=840e-9 nf=1 m=1 rf=0 ngcon=1 ad=419e-15 as=419e-15
pd=2.645e-6 ps=2.645e-6 nrd=327e-3 nrs=327e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1
pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0
panw9=0 panw10=0 dtemp=0
mt2 out a net018 gnd nfet l=120e-9 w=840e-9 nf=1 m=1 rf=0 ngcon=1 ad=419e-15 as=419e-15
pd=2.645e-6 ps=2.645e-6 nrd=327e-3 nrs=327e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1
pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0
panw9=0 panw10=0 dtemp=0
mt1 out b vdd vdd pfet l=120e-9 w=840e-9 nf=1 m=1 rf=0 ngcon=1 ad=419e-15 as=419e-15 pd=2.645e-6
ps=2.645e-6 nrd=327e-3 nrs=327e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0
pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0
panw10=0 dtemp=0
mt0 out a vdd vdd pfet l=120e-9 w=840e-9 nf=1 m=1 rf=0 ngcon=1 ad=419e-15 as=419e-15 pd=2.645e-6
ps=2.645e-6 nrd=327e-3 nrs=327e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0
pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0
panw10=0 dtemp=0
.ends NAND
** End of subcircuit definition.
** Library name: Oz
** Cell name: XOR
** View name: schematic
.subckt XOR a b gnd out vdd
mt10 net24 net29 vdd vdd pfet l=120e-9 w=2.16e-6 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0
nrd=122.9e-3 nrs=122.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0
panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0
dtemp=0
mt6 net29 b net12 vdd pfet l=120e-9 w=2.16e-6 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0
nrd=122.9e-3 nrs=122.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0
panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0
dtemp=0
mt7 net12 a vdd vdd pfet l=120e-9 w=2.16e-6 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=122.9e-
3 nrs=122.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0
panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0
mt4 out b net24 vdd pfet l=120e-9 w=2.16e-6 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=122.9e-
3 nrs=122.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0
panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0
mt1 out a net24 vdd pfet l=120e-9 w=2.16e-6 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=122.9e-
3 nrs=122.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0
panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0
mt8 net29 a gnd gnd nfet l=120e-9 w=780e-9 nf=1 m=1 rf=0 ngcon=1 ad=388e-15 as=388e-15
pd=2.525e-6 ps=2.525e-6 nrd=353.7e-3 nrs=353.7e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1
pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0
panw8=0 panw9=0 panw10=0 dtemp=0
mt9 net29 b gnd gnd nfet l=120e-9 w=780e-9 nf=1 m=1 rf=0 ngcon=1 ad=388e-15 as=388e-15
pd=2.525e-6 ps=2.525e-6 nrd=353.7e-3 nrs=353.7e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1
pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0
panw8=0 panw9=0 panw10=0 dtemp=0
mt11 out net29 gnd gnd nfet l=120e-9 w=780e-9 nf=1 m=1 rf=0 ngcon=1 ad=388e-15 as=388e-15
pd=2.525e-6 ps=2.525e-6 nrd=353.7e-3 nrs=353.7e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1
pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0
panw8=0 panw9=0 panw10=0 dtemp=0
mt2 net41 b gnd gnd nfet l=120e-9 w=780e-9 nf=1 m=1 rf=0 ngcon=1 ad=388e-15 as=388e-15
pd=2.525e-6 ps=2.525e-6 nrd=353.7e-3 nrs=353.7e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1
pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0
panw8=0 panw9=0 panw10=0 dtemp=0
mt3 out a net41 gnd nfet l=120e-9 w=780e-9 nf=1 m=1 rf=0 ngcon=1 ad=388e-15 as=388e-15
pd=2.525e-6 ps=2.525e-6 nrd=353.7e-3 nrs=353.7e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1
pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0
panw8=0 panw9=0 panw10=0 dtemp=0
.ends XOR
** End of subcircuit definition.
** Library name: Oz
** Cell name: FFforProj
** View name: schematic
.subckt FFforProj clk iv data gnd q reset vdd
mt5 net11 clkbar net47 vdd pfet l=120e-9 w=560e-9 nf=1 m=1 rf=0 ngcon=1 ad=272e-15 as=272e-15
pd=2.085e-6 ps=2.085e-6 nrd=504.9e-3 nrs=504.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1
pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0
panw8=0 panw9=0 panw10=0 dtemp=0
mt8 clkbar clk vdd vdd pfet l=120e-9 w=560e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0
nrd=504.9e-3 nrs=504.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0
panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0
dtemp=0
mt13 ivbar iv vdd vdd pfet l=120e-9 w=560e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=504.9e-
3 nrs=504.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0
panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0
mt10 resetbar reset vdd vdd pfet l=120e-9 w=560e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0
nrd=504.9e-3 nrs=504.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0
panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0
dtemp=0
mt1 net47 net39 vdd vdd pfet l=120e-9 w=560e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0
nrd=504.9e-3 nrs=504.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0
panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0
dtemp=0
mt7 net11 resetbar ivbar vdd pfet l=120e-9 w=560e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0
nrd=504.9e-3 nrs=504.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0
panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0
dtemp=0
mt17 q net11 vdd vdd pfet l=120e-9 w=560e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0
nrd=504.9e-3 nrs=504.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0
panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0
dtemp=0
mt0 net39 clk data vdd pfet l=120e-9 w=560e-9 nf=1 m=1 rf=0 ngcon=1 ad=272e-15 as=272e-15
pd=2.085e-6 ps=2.085e-6 nrd=504.9e-3 nrs=504.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1
pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0
panw8=0 panw9=0 panw10=0 dtemp=0
mt4 net11 clk net47 gnd nfet l=120e-9 w=280e-9 nf=1 m=1 rf=0 ngcon=1 ad=124e-15 as=124e-15
pd=1.525e-6 ps=1.525e-6 nrd=1.1064 nrs=1.1064 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1
pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0
panw9=0 panw10=0 dtemp=0
mt3 net47 net39 gnd gnd nfet l=120e-9 w=280e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0
nrd=1.1064 nrs=1.1064 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0
panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0
dtemp=0
mt6 net39 reset iv gnd nfet l=120e-9 w=280e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=1.1064
nrs=1.1064 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0
panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0
mt2 net39 clkbar data gnd nfet l=120e-9 w=280e-9 nf=1 m=1 rf=0 ngcon=1 ad=124e-15 as=124e-15
pd=1.525e-6 ps=1.525e-6 nrd=1.1064 nrs=1.1064 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1
pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0
panw9=0 panw10=0 dtemp=0
mt12 ivbar iv gnd gnd nfet l=120e-9 w=280e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=1.1064
nrs=1.1064 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0
panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0
mt15 q net11 gnd gnd nfet l=120e-9 w=280e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=1.1064
nrs=1.1064 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0
panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0
mt11 resetbar reset gnd gnd nfet l=120e-9 w=280e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0
nrd=1.1064 nrs=1.1064 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0
panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0
dtemp=0
mt9 clkbar clk gnd gnd nfet l=120e-9 w=280e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=1.1064
nrs=1.1064 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0
panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0
.ends FFforProj
** End of subcircuit definition.
** Library name: Oz
** Cell name: Triviumproject
** View name: schematic
xi341 gnd net1837 net1824 vdd inverter
xi224 gnd net1842 net1828 vdd inverter
xi197 gnd net1847 net1832 vdd inverter
xi225 net2354 net2851 gnd net1842 vdd NAND
xi342 net1913 net1906 gnd net1837 vdd NAND
xi196 net3236 net3243 gnd net1847 vdd NAND
xi348 bxor net1862 gnd net01841 vdd XOR
xi343 net1824 net1852 gnd net1862 vdd XOR
xi349 axor net01841 gnd q vdd XOR
xi344 s69 net1862 gnd loop vdd XOR
xi227 net1828 net1892 gnd bxor vdd XOR
xi228 s264 bxor gnd net1872 vdd XOR
xi193 s66 net3292 gnd net1877 vdd XOR
xi194 net1832 net1877 gnd axor vdd XOR
xi195 s171 axor gnd net1887 vdd XOR
xi345 s243 net1920 gnd net1852 vdd XOR
xi226 s162 net2774 gnd net1892 vdd XOR
xi239 clk gnd net2564 gnd net2095 reset vdd FFforProj
xi314 clk gnd net2018 gnd net2088 reset vdd FFforProj
xi250 clk gnd net2277 gnd net2102 reset vdd FFforProj
xi315 clk gnd net1983 gnd net2081 reset vdd FFforProj
xi247 clk gnd net2291 gnd net2109 reset vdd FFforProj
xi265 clk gnd net2186 gnd net2116 reset vdd FFforProj
xi276 clk gnd net3033 gnd net2123 reset vdd FFforProj
xi282 clk gnd net3110 gnd net2130 reset vdd FFforProj
xi261 clk gnd net2165 gnd net2137 reset vdd FFforProj
xi296 clk gnd net2319 gnd net2144 reset vdd FFforProj
xi288 clk gnd net3026 gnd net2151 reset vdd FFforProj
xi301 clk gnd net3376 gnd net2158 reset vdd FFforProj
xi316 clk gnd net2060 gnd net2074 reset vdd FFforProj
xi317 clk gnd net2081 gnd net2067 reset vdd FFforProj
xi259 clk gnd net2298 gnd net2165 reset vdd FFforProj
xi251 clk gnd net2102 gnd net2172 reset vdd FFforProj
xi318 clk gnd net1941 gnd net2060 reset vdd FFforProj
xi275 clk gnd net2123 gnd net2179 reset vdd FFforProj
xi319 clk gnd net2004 gnd net2053 reset vdd FFforProj
xi320 clk gnd net2053 gnd net2046 reset vdd FFforProj
xi321 clk gnd net2088 gnd net2039 reset vdd FFforProj
xi322 clk gnd net2039 gnd net2032 reset vdd FFforProj
xi323 clk gnd net2067 gnd net2025 reset vdd FFforProj
xi324 clk gnd net2011 gnd net2018 reset vdd FFforProj
xi268 clk gnd net3040 gnd net2186 reset vdd FFforProj
xi325 clk gnd net2046 gnd net2011 reset vdd FFforProj
xi279 clk gnd net2900 gnd net2193 reset vdd FFforProj
xi240 clk gnd net3166 gnd net2200 reset vdd FFforProj
xi326 clk gnd net1990 gnd net2004 reset vdd FFforProj
xi284 clk gnd net2221 gnd net2207 reset vdd FFforProj
xi327 clk gnd net1934 gnd net1997 reset vdd FFforProj
xi328 clk gnd net1997 gnd net1990 reset vdd FFforProj
xi329 clk gnd net2032 gnd net1983 reset vdd FFforProj
xi270 clk gnd net2109 gnd net2214 reset vdd FFforProj
xi285 clk gnd net3096 gnd net2221 reset vdd FFforProj
xi330 clk gnd net1962 gnd net1976 reset vdd FFforProj
xi331 clk gnd net1976 gnd net1969 reset vdd FFforProj
xi300 clk gnd net2704 gnd net2228 reset vdd FFforProj
xi332 clk gnd net2074 gnd net1962 reset vdd FFforProj
xi305 clk gnd net3117 gnd net2235 reset vdd FFforProj
xi333 clk gnd net1927 gnd s264 reset vdd FFforProj
xi266 clk gnd net3152 gnd net2242 reset vdd FFforProj
xi334 clk gnd net2438 gnd net1948 reset vdd FFforProj
xi307 clk gnd net3054 gnd net2249 reset vdd FFforProj
xi335 clk gnd s264 gnd net1941 reset vdd FFforProj
xi236 clk gnd net2893 gnd net2256 reset vdd FFforProj
xi257 clk gnd net2452 gnd net2263 reset vdd FFforProj
xi246 clk gnd net3012 gnd net2270 reset vdd FFforProj
xi249 clk gnd net2214 gnd net2277 reset vdd FFforProj
xi336 clk gnd net1969 gnd net1934 reset vdd FFforProj
xi337 clk gnd net1948 gnd net1927 reset vdd FFforProj
xi245 clk gnd net2256 gnd net2284 reset vdd FFforProj
xi248 clk gnd net2270 gnd net2291 reset vdd FFforProj
xi262 clk gnd net3208 gnd net2298 reset vdd FFforProj
xi309 clk gnd net3124 gnd net2305 reset vdd FFforProj
xi311 clk gnd net3180 gnd net2312 reset vdd FFforProj
xi299 clk gnd net3222 gnd net2319 reset vdd FFforProj
xi272 clk gnd net2095 gnd net2326 reset vdd FFforProj
xi243 clk gnd net2326 gnd net2333 reset vdd FFforProj
xi148 clk k52 net2753 gnd net2340 reset vdd FFforProj
xi162 clk k40 net2795 gnd net2347 reset vdd FFforProj
xi125 clk gnd net2851 gnd net2354 reset vdd FFforProj
xi117 clk k71 net2375 gnd net2361 reset vdd FFforProj
xi129 clk k46 net2914 gnd net2368 reset vdd FFforProj
xi118 clk k70 s162 gnd net2375 reset vdd FFforProj
xi138 clk k44 net2963 gnd net2382 reset vdd FFforProj
xi170 clk k33 net2984 gnd net2389 reset vdd FFforProj
xi116 clk gnd net2585 gnd net2396 reset vdd FFforProj
xi141 clk k63 net2928 gnd net2403 reset vdd FFforProj
xi166 clk k35 net2991 gnd net2410 reset vdd FFforProj
xi172 clk k31 net2669 gnd net2417 reset vdd FFforProj
xi159 clk k18 net2837 gnd net2424 reset vdd FFforProj
xi313 clk gnd net2508 gnd net2431 reset vdd FFforProj
xi274 clk gnd net2179 gnd net2438 reset vdd FFforProj
xi173 clk k20 net2809 gnd net2445 reset vdd FFforProj
xi258 clk gnd net2137 gnd net2452 reset vdd FFforProj
xi113 clk k76 net2718 gnd net2459 reset vdd FFforProj
xi133 clk k56 net2802 gnd net2466 reset vdd FFforProj
xi126 clk k74 net2746 gnd net2473 reset vdd FFforProj
xi147 clk k53 net2340 gnd net2480 reset vdd FFforProj
xi161 clk k16 net2788 gnd net2487 reset vdd FFforProj
xi154 clk k24 net2676 gnd net2494 reset vdd FFforProj
xi158 clk k28 net2998 gnd net2501 reset vdd FFforProj
xi312 clk gnd net2312 gnd net2508 reset vdd FFforProj
xi183 clk k13 net2655 gnd net2515 reset vdd FFforProj
xi112 clk k77 net2459 gnd net2522 reset vdd FFforProj
xi188 clk k7 net2739 gnd net2529 reset vdd FFforProj
xi108 clk k66 net2858 gnd net2536 reset vdd FFforProj
xi303 clk gnd net2249 gnd net2543 reset vdd FFforProj
xi177 clk k25 net2494 gnd net2550 reset vdd FFforProj
xi110 clk k68 net2592 gnd net2557 reset vdd FFforProj
xi237 clk gnd net2571 gnd net2564 reset vdd FFforProj
xi238 clk gnd net2284 gnd net2571 reset vdd FFforProj
xi164 clk k38 net2634 gnd net2578 reset vdd FFforProj
xi115 clk k80 net2935 gnd net2585 reset vdd FFforProj
xi109 clk k67 net2536 gnd net2592 reset vdd FFforProj
xi181 clk k11 net2977 gnd net2599 reset vdd FFforProj
xi139 clk k60 net2781 gnd net2606 reset vdd FFforProj
xi137 clk k61 net2606 gnd net2613 reset vdd FFforProj
xi174 clk k29 net2501 gnd net2620 reset vdd FFforProj
xi156 clk k26 net2550 gnd net2627 reset vdd FFforProj
xi165 clk k37 net2683 gnd net2634 reset vdd FFforProj
xi176 clk k21 net2445 gnd net2641 reset vdd FFforProj
xi144 clk k41 net2347 gnd net2648 reset vdd FFforProj
xi182 clk k12 net2599 gnd net2655 reset vdd FFforProj
xi135 clk k58 net2970 gnd net2662 reset vdd FFforProj
xi175 clk k30 net2620 gnd net2669 reset vdd FFforProj
xi155 clk k23 net2865 gnd net2676 reset vdd FFforProj
xi168 clk k36 net2410 gnd net2683 reset vdd FFforProj
xi191 clk k1 net1887 gnd net2690 reset vdd FFforProj
xi190 clk k2 net2690 gnd net2697 reset vdd FFforProj
xi297 clk gnd net3341 gnd net2704 reset vdd FFforProj
xi150 clk k48 net2830 gnd net2711 reset vdd FFforProj
xi111 clk k75 net2473 gnd net2718 reset vdd FFforProj
xi151 clk k49 net2711 gnd net2725 reset vdd FFforProj
