TRIGONOMETRY-sk
STD X
MAHARASHTRA STATE BOARD OF EDUCATION,
MUMBAI
Trigonometric Ratios Reciprocal Ratios Fundamental Trigonometric Identities
TRIGONOMETRY
Trigonometry is a branch of mathematics
that studies relationships between side
lengths and angles of triangles.
There are six trigonometric ratios, sine, cosine,
tangent, cosecant, secant and cotangent.
These six trigonometric ratios are abbreviated as
sin, cos, tan, cosec, sec, cot. These are referred to
as ratios since they can be expressed in terms of
the sides of a right-angled triangle for a specific
angle θ.
TRIGONOMETRY
Trigonometric Ratios
sine ratio for a right angle. The definition of the sine
ratio is the ratio of the length of the opposite side
divided by the length of the hypotenuse.
sin A =
𝐵𝐶
𝐴𝐶
, sin S =
𝑅𝐻
𝑅𝑆
, sin D = , sin T =
TRIGONOMETRY
cosine ratio for a right angle. The definition of the cosine
ratio is the ratio of the length of the side adjacent to the
angle divided by the length of the hypotenuse
•
Trigonometric Ratios
cos A =
𝐴𝐵
𝐴𝐶
, cos S =
𝑆𝐻
𝑅𝑆
, cos D = , cos T =
TRIGONOMETRY
tangent ratio for a right angle. The definition of
the tangent ratio is the ratio of the length of the
opposite side and the adjacent side.(
𝑠𝑖𝑛
𝑐𝑜𝑠
= 𝑡𝑎𝑛)
Trigonometric Ratios
tan A =
𝐵𝐶
𝐴𝐵
, tan S =
𝑅𝐻
𝑆𝐻
, tan D = , tan T =
TRIGONOMETRY
cosecant (cosec) ratio for a right angle. The definition of
the cosec ratio is the ratio of the length of the hypotenuse
divided by the length of the opposite side
Reciprocal Ratios
cosec A =
𝐴𝐶
𝐵𝐶
, cosec S =
𝑅𝑆
𝑅𝐻
, cosec D = , cosec T =
TRIGONOMETRY
Reciprocal Ratios
secant (sec) ratio for a right angle. The definition of the sec ratio is
the ratio of the length of hypotenuse divided by the length of the
side adjacent to the angle
sec A =
𝐴𝐶
𝐴𝐵
, sec S =
𝑆𝑅
𝐻𝑆
, sec D = , sec T =
TRIGONOMETRY
Reciprocal Ratios
cotangent (cot) ratio for a right angle. The
definition of the cot ratio is the ratio of the length of
the adjacent side and the opposite side.
cot A =
𝐵𝐴
𝐶𝐵
, cot S =
𝑅𝑆
𝑅𝐻
, cot D = , cot T =
TRIGONOMETRY
FUNDAMENTAL TRIGONOMETRIC IDENTITIES
sin2 A + cos2 A = 1
1 + cot2A = cosec2 A
1 + tan2 A = sec2 A
trigonometric
ratio
reciprocal
ratio
sin cosec
cos sec
tan cot
sin2 A + cos2 A = 1
1 + cot2A = cosec2 A
1 + tan2 A = sec2 A
REFERENCE
sin
cos
tan =
𝑠𝑖𝑛
𝑐𝑜𝑠
sin=
1
𝑐𝑜𝑠𝑒𝑐
, cosec =
1
𝑠𝑖𝑛
cos =
