SlideShare a Scribd company logo
1
ES 128: Homework 2
Solutions
Problem 1
Show that the weak form of
02)( =+ x
dx
du
AE
dx
d
on 31 << x ,
1.0)1(
1
=





=
=xdx
du
Eσ ,
001.0)3( =u
is given by
∫∫ +−= =
3
1
1
3
1
2)(1.0 xwdxwAdx
dx
du
AE
dx
dw
x w∀ with 0)3( =w .
Solution
We multiply the governing equation and the natural boundary condition over the
domain [1, 3] by an arbitrary weight function:
02
3
1
=











+





∫ dxx
dx
du
AE
dx
d
w )(xw∀ , (1.1)
01.0
1
=











−
=x
dx
du
EwA )1(w∀ . (1.2)
We integrate (1.1) by parts as
dx
dx
du
AE
dx
dw
dx
du
wAEdx
dx
du
AE
dx
d
w
x
x
∫∫ 





−





=

















=
=
3
1
3
1
3
1
. (1.3)
Substituting (1.3) into (1.1) gives
02
13
3
1
3
1
=





−





++





−
==
∫∫
xx
dx
du
wAE
dx
du
wAEwxdxdx
dx
du
AE
dx
dw
)(xw∀ . (1.4)
With 0)3( =w and 1.0)1( =σ , we obtain
( ) 1
3
1
3
1
1.02 =
−=





∫∫ x
wAwxdxdx
dx
du
AE
dx
dw
)(xw∀ with 0)3( =w . (1.5)
2
El (1)
El (2)
1
2
3
Figure 1a
x
Problem 2
Consider the (steel) bar in Figure 1. The bar has
a uniform thickness t=1cm, Young’s modulus
E=200 9
10× Pa, and weight density
ρ =7 3
10× 3
/mkg . In addition to its self-weight,
the bar is subjected to a point load P=100N at
its midpoint.
(a) Model the bar with two finite elements.
(b) Write down expressions for the element
stiffness matrices and element body force
vectors.
(c) Assemble the structural stiffness matrix
K and global load vector F .
(d) Solve for the global displacement vector
d.
(e) Evaluate the stresses in each element.
(f) Determine the reaction force at the
support.
Solution
(a) Using two elements, each of 0.3m in length, we
obtain the finite element model in Figure 1a. In this
model, 0)1(
1 =x , 3.0)1(
2 =x , 3.0)2(
1 =x , 6.0)2(
2 =x ,
and A(x)=0.0012-0.001x .
(b) For element 1, [ ]xx−= 3.0
3.0
1
N(1)
,
[ ]11
3.0
1
B(1)
−= , the element stiffness matrix is
,
7.07.0
7.07.0
10
11
11
)001.00012.0(
09.0
10200
BBK
9
3.0
0
9
3.0
0
)1((1)T(1)






−
−
=






−
−
−
×
=
=
∫
∫
dxx
dxAE
the element body force vector is
( )






+





−
−−×
=
+=
∫
∫ =
100
0
)001.00012.0(
)001.00012.0)(3.0(
3.0
107
NNf
3.0
0
3
3.0
(1)T
3.0
0
(1)T(1)
dx
xx
xx
PAdx
x
ρ
= 





05.101
155.1
, and the scatter matrix is 





=
010
001
L(1)
.
3
For element 2, [ ]3.06.0
3.0
1
N(2)
−−= xx , [ ]11
3.0
1
B(2)
−= , the element
stiffness matrix is
dxxdxAE ∫∫ 





−
−
−
×
==
6.0
3.0
9
6.0
3.0
)2((2)T(2)
11
11
)001.00012.0(
09.0
10200
BBK
,
5.05.0
5.05.0
109






−
−
= the element body force vector
is dx
xx
xx
Adx ∫∫ 





−−
−−×
==
6.0
3.0
3
6.0
3.0
(2)T(2)
)001.00012.0)(3.0(
)001.00012.0)(6.0(
3.0
107
Nf ρ = 