xi179 clk k14 net2515 gnd net2732 reset vdd FFforProj
xi187 clk k6 net2823 gnd net2739 reset vdd FFforProj
xi123 clk k73 net2872 gnd net2746 reset vdd FFforProj
xi149 clk k51 net2844 gnd net2753 reset vdd FFforProj
xi186 clk k3 net2697 gnd net2760 reset vdd FFforProj
xi131 clk k54 net2480 gnd net2767 reset vdd FFforProj
xi122 clk gnd net2354 gnd net2774 reset vdd FFforProj
xi136 clk k59 net2662 gnd net2781 reset vdd FFforProj
xi178 clk k15 net2732 gnd net2788 reset vdd FFforProj
xi163 clk k39 net2578 gnd net2795 reset vdd FFforProj
xi130 clk k55 net2767 gnd net2802 reset vdd FFforProj
xi167 clk k19 net2424 gnd net2809 reset vdd FFforProj
xi192 clk k9 net2942 gnd net2816 reset vdd FFforProj
xi185 clk k5 net2879 gnd net2823 reset vdd FFforProj
xi152 clk k47 net2368 gnd net2830 reset vdd FFforProj
xi160 clk k17 net2487 gnd net2837 reset vdd FFforProj
xi128 clk k50 net2725 gnd net2844 reset vdd FFforProj
xi124 clk gnd net2396 gnd net2851 reset vdd FFforProj
xi143 clk k65 net2956 gnd net2858 reset vdd FFforProj
xi153 clk k22 net2641 gnd net2865 reset vdd FFforProj
xi120 clk k72 net2361 gnd net2872 reset vdd FFforProj
xi184 clk k4 net2760 gnd net2879 reset vdd FFforProj
xi338 clk vdd net1913 gnd net1920 reset vdd FFforProj
xi339 clk vdd net1906 gnd net1913 reset vdd FFforProj
xi287 clk gnd net2151 gnd net2886 reset vdd FFforProj
xi232 clk gnd net3019 gnd net2893 reset vdd FFforProj
xi277 clk gnd net2228 gnd net2900 reset vdd FFforProj
xi145 clk k42 net2648 gnd net2907 reset vdd FFforProj
xi132 clk k45 net2382 gnd net2914 reset vdd FFforProj
xi119 clk k69 net2557 gnd s162 reset vdd FFforProj
xi140 clk k62 net2613 gnd net2928 reset vdd FFforProj
xi114 clk k79 s171 gnd net2935 reset vdd FFforProj
xi189 clk k8 net2529 gnd net2942 reset vdd FFforProj
xi127 clk k78 net2522 gnd s171 reset vdd FFforProj
xi340 clk vdd net2025 gnd net1906 reset vdd FFforProj
xi142 clk k64 net2403 gnd net2956 reset vdd FFforProj
xi146 clk k43 net2907 gnd net2963 reset vdd FFforProj
xi134 clk k57 net2466 gnd net2970 reset vdd FFforProj
xi180 clk k10 net2816 gnd net2977 reset vdd FFforProj
xi171 clk k32 net2417 gnd net2984 reset vdd FFforProj
xi169 clk k34 net2389 gnd net2991 reset vdd FFforProj
xi157 clk k27 net2627 gnd net2998 reset vdd FFforProj
xi347 clk gnd net2200 gnd s243 reset vdd FFforProj
xi244 clk gnd net3194 gnd net3005 reset vdd FFforProj
xi269 clk gnd net2242 gnd net3012 reset vdd FFforProj
xi230 clk gnd net3005 gnd net3019 reset vdd FFforProj
xi289 clk gnd net3145 gnd net3026 reset vdd FFforProj
xi271 clk gnd net2333 gnd net3033 reset vdd FFforProj
xi267 clk gnd net2172 gnd net3040 reset vdd FFforProj
xi252 clk gnd net3159 gnd net3047 reset vdd FFforProj
xi306 clk gnd net2235 gnd net3054 reset vdd FFforProj
xi234 clk gnd net3082 gnd net3061 reset vdd FFforProj
xi231 clk gnd net3061 gnd net3068 reset vdd FFforProj
xi280 clk gnd net2158 gnd net3075 reset vdd FFforProj
xi241 clk gnd s243 gnd net3082 reset vdd FFforProj
xi264 clk gnd net2116 gnd net3089 reset vdd FFforProj
xi302 clk gnd net2543 gnd net3096 reset vdd FFforProj
xi235 clk gnd net3215 gnd net3103 reset vdd FFforProj
xi281 clk gnd net3075 gnd net3110 reset vdd FFforProj
xi304 clk gnd net2431 gnd net3117 reset vdd FFforProj
xi308 clk gnd net1872 gnd net3124 reset vdd FFforProj
xi256 clk gnd net2263 gnd net3131 reset vdd FFforProj
xi286 clk gnd net2886 gnd net3138 reset vdd FFforProj
xi292 clk gnd net3348 gnd net3145 reset vdd FFforProj
xi260 clk gnd net3047 gnd net3152 reset vdd FFforProj
xi253 clk gnd net3600 gnd net3159 reset vdd FFforProj
xi233 clk gnd net3103 gnd net3166 reset vdd FFforProj
xi294 clk gnd net3187 gnd net3173 reset vdd FFforProj
xi310 clk gnd net2305 gnd net3180 reset vdd FFforProj
xi295 clk gnd net2144 gnd net3187 reset vdd FFforProj
xi273 clk gnd net3068 gnd net3194 reset vdd FFforProj
xi293 clk gnd net3173 gnd net3201 reset vdd FFforProj
xi263 clk gnd net3089 gnd net3208 reset vdd FFforProj
xi255 clk gnd net3131 gnd net3215 reset vdd FFforProj
xi298 clk gnd net2130 gnd net3222 reset vdd FFforProj
xi104 clk iv75 net3390 gnd net3229 reset vdd FFforProj
xi94 clk gnd net3243 gnd net3236 reset vdd FFforProj
xi93 clk gnd net3327 gnd net3243 reset vdd FFforProj
xi90 clk iv72 net3271 gnd net3250 reset vdd FFforProj
xi102 clk iv76 net3229 gnd net3257 reset vdd FFforProj
xi106 clk iv67 s66 gnd net3264 reset vdd FFforProj
xi98 clk iv71 net3355 gnd net3271 reset vdd FFforProj
xi107 clk iv66 net3467 gnd s66 reset vdd FFforProj
xi89 clk gnd net3369 gnd net3285 reset vdd FFforProj
xi95 clk gnd net3236 gnd net3292 reset vdd FFforProj
xi103 clk iv77 net3257 gnd net3299 reset vdd FFforProj
xi100 clk iv80 net3313 gnd net3306 reset vdd FFforProj
xi101 clk iv79 net3397 gnd net3313 reset vdd FFforProj
xi99 clk gnd net3306 gnd net3320 reset vdd FFforProj
xi92 clk gnd net3285 gnd net3327 reset vdd FFforProj
xi105 clk iv68 net3264 gnd net3334 reset vdd FFforProj
xi291 clk gnd net3796 gnd net3341 reset vdd FFforProj
xi290 clk gnd net3201 gnd net3348 reset vdd FFforProj
xi97 clk iv70 s69 gnd net3355 reset vdd FFforProj
xi96 clk iv69 net3334 gnd s69 reset vdd FFforProj
xi91 clk gnd net3607 gnd net3369 reset vdd FFforProj
xi278 clk gnd net2193 gnd net3376 reset vdd FFforProj
xi82 clk gnd net3586 gnd net3383 reset vdd FFforProj
xi81 clk iv74 net3593 gnd net3390 reset vdd FFforProj
xi80 clk iv78 net3299 gnd net3397 reset vdd FFforProj
xi55 clk iv47 net3565 gnd net3404 reset vdd FFforProj
xi56 clk iv49 net3418 gnd net3411 reset vdd FFforProj
xi57 clk iv48 net3404 gnd net3418 reset vdd FFforProj
xi58 clk iv51 net3572 gnd net3425 reset vdd FFforProj
xi59 clk iv52 net3425 gnd net3432 reset vdd FFforProj
xi60 clk iv53 net3432 gnd net3439 reset vdd FFforProj
xi61 clk iv43 net3453 gnd net3446 reset vdd FFforProj
xi62 clk iv42 net3460 gnd net3453 reset vdd FFforProj
xi63 clk iv41 net3691 gnd net3460 reset vdd FFforProj
xi64 clk iv65 net3474 gnd net3467 reset vdd FFforProj
xi65 clk iv64 net3481 gnd net3474 reset vdd FFforProj
xi66 clk iv63 net3488 gnd net3481 reset vdd FFforProj
xi67 clk iv62 net3509 gnd net3488 reset vdd FFforProj
xi68 clk iv60 net3516 gnd net3495 reset vdd FFforProj
xi69 clk iv44 net3446 gnd net3502 reset vdd FFforProj
xi70 clk iv61 net3495 gnd net3509 reset vdd FFforProj
xi71 clk iv59 net3523 gnd net3516 reset vdd FFforProj
xi72 clk iv58 net3530 gnd net3523 reset vdd FFforProj
xi73 clk iv57 net3537 gnd net3530 reset vdd FFforProj
xi74 clk iv56 net3558 gnd net3537 reset vdd FFforProj
xi75 clk iv45 net3502 gnd net3544 reset vdd FFforProj
xi76 clk iv54 net3439 gnd net3551 reset vdd FFforProj
xi77 clk iv55 net3551 gnd net3558 reset vdd FFforProj
xi78 clk iv46 net3544 gnd net3565 reset vdd FFforProj
xi79 clk iv50 net3411 gnd net3572 reset vdd FFforProj
xi85 clk gnd net3383 gnd net3579 reset vdd FFforProj
xi83 clk gnd net3320 gnd net3586 reset vdd FFforProj
xi84 clk iv73 net3250 gnd net3593 reset vdd FFforProj
xi254 clk gnd net3138 gnd net3600 reset vdd FFforProj
xi88 clk gnd net3614 gnd net3607 reset vdd FFforProj
xi87 clk gnd net3621 gnd net3614 reset vdd FFforProj
xi86 clk gnd net3579 gnd net3621 reset vdd FFforProj
xi36 clk iv22 net3789 gnd net3628 reset vdd FFforProj
xi38 clk iv24 net3642 gnd net3635 reset vdd FFforProj
xi37 clk iv23 net3628 gnd net3642 reset vdd FFforProj
xi40 clk iv26 net3803 gnd net3649 reset vdd FFforProj
xi41 clk iv27 net3649 gnd net3656 reset vdd FFforProj
xi42 clk iv28 net3656 gnd net3663 reset vdd FFforProj
xi32 clk iv18 net3677 gnd net3670 reset vdd FFforProj
xi31 clk iv17 net3684 gnd net3677 reset vdd FFforProj
xi30 clk iv16 net3810 gnd net3684 reset vdd FFforProj
xi54 clk iv40 net3698 gnd net3691 reset vdd FFforProj
xi53 clk iv39 net3705 gnd net3698 reset vdd FFforProj
xi52 clk iv38 net3712 gnd net3705 reset vdd FFforProj
xi51 clk iv37 net3733 gnd net3712 reset vdd FFforProj
xi49 clk iv35 net3740 gnd net3719 reset vdd FFforProj
xi33 clk iv19 net3670 gnd net3726 reset vdd FFforProj
xi50 clk iv36 net3719 gnd net3733 reset vdd FFforProj
xi48 clk iv34 net3747 gnd net3740 reset vdd FFforProj
xi47 clk iv33 net3754 gnd net3747 reset vdd FFforProj
xi46 clk iv32 net3761 gnd net3754 reset vdd FFforProj
xi45 clk iv31 net3782 gnd net3761 reset vdd FFforProj
xi34 clk iv20 net3726 gnd net3768 reset vdd FFforProj
xi43 clk iv29 net3663 gnd net3775 reset vdd FFforProj
xi44 clk iv30 net3775 gnd net3782 reset vdd FFforProj
xi35 clk iv21 net3768 gnd net3789 reset vdd FFforProj
xi283 clk gnd net2207 gnd net3796 reset vdd FFforProj
xi39 clk iv25 net3635 gnd net3803 reset vdd FFforProj
xi29 clk iv15 net3817 gnd net3810 reset vdd FFforProj
xi28 clk iv14 net3845 gnd net3817 reset vdd FFforProj
xi20 clk iv10 net3908 gnd net3824 reset vdd FFforProj
xi19 clk iv11 net3824 gnd net3831 reset vdd FFforProj
xi18 clk iv12 net3831 gnd net3838 reset vdd FFforProj
xi17 clk iv13 net3838 gnd net3845 reset vdd FFforProj
xi11 clk iv4 net3866 gnd net3852 reset vdd FFforProj
xi12 clk iv5 net3852 gnd net3859 reset vdd FFforProj
xi10 clk iv3 net3894 gnd net3866 reset vdd FFforProj
xi13 clk iv6 net3859 gnd net3873 reset vdd FFforProj
xi14 clk iv7 net3873 gnd net3880 reset vdd FFforProj
xi15 clk iv8 net3880 gnd net3887 reset vdd FFforProj
xi1 clk iv2 net3901 gnd net3894 reset vdd FFforProj
xi0 clk iv1 loop gnd net3901 reset vdd FFforProj
xi16 clk iv9 net3887 gnd net3908 reset vdd FFforProj
.include"/home/cad/kits/IBM_CMRF8SF-
LM013/IBM_PDK/cmrf8sf/V1.2.0.0LM/HSPICE/models/model013.lib_inc"
*==Supply Voltage==*
VDD1 vdd gnd DC 1.2V
*==Pulse Voltages==*
Vin2 CLK gnd pulse (0V 1.2V 1ns 100ps 100ps 0.5ns 1ns)
Vin3 reset gnd pulse (0V 1.2V 500ps 100ps 100ps 1ns 288ns)
Vin4 IV1 gnd pulse (0V 1.2V 0s 100ps 100ps 2ns 288ns)
Vin5 IV2 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns)
Vin6 IV3 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin7 IV4 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin8 IV5 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns)
Vin9 IV6 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin10 IV7 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin11 IV8 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin12 IV9 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin13 IV10 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin14 IV11 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin15 IV12 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin16 IV13 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin17 IV14 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin18 IV15 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin19 IV16 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns)
Vin20 IV17 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin21 IV18 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin22 IV19 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns)
Vin23 IV20 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin24 IV21 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin25 IV22 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin26 IV23 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin27 IV24 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin28 IV25 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin29 IV26 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin30 IV27 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin31 IV28 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin32 IV29 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin33 IV30 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns)
Vin34 IV31 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin35 IV32 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin36 IV33 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin37 IV34 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin38 IV35 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin39 IV36 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin40 IV37 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin41 IV38 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin42 IV39 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin43 IV40 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin44 IV41 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns)
Vin45 IV42 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin46 IV43 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin47 IV44 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns)
Vin48 IV45 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin49 IV46 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin50 IV47 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin51 IV48 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin52 IV49 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin53 IV50 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin54 IV51 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin55 IV52 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin56 IV53 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin57 IV54 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin58 IV55 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns)
Vin59 IV56 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin60 IV57 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin61 IV58 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin62 IV59 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin63 IV60 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin64 IV61 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin65 IV62 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin66 IV63 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin67 IV64 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin68 IV65 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin69 IV66 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin70 IV67 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin71 IV68 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin72 IV69 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns)
Vin73 IV70 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin74 IV71 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin75 IV72 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns)
Vin76 IV73 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin77 IV74 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin78 IV75 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin79 IV76 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin80 IV77 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin81 IV78 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin82 IV79 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin83 IV80 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin84 K1 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin85 K2 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin666 k3 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin667 k4 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin1668 K5 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns)