1
𝑠𝑒𝑐
, sec =
1
𝑐𝑜𝑠
tan =
1
𝑐𝑜𝑡
, cot =
1
𝑡𝑎𝑛
TRIGONOMETRY
FUNDAMENTAL TRIGONOMETRIC IDENTITIES
If sin A =
7
25
then find the value of cos A and tan A
Sin2A + cos2 A =1
(
7
25
)2 + cos2 A = 1
49
625
+ cos2 A = 1
cos2A = 1-
49
625
cos2A =
625−49
625
cos2A =
576
625
cos A =
24
25
𝑠𝑖𝑛
𝑐𝑜𝑠
= tan
7
25
x
25
24
= tan A
7
24
= tan A
TRIGONOMETRY
FUNDAMENTAL TRIGONOMETRIC IDENTITIES
If tan A =
3
4
then find the value of cos A and sec A
1 + tan2A = sec2 A
1 +(
3
4
)2 = sec2 A
1+
9
16
=sec2 A
16+9
16
= sec2 A
25
16
= sec2 A
5
4
= sec A
1
sec 𝐴
= cos A
cos A =
4
5
TRIGONOMETRY
If 5 sec A -12 cosec A = 0 then find the values of sec A,
cos A and sin A
5 sec A -12 cosec A = 0
5 sec A = 12 cosec A
sec 𝐴
𝑐𝑜𝑠𝑒𝑐 𝐴
=
12
5
1 𝑋 𝑠𝑖𝑛 𝐴
cos 𝐴 𝑋 1
=
12
5
tan A =
12
5
TRIGONOMETRY
If tan A =1 then find the value of
sin 𝐴+cos 𝐴
sec 𝐴+𝑐𝑜𝑠𝑒𝑐 𝐴
tan A = 1 but tan 450 = 1
hence, ∠𝐴 =450
Numerator: sin A + cos A
sin 45 + cos 45
= 2(
1
2
)
= 2
1
2
x
2
2
= 2 (
2
2
)
= 2
DENOMINATOR :
sec A + cosec A
sec 45 + cosec 45
= 2 + 2
= 2 2
𝑁
𝐷
=
2
2 2
=
1
2
TRIGONOMETRY
Sin
cos
tan =
𝑠𝑖𝑛
𝑐𝑜𝑠
sin=
1
𝑐𝑜𝑠𝑒𝑐
, cosec =
1
𝑠𝑖𝑛
cos =
1
𝑠𝑒𝑐
, sec =
1
𝑐𝑜𝑠
tan =
1
𝑐𝑜𝑡
, cot =
1
𝑡𝑎𝑛
sin2 A + cos2 A = 1
1 + cot2A = cosec2 A
1 + tan2 A = sec2 A
TRIGONOMETRY
Prove using trigonometric ratio, reciprocal ratio and
fundamental identities
sin2 A + cos2 A = 1
1 + cot2A = cosec2 A
1 + tan2 A = sec2 A
Prove:
𝑠𝑖𝑛2 𝐴
cos 𝐴
+ cos A = sec A
L.H.S:
𝑠𝑖𝑛2 𝐴
cos 𝐴
+ cos A
𝑠𝑖𝑛2 𝐴 + 𝑐𝑜𝑠2 𝐴
𝑐𝑜𝑠𝐴
=
1
cos 𝐴
= sec A = R.H.S
HENCE
𝑠𝑖𝑛2 𝐴
cos 𝐴
+ cos A = sec A
REFERENCE
sin
cos
tan =
𝑠𝑖𝑛
𝑐𝑜𝑠
sin=
1
𝑐𝑜𝑠𝑒𝑐
, cosec =
1
𝑠𝑖𝑛
cos =
1
𝑠𝑒𝑐
, sec =
1
𝑐𝑜𝑠
tan =
1
𝑐𝑜𝑡
, cot =
1
𝑡𝑎𝑛
TRIGONOMETRY
Prove using trigonometric ratio, reciprocal ratio and
fundamental identities
PROVE: cos2 A (1 + tan2A) = 1
L.H.S: cos2 A (1 + tan2A)
=cos2 A(sec2 A)
= cos2 A (
1
𝑐𝑜𝑠2 𝐴
)
=1 = R.H.S.
Hence cos2 A (1 + tan2A) = 1
REFERENCE
sin2 A + cos2 A = 1
1 + cot2A = cosec2 A
1 + tan2 A = sec2 A
sin
cos
tan =
𝑠𝑖𝑛
𝑐𝑜𝑠
sin=
1
𝑐𝑜𝑠𝑒𝑐
, cosec =
1
𝑠𝑖𝑛
cos =
1
𝑠𝑒𝑐
, sec =
1
𝑐𝑜𝑠
tan =
1
𝑐𝑜𝑡
, cot =
1
𝑡𝑎𝑛
TRIGONOMETRY
Prove using trigonometric ratio, reciprocal ratio and
fundamental identities
PROVE:
𝟏−𝒔𝒊𝒏 𝑨
𝟏+𝒔𝒊𝒏 𝑨
= sec A – tan A
L.H.S :
(1−sin 𝐴) 𝑥 (1−sin 𝐴)
(1+sin 𝐴) 𝑋 (1−sin 𝐴)
=
(1−sin 𝐴)2
1−𝑠𝑖𝑛2
=
(1−sin 𝐴)2
𝑐𝑜𝑠2 𝐴
=
1−sin 𝐴
cos 𝐴
=
1
cos 𝐴
-
sin 𝐴
cos 𝐴
=sec A – tan A = R.H.S
REFERENCE
sin2 A + cos2 A = 1
