Γπαζηηπιόηηηα 1η
Στο ορκογώνιοτρίγωνο ΑΒΓ του διπλανοφ ςχιματοσ, οι
κάκετεσ πλευρζσ είναι οι …… και …… ενώ θ υποτείνουςα
είναι θ …… .
Υπολογίςτε τισ παρακάτω παραςτάςεισ:
ΒΓ2 = …………………………………………
ΑΒ2 + ΑΓ2 = …………………………………
3.
Γπαζηηπιόηηηα 1η
Στο ορκογώνιοτρίγωνο ΑΒΓ του διπλανοφ ςχιματοσ, οι
κάκετεσ πλευρζσ είναι οι ΑΓ και ΑΒ ενώ θ υποτείνουςα
είναι θ ΒΓ .
Υπολογίςτε τισ παρακάτω παραςτάςεισ:
ΒΓ2 = 52 = 25
ΑΒ2 + ΑΓ2 = 42 + 32 = 16+9 = 25
4.
Γπαζηηπιόηηηα 1η
Στο ορκογώνιοτρίγωνο ΑΒΓ του διπλανοφ ςχιματοσ, οι
κάκετεσ πλευρζσ είναι οι ΑΓ και ΑΒ ενώ θ υποτείνουςα
είναι θ ΒΓ .
Υπολογίςτε τισ παρακάτω παραςτάςεισ:
ΒΓ2 = 52 = 25
ΑΒ2 + ΑΓ2 = 42 + 32 = 16+9 = 25
Ομοίωσ για το διπλανό ορκογώνιο τρίγωνο ςχιμα να
προςδιορίςετε και πάλι τισ παραςτάςεισ:
ΒΓ2 = ………………………………………
ΑΒ2 + ΑΓ2 = ………………………………………
5.
Γπαζηηπιόηηηα 1η
Στο ορκογώνιοτρίγωνο ΑΒΓ του διπλανοφ ςχιματοσ, οι
κάκετεσ πλευρζσ είναι οι ΑΓ και ΑΒ ενώ θ υποτείνουςα
είναι θ ΒΓ .
Υπολογίςτε τισ παρακάτω παραςτάςεισ:
ΒΓ2 = 52 = 25
ΑΒ2 + ΑΓ2 = 42 + 32 = 16+9 = 25
Ομοίωσ για το διπλανό ορκογώνιο τρίγωνο ςχιμα να
προςδιορίςετε και πάλι τισ παραςτάςεισ:
ΒΓ2 = 152 = 225
ΑΒ2 + ΑΓ2 = 122 + 92 = 144+81 = 225
6.
Γπαζηηπιόηηηα 1η
Στο διπλανόςχιμα καταςκευάςαμε αρχικά το ορκογώνιο
τρίγωνο ΑΒΓ και εξωτερικά του, καταςκευάςαμε τετράγωνα, που το κακζνα ζχει ωσ πλευρά μία πλευρά του τριγώνου.
Υπολογίςτε τα εμβαδά των τετραγώνων:
(ΒΓΘΙ) = …………………………………
(ΑΒΔΕ) = …………………………………
(ΑΓΖΗ) = …………………………………
7.
Γπαζηηπιόηηηα 1η
Στο διπλανόςχιμα καταςκευάςαμε αρχικά το ορκογώνιο
τρίγωνο ΑΒΓ και εξωτερικά του, καταςκευάςαμε τετράγωνα, που το κακζνα ζχει ωσ πλευρά μία πλευρά του τριγώνου.
Υπολογίςτε τα εμβαδά των τετραγώνων:
(ΒΓΘΙ) = 102 = 100
(ΑΒΔΕ) = 82 = 64
(ΑΓΖΗ) = 62 = 36
8.
Γπαζηηπιόηηηα 1η
Στο διπλανόςχιμα καταςκευάςαμε αρχικά το ορκογώνιο
τρίγωνο ΑΒΓ και εξωτερικά του, καταςκευάςαμε τετράγωνα, που το κακζνα ζχει ωσ πλευρά μία πλευρά του τριγώνου.
Υπολογίςτε τα εμβαδά των τετραγώνων:
(ΒΓΘΙ) = 102 = 100
(ΑΒΔΕ) = 82 = 64
(ΑΓΖΗ) = 62 = 36
Ποια ςχζςθ ςυνδζει τισ πλευρζσ του τριγώνου ΑΒΓ;
9.
Γπαζηηπιόηηηα 1η
Στο διπλανόςχιμα καταςκευάςαμε αρχικά το ορκογώνιο
τρίγωνο ΑΒΓ και εξωτερικά του, καταςκευάςαμε τετράγωνα, που το κακζνα ζχει ωσ πλευρά μία πλευρά του τριγώνου.
Υπολογίςτε τα εμβαδά των τετραγώνων:
(ΒΓΘΙ) = 102 = 100
(ΑΒΔΕ) = 82 = 64
(ΑΓΖΗ) = 62 = 36
Ποια ςχζςθ ςυνδζει τισ πλευρζσ του τριγώνου ΑΒΓ;
Παρατηρούμε ότι:
(ΒΓΘΙ) = (ΑΒΔΕ)+(ΑΓΖΗ) ΒΓ2 = ΑΒ2 + ΑΓ2
10.
Γπαζηηπιόηηηα 1η
Στο διπλανόςχιμα καταςκευάςαμε αρχικά το ορκογώνιο
τρίγωνο ΑΒΓ και εξωτερικά του, καταςκευάςαμε τετράγωνα, που το κακζνα ζχει ωσ πλευρά μία πλευρά του τριγώνου.
Υπολογίςτε τα εμβαδά των τετραγώνων:
(ΒΓΘΙ) = 102 = 100
(ΑΒΔΕ) = 82 = 64
(ΑΓΖΗ) = 62 = 36
Ποια ςχζςθ ςυνδζει τισ πλευρζσ του τριγώνου ΑΒΓ;
Παρατηρούμε ότι:
(ΒΓΘΙ) = (ΑΒΔΕ)+(ΑΓΖΗ) ΒΓ2 = ΑΒ2 + ΑΓ2
Τι παρατηρείτε ότι ιςχύει ςτα ορθογώνια τρίγωνα;
11.
Πςθαγόπειο θεώπημα
Σε κάθεοπθογώνιο ηπίγωνο, ηο ηεηπάγωνο ηηρ
ςποηείνοςζαρ ιζούηαι με ηο άθποιζμα ηων
ηεηπαγώνων ηων δύο καθέηων πλεςπών
ΒΓ2 = ΑΒ2 + ΑΓ2
Γπαζηηπιόηηηα 4η
Στο παρακάτωςχιμα, το τρίγωνο ΑΒΓ ζχει περίμετρο 150 m.
α) Να βρείτε τον αρικμό x.
β) Να αποδείξετε ότι το τρίγωνο ΑΒΓ είναι ορκογώνιο.