Vin619 K6 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin110 K7 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin111 K8 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin112 K9 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin113 K10 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin114 K11 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin115 K12 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin116 K13 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin117 K14 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin118 K15 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin119 K16 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns)
Vin120 K17 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin121 K18 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin122 K19 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns)
Vin213 K20 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin214 K21 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin125 K22 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin126 K23 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin127 K24 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin128 K25 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin129 K26 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin130 K27 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin131 K28 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin132 K29 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin133 K30 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns)
Vin134 K31 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin135 K32 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin136 K33 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin137 K34 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin138 K35 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin139 K36 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin140 K37 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin141 K38 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin142 K39 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin143 K40 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin144 K41 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns)
Vin415 K42 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin416 K43 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin147 K44 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns)
Vin148 K45 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin149 K46 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin150 K47 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin151 K48 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin152 K49 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin153 K50 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin154 K51 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin155 K52 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin156 K53 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin157 K54 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin158 K55 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns)
Vin159 K56 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin160 K57 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin161 K58 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin162 K59 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin163 K60 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin164 K61 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin165 K62 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin166 K63 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin167 K64 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin168 K65 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin169 K66 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin170 K67 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin171 K68 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin172 K69 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns)
Vin173 K70 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin174 K71 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin175 K72 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns)
Vin176 K73 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin177 K74 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin178 K75 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin179 K76 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin180 K77 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin181 K78 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin182 K79 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin183 K80 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
.tr 0.5ns 288ns
.measure tran iavg avg I(VDD1) from=1n to=288n
.measure energy param = '-1.2*iavg*288e-9'
.measure power param = '-1.2*iavg'
.measure edp param = 'edp*325e-12'
.options post=2 nomod
.op
.option accurate
.END
HSPICE Netlist (.sp file) for Layout Simulation
.include "/home/cad/kits/IBM_CMRF8SF-
LM013/IBM_PDK/cmrf8sf/V1.2.0.0LM/HSPICE/models/model013.lib_inc"
.include Triviumproject.sp
*==Supply Voltage==*
VDD1 vdd gnd DC 1.2V
*==Pulse Voltage==*
Vin2 CLK gnd pulse (0V 1.2V 1ns 100ps 100ps 0.5ns 1ns)
Vin3 reset gnd pulse (0V 1.2V 500ps 100ps 100ps 1ns 288ns)
Vin4 IV1 gnd pulse (0V 1.2V 0s 100ps 100ps 2ns 288ns)
Vin5 IV2 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns)
Vin6 IV3 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin7 IV4 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin8 IV5 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns)
Vin9 IV6 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin10 IV7 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin11 IV8 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin12 IV9 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin13 IV10 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin14 IV11 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin15 IV12 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin16 IV13 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin17 IV14 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin18 IV15 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin19 IV16 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns)
Vin20 IV17 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin21 IV18 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin22 IV19 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns)
Vin23 IV20 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin24 IV21 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin25 IV22 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin26 IV23 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin27 IV24 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin28 IV25 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin29 IV26 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin30 IV27 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin31 IV28 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin32 IV29 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin33 IV30 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns)
Vin34 IV31 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin35 IV32 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin36 IV33 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin37 IV34 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin38 IV35 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin39 IV36 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin40 IV37 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin41 IV38 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin42 IV39 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin43 IV40 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin44 IV41 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns)
Vin45 IV42 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin46 IV43 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin47 IV44 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns)
Vin48 IV45 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin49 IV46 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin50 IV47 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin51 IV48 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin52 IV49 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin53 IV50 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin54 IV51 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin55 IV52 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin56 IV53 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin57 IV54 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin58 IV55 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns)
Vin59 IV56 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin60 IV57 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin61 IV58 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin62 IV59 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin63 IV60 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin64 IV61 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin65 IV62 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin66 IV63 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin67 IV64 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin68 IV65 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin69 IV66 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin70 IV67 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin71 IV68 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin72 IV69 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns)
Vin73 IV70 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin74 IV71 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin75 IV72 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns)
Vin76 IV73 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin77 IV74 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin78 IV75 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin79 IV76 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin80 IV77 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin81 IV78 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin82 IV79 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin83 IV80 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin84 K1 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin85 K2 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin666 k3 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin667 k4 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin1668 K5 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns)
Vin619 K6 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin110 K7 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin111 K8 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin112 K9 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin113 K10 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin114 K11 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin115 K12 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin116 K13 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin117 K14 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin118 K15 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin119 K16 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns)
Vin120 K17 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin121 K18 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin122 K19 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns)
Vin213 K20 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin214 K21 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin125 K22 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin126 K23 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin127 K24 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin128 K25 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin129 K26 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin130 K27 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin131 K28 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin132 K29 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin133 K30 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns)
Vin134 K31 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin135 K32 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin136 K33 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin137 K34 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin138 K35 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin139 K36 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin140 K37 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin141 K38 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin142 K39 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin143 K40 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin144 K41 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns)
Vin415 K42 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin416 K43 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin147 K44 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns)
Vin148 K45 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin149 K46 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin150 K47 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin151 K48 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin152 K49 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin153 K50 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin154 K51 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin155 K52 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin156 K53 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin157 K54 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin158 K55 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns)
Vin159 K56 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin160 K57 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin161 K58 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin162 K59 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin163 K60 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin164 K61 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin165 K62 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin166 K63 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin167 K64 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin168 K65 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin169 K66 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin170 K67 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin171 K68 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin172 K69 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns)