1 + cot2A = cosec2 A
1 + tan2 A = sec2 A
sin
cos
tan =
𝑠𝑖𝑛
𝑐𝑜𝑠
sin=
1
𝑐𝑜𝑠𝑒𝑐
, cosec =
1
𝑠𝑖𝑛
cos =
1
𝑠𝑒𝑐
, sec =
1
𝑐𝑜𝑠
tan =
1
𝑐𝑜𝑡
, cot =
1
𝑡𝑎𝑛
TRIGONOMETRYProve using trigonometric ratio, reciprocal ratio and
fundamental identities REFERENCE
PROVE:
1
sec 𝐴 −tan 𝐴
= se c
A + tan A
L.H.S:
1
sec 𝐴 −tan 𝐴
1
sec 𝐴 −tan 𝐴
X
sec 𝐴+tan 𝐴
sec 𝐴+tan 𝐴
sec 𝐴+tan 𝐴
𝑠𝑒𝑐2 𝐴−𝑡𝑎𝑛2 𝐴
=sec 𝐴 + tan 𝐴
sin2 A + cos2 A = 1
1 + cot2A = cosec2 A
1 + tan2 A = sec2 A
sin
cos
tan =
𝑠𝑖𝑛
𝑐𝑜𝑠
sin=
1
𝑐𝑜𝑠𝑒𝑐
, cosec =
1
𝑠𝑖𝑛
cos =
1
𝑠𝑒𝑐
, sec =
1
𝑐𝑜𝑠
tan =
1
𝑐𝑜𝑡
, cot =
1
𝑡𝑎𝑛
TRIGONOMETRYProve using trigonometric ratio, reciprocal ratio and
fundamental identities
PROVE: (sec A – cos A)(cot A + tan A) = tan A sec A
L.H.S: (sec A – cos A)(cot A + tan A)
= (
1
cos 𝐴
- cos A) (
cos 𝐴
sin 𝐴
+
sin 𝐴
cos 𝐴
)
= (
1− 𝑐𝑜𝑠2
cos 𝐴
) (
𝑐𝑜𝑠2 𝐴 +𝑠𝑖𝑛2 𝐴
sin 𝐴 . cos 𝐴
)
=
𝑠𝑖𝑛2 𝐴
cos 𝐴
x
1
𝑠𝑖𝑛𝐴 cos 𝐴
=
sin 𝐴
cos 𝐴
x
1
cos 𝐴
= tanA X sec A
REFERENCE
sin2 A + cos2 A = 1
1 + cot2A = cosec2 A
1 + tan2 A = sec2 A
sin
cos
tan =
𝑠𝑖𝑛
𝑐𝑜𝑠
sin=
1
𝑐𝑜𝑠𝑒𝑐
, cosec =
1
𝑠𝑖𝑛
cos =
1
𝑠𝑒𝑐
, sec =
1
𝑐𝑜𝑠
tan =
1
𝑐𝑜𝑡
, cot =
1
𝑡𝑎𝑛
TRIGONOMETRYProve using trigonometric ratio, reciprocal ratio and
fundamental identities
PROVE: cot A + tan A = cosec A sec A
L.H.S: cot A + tan A
(
cos 𝐴
sin 𝐴
+
sin 𝐴
cos 𝐴
)
= (
𝑐𝑜𝑠2 𝐴 +𝑠𝑖𝑛2 𝐴
sin 𝐴 . cos 𝐴
)
=
1
𝑠𝑖𝑛𝐴 cos 𝐴
=
1
sin 𝐴
x
1
cos 𝐴
= cosec A sec A = R.H.S.
REFERENCE
sin2 A + cos2 A = 1
1 + cot2A = cosec2 A
1 + tan2 A = sec2 A
sin
cos
tan =
𝑠𝑖𝑛
𝑐𝑜𝑠
sin=
1
𝑐𝑜𝑠𝑒𝑐
, cosec =
1
𝑠𝑖𝑛
cos =
1
𝑠𝑒𝑐
, sec =
1
𝑐𝑜𝑠
tan =
1
𝑐𝑜𝑡
, cot =
1
𝑡𝑎𝑛
TRIGONOMETRY
Prove using trigonometric ratio, reciprocal ratio and
fundamental identities
REFERENCE
PROVE: sec A + tan A =
cos 𝐴
1−sin 𝐴
L.H.S: sec A + tan A
=
1
𝐶𝑂𝑆 𝐴
+
𝑆𝑖𝑛 𝐴
cos 𝐴
=
1+sin 𝐴
cos 𝐴
=
1+sin 𝐴
cos 𝐴
x
1−sin 𝐴
1−sin 𝐴
=
1−𝑠𝑖𝑛2
cos 𝐴 (1−sin 𝐴)
=
𝑐𝑜𝑠2 𝐴
cos 𝐴 (1−sin 𝐴)
=
cos 𝐴
(1−sin 𝐴)
= R.H.S.
sin2 A + cos2 A = 1
1 + cot2A = cosec2 A
1 + tan2 A = sec2 A
sin
cos
tan =
𝑠𝑖𝑛
𝑐𝑜𝑠
sin=
1
𝑐𝑜𝑠𝑒𝑐
, cosec =
1
𝑠𝑖𝑛
cos =
1
𝑠𝑒𝑐
, sec =
1
𝑐𝑜𝑠
tan =
1
𝑐𝑜𝑡
, cot =
1
𝑡𝑎𝑛
TRIGONOMETRY
Prove using trigonometric ratio, reciprocal ratio and
fundamental identities
sin2 A + cos2 A = 1
1 + cot2A = cosec2 A
1 + tan2 A = sec2 A
sin
cos
tan =
𝑠𝑖𝑛
𝑐𝑜𝑠
sin=
1
𝑐𝑜𝑠𝑒𝑐
, cosec =
1
𝑠𝑖𝑛
cos =
1
𝑠𝑒𝑐
, sec =
1
𝑐𝑜𝑠
tan =
1
𝑐𝑜𝑡
, cot =
1
𝑡𝑎𝑛
PROVE: 1 + tan2 A =
1
𝑐𝑜𝑠2 𝐴
LHS 1 + tan2 A
= sec2A
=
1
𝑐𝑜𝑠2 𝐴
LHS 1 + tan2 A
= 1 +
𝑠𝑖𝑛2