735.0
84.0
, and
the scatter matrix is 





=
100
010
L(2)
.
(c) The global stiffness matrix is
=+== ∑=
(2)(2)(2)T(1)(1)(1)T
2
1e
eeeT
LKLLKLLKLK










−
−−
−
5.05.00
5.02.17.0
07.07.0
109
.
The global load vector is
=+== ∑=
(2)(2)T(1)(1)T
2
1e
eeT
fLfLfLf










735.0
89.101
155.1
.
(d) Note that only the reaction force at node 1 is not zero, thus









 +
=+
735.0
89.101
155.1
rf
1r
.
The resulting global system of equations is










−
−−
−
5.05.00
5.02.17.0
07.07.0
109










3
2
0
u
u =









 +
735.0
89.101
155.11r
.
Solving the above equation,
2u = 1.46607 7_
10× (m), 3u = 1.48077 7_
10× (m), and 1r =-103.78(N).
(e) The stress field in element 1 is given by






×
−××== −7
9(1)(1))1(
1046607.1
0
]11[
3.0
1
10200dB)( Exσ =9.7738 4
10× (Pa).
The stress field in element 2 is given by






×
×
−××== −
−
7
7
9(2)(2))2(
1048077.1
1046607.1
]11[
3.0
1
10200dB)( Exσ =980 (Pa).
(f) The reaction force at the support Node 1 is -103.78N.
4
Problem 3
Consider the mesh shown in Figure 2. The model consists of two linear
displacement constant strain elements. The cross-sectional area is A=1, Young’s
modulus is E; both are constant. A body force b(x)=cx is applied.
(a) Solve and plot u(x) and )(xε for
the FEM solution.
(b) Compare (by plotting) the finite
element solution against the exact
solution for the equation
.)(2
2
cxxb
dx
ud
E −=−=
(c) Solve the above problem using a single quadratic displacement element.
(d) Compare the accuracy of stress and displacement at the right end with that
of two linear displacement elements.
(e) Check whether the equilibrium equation and traction boundary condition
are satisfied for the two meshes.
Solution
(a) Using two linear displacement constant strain elements, each of l in length,
we obtain the finite element model with 0)1(
1 =x , lx =)1(
2 , lx =)2(
1 , and lx 2)2(
2 = .
For element 1, [ ]xxl
l
−=
1
N(1)
, [ ]11
1
B(1)
−=
l
, the element stiffness matrix is






−
−
=
11
11
K(1)
l
EA
, the element body force vector is 





== ∫ 3/
6/
Nf 2
2
0
(1)T(1)
cl
cl
cxdx
l
,
and the scatter matrix is 





=
010
001
L(1)
.
For element 2, [ ]lxxl
l
−−= 2
1
N(2)
, [ ]11
1
B(2)
−=
l
, the element stiffness matrix
is 





−
−
=
11
11
K(2)
l
EA
, the element body force vector
is 





== ∫ 6/5
3/2
Nf 2
2
2
(2)T(2)
cl
cl
cxdx
l
l
, and the scatter matrix is 





=
100
010
L(2)
.
The global stiffness matrix is
=+== ∑=
(2)(2)(2)T(1)(1)(1)T
2
1e
eeeT
LKLLKLLKLK










−
−−
−
110
121
011
l
EA
.
The global load vector is
Figure 2
5
=+== ∑=
(2)(2)T(1)(1)T
2
1e
eeT
fLfLfLf










8333.0
0.1
1667.0
2
cl .
The resulting global system of equations is










−
−−
−
110
121
011
l
EA










3
2
0
u
u =









 +
2
2
2
1
8333.0
1667.0
cl
cl
clr
.
Solving the above equation,
2u = 1.8333
EA
cl3
, 3u = 2.6666
EA
cl3
, and 1r =-2 2
cl .
When lx ≤≤0
[ ]
EA
xcl
EA
clxxl
l
xu
2
3(1)(1)
8333.1
8333.1
01
dN)( =