Vin173 K70 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin174 K71 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin175 K72 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns)
Vin176 K73 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin177 K74 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin178 K75 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin179 K76 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin180 K77 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin181 K78 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
Vin182 K79 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
Vin183 K80 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
.options post=2 nomod
.op
.option accurate
x1 CLK IV1 IV10 IV11 IV12 IV13 IV14 IV15 IV16 IV17 IV18 IV19
+ IV2 IV20 IV21 IV22 IV23 IV24 IV25 IV26 IV27 IV28 IV29 IV3 IV30 IV31 IV32 IV33
+ IV34 IV35 IV36 IV37 IV38 IV39 IV4 IV40 IV41 IV42 IV43 IV44 IV45 IV46 IV47 IV48
+ IV49 IV5 IV50 IV51 IV52 IV53 IV54 IV55 IV56 IV57 IV58 IV59 IV6 IV60 IV61 IV62
+ IV63 IV64 IV65 IV66 IV67 IV68 IV69 IV7 IV70 IV71 IV72 IV73 IV74 IV75 IV76 IV77
+ IV78 IV79 IV8 IV80 IV9 k1 k10 k11 k12 k13 k14 k15 k16 k17 k18 k19 k2 k20 k21
+ k22 k23 k24 k25 k26 k27 k28 k29 k3 k30 k31 k32 k33 k34 k35 k36 k37 k38 k39 k4
+ k40 k41 k42 k43 k44 k45 k46 k47 k48 k49 k5 k50 k51 k52 k53 k54 k55 k56 k57 k58
+ k59 k6 k60 k61 k62 k63 k64 k65 k66 k67 k68 k69 k7 k70 k71 k72 k73 k74 k75 k76
+ k77 k78 k79 k8 k80 k9 reset q Triviumproject
*x2 vdd gnd! CLK IV q1 q2 reset FFforProj
*x3 vdd gnd! CLK IV q2 q3 reset FFforProj
*x4 vdd gnd! CLK IV q3 q4 reset FFforProj
*x5 vdd gnd! CLK IV q4 q5 reset FFforProj
.tr 0.5ns 288ns
.measure tran iavg avg I(VDD1) from=1n to=288n
.measure energy param = '-1.2*iavg*288e-9'
.measure power param = '-1.2*iavg'
*sweep beta 0.1 5 0.1
*.measure tran tcq1 trig v(CLK) val = 0.6v rise=3 targ v(q1) val=0.6v rise=2
*.measure tran tcq2 trig v(CLK) val = 0.6v rise=2 targ v(q1) val=0.6v fall=1
*.measure tran trq trig v(reset) val = 0.6v rise=1 targ v(q1) val=0.6v rise=1
*.measure tran energy integral p(x1) from=0ns to 25ns
.end

Trivium Cipher Design

  • 1.
    EECT 6325- VLSIDesign Term Project: Trivium Team Members: Ozgen Sumer Lacin UTD ID: 2021227875 Muhammad Mohid Nabil UTD ID: 2021258403 Instructor: Dr. Jeyavijayan Rajendran T.A: Vahid Moalemi
  • 2.
    Table of Contents Abstract.........................................................................................................................................................4 Introduction..................................................................................................................................................4 Block Diagram of the System........................................................................................................................4 Building Blocks: Gates and registers used in the System..............................................................................5 Flip Flop.....................................................................................................................................................5 XOR Gate...................................................................................................................................................8 AND gate.................................................................................................................................................10 Schematic of the Trivium Stream (Complete Design).................................................................................11 Layout of Trivium ........................................................................................................................................13 Results.........................................................................................................................................................16 Simulation Results of the Schematic.......................................................................................................16 Simulation Results of the Layout ............................................................................................................19 Appendix .....................................................................................................................................................23 HSPICE Netlist (.sp file) for Schematic Simulation ..................................................................................23 HSPICE Netlist (.sp file) for Layout Simulation........................................................................................37
  • 3.
    Figure 1: BlockDiagram of the Trivium Stream............................................................................................5 Figure 2: Schematic of Dynamic FF...............................................................................................................6 Figure 3: Layout of Dynamic FF.....................................................................................................................7 Figure 4: Block Diagram of FF .......................................................................................................................7 Figure 5: Input Propagation when 10 FFs are cascaded...............................................................................8 Figure 6: Schematic of XOR Gate ..................................................................................................................9 Figure 7: Layout of XOR gate.........................................................................................................................9 Figure 8: Block of XOR.................................................................................................................................10 Figure 9: Schematics of NAND and Inverter gates......................................................................................10 Figure 10: Layout of NAND and Inverter gates...........................................................................................11 Figure 11: Complete Schematic of the Design............................................................................................11 Figure 12: Zoomed version of the transition point from Section A to Section B........................................12 Figure 13: Zoom out version of the Layout.................................................................................................13 Figure 14: Zoomed in version of the layout with pin names ......................................................................13 Figure 15: FFs with XOR attached...............................................................................................................14 Figure 16: End of layout with output pin labeled .......................................................................................14 Figure 17: Propagation of bits via FFs.........................................................................................................17 Figure 18: AND operation waveform..........................................................................................................17 Figure 19: XOR function..............................................................................................................................18 Figure 20: Clock to Q delay(tcq)..................................................................................................................19 Figure 21: Propagation Waveform of bits...................................................................................................20 Figure 22: AND Function.............................................................................................................................20 Figure 23: XOR Function..............................................................................................................................21 Figure 24: Waveform till 700ns...................................................................................................................21
  • 4.
    Abstract In this project,we designed a Trivium stream cipher, a hardware oriented synchronous stream cipher which aims to provide a flexible trade-off between speed and area. For this design, we used three basic gates and a FF register. Logic gates employed for this project are NAND, Inverter, and an XOR. We first implemented the circuit in the schematic level and did pre-layout simulations then we draw layout and performed post layout simulations. We decided to choose area optimization that’s why transistor sizes are kept as small as possible especially for FF design. This report gives an overview about Trivium stream cipher, explains the design metric, and shows the block diagram, circuit schematic and layout of the complete design together with the simulation results as results and discussion part. Introduction Trivium is a stream cipher key designed to generate a cipher key by using minimum gate count in hardware and provide fast results. It was first introduced in Profile II of the eStream competition by its authors Christophe De Cannière and Bart Preneel. It is not patented and specified as International Standard under ISO/IEC. Trivium generates up to 264 bits of output by using 80 bit secret key and 80 bit initial values (IV). Even though it is a simple eSTREAM entrant, it is shown to have notable resistance to cryptanalysis and performance. Trivium works as following: Initially secret key and initial values are introduced into Trivium cipher key to create internal state then state is updated repeatedly and key stream bits are generated. 288-bit internal state consists of three shift registers of different lengths. At each round, a bit is shifted into all these three shift registers and one bit of output is produced. In the initialization stage, key and IV values are written into the shift registers and rest of the values are kept fixed as either 0s or 1s. The cipher state is then update 4*288 = 1152 times so that bits in the internal state depend on the bits of the key and the IV in a complex nonlinear way. Block Diagram of the System Figure 1 shows the block diagram of the Trivium stream cipher. As can be seen, 288 bits are divided mainly into three regions. All these regions are connected to each other with XOR and AND gates. These gates take certain outputs from the corresponding states as defined in the algorithm and give them to other register or logical gates as an input. These gates create the non-linear combination of taps. If there were no XOR and AND gates in the system, it was just going to shift the values introduced to the system till output.
  • 5.
    Figure 1: BlockDiagram of the Trivium Stream Building Blocks: Gates and registers used in the System There are 3 gates and 1 register used in the design of the Trivium. These gates are NAND, Inverter and XOR whereas the register is Flip Flop. Each of these elements will be explained briefly and their waveforms will be given. Flip Flop For this project, we designed a dynamic Flip Flop. There was no restriction on the type of the FF however we decided to choose this FF type due to its smaller area compared to static CMOS implementation. Typical static FF uses 18 transistors whereas the dynamic FF employs 10 transistors and this configuration saves from area dramatically. The capacitors in the original design were replaced with PMOS and NMOS transistors to make the FF asynchronous. Original usage of asynchronous reset FF is to pull down the output voltage to ground whenever the reset is applied independent of CLK, or the data stored in the FF. We use this function of reset to load initial values in parallel. This saves a lot of time since we have 288 bits to initialize. Loading them 1 by 1 with shifting method would take really long that’s why we exploit this feature of reset to save time. The schematic of the dynamic FF we designed is given in Figure 2. Additional transistors are just for creating signals such as CLK, reset and IV rather than a part of the generic dynamic FF design. Including all these, the total transistor count reaches up to 16. The layout of the dynamic FF is shown in Figure 2 with necessary dimensions. Total size of the layout is 7.3µm x 5.39µm. All PMOS transistors are 560nm and NMOS transistor are 280nm in this FF design. Block diagram of the structure is created for easy connection in the schematic.
  • 6.
    Figure 2: Schematicof Dynamic FF
  • 7.
    Figure 3: Layoutof Dynamic FF Figure 4: Block Diagram of FF
  • 8.
    FFs are connectedback to back and propagation is obtained successfully as shown in Figure 5. For the size of the graph, here we show just 10 FFs connected back to back but in the real case where there are 288 FFs we get a smooth propagation of the input signal fed into the system. Figure 5: Input Propagation when 10 FFs are cascaded . XOR Gate There are 11 XOR gates in total in the system. These gates are used for addition over Galois Field 2 (GF2) in the Trivium stream cipher. We came up with a custom XOR design instead of using a static CMOS design due to the same reasons stated above for FF such as decreasing the area while achieving reasonable delay and energy. The schematic and layout of the XOR gate are shown in Figure 6 and Figure 7 respectively. As it is seen XOR gate has a total area of 5.710µm*3.280 µm. Width of PMOS and NMOS are 2.16µm and 780nm respectively.
  • 9.
    Figure 6: Schematicof XOR Gate Figure 7: Layout of XOR gate
  • 10.
    Figure 8: Blockof XOR AND gate AND gate is constructed by using one NAND gate and an inverter appended to its output. These gates are instantiated from the library we created for our Lab assignments. Schematics and layouts of NAND and Inverter are given below. Figure 9: Schematics of NAND and Inverter gates Sizes of all of the transistors in NAND gate are 840nm whereas in inverter PMOS is 1.18 µm and NMOS is 280nm.
  • 11.
    Figure 10: Layoutof NAND and Inverter gates Schematic of the Trivium Stream (Complete Design) The complete schematic is built by adding all 288 FFs back to back and placing AND and XOR gates to the corresponding places respectively. The snapshot of the complete schematic is shown below but this image doesn’t show the elements clearly due to poor aspect ratio of the diagram however to give a better view to the reader we also show the zoomed version of the critical part of our system where FFs, XORs and AND gates exist. Figure 11: Complete Schematic of the Design
  • 12.