𝑐𝑜𝑠2
=
𝑐𝑜𝑠2 + 𝑠𝑖𝑛2
𝑐𝑜𝑠2
=
1
𝑐𝑜𝑠2
TRIGONOMETRY
Prove using trigonometric ratio, reciprocal ratio and
fundamental identities
sin2 A + cos2 A = 1
1 + cot2A = cosec2 A
1 + tan2 A = sec2 A
sin
cos
tan =
𝑠𝑖𝑛
𝑐𝑜𝑠
sin=
1
𝑐𝑜𝑠𝑒𝑐
, cosec =
1
𝑠𝑖𝑛
cos =
1
𝑠𝑒𝑐
, sec =
1
𝑐𝑜𝑠
tan =
1
𝑐𝑜𝑡
, cot =
1
𝑡𝑎𝑛
PROVE: cot2 A -
1
𝑠𝑖𝑛2 𝐴
= -1
LHS cot2 A -
1
𝑠𝑖𝑛2 𝐴
= cot2A – cosec2A =
-(cosec2A - cot2A)
= -1
TRIGONOMETRY
Prove using trigonometric ratio, reciprocal ratio and
fundamental identities
PROVE: sec4A (1-sin4A)-2tan2A = 1
L.H.S: sec4A (1-sin4A)-2tan2A
= sec4A (1-sin2A)(1 + sin2A) -2tan2A
= sec4A cos2A (1 + sin2A) -2tan2A
=
1
𝑐𝑜𝑠4 𝐴
cos2A (1 + sin2A) -2
𝑠𝑖𝑛2 𝐴
𝑐𝑜𝑠2 𝐴
=
1 + sin2
A
𝑐𝑜𝑠2 𝐴
-2
𝑠𝑖𝑛2 𝐴
𝑐𝑜𝑠2 𝐴
=
1−𝑠𝑖𝑛2 𝐴
𝑐𝑜𝑠2 𝐴
=
𝑐𝑜𝑠2 𝐴
𝑐𝑜𝑠2 𝐴
=1 = R.H.S
sin2 A + cos2 A = 1
1 + cot2A = cosec2 A
1 + tan2 A = sec2 A
sin
cos
tan =
𝑠𝑖𝑛
𝑐𝑜𝑠
sin=
1
𝑐𝑜𝑠𝑒𝑐
, cosec =
1
𝑠𝑖𝑛
cos =
1
𝑠𝑒𝑐
, sec =
1
𝑐𝑜𝑠
tan =
1
𝑐𝑜𝑡
, cot =
1
𝑡𝑎𝑛
TRIGONOMETRY
PROVE:
tan 𝐴
sec 𝐴−1
=
tan 𝐴+sec 𝐴+1
tan 𝐴+sec 𝐴−1
L.H.S:
tan 𝐴
sec 𝐴−1
tan 𝐴
sec 𝐴−1
=
tan 𝐴
sec 𝐴−1
X
sec 𝐴+1
sec 𝐴+1
tan 𝐴
sec 𝐴−1
=
tan 𝐴 (sec 𝐴+1)
𝑠𝑒𝑐2 𝐴−1
tan 𝐴
sec 𝐴−1
=
tan 𝐴 (sec 𝐴+1)
𝑡𝑎𝑛2 𝐴
tan 𝐴
sec 𝐴−1
=
(sec 𝐴+1)
𝑡𝑎𝑛 𝐴
= k
Using property of equal ratio
tan 𝐴+sec 𝐴+1
tan 𝐴 +sec 𝐴−1
= k = R.H.S
HENCE
tan 𝐴
sec 𝐴−1
=
tan 𝐴+sec 𝐴+1
tan 𝐴+sec 𝐴=1
sin2 A + cos2 A = 1
1 + cot2A = cosec2 A
1 + tan2 A = sec2 A
sin
cos
tan =
𝑠𝑖𝑛
𝑐𝑜𝑠
sin=
1
𝑐𝑜𝑠𝑒𝑐
, cosec =
1
𝑠𝑖𝑛
cos =
1
𝑠𝑒𝑐
, sec =
1
𝑐𝑜𝑠
tan =
1
𝑐𝑜𝑡
, cot =
1
𝑡𝑎𝑛
TRIGONOMETRY
Prove: (cos A + sin A)2 + (cos A -sin A)2 = 4cos A sin A
LHS: (cos A +sin A)2 + (cosA -sin A)2
= (cos2A + 2cosA SinA + sin2A) - (cos2A - 2cosA SinA + sin2A)
=cos2A + 2cosA sinA + sin2A -cos2A + 2cosA sinA - sin2A
= 4cos A sin A
Prove using trigonometric ratio, reciprocal ratio and
fundamental identities
TRIGONOMETRY
sin2 A + cos2 A = 1
1 + cot2A = cosec2 A
1 + tan2 A = sec2 A
sin
cos
tan =
𝑠𝑖𝑛
𝑐𝑜𝑠
sin=
1
𝑐𝑜𝑠𝑒𝑐
, cosec =
1
𝑠𝑖𝑛
cos =
1
𝑠𝑒𝑐
, sec =
1
𝑐𝑜𝑠
tan =
1
𝑐𝑜𝑡
, cot =
1
𝑡𝑎𝑛
THANK YOU
trigonometric
ratio
reciprocal
ratio
sin cosec
cos sec
tan cot
sin A =
𝐵𝐶
𝐴𝐶
, sin S =
𝑅𝐻
𝑅𝑆
,
sin D = , sin T =
cos A =
𝐴𝐵
𝐴𝐶
, cos S =
𝑆𝐻
𝑅𝑆
,
cos D = , cos T =
tan A =
𝐵𝐶
𝐴𝐵
, tan S =
𝑅𝐻
𝑆𝐻
,
tan D = , tan T =
cosec A =
𝐴𝐶
𝐵𝐶
, cosec S =
𝑅𝑆
𝑅𝐻
,
cosec D = , cosec T =
cot A =
𝐵𝐴
𝐶𝐵
, cot S =
𝑅𝑆
𝑅𝐻
, cot
D = , cot T =
sec A =
𝐴𝐶
𝐴𝐵
, sec S =
𝑆𝑅
𝐻𝑆
,
sec D = , sec T =

Trigonometry 1

  • 1.