−== ,
and
EA
cl
dx
du
x
2
8333.1)( ==ε .
When lxl 2≤≤
[ ] x
EA
cl
EA
cl
EA
cl
EA
cl
lxxl
l
xu
23
3
3
(2)(2)
8333.0
6666.2
8333.1
2
1
dN)( +=












−−== ,
and
EA
cl
dx
du
x
2
8333.0)( ==ε .
(b). The governing equation is
,)(2
2
cxxb
dx
ud
EA −=−=
where A=1. The boundary condition is u(0)=0, and 0)2( =lσ .
Solving this linear ODE, we obtain the exact solution 21
3
6
)( cxcx
EA
c
xu ++−= .
Since u(0)=0, 02 =c . Since 0)2( =lσ ,
EA
cl
c
2
1
2
= . Thus
x
EA
cl
x
EA
c
xu
2
3 2
6
)( +−= .
EA
cl
EA
cx
x
22
2
2
)( +−=ε
The comparisons between the approximation results and the exact solutions are
shown in Figures 2a (displacement), and 2b (strain).
6
2
)(
cl
EA
l
xu
2
)(
cl
EA
xε
Exact
solution Exact
solution
Approximation
results
Approximation
results
Figure 2a Figure 2b
(c) Using a single quadratic displacement element with 0)1(
1 =x , lx =)1(
2 , and
lx 2)1(
3 = , the element shape functions are
( )( )
( )( ) 2)1(
3
)1(
1
)1(
2
)1(
1
)1(
3
)1(
2(1)
1
2
)2)((
)2)((
)2)((
N
l
lxlx
ll
lxlx
xxxx
xxxx −−
=
−−
−−
=
−−
−−
= ,
( )( )
( )( ) 2)1(
3
)1(
2
)1(
1
)1(
2
)1(
3
)1(
1(1)
2
)2(
)(
)2(
N
l
lxx
ll
lxx
xxxx
xxxx
−
−
=
−
−
=
−−
−−
= ,
( )( )
( )( ) 22)1(
2
)1(
3
)1(
1
)1(
3
)1(
2
)1(
1(1)
3
2
)(
2
)(
N
l
lxx
l
lxx
xxxx
xxxx −
=
−
=
−−
−−
= .
The corresponding B-matrix is
2
(1)
1(1)
1
2/3N
B
l
lx
dx
d −
== ,
2
(1)
2(1)
2
22N
B
l
lx
dx
d
−
−
== ,
2
(1)
3(1)
3
2/N
B
l
lx
dx
d −
== .
The element stiffness matrix is
dx
l
lx
l
lx
l
lx
l
lx
l
lx
l
lx
EAdxEA
ll





 −
−
−−
















−
−
−
−
== ∫∫ 222
2
2
2
2
2
2
0
(1)(1)T(1) 2/222/3
2/
22
2/3
BBK
7
dx
l
lx
l
lx
l
lx
l
lx
l
lx
l
lx
l
lx
l
lx
l
lx
l
lx
l
lx
l
lx
l
lx
l
lx
l
lx
EA
l
∫




















−





 −






−
−





 −





 −





 −






−
−






−
−






−
−





 −





 −





 −






−
−





 −





 −
=
2
0
22222
22
2
222
2222
2
2
2/2/222/2/3
2/2222222/3
2/2/3222/32/3
.
6/73/46/1
3/43/83/4
6/13/46/7










−
−−
−
=
l
EA
The element body force vector is










== ∫
3/2
3/4
0
Nf
2
2
2
0
(1)T(1)
cl
clcxdx
l
.
The resulting global system of equations is










−
−−
−
6/73/46/1
3/43/83/4
6/13/46/7
l
EA










3
2
0
u
u =










3/2
3/4
2
2
1
cl
cl
r
.
Solving the above equation, we obtain
2u = 1.8333
EA
cl3
, 3u = 2.6666
EA
cl3
, and 1r =-2 2
cl .





