    Figure 12: Zoomedversion of the transition point from Section A to Section B Figure 12 shows a critical part of the design. We basically divided the 288 bits into three sections A, B and C, we introduced secret keys to A, initial values (IVs) to B and the static inputs (0s and 1s) to C. Complexity of the design lies in the part between these sections where sections (A, B and C) are interacting with each other and this section is basically where we implement the algorithm. Based on
  • 13.
    the algorithm providedto us, specific outputs should be XOR’ed or AND then provided as an input to another FF. For example, in Figure 12 output of 91st and 92nd FFs are fed into NAND gate then inverted (AND operation) and provided as an input to an XOR gate whereas the other this XOR gate is actually coming from the output of the 1st XOR gate where 93rd and 66th state bits are the inputs. Layout of Trivium Figure 13: Zoom out version of the Layout Figure 14: Zoomed in version of the layout with pin names
  • 14.
    Figure 15: FFswith XOR attached Figure 16: End of layout with output pin labeled Our layout’s aspect ratio is 400. We designed our layout in rectangular form that’s why its length is 400 time bigger than its width. We tried not to create off-paths so that we wouldn’t deviate from the rectangular shape and not increase the area. Putting everything in square form would be a nicer approach and look more compact but since we didn’t have a requirement on the area we instantiated all the layouts back to back and got this form. Total Area of this design is: 10.39µm*2093µm= 0.0213 〖mm〗^2
  • 15.
  • 16.
    Results Note: Before wediscuss any simulation results, we would like to state that due to technical problems related to our quota on H drive we couldn’t run a simulation longer than 700ns. University provides 2.0GB of storage on H drive to graduate students and every time we ran the simulations for 4*288 cycles (which is equal to 1152ns for our simulations, CLK period was 1ns) just to initialize the keys, we filled all our quota provided to us and eventually lost both of our spaces. Simulations were taking more than 2GB therefore not giving results after 700ns for our case. Even though we deleted all the unnecessary files on our H drive after we are done analyzing the results and start a new run for each analysis, eventually both of us lost our access to the shared folders and just left with 200MB. We talked to IT Service and they got back to us after 5 days and the additional space provided to us was still not enough to run a complete simulation to see if our chip is capable of creating the cipher key or not. All 2GB of storage was filled with unknown data that neither us nor them could find. We explained this situation also to Prof. Rajendran. Due to insufficient storage provided to us, in this and next section where we also include the post layout simulations, functionality of each basic block together with a 700ns simulation results will be shown to prove that our design works but just can’t complete the required simulation time due to space issues and we would be able to achieve the required output values if we had enough storage. Simulation Results of the Schematic Before we implemented our layout, we did pre-layout simulations to see if our circuit is working fine or not. That’s why we built our circuit on Cadence Virtuoso and extracted the netlist from Analog environment and loaded this netlist into HSPICE. This model doesn’t include the parasitic capacitances coming from the metal layer connections that’s why we expect a smaller delay compared to the post- layout simulations. Simulation results show that our circuit works fine and is able to propagate the introduced secret keys and initial values to the output without any loss. It is worthwile to mention here one more time that all the secret key and initial values are introduced in parallel by exploiting the reset function in FF. It only takes one clock cycle for us to initialize all these values into the system. Simulation results for both schematic and layout were divided into three main sections which are: bit propagation, AND function and XOR function outputs. After we run our simulations, we checked specific outputs to prove that our circuit works in correct way. The net names put in the graph indicates specific output nodes and explained in a detailed way in the following. 1) Propagation Function In this waveform, we measured 8 different output values which are 1st , 10th , 20th , 30th , 70th 103rd , 178th and 288th outputs of the FFs. Net names corresponding to these outputs are net3901, net3824, net3768, net 3782, net 3355, net 2977, net 3124 and net q respectively as can also be seen from the figure below. These values are written in the same order in the graph. For example, CLK is the green pulse followed by net3901 (the yellow pulse) then net3824 (the blue pulse) and so on. As it is seen from the graph, output of each of these FFs are propagated without any problems to the primary output.
  • 17.
    Figure 17: Propagationof bits via FFs 2) AND Function To implement the AND function, we used a NAND gate and an Inverter. To show the functionality of this function, we took the outputs of 91st and 92nd FFs and provided as an input to our NAND gate. Output of this NAND gate is given as an input to inverter and output of the inverter gave us the AND function. Waveform below proves that initial value (K1=1 and rest is 0) is propagated to the 91st and 92nd FF without any problem and AND operation is performed correctly. Figure 18: AND operation waveform
  • 18.
    In Figure 18,pink and red pulses (net 3243 and net 3236) are the inputs to NAND gate and the blue pulse(net 1847) is the output of NAND whereas the yellow pulse in the bottom of the graph is the output of the inverter. As it is seen, our bits are being ANDed without any problem as well. 3) XOR Function To prove the functionality of XOR, we used 93rd bit and 66th bit (first XOR operation of Trivium that gives us t1). Figure 19 shows the operation. Similar to previous graphs, green pulse is the CLK pulse with 1 GHz and yellow pulses (net3292) are the 1st input of the XOR and white pulses (s66) are the other input. Blue pulses are the output of our XOR gate and as it is seen, they work well and direct their result to the required stages as well. Figure 19: XOR function After we observed correct functionality of all the basic blocks, we measured our delay, power energy and EDP and power results and tabulated them. Table 1 shows the summary of our results. Delay Energy EDP Power Schematic Results 325ps 0.2nJ 1.23e-29 0.78mW Delay is measured from second clock cycle to second pulse in output because the first output pulse is coming from the initialization part. It is calculated in Waveview software by measure tool and shown in Figure 20.
  • 19.
    Power and GNDwire Sizing Formula is calculated as follows: Measured power of the chip is 0.78mW. Thus 0.78mW = VI Thus I= 0.78mW/1.2 = 0.65mA The current density due to electron migration is 0.5mA/µm Thus the vdd and gnd widths are 0.65/0.5 = 1.3µm Figure 20: Clock to Q delay(tcq) Simulation Results of the Layout After getting successful results from the schematic we draw the layout of our design and did post layout simulations and compared them with circuit schematic simulations. As will be seen from the following analyses, circuit and layout schematic simulations match and they give the same output. To provide a good comparison, we used exactly the same nets. Three analyses are performed as in the previous case and results are tabulated. Since detailed analyses of how we choose the nodes are explained in the schematic simulation results section, this section will just show the graphs and prove that post layout simulations give the same results with schematic results. The only addition done to this part is putting the complete simulation results that we ran for 700ns. We included the Figure showing the waveform of Multiple signals including XORs, ANDs propagation and primary output and proved that our circuit behavior doesn’t get distorted when we run for multiple cycles as well.
  • 20.
    1) Propagation Function Figure21: Propagation Waveform of bits 2) AND Function Figure 22: AND Function
  • 21.
    3) XOR Function Figure23: XOR Function 4) Complete Simulation Simulation time was set to 1440 (4cycle to initialize and 1 cycle to create one bit of key stream) ns however due to storage issues and simulation stopped displaying results after 700ns. Figure 24: Waveform till 700ns
  • 22.
    Delay Energy EDPPower Power and GND Wire Sizing Layout Results 339ps 0.3nJ 101.7e-21 1.18mW 1.16µm Conclusion In this Term Project, we designed Trivium Stream cipher by optimizing the area of the layout. Circuit schematic and Layout are both built in Cadence Virtuoso and simulated using HSPICE simulator. Results showed that designed circuit functions as expected but due to storage problems we couldn’t run our simulation more than 3 clock cycles but in that 3 clock cycles we showed that both schematic and layout simulations provided satisfactory outputs. Delay, area, energy, power, EDP and Power and GND rails Wire sizing are measured in tabulated. Total area of the chip is measured as 0.0213 𝑚𝑚2 . (10.39µm*2093µm). Total power consumption and energy consumption are measured to be 1.18mW, and 0.3nJ respectively. Total number of 4736 transistors are used in this design.
  • 23.
    Appendix HSPICE Netlist (.spfile) for Schematic Simulation ** Generated for: hspiceD ** Generated on: Apr 29 19:43:06 2016 ** Design library name: Oz ** Design cell name: Triviumproject ** Design view name: schematic *.include "/home/cad/kits/IBM_CMRF8SF- LM013/IBM_PDK/cmrf8sf/V1.2.0.0LM/HSPICE/models/model013.lib_inc" .TEMP 25 .OPTION + ARTIST=2 + INGOLD=2 + MEASOUT=1 + PARHIER=LOCAL + PSF=2 ** Library name: Oz ** Cell name: inverter ** View name: schematic .subckt inverter gnd in out vdd mt1 out in vdd vdd pfet l=120e-9 w=1.08e-6 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=251.2e-3 nrs=251.2e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt0 out in gnd gnd nfet l=120e-9 w=280e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=1.1064 nrs=1.1064 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 .ends inverter ** End of subcircuit definition. ** Library name: Oz ** Cell name: NAND ** View name: schematic .subckt NAND a b gnd out vdd mt3 net018 b gnd gnd nfet l=120e-9 w=840e-9 nf=1 m=1 rf=0 ngcon=1 ad=419e-15 as=419e-15 pd=2.645e-6 ps=2.645e-6 nrd=327e-3 nrs=327e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt2 out a net018 gnd nfet l=120e-9 w=840e-9 nf=1 m=1 rf=0 ngcon=1 ad=419e-15 as=419e-15 pd=2.645e-6 ps=2.645e-6 nrd=327e-3 nrs=327e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt1 out b vdd vdd pfet l=120e-9 w=840e-9 nf=1 m=1 rf=0 ngcon=1 ad=419e-15 as=419e-15 pd=2.645e-6 ps=2.645e-6 nrd=327e-3 nrs=327e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0
  • 24.
    pam2=0 panw1=0 panw2=0panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt0 out a vdd vdd pfet l=120e-9 w=840e-9 nf=1 m=1 rf=0 ngcon=1 ad=419e-15 as=419e-15 pd=2.645e-6 ps=2.645e-6 nrd=327e-3 nrs=327e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 .ends NAND ** End of subcircuit definition. ** Library name: Oz ** Cell name: XOR ** View name: schematic .subckt XOR a b gnd out vdd mt10 net24 net29 vdd vdd pfet l=120e-9 w=2.16e-6 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=122.9e-3 nrs=122.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt6 net29 b net12 vdd pfet l=120e-9 w=2.16e-6 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=122.9e-3 nrs=122.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt7 net12 a vdd vdd pfet l=120e-9 w=2.16e-6 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=122.9e- 3 nrs=122.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt4 out b net24 vdd pfet l=120e-9 w=2.16e-6 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=122.9e- 3 nrs=122.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt1 out a net24 vdd pfet l=120e-9 w=2.16e-6 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=122.9e- 3 nrs=122.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt8 net29 a gnd gnd nfet l=120e-9 w=780e-9 nf=1 m=1 rf=0 ngcon=1 ad=388e-15 as=388e-15 pd=2.525e-6 ps=2.525e-6 nrd=353.7e-3 nrs=353.7e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt9 net29 b gnd gnd nfet l=120e-9 w=780e-9 nf=1 m=1 rf=0 ngcon=1 ad=388e-15 as=388e-15 pd=2.525e-6 ps=2.525e-6 nrd=353.7e-3 nrs=353.7e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt11 out net29 gnd gnd nfet l=120e-9 w=780e-9 nf=1 m=1 rf=0 ngcon=1 ad=388e-15 as=388e-15 pd=2.525e-6 ps=2.525e-6 nrd=353.7e-3 nrs=353.7e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt2 net41 b gnd gnd nfet l=120e-9 w=780e-9 nf=1 m=1 rf=0 ngcon=1 ad=388e-15 as=388e-15 pd=2.525e-6 ps=2.525e-6 nrd=353.7e-3 nrs=353.7e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt3 out a net41 gnd nfet l=120e-9 w=780e-9 nf=1 m=1 rf=0 ngcon=1 ad=388e-15 as=388e-15 pd=2.525e-6 ps=2.525e-6 nrd=353.7e-3 nrs=353.7e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1
  • 25.