    TRIGONOMETRY-sk STD X MAHARASHTRA STATEBOARD OF EDUCATION, MUMBAI Trigonometric Ratios Reciprocal Ratios Fundamental Trigonometric Identities
  • 2.
    TRIGONOMETRY Trigonometry is abranch of mathematics that studies relationships between side lengths and angles of triangles. There are six trigonometric ratios, sine, cosine, tangent, cosecant, secant and cotangent. These six trigonometric ratios are abbreviated as sin, cos, tan, cosec, sec, cot. These are referred to as ratios since they can be expressed in terms of the sides of a right-angled triangle for a specific angle θ.
  • 3.
    TRIGONOMETRY Trigonometric Ratios sine ratiofor a right angle. The definition of the sine ratio is the ratio of the length of the opposite side divided by the length of the hypotenuse. sin A = 𝐵𝐶 𝐴𝐶 , sin S = 𝑅𝐻 𝑅𝑆 , sin D = , sin T =
  • 4.
    TRIGONOMETRY cosine ratio fora right angle. The definition of the cosine ratio is the ratio of the length of the side adjacent to the angle divided by the length of the hypotenuse • Trigonometric Ratios cos A = 𝐴𝐵 𝐴𝐶 , cos S = 𝑆𝐻 𝑅𝑆 , cos D = , cos T =
  • 5.
    TRIGONOMETRY tangent ratio fora right angle. The definition of the tangent ratio is the ratio of the length of the opposite side and the adjacent side.( 𝑠𝑖𝑛 𝑐𝑜𝑠 = 𝑡𝑎𝑛) Trigonometric Ratios tan A = 𝐵𝐶 𝐴𝐵 , tan S = 𝑅𝐻 𝑆𝐻 , tan D = , tan T =
  • 6.
    TRIGONOMETRY cosecant (cosec) ratiofor a right angle. The definition of the cosec ratio is the ratio of the length of the hypotenuse divided by the length of the opposite side Reciprocal Ratios cosec A = 𝐴𝐶 𝐵𝐶 , cosec S = 𝑅𝑆 𝑅𝐻 , cosec D = , cosec T =
  • 7.
    TRIGONOMETRY Reciprocal Ratios secant (sec)ratio for a right angle. The definition of the sec ratio is the ratio of the length of hypotenuse divided by the length of the side adjacent to the angle sec A = 𝐴𝐶 𝐴𝐵 , sec S = 𝑆𝑅 𝐻𝑆 , sec D = , sec T =
  • 8.
    TRIGONOMETRY Reciprocal Ratios cotangent (cot)ratio for a right angle. The definition of the cot ratio is the ratio of the length of the adjacent side and the opposite side. cot A = 𝐵𝐴 𝐶𝐵 , cot S = 𝑅𝑆 𝑅𝐻 , cot D = , cot T =
  • 9.
    TRIGONOMETRY FUNDAMENTAL TRIGONOMETRIC IDENTITIES sin2A + cos2 A = 1 1 + cot2A = cosec2 A 1 + tan2 A = sec2 A trigonometric ratio reciprocal ratio sin cosec cos sec tan cot
  • 10.
    sin2 A +cos2 A = 1 1 + cot2A = cosec2 A 1 + tan2 A = sec2 A REFERENCE sin cos tan = 𝑠𝑖𝑛 𝑐𝑜𝑠 sin= 1 𝑐𝑜𝑠𝑒𝑐 , cosec = 1 𝑠𝑖𝑛 cos = 1 𝑠𝑒𝑐 , sec = 1 𝑐𝑜𝑠 tan = 1 𝑐𝑜𝑡 , cot = 1 𝑡𝑎𝑛
  • 11.
    TRIGONOMETRY FUNDAMENTAL TRIGONOMETRIC IDENTITIES Ifsin A = 7 25 then find the value of cos A and tan A Sin2A + cos2 A =1 ( 7 25 )2 + cos2 A = 1 49 625 + cos2 A = 1 cos2A = 1- 49 625 cos2A = 625−49 625 cos2A = 576 625 cos A = 24 25 𝑠𝑖𝑛 𝑐𝑜𝑠 = tan 7 25 x 25 24 = tan A 7 24 = tan A
  • 12.
    TRIGONOMETRY FUNDAMENTAL TRIGONOMETRIC IDENTITIES Iftan A = 3 4 then find the value of cos A and sec A 1 + tan2A = sec2 A 1 +( 3 4 )2 = sec2 A 1+ 9 16 =sec2 A 16+9 16 = sec2 A 25 16 = sec2 A 5 4 = sec A 1 sec 𝐴 = cos A cos A = 4 5
  • 13.
    TRIGONOMETRY If 5 secA -12 cosec A = 0 then find the values of sec A, cos A and sin A 5 sec A -12 cosec A = 0 5 sec A = 12 cosec A sec 𝐴 𝑐𝑜𝑠𝑒𝑐 𝐴 = 12 5 1 𝑋 𝑠𝑖𝑛 𝐴 cos 𝐴 𝑋 1 = 12 5 tan A = 12 5
  • 14.