    pwd100=-1 pam1=0 pam2=0panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 .ends XOR ** End of subcircuit definition. ** Library name: Oz ** Cell name: FFforProj ** View name: schematic .subckt FFforProj clk iv data gnd q reset vdd mt5 net11 clkbar net47 vdd pfet l=120e-9 w=560e-9 nf=1 m=1 rf=0 ngcon=1 ad=272e-15 as=272e-15 pd=2.085e-6 ps=2.085e-6 nrd=504.9e-3 nrs=504.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt8 clkbar clk vdd vdd pfet l=120e-9 w=560e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=504.9e-3 nrs=504.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt13 ivbar iv vdd vdd pfet l=120e-9 w=560e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=504.9e- 3 nrs=504.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt10 resetbar reset vdd vdd pfet l=120e-9 w=560e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=504.9e-3 nrs=504.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt1 net47 net39 vdd vdd pfet l=120e-9 w=560e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=504.9e-3 nrs=504.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt7 net11 resetbar ivbar vdd pfet l=120e-9 w=560e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=504.9e-3 nrs=504.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt17 q net11 vdd vdd pfet l=120e-9 w=560e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=504.9e-3 nrs=504.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt0 net39 clk data vdd pfet l=120e-9 w=560e-9 nf=1 m=1 rf=0 ngcon=1 ad=272e-15 as=272e-15 pd=2.085e-6 ps=2.085e-6 nrd=504.9e-3 nrs=504.9e-3 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt4 net11 clk net47 gnd nfet l=120e-9 w=280e-9 nf=1 m=1 rf=0 ngcon=1 ad=124e-15 as=124e-15 pd=1.525e-6 ps=1.525e-6 nrd=1.1064 nrs=1.1064 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt3 net47 net39 gnd gnd nfet l=120e-9 w=280e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=1.1064 nrs=1.1064 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0
  • 26.
    mt6 net39 resetiv gnd nfet l=120e-9 w=280e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=1.1064 nrs=1.1064 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt2 net39 clkbar data gnd nfet l=120e-9 w=280e-9 nf=1 m=1 rf=0 ngcon=1 ad=124e-15 as=124e-15 pd=1.525e-6 ps=1.525e-6 nrd=1.1064 nrs=1.1064 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt12 ivbar iv gnd gnd nfet l=120e-9 w=280e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=1.1064 nrs=1.1064 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt15 q net11 gnd gnd nfet l=120e-9 w=280e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=1.1064 nrs=1.1064 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt11 resetbar reset gnd gnd nfet l=120e-9 w=280e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=1.1064 nrs=1.1064 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 mt9 clkbar clk gnd gnd nfet l=120e-9 w=280e-9 nf=1 m=1 rf=0 ngcon=1 ad=0 as=0 pd=0 ps=0 nrd=1.1064 nrs=1.1064 rf_rsub=1 plnest=-1 plorient=-1 pld200=-1 pwd100=-1 pam1=0 pam2=0 panw1=0 panw2=0 panw3=0 panw4=0 panw5=0 panw6=0 panw7=0 panw8=0 panw9=0 panw10=0 dtemp=0 .ends FFforProj ** End of subcircuit definition. ** Library name: Oz ** Cell name: Triviumproject ** View name: schematic xi341 gnd net1837 net1824 vdd inverter xi224 gnd net1842 net1828 vdd inverter xi197 gnd net1847 net1832 vdd inverter xi225 net2354 net2851 gnd net1842 vdd NAND xi342 net1913 net1906 gnd net1837 vdd NAND xi196 net3236 net3243 gnd net1847 vdd NAND xi348 bxor net1862 gnd net01841 vdd XOR xi343 net1824 net1852 gnd net1862 vdd XOR xi349 axor net01841 gnd q vdd XOR xi344 s69 net1862 gnd loop vdd XOR xi227 net1828 net1892 gnd bxor vdd XOR xi228 s264 bxor gnd net1872 vdd XOR xi193 s66 net3292 gnd net1877 vdd XOR xi194 net1832 net1877 gnd axor vdd XOR xi195 s171 axor gnd net1887 vdd XOR xi345 s243 net1920 gnd net1852 vdd XOR xi226 s162 net2774 gnd net1892 vdd XOR xi239 clk gnd net2564 gnd net2095 reset vdd FFforProj xi314 clk gnd net2018 gnd net2088 reset vdd FFforProj xi250 clk gnd net2277 gnd net2102 reset vdd FFforProj xi315 clk gnd net1983 gnd net2081 reset vdd FFforProj xi247 clk gnd net2291 gnd net2109 reset vdd FFforProj
  • 27.
    xi265 clk gndnet2186 gnd net2116 reset vdd FFforProj xi276 clk gnd net3033 gnd net2123 reset vdd FFforProj xi282 clk gnd net3110 gnd net2130 reset vdd FFforProj xi261 clk gnd net2165 gnd net2137 reset vdd FFforProj xi296 clk gnd net2319 gnd net2144 reset vdd FFforProj xi288 clk gnd net3026 gnd net2151 reset vdd FFforProj xi301 clk gnd net3376 gnd net2158 reset vdd FFforProj xi316 clk gnd net2060 gnd net2074 reset vdd FFforProj xi317 clk gnd net2081 gnd net2067 reset vdd FFforProj xi259 clk gnd net2298 gnd net2165 reset vdd FFforProj xi251 clk gnd net2102 gnd net2172 reset vdd FFforProj xi318 clk gnd net1941 gnd net2060 reset vdd FFforProj xi275 clk gnd net2123 gnd net2179 reset vdd FFforProj xi319 clk gnd net2004 gnd net2053 reset vdd FFforProj xi320 clk gnd net2053 gnd net2046 reset vdd FFforProj xi321 clk gnd net2088 gnd net2039 reset vdd FFforProj xi322 clk gnd net2039 gnd net2032 reset vdd FFforProj xi323 clk gnd net2067 gnd net2025 reset vdd FFforProj xi324 clk gnd net2011 gnd net2018 reset vdd FFforProj xi268 clk gnd net3040 gnd net2186 reset vdd FFforProj xi325 clk gnd net2046 gnd net2011 reset vdd FFforProj xi279 clk gnd net2900 gnd net2193 reset vdd FFforProj xi240 clk gnd net3166 gnd net2200 reset vdd FFforProj xi326 clk gnd net1990 gnd net2004 reset vdd FFforProj xi284 clk gnd net2221 gnd net2207 reset vdd FFforProj xi327 clk gnd net1934 gnd net1997 reset vdd FFforProj xi328 clk gnd net1997 gnd net1990 reset vdd FFforProj xi329 clk gnd net2032 gnd net1983 reset vdd FFforProj xi270 clk gnd net2109 gnd net2214 reset vdd FFforProj xi285 clk gnd net3096 gnd net2221 reset vdd FFforProj xi330 clk gnd net1962 gnd net1976 reset vdd FFforProj xi331 clk gnd net1976 gnd net1969 reset vdd FFforProj xi300 clk gnd net2704 gnd net2228 reset vdd FFforProj xi332 clk gnd net2074 gnd net1962 reset vdd FFforProj xi305 clk gnd net3117 gnd net2235 reset vdd FFforProj xi333 clk gnd net1927 gnd s264 reset vdd FFforProj xi266 clk gnd net3152 gnd net2242 reset vdd FFforProj xi334 clk gnd net2438 gnd net1948 reset vdd FFforProj xi307 clk gnd net3054 gnd net2249 reset vdd FFforProj xi335 clk gnd s264 gnd net1941 reset vdd FFforProj xi236 clk gnd net2893 gnd net2256 reset vdd FFforProj xi257 clk gnd net2452 gnd net2263 reset vdd FFforProj xi246 clk gnd net3012 gnd net2270 reset vdd FFforProj xi249 clk gnd net2214 gnd net2277 reset vdd FFforProj xi336 clk gnd net1969 gnd net1934 reset vdd FFforProj xi337 clk gnd net1948 gnd net1927 reset vdd FFforProj xi245 clk gnd net2256 gnd net2284 reset vdd FFforProj xi248 clk gnd net2270 gnd net2291 reset vdd FFforProj
  • 28.
    xi262 clk gndnet3208 gnd net2298 reset vdd FFforProj xi309 clk gnd net3124 gnd net2305 reset vdd FFforProj xi311 clk gnd net3180 gnd net2312 reset vdd FFforProj xi299 clk gnd net3222 gnd net2319 reset vdd FFforProj xi272 clk gnd net2095 gnd net2326 reset vdd FFforProj xi243 clk gnd net2326 gnd net2333 reset vdd FFforProj xi148 clk k52 net2753 gnd net2340 reset vdd FFforProj xi162 clk k40 net2795 gnd net2347 reset vdd FFforProj xi125 clk gnd net2851 gnd net2354 reset vdd FFforProj xi117 clk k71 net2375 gnd net2361 reset vdd FFforProj xi129 clk k46 net2914 gnd net2368 reset vdd FFforProj xi118 clk k70 s162 gnd net2375 reset vdd FFforProj xi138 clk k44 net2963 gnd net2382 reset vdd FFforProj xi170 clk k33 net2984 gnd net2389 reset vdd FFforProj xi116 clk gnd net2585 gnd net2396 reset vdd FFforProj xi141 clk k63 net2928 gnd net2403 reset vdd FFforProj xi166 clk k35 net2991 gnd net2410 reset vdd FFforProj xi172 clk k31 net2669 gnd net2417 reset vdd FFforProj xi159 clk k18 net2837 gnd net2424 reset vdd FFforProj xi313 clk gnd net2508 gnd net2431 reset vdd FFforProj xi274 clk gnd net2179 gnd net2438 reset vdd FFforProj xi173 clk k20 net2809 gnd net2445 reset vdd FFforProj xi258 clk gnd net2137 gnd net2452 reset vdd FFforProj xi113 clk k76 net2718 gnd net2459 reset vdd FFforProj xi133 clk k56 net2802 gnd net2466 reset vdd FFforProj xi126 clk k74 net2746 gnd net2473 reset vdd FFforProj xi147 clk k53 net2340 gnd net2480 reset vdd FFforProj xi161 clk k16 net2788 gnd net2487 reset vdd FFforProj xi154 clk k24 net2676 gnd net2494 reset vdd FFforProj xi158 clk k28 net2998 gnd net2501 reset vdd FFforProj xi312 clk gnd net2312 gnd net2508 reset vdd FFforProj xi183 clk k13 net2655 gnd net2515 reset vdd FFforProj xi112 clk k77 net2459 gnd net2522 reset vdd FFforProj xi188 clk k7 net2739 gnd net2529 reset vdd FFforProj xi108 clk k66 net2858 gnd net2536 reset vdd FFforProj xi303 clk gnd net2249 gnd net2543 reset vdd FFforProj xi177 clk k25 net2494 gnd net2550 reset vdd FFforProj xi110 clk k68 net2592 gnd net2557 reset vdd FFforProj xi237 clk gnd net2571 gnd net2564 reset vdd FFforProj xi238 clk gnd net2284 gnd net2571 reset vdd FFforProj xi164 clk k38 net2634 gnd net2578 reset vdd FFforProj xi115 clk k80 net2935 gnd net2585 reset vdd FFforProj xi109 clk k67 net2536 gnd net2592 reset vdd FFforProj xi181 clk k11 net2977 gnd net2599 reset vdd FFforProj xi139 clk k60 net2781 gnd net2606 reset vdd FFforProj xi137 clk k61 net2606 gnd net2613 reset vdd FFforProj xi174 clk k29 net2501 gnd net2620 reset vdd FFforProj xi156 clk k26 net2550 gnd net2627 reset vdd FFforProj
  • 29.
    xi165 clk k37net2683 gnd net2634 reset vdd FFforProj xi176 clk k21 net2445 gnd net2641 reset vdd FFforProj xi144 clk k41 net2347 gnd net2648 reset vdd FFforProj xi182 clk k12 net2599 gnd net2655 reset vdd FFforProj xi135 clk k58 net2970 gnd net2662 reset vdd FFforProj xi175 clk k30 net2620 gnd net2669 reset vdd FFforProj xi155 clk k23 net2865 gnd net2676 reset vdd FFforProj xi168 clk k36 net2410 gnd net2683 reset vdd FFforProj xi191 clk k1 net1887 gnd net2690 reset vdd FFforProj xi190 clk k2 net2690 gnd net2697 reset vdd FFforProj xi297 clk gnd net3341 gnd net2704 reset vdd FFforProj xi150 clk k48 net2830 gnd net2711 reset vdd FFforProj xi111 clk k75 net2473 gnd net2718 reset vdd FFforProj xi151 clk k49 net2711 gnd net2725 reset vdd FFforProj xi179 clk k14 net2515 gnd net2732 reset vdd FFforProj xi187 clk k6 net2823 gnd net2739 reset vdd FFforProj xi123 clk k73 net2872 gnd net2746 reset vdd FFforProj xi149 clk k51 net2844 gnd net2753 reset vdd FFforProj xi186 clk k3 net2697 gnd net2760 reset vdd FFforProj xi131 clk k54 net2480 gnd net2767 reset vdd FFforProj xi122 clk gnd net2354 gnd net2774 reset vdd FFforProj xi136 clk k59 net2662 gnd net2781 reset vdd FFforProj xi178 clk k15 net2732 gnd net2788 reset vdd FFforProj xi163 clk k39 net2578 gnd net2795 reset vdd FFforProj xi130 clk k55 net2767 gnd net2802 reset vdd FFforProj xi167 clk k19 net2424 gnd net2809 reset vdd FFforProj xi192 clk k9 net2942 gnd net2816 reset vdd FFforProj xi185 clk k5 net2879 gnd net2823 reset vdd FFforProj xi152 clk k47 net2368 gnd net2830 reset vdd FFforProj xi160 clk k17 net2487 gnd net2837 reset vdd FFforProj xi128 clk k50 net2725 gnd net2844 reset vdd FFforProj xi124 clk gnd net2396 gnd net2851 reset vdd FFforProj xi143 clk k65 net2956 gnd net2858 reset vdd FFforProj xi153 clk k22 net2641 gnd net2865 reset vdd FFforProj xi120 clk k72 net2361 gnd net2872 reset vdd FFforProj xi184 clk k4 net2760 gnd net2879 reset vdd FFforProj xi338 clk vdd net1913 gnd net1920 reset vdd FFforProj xi339 clk vdd net1906 gnd net1913 reset vdd FFforProj xi287 clk gnd net2151 gnd net2886 reset vdd FFforProj xi232 clk gnd net3019 gnd net2893 reset vdd FFforProj xi277 clk gnd net2228 gnd net2900 reset vdd FFforProj xi145 clk k42 net2648 gnd net2907 reset vdd FFforProj xi132 clk k45 net2382 gnd net2914 reset vdd FFforProj xi119 clk k69 net2557 gnd s162 reset vdd FFforProj xi140 clk k62 net2613 gnd net2928 reset vdd FFforProj xi114 clk k79 s171 gnd net2935 reset vdd FFforProj xi189 clk k8 net2529 gnd net2942 reset vdd FFforProj xi127 clk k78 net2522 gnd s171 reset vdd FFforProj
  • 30.
    xi340 clk vddnet2025 gnd net1906 reset vdd FFforProj xi142 clk k64 net2403 gnd net2956 reset vdd FFforProj xi146 clk k43 net2907 gnd net2963 reset vdd FFforProj xi134 clk k57 net2466 gnd net2970 reset vdd FFforProj xi180 clk k10 net2816 gnd net2977 reset vdd FFforProj xi171 clk k32 net2417 gnd net2984 reset vdd FFforProj xi169 clk k34 net2389 gnd net2991 reset vdd FFforProj xi157 clk k27 net2627 gnd net2998 reset vdd FFforProj xi347 clk gnd net2200 gnd s243 reset vdd FFforProj xi244 clk gnd net3194 gnd net3005 reset vdd FFforProj xi269 clk gnd net2242 gnd net3012 reset vdd FFforProj xi230 clk gnd net3005 gnd net3019 reset vdd FFforProj xi289 clk gnd net3145 gnd net3026 reset vdd FFforProj xi271 clk gnd net2333 gnd net3033 reset vdd FFforProj xi267 clk gnd net2172 gnd net3040 reset vdd FFforProj xi252 clk gnd net3159 gnd net3047 reset vdd FFforProj xi306 clk gnd net2235 gnd net3054 reset vdd FFforProj xi234 clk gnd net3082 gnd net3061 reset vdd FFforProj xi231 clk gnd net3061 gnd net3068 reset vdd FFforProj xi280 clk gnd net2158 gnd net3075 reset vdd FFforProj xi241 clk gnd s243 gnd net3082 reset vdd FFforProj xi264 clk gnd net2116 gnd net3089 reset vdd FFforProj xi302 clk gnd net2543 gnd net3096 reset vdd FFforProj xi235 clk gnd net3215 gnd net3103 reset vdd FFforProj xi281 clk gnd net3075 gnd net3110 reset vdd FFforProj xi304 clk gnd net2431 gnd net3117 reset vdd FFforProj xi308 clk gnd net1872 gnd net3124 reset vdd FFforProj xi256 clk gnd net2263 gnd net3131 reset vdd FFforProj xi286 clk gnd net2886 gnd net3138 reset vdd FFforProj xi292 clk gnd net3348 gnd net3145 reset vdd FFforProj xi260 clk gnd net3047 gnd net3152 reset vdd FFforProj xi253 clk gnd net3600 gnd net3159 reset vdd FFforProj xi233 clk gnd net3103 gnd net3166 reset vdd FFforProj xi294 clk gnd net3187 gnd net3173 reset vdd FFforProj xi310 clk gnd net2305 gnd net3180 reset vdd FFforProj xi295 clk gnd net2144 gnd net3187 reset vdd FFforProj xi273 clk gnd net3068 gnd net3194 reset vdd FFforProj xi293 clk gnd net3173 gnd net3201 reset vdd FFforProj xi263 clk gnd net3089 gnd net3208 reset vdd FFforProj xi255 clk gnd net3131 gnd net3215 reset vdd FFforProj xi298 clk gnd net2130 gnd net3222 reset vdd FFforProj xi104 clk iv75 net3390 gnd net3229 reset vdd FFforProj xi94 clk gnd net3243 gnd net3236 reset vdd FFforProj xi93 clk gnd net3327 gnd net3243 reset vdd FFforProj xi90 clk iv72 net3271 gnd net3250 reset vdd FFforProj xi102 clk iv76 net3229 gnd net3257 reset vdd FFforProj xi106 clk iv67 s66 gnd net3264 reset vdd FFforProj xi98 clk iv71 net3355 gnd net3271 reset vdd FFforProj
  • 31.
    xi107 clk iv66net3467 gnd s66 reset vdd FFforProj xi89 clk gnd net3369 gnd net3285 reset vdd FFforProj xi95 clk gnd net3236 gnd net3292 reset vdd FFforProj xi103 clk iv77 net3257 gnd net3299 reset vdd FFforProj xi100 clk iv80 net3313 gnd net3306 reset vdd FFforProj xi101 clk iv79 net3397 gnd net3313 reset vdd FFforProj xi99 clk gnd net3306 gnd net3320 reset vdd FFforProj xi92 clk gnd net3285 gnd net3327 reset vdd FFforProj xi105 clk iv68 net3264 gnd net3334 reset vdd FFforProj xi291 clk gnd net3796 gnd net3341 reset vdd FFforProj xi290 clk gnd net3201 gnd net3348 reset vdd FFforProj xi97 clk iv70 s69 gnd net3355 reset vdd FFforProj xi96 clk iv69 net3334 gnd s69 reset vdd FFforProj xi91 clk gnd net3607 gnd net3369 reset vdd FFforProj xi278 clk gnd net2193 gnd net3376 reset vdd FFforProj xi82 clk gnd net3586 gnd net3383 reset vdd FFforProj xi81 clk iv74 net3593 gnd net3390 reset vdd FFforProj xi80 clk iv78 net3299 gnd net3397 reset vdd FFforProj xi55 clk iv47 net3565 gnd net3404 reset vdd FFforProj xi56 clk iv49 net3418 gnd net3411 reset vdd FFforProj xi57 clk iv48 net3404 gnd net3418 reset vdd FFforProj xi58 clk iv51 net3572 gnd net3425 reset vdd FFforProj xi59 clk iv52 net3425 gnd net3432 reset vdd FFforProj xi60 clk iv53 net3432 gnd net3439 reset vdd FFforProj xi61 clk iv43 net3453 gnd net3446 reset vdd FFforProj xi62 clk iv42 net3460 gnd net3453 reset vdd FFforProj xi63 clk iv41 net3691 gnd net3460 reset vdd FFforProj xi64 clk iv65 net3474 gnd net3467 reset vdd FFforProj xi65 clk iv64 net3481 gnd net3474 reset vdd FFforProj xi66 clk iv63 net3488 gnd net3481 reset vdd FFforProj xi67 clk iv62 net3509 gnd net3488 reset vdd FFforProj xi68 clk iv60 net3516 gnd net3495 reset vdd FFforProj xi69 clk iv44 net3446 gnd net3502 reset vdd FFforProj xi70 clk iv61 net3495 gnd net3509 reset vdd FFforProj xi71 clk iv59 net3523 gnd net3516 reset vdd FFforProj xi72 clk iv58 net3530 gnd net3523 reset vdd FFforProj xi73 clk iv57 net3537 gnd net3530 reset vdd FFforProj xi74 clk iv56 net3558 gnd net3537 reset vdd FFforProj xi75 clk iv45 net3502 gnd net3544 reset vdd FFforProj xi76 clk iv54 net3439 gnd net3551 reset vdd FFforProj xi77 clk iv55 net3551 gnd net3558 reset vdd FFforProj xi78 clk iv46 net3544 gnd net3565 reset vdd FFforProj xi79 clk iv50 net3411 gnd net3572 reset vdd FFforProj xi85 clk gnd net3383 gnd net3579 reset vdd FFforProj xi83 clk gnd net3320 gnd net3586 reset vdd FFforProj xi84 clk iv73 net3250 gnd net3593 reset vdd FFforProj xi254 clk gnd net3138 gnd net3600 reset vdd FFforProj xi88 clk gnd net3614 gnd net3607 reset vdd FFforProj
  • 32.
    xi87 clk gndnet3621 gnd net3614 reset vdd FFforProj xi86 clk gnd net3579 gnd net3621 reset vdd FFforProj xi36 clk iv22 net3789 gnd net3628 reset vdd FFforProj xi38 clk iv24 net3642 gnd net3635 reset vdd FFforProj xi37 clk iv23 net3628 gnd net3642 reset vdd FFforProj xi40 clk iv26 net3803 gnd net3649 reset vdd FFforProj xi41 clk iv27 net3649 gnd net3656 reset vdd FFforProj xi42 clk iv28 net3656 gnd net3663 reset vdd FFforProj xi32 clk iv18 net3677 gnd net3670 reset vdd FFforProj xi31 clk iv17 net3684 gnd net3677 reset vdd FFforProj xi30 clk iv16 net3810 gnd net3684 reset vdd FFforProj xi54 clk iv40 net3698 gnd net3691 reset vdd FFforProj xi53 clk iv39 net3705 gnd net3698 reset vdd FFforProj xi52 clk iv38 net3712 gnd net3705 reset vdd FFforProj xi51 clk iv37 net3733 gnd net3712 reset vdd FFforProj xi49 clk iv35 net3740 gnd net3719 reset vdd FFforProj xi33 clk iv19 net3670 gnd net3726 reset vdd FFforProj xi50 clk iv36 net3719 gnd net3733 reset vdd FFforProj xi48 clk iv34 net3747 gnd net3740 reset vdd FFforProj xi47 clk iv33 net3754 gnd net3747 reset vdd FFforProj xi46 clk iv32 net3761 gnd net3754 reset vdd FFforProj xi45 clk iv31 net3782 gnd net3761 reset vdd FFforProj xi34 clk iv20 net3726 gnd net3768 reset vdd FFforProj xi43 clk iv29 net3663 gnd net3775 reset vdd FFforProj xi44 clk iv30 net3775 gnd net3782 reset vdd FFforProj xi35 clk iv21 net3768 gnd net3789 reset vdd FFforProj xi283 clk gnd net2207 gnd net3796 reset vdd FFforProj xi39 clk iv25 net3635 gnd net3803 reset vdd FFforProj xi29 clk iv15 net3817 gnd net3810 reset vdd FFforProj xi28 clk iv14 net3845 gnd net3817 reset vdd FFforProj xi20 clk iv10 net3908 gnd net3824 reset vdd FFforProj xi19 clk iv11 net3824 gnd net3831 reset vdd FFforProj xi18 clk iv12 net3831 gnd net3838 reset vdd FFforProj xi17 clk iv13 net3838 gnd net3845 reset vdd FFforProj xi11 clk iv4 net3866 gnd net3852 reset vdd FFforProj xi12 clk iv5 net3852 gnd net3859 reset vdd FFforProj xi10 clk iv3 net3894 gnd net3866 reset vdd FFforProj xi13 clk iv6 net3859 gnd net3873 reset vdd FFforProj xi14 clk iv7 net3873 gnd net3880 reset vdd FFforProj xi15 clk iv8 net3880 gnd net3887 reset vdd FFforProj xi1 clk iv2 net3901 gnd net3894 reset vdd FFforProj xi0 clk iv1 loop gnd net3901 reset vdd FFforProj xi16 clk iv9 net3887 gnd net3908 reset vdd FFforProj .include"/home/cad/kits/IBM_CMRF8SF- LM013/IBM_PDK/cmrf8sf/V1.2.0.0LM/HSPICE/models/model013.lib_inc"
  • 33.