    TRIGONOMETRY If tan A=1 then find the value of sin 𝐴+cos 𝐴 sec 𝐴+𝑐𝑜𝑠𝑒𝑐 𝐴 tan A = 1 but tan 450 = 1 hence, ∠𝐴 =450 Numerator: sin A + cos A sin 45 + cos 45 = 2( 1 2 ) = 2 1 2 x 2 2 = 2 ( 2 2 ) = 2 DENOMINATOR : sec A + cosec A sec 45 + cosec 45 = 2 + 2 = 2 2 𝑁 𝐷 = 2 2 2 = 1 2
  • 15.
    TRIGONOMETRY Sin cos tan = 𝑠𝑖𝑛 𝑐𝑜𝑠 sin= 1 𝑐𝑜𝑠𝑒𝑐 , cosec= 1 𝑠𝑖𝑛 cos = 1 𝑠𝑒𝑐 , sec = 1 𝑐𝑜𝑠 tan = 1 𝑐𝑜𝑡 , cot = 1 𝑡𝑎𝑛 sin2 A + cos2 A = 1 1 + cot2A = cosec2 A 1 + tan2 A = sec2 A
  • 16.
    TRIGONOMETRY Prove using trigonometricratio, reciprocal ratio and fundamental identities sin2 A + cos2 A = 1 1 + cot2A = cosec2 A 1 + tan2 A = sec2 A Prove: 𝑠𝑖𝑛2 𝐴 cos 𝐴 + cos A = sec A L.H.S: 𝑠𝑖𝑛2 𝐴 cos 𝐴 + cos A 𝑠𝑖𝑛2 𝐴 + 𝑐𝑜𝑠2 𝐴 𝑐𝑜𝑠𝐴 = 1 cos 𝐴 = sec A = R.H.S HENCE 𝑠𝑖𝑛2 𝐴 cos 𝐴 + cos A = sec A REFERENCE sin cos tan = 𝑠𝑖𝑛 𝑐𝑜𝑠 sin= 1 𝑐𝑜𝑠𝑒𝑐 , cosec = 1 𝑠𝑖𝑛 cos = 1 𝑠𝑒𝑐 , sec = 1 𝑐𝑜𝑠 tan = 1 𝑐𝑜𝑡 , cot = 1 𝑡𝑎𝑛
  • 17.
    TRIGONOMETRY Prove using trigonometricratio, reciprocal ratio and fundamental identities PROVE: cos2 A (1 + tan2A) = 1 L.H.S: cos2 A (1 + tan2A) =cos2 A(sec2 A) = cos2 A ( 1 𝑐𝑜𝑠2 𝐴 ) =1 = R.H.S. Hence cos2 A (1 + tan2A) = 1 REFERENCE sin2 A + cos2 A = 1 1 + cot2A = cosec2 A 1 + tan2 A = sec2 A sin cos tan = 𝑠𝑖𝑛 𝑐𝑜𝑠 sin= 1 𝑐𝑜𝑠𝑒𝑐 , cosec = 1 𝑠𝑖𝑛 cos = 1 𝑠𝑒𝑐 , sec = 1 𝑐𝑜𝑠 tan = 1 𝑐𝑜𝑡 , cot = 1 𝑡𝑎𝑛
  • 18.
    TRIGONOMETRY Prove using trigonometricratio, reciprocal ratio and fundamental identities PROVE: 𝟏−𝒔𝒊𝒏 𝑨 𝟏+𝒔𝒊𝒏 𝑨 = sec A – tan A L.H.S : (1−sin 𝐴) 𝑥 (1−sin 𝐴) (1+sin 𝐴) 𝑋 (1−sin 𝐴) = (1−sin 𝐴)2 1−𝑠𝑖𝑛2 = (1−sin 𝐴)2 𝑐𝑜𝑠2 𝐴 = 1−sin 𝐴 cos 𝐴 = 1 cos 𝐴 - sin 𝐴 cos 𝐴 =sec A – tan A = R.H.S REFERENCE sin2 A + cos2 A = 1 1 + cot2A = cosec2 A 1 + tan2 A = sec2 A sin cos tan = 𝑠𝑖𝑛 𝑐𝑜𝑠 sin= 1 𝑐𝑜𝑠𝑒𝑐 , cosec = 1 𝑠𝑖𝑛 cos = 1 𝑠𝑒𝑐 , sec = 1 𝑐𝑜𝑠 tan = 1 𝑐𝑜𝑡 , cot = 1 𝑡𝑎𝑛
  • 19.
    TRIGONOMETRYProve using trigonometricratio, reciprocal ratio and fundamental identities REFERENCE PROVE: 1 sec 𝐴 −tan 𝐴 = se c A + tan A L.H.S: 1 sec 𝐴 −tan 𝐴 1 sec 𝐴 −tan 𝐴 X sec 𝐴+tan 𝐴 sec 𝐴+tan 𝐴 sec 𝐴+tan 𝐴 𝑠𝑒𝑐2 𝐴−𝑡𝑎𝑛2 𝐴 =sec 𝐴 + tan 𝐴 sin2 A + cos2 A = 1 1 + cot2A = cosec2 A 1 + tan2 A = sec2 A sin cos tan = 𝑠𝑖𝑛 𝑐𝑜𝑠 sin= 1 𝑐𝑜𝑠𝑒𝑐 , cosec = 1 𝑠𝑖𝑛 cos = 1 𝑠𝑒𝑐 , sec = 1 𝑐𝑜𝑠 tan = 1 𝑐𝑜𝑡 , cot = 1 𝑡𝑎𝑛
  • 20.