    *==Supply Voltage==* VDD1 vddgnd DC 1.2V *==Pulse Voltages==* Vin2 CLK gnd pulse (0V 1.2V 1ns 100ps 100ps 0.5ns 1ns) Vin3 reset gnd pulse (0V 1.2V 500ps 100ps 100ps 1ns 288ns) Vin4 IV1 gnd pulse (0V 1.2V 0s 100ps 100ps 2ns 288ns) Vin5 IV2 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns) Vin6 IV3 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin7 IV4 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin8 IV5 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns) Vin9 IV6 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin10 IV7 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin11 IV8 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin12 IV9 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin13 IV10 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin14 IV11 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin15 IV12 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin16 IV13 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin17 IV14 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin18 IV15 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin19 IV16 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns) Vin20 IV17 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin21 IV18 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin22 IV19 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns) Vin23 IV20 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin24 IV21 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin25 IV22 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin26 IV23 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin27 IV24 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin28 IV25 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin29 IV26 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin30 IV27 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin31 IV28 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin32 IV29 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin33 IV30 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns) Vin34 IV31 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin35 IV32 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin36 IV33 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin37 IV34 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin38 IV35 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin39 IV36 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin40 IV37 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin41 IV38 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin42 IV39 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin43 IV40 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin44 IV41 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns) Vin45 IV42 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
  • 34.
    Vin46 IV43 gndpulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin47 IV44 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns) Vin48 IV45 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin49 IV46 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin50 IV47 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin51 IV48 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin52 IV49 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin53 IV50 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin54 IV51 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin55 IV52 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin56 IV53 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin57 IV54 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin58 IV55 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns) Vin59 IV56 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin60 IV57 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin61 IV58 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin62 IV59 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin63 IV60 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin64 IV61 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin65 IV62 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin66 IV63 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin67 IV64 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin68 IV65 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin69 IV66 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin70 IV67 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin71 IV68 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin72 IV69 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns) Vin73 IV70 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin74 IV71 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin75 IV72 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns) Vin76 IV73 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin77 IV74 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin78 IV75 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin79 IV76 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin80 IV77 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin81 IV78 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin82 IV79 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin83 IV80 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin84 K1 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin85 K2 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin666 k3 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin667 k4 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin1668 K5 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns) Vin619 K6 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin110 K7 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin111 K8 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin112 K9 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin113 K10 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
  • 35.
    Vin114 K11 gndpulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin115 K12 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin116 K13 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin117 K14 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin118 K15 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin119 K16 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns) Vin120 K17 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin121 K18 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin122 K19 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns) Vin213 K20 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin214 K21 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin125 K22 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin126 K23 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin127 K24 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin128 K25 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin129 K26 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin130 K27 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin131 K28 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin132 K29 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin133 K30 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns) Vin134 K31 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin135 K32 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin136 K33 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin137 K34 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin138 K35 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin139 K36 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin140 K37 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin141 K38 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin142 K39 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin143 K40 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin144 K41 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns) Vin415 K42 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin416 K43 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin147 K44 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns) Vin148 K45 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin149 K46 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin150 K47 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin151 K48 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin152 K49 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin153 K50 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin154 K51 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin155 K52 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin156 K53 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin157 K54 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin158 K55 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns) Vin159 K56 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin160 K57 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin161 K58 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
  • 36.
    Vin162 K59 gndpulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin163 K60 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin164 K61 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin165 K62 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin166 K63 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin167 K64 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin168 K65 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin169 K66 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin170 K67 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin171 K68 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin172 K69 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns) Vin173 K70 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin174 K71 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin175 K72 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns) Vin176 K73 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin177 K74 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin178 K75 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin179 K76 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin180 K77 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin181 K78 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin182 K79 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin183 K80 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) .tr 0.5ns 288ns .measure tran iavg avg I(VDD1) from=1n to=288n .measure energy param = '-1.2*iavg*288e-9' .measure power param = '-1.2*iavg' .measure edp param = 'edp*325e-12' .options post=2 nomod .op .option accurate .END
  • 37.
    HSPICE Netlist (.spfile) for Layout Simulation .include "/home/cad/kits/IBM_CMRF8SF- LM013/IBM_PDK/cmrf8sf/V1.2.0.0LM/HSPICE/models/model013.lib_inc" .include Triviumproject.sp *==Supply Voltage==* VDD1 vdd gnd DC 1.2V *==Pulse Voltage==* Vin2 CLK gnd pulse (0V 1.2V 1ns 100ps 100ps 0.5ns 1ns) Vin3 reset gnd pulse (0V 1.2V 500ps 100ps 100ps 1ns 288ns) Vin4 IV1 gnd pulse (0V 1.2V 0s 100ps 100ps 2ns 288ns) Vin5 IV2 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns) Vin6 IV3 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin7 IV4 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin8 IV5 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns) Vin9 IV6 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin10 IV7 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin11 IV8 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin12 IV9 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin13 IV10 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin14 IV11 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin15 IV12 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin16 IV13 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin17 IV14 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin18 IV15 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin19 IV16 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns) Vin20 IV17 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin21 IV18 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin22 IV19 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns) Vin23 IV20 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin24 IV21 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin25 IV22 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin26 IV23 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin27 IV24 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin28 IV25 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin29 IV26 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin30 IV27 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin31 IV28 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin32 IV29 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin33 IV30 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns) Vin34 IV31 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin35 IV32 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin36 IV33 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin37 IV34 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin38 IV35 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
  • 38.
    Vin39 IV36 gndpulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin40 IV37 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin41 IV38 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin42 IV39 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin43 IV40 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin44 IV41 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns) Vin45 IV42 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin46 IV43 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin47 IV44 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns) Vin48 IV45 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin49 IV46 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin50 IV47 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin51 IV48 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin52 IV49 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin53 IV50 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin54 IV51 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin55 IV52 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin56 IV53 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin57 IV54 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin58 IV55 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns) Vin59 IV56 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin60 IV57 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin61 IV58 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin62 IV59 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin63 IV60 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin64 IV61 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin65 IV62 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin66 IV63 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin67 IV64 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin68 IV65 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin69 IV66 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin70 IV67 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin71 IV68 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin72 IV69 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns) Vin73 IV70 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin74 IV71 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin75 IV72 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns) Vin76 IV73 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin77 IV74 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin78 IV75 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin79 IV76 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin80 IV77 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin81 IV78 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin82 IV79 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin83 IV80 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin84 K1 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin85 K2 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin666 k3 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns)
  • 39.
    Vin667 k4 gndpulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin1668 K5 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns) Vin619 K6 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin110 K7 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin111 K8 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin112 K9 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin113 K10 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin114 K11 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin115 K12 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin116 K13 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin117 K14 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin118 K15 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin119 K16 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns) Vin120 K17 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin121 K18 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin122 K19 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns) Vin213 K20 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin214 K21 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin125 K22 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin126 K23 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin127 K24 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin128 K25 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin129 K26 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin130 K27 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin131 K28 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin132 K29 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin133 K30 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns) Vin134 K31 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin135 K32 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin136 K33 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin137 K34 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin138 K35 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin139 K36 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin140 K37 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin141 K38 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin142 K39 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin143 K40 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin144 K41 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns) Vin415 K42 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin416 K43 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin147 K44 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns) Vin148 K45 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin149 K46 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin150 K47 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin151 K48 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin152 K49 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin153 K50 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin154 K51 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns)
  • 40.
    Vin155 K52 gndpulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin156 K53 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin157 K54 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin158 K55 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns) Vin159 K56 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin160 K57 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin161 K58 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin162 K59 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin163 K60 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin164 K61 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin165 K62 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin166 K63 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin167 K64 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin168 K65 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin169 K66 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin170 K67 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin171 K68 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin172 K69 gnd pulse (0V 0V 0s 0ps 0ps 3ns 20ns) Vin173 K70 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin174 K71 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin175 K72 gnd pulse (0V 0V 0s 100ps 100ps 2ns 25ns) Vin176 K73 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin177 K74 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin178 K75 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin179 K76 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin180 K77 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin181 K78 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) Vin182 K79 gnd pulse (0V 0V 0s 0ps 0ps 3ns 10ns) Vin183 K80 gnd pulse (0V 0V 0s 100ps 100ps 2ns 10ns) .options post=2 nomod .op .option accurate x1 CLK IV1 IV10 IV11 IV12 IV13 IV14 IV15 IV16 IV17 IV18 IV19 + IV2 IV20 IV21 IV22 IV23 IV24 IV25 IV26 IV27 IV28 IV29 IV3 IV30 IV31 IV32 IV33 + IV34 IV35 IV36 IV37 IV38 IV39 IV4 IV40 IV41 IV42 IV43 IV44 IV45 IV46 IV47 IV48 + IV49 IV5 IV50 IV51 IV52 IV53 IV54 IV55 IV56 IV57 IV58 IV59 IV6 IV60 IV61 IV62 + IV63 IV64 IV65 IV66 IV67 IV68 IV69 IV7 IV70 IV71 IV72 IV73 IV74 IV75 IV76 IV77 + IV78 IV79 IV8 IV80 IV9 k1 k10 k11 k12 k13 k14 k15 k16 k17 k18 k19 k2 k20 k21 + k22 k23 k24 k25 k26 k27 k28 k29 k3 k30 k31 k32 k33 k34 k35 k36 k37 k38 k39 k4 + k40 k41 k42 k43 k44 k45 k46 k47 k48 k49 k5 k50 k51 k52 k53 k54 k55 k56 k57 k58 + k59 k6 k60 k61 k62 k63 k64 k65 k66 k67 k68 k69 k7 k70 k71 k72 k73 k74 k75 k76 + k77 k78 k79 k8 k80 k9 reset q Triviumproject *x2 vdd gnd! CLK IV q1 q2 reset FFforProj
  • 41.
    *x3 vdd gnd!CLK IV q2 q3 reset FFforProj *x4 vdd gnd! CLK IV q3 q4 reset FFforProj *x5 vdd gnd! CLK IV q4 q5 reset FFforProj .tr 0.5ns 288ns .measure tran iavg avg I(VDD1) from=1n to=288n .measure energy param = '-1.2*iavg*288e-9' .measure power param = '-1.2*iavg' *sweep beta 0.1 5 0.1 *.measure tran tcq1 trig v(CLK) val = 0.6v rise=3 targ v(q1) val=0.6v rise=2 *.measure tran tcq2 trig v(CLK) val = 0.6v rise=2 targ v(q1) val=0.6v fall=1 *.measure tran trq trig v(reset) val = 0.6v rise=1 targ v(q1) val=0.6v rise=1 *.measure tran energy integral p(x1) from=0ns to 25ns .end