    TRIGONOMETRYProve using trigonometricratio, reciprocal ratio and fundamental identities PROVE: (sec A – cos A)(cot A + tan A) = tan A sec A L.H.S: (sec A – cos A)(cot A + tan A) = ( 1 cos 𝐴 - cos A) ( cos 𝐴 sin 𝐴 + sin 𝐴 cos 𝐴 ) = ( 1− 𝑐𝑜𝑠2 cos 𝐴 ) ( 𝑐𝑜𝑠2 𝐴 +𝑠𝑖𝑛2 𝐴 sin 𝐴 . cos 𝐴 ) = 𝑠𝑖𝑛2 𝐴 cos 𝐴 x 1 𝑠𝑖𝑛𝐴 cos 𝐴 = sin 𝐴 cos 𝐴 x 1 cos 𝐴 = tanA X sec A REFERENCE sin2 A + cos2 A = 1 1 + cot2A = cosec2 A 1 + tan2 A = sec2 A sin cos tan = 𝑠𝑖𝑛 𝑐𝑜𝑠 sin= 1 𝑐𝑜𝑠𝑒𝑐 , cosec = 1 𝑠𝑖𝑛 cos = 1 𝑠𝑒𝑐 , sec = 1 𝑐𝑜𝑠 tan = 1 𝑐𝑜𝑡 , cot = 1 𝑡𝑎𝑛
  • 21.
    TRIGONOMETRYProve using trigonometricratio, reciprocal ratio and fundamental identities PROVE: cot A + tan A = cosec A sec A L.H.S: cot A + tan A ( cos 𝐴 sin 𝐴 + sin 𝐴 cos 𝐴 ) = ( 𝑐𝑜𝑠2 𝐴 +𝑠𝑖𝑛2 𝐴 sin 𝐴 . cos 𝐴 ) = 1 𝑠𝑖𝑛𝐴 cos 𝐴 = 1 sin 𝐴 x 1 cos 𝐴 = cosec A sec A = R.H.S. REFERENCE sin2 A + cos2 A = 1 1 + cot2A = cosec2 A 1 + tan2 A = sec2 A sin cos tan = 𝑠𝑖𝑛 𝑐𝑜𝑠 sin= 1 𝑐𝑜𝑠𝑒𝑐 , cosec = 1 𝑠𝑖𝑛 cos = 1 𝑠𝑒𝑐 , sec = 1 𝑐𝑜𝑠 tan = 1 𝑐𝑜𝑡 , cot = 1 𝑡𝑎𝑛
  • 22.
    TRIGONOMETRY Prove using trigonometricratio, reciprocal ratio and fundamental identities REFERENCE PROVE: sec A + tan A = cos 𝐴 1−sin 𝐴 L.H.S: sec A + tan A = 1 𝐶𝑂𝑆 𝐴 + 𝑆𝑖𝑛 𝐴 cos 𝐴 = 1+sin 𝐴 cos 𝐴 = 1+sin 𝐴 cos 𝐴 x 1−sin 𝐴 1−sin 𝐴 = 1−𝑠𝑖𝑛2 cos 𝐴 (1−sin 𝐴) = 𝑐𝑜𝑠2 𝐴 cos 𝐴 (1−sin 𝐴) = cos 𝐴 (1−sin 𝐴) = R.H.S. sin2 A + cos2 A = 1 1 + cot2A = cosec2 A 1 + tan2 A = sec2 A sin cos tan = 𝑠𝑖𝑛 𝑐𝑜𝑠 sin= 1 𝑐𝑜𝑠𝑒𝑐 , cosec = 1 𝑠𝑖𝑛 cos = 1 𝑠𝑒𝑐 , sec = 1 𝑐𝑜𝑠 tan = 1 𝑐𝑜𝑡 , cot = 1 𝑡𝑎𝑛
  • 23.
    TRIGONOMETRY Prove using trigonometricratio, reciprocal ratio and fundamental identities sin2 A + cos2 A = 1 1 + cot2A = cosec2 A 1 + tan2 A = sec2 A sin cos tan = 𝑠𝑖𝑛 𝑐𝑜𝑠 sin= 1 𝑐𝑜𝑠𝑒𝑐 , cosec = 1 𝑠𝑖𝑛 cos = 1 𝑠𝑒𝑐 , sec = 1 𝑐𝑜𝑠 tan = 1 𝑐𝑜𝑡 , cot = 1 𝑡𝑎𝑛 PROVE: 1 + tan2 A = 1 𝑐𝑜𝑠2 𝐴 LHS 1 + tan2 A = sec2A = 1 𝑐𝑜𝑠2 𝐴 LHS 1 + tan2 A = 1 + 𝑠𝑖𝑛2 𝑐𝑜𝑠2 = 𝑐𝑜𝑠2 + 𝑠𝑖𝑛2 𝑐𝑜𝑠2 = 1 𝑐𝑜𝑠2
  • 24.
    TRIGONOMETRY Prove using trigonometricratio, reciprocal ratio and fundamental identities sin2 A + cos2 A = 1 1 + cot2A = cosec2 A 1 + tan2 A = sec2 A sin cos tan = 𝑠𝑖𝑛 𝑐𝑜𝑠 sin= 1 𝑐𝑜𝑠𝑒𝑐 , cosec = 1 𝑠𝑖𝑛 cos = 1 𝑠𝑒𝑐 , sec = 1 𝑐𝑜𝑠 tan = 1 𝑐𝑜𝑡 , cot = 1 𝑡𝑎𝑛 PROVE: cot2 A - 1 𝑠𝑖𝑛2 𝐴 = -1 LHS cot2 A - 1 𝑠𝑖𝑛2 𝐴 = cot2A – cosec2A = -(cosec2A - cot2A) = -1
  • 25.
    TRIGONOMETRY Prove using trigonometricratio, reciprocal ratio and fundamental identities PROVE: sec4A (1-sin4A)-2tan2A = 1 L.H.S: sec4A (1-sin4A)-2tan2A = sec4A (1-sin2A)(1 + sin2A) -2tan2A = sec4A cos2A (1 + sin2A) -2tan2A = 1 𝑐𝑜𝑠4 𝐴 cos2A (1 + sin2A) -2 𝑠𝑖𝑛2 𝐴 𝑐𝑜𝑠2 𝐴 = 1 + sin2 A 𝑐𝑜𝑠2 𝐴 -2 𝑠𝑖𝑛2 𝐴 𝑐𝑜𝑠2 𝐴 = 1−𝑠𝑖𝑛2 𝐴 𝑐𝑜𝑠2 𝐴 = 𝑐𝑜𝑠2 𝐴 𝑐𝑜𝑠2 𝐴 =1 = R.H.S sin2 A + cos2 A = 1 1 + cot2A = cosec2 A 1 + tan2 A = sec2 A sin cos tan = 𝑠𝑖𝑛 𝑐𝑜𝑠 sin= 1 𝑐𝑜𝑠𝑒𝑐 , cosec = 1 𝑠𝑖𝑛 cos = 1 𝑠𝑒𝑐 , sec = 1 𝑐𝑜𝑠 tan = 1 𝑐𝑜𝑡 , cot = 1 𝑡𝑎𝑛
  • 26.
    TRIGONOMETRY PROVE: tan 𝐴 sec 𝐴−1 = tan𝐴+sec 𝐴+1 tan 𝐴+sec 𝐴−1 L.H.S: tan 𝐴 sec 𝐴−1 tan 𝐴 sec 𝐴−1 = tan 𝐴 sec 𝐴−1 X sec 𝐴+1 sec 𝐴+1 tan 𝐴 sec 𝐴−1 = tan 𝐴 (sec 𝐴+1) 𝑠𝑒𝑐2 𝐴−1 tan 𝐴 sec 𝐴−1 = tan 𝐴 (sec 𝐴+1) 𝑡𝑎𝑛2 𝐴 tan 𝐴 sec 𝐴−1 = (sec 𝐴+1) 𝑡𝑎𝑛 𝐴 = k Using property of equal ratio tan 𝐴+sec 𝐴+1 tan 𝐴 +sec 𝐴−1 = k = R.H.S HENCE tan 𝐴 sec 𝐴−1 = tan 𝐴+sec 𝐴+1 tan 𝐴+sec 𝐴=1 sin2 A + cos2 A = 1 1 + cot2A = cosec2 A 1 + tan2 A = sec2 A sin cos tan = 𝑠𝑖𝑛 𝑐𝑜𝑠 sin= 1 𝑐𝑜𝑠𝑒𝑐 , cosec = 1 𝑠𝑖𝑛 cos = 1 𝑠𝑒𝑐 , sec = 1 𝑐𝑜𝑠 tan = 1 𝑐𝑜𝑡 , cot = 1 𝑡𝑎𝑛
  • 27.
    TRIGONOMETRY Prove: (cos A+ sin A)2 + (cos A -sin A)2 = 4cos A sin A LHS: (cos A +sin A)2 + (cosA -sin A)2 = (cos2A + 2cosA SinA + sin2A) - (cos2A - 2cosA SinA + sin2A) =cos2A + 2cosA sinA + sin2A -cos2A + 2cosA sinA - sin2A = 4cos A sin A Prove using trigonometric ratio, reciprocal ratio and fundamental identities
  • 28.
  • 29.
    sin2 A +cos2 A = 1 1 + cot2A = cosec2 A 1 + tan2 A = sec2 A sin cos tan = 𝑠𝑖𝑛 𝑐𝑜𝑠 sin= 1 𝑐𝑜𝑠𝑒𝑐 , cosec = 1 𝑠𝑖𝑛 cos = 1 𝑠𝑒𝑐 , sec = 1 𝑐𝑜𝑠 tan = 1 𝑐𝑜𝑡 , cot = 1 𝑡𝑎𝑛 THANK YOU trigonometric ratio reciprocal ratio sin cosec cos sec tan cot sin A = 𝐵𝐶 𝐴𝐶 , sin S = 𝑅𝐻 𝑅𝑆 , sin D = , sin T = cos A = 𝐴𝐵 𝐴𝐶 , cos S = 𝑆𝐻 𝑅𝑆 , cos D = , cos T = tan A = 𝐵𝐶 𝐴𝐵 , tan S = 𝑅𝐻 𝑆𝐻 , tan D = , tan T = cosec A = 𝐴𝐶 𝐵𝐶 , cosec S = 𝑅𝑆 𝑅𝐻 , cosec D = , cosec T = cot A = 𝐵𝐴 𝐶𝐵 , cot S = 𝑅𝑆 𝑅𝐻 , cot D = , cot T = sec A = 𝐴𝐶 𝐴𝐵 , sec S = 𝑆𝑅 𝐻𝑆 , sec D = , sec T =