 −
−
−−−
==
EA
cl
EA
cl
l
lxx
l
lxx
l
lxlx
xu
3
3
222
(1)(1)
6666.2
8333.1
0
2
)()2(
2
)2)((
dN)( ,
x
EA
cl
x
EA
cl 2
2
3333.2
5.0
+−= .
EA
cl
x
EA
cl
x
2
3333.2)( +−=ε .
(d) At the right end with x=2l, for both of two linear displacement elements and a
single quadratic displacement element, the displacements are same to the exact
result ( 3u = 2.6666
EA
cl3
). As for the stress and strain, with two linear
displacement elements, we obtain
EA
cl
l
2
8333.0)2( =ε and
A
cl
l
2
8333.0)2( =σ .
8
With a single quadratic displacement element,
EA
cl
l
2
3333.0)2( =ε , and
A
cl
l
2
3333.0)2( =σ . It is found that the approximation result of the stress and
strain with a single quadratic displacement element is closer to the exact result
( 0=σ and 0=ε ).
(e). For both of two linear displacement elements and a single quadratic
displacement element, the reaction forces acting on node 1 are 1r =-2 2
cl , which
satisfy the equilibrium equation ( 0
2
0
1 =+ ∫
l
cxdxr ). However, as shown in (d), the
stress boundary conditions are not satisfied for the two meshes.

More Related Content

What's hot

Resmat ii material de aula com exercicios da av1 até av2
Resmat ii material de aula com exercicios da av1 até av2Resmat ii material de aula com exercicios da av1 até av2
Resmat ii material de aula com exercicios da av1 até av2
Douglas Alves
 
Lista de exercícios de Resistência dos Materiais
Lista de exercícios de Resistência dos MateriaisLista de exercícios de Resistência dos Materiais
Lista de exercícios de Resistência dos MateriaisLuciano Santos
 
Processos de fabricação
Processos de fabricaçãoProcessos de fabricação
Processos de fabricação
Djeison secco
 
Design of machine elements - Helical gears
Design of machine elements - Helical gearsDesign of machine elements - Helical gears
Design of machine elements - Helical gears
Akram Hossain
 
crystallographic planes and directions
crystallographic planes and directionscrystallographic planes and directions
crystallographic planes and directions
Abhijit Panchmatiya
 
14 produto misto volume paralelepipedo
14 produto misto volume paralelepipedo14 produto misto volume paralelepipedo
14 produto misto volume paralelepipedo
Rodrigo da Silva
 
Exercicio 5 transformada de fourier no tempo continuo
Exercicio 5   transformada de fourier no tempo continuoExercicio 5   transformada de fourier no tempo continuo
Exercicio 5 transformada de fourier no tempo continuo
Alessandro Beda
 
Exercicios de torção
Exercicios de torçãoExercicios de torção
Exercicios de torção
Romualdo SF
 
Ch06 07 pure bending transverse shear
Ch06 07 pure bending   transverse shearCh06 07 pure bending   transverse shear
Ch06 07 pure bending transverse shear
Carolina Retairo Noama
 
Mechanics Of Materials 9th Edition Hibbeler Solutions Manual
Mechanics Of Materials 9th Edition Hibbeler Solutions ManualMechanics Of Materials 9th Edition Hibbeler Solutions Manual
Mechanics Of Materials 9th Edition Hibbeler Solutions Manual
Victoriasses
 
Damped system under Harmonic motion
Damped system under Harmonic motionDamped system under Harmonic motion
Damped system under Harmonic motion
Dhaval Chauhan
 
Lista de exercícios produto vetorial produto misto
Lista de exercícios produto vetorial produto mistoLista de exercícios produto vetorial produto misto
Lista de exercícios produto vetorial produto misto
Prof Paulo Roberto Batista
 
Tabela de centróide e mom. de inércia
Tabela de centróide e mom. de inérciaTabela de centróide e mom. de inércia
Tabela de centróide e mom. de inércia
Nazildo Souza
 
Design of machine elements - Spur gears
Design of machine elements - Spur gearsDesign of machine elements - Spur gears
Design of machine elements - Spur gears
Akram Hossain
 
Conversão Referenciais Motor CA 3F
Conversão Referenciais Motor CA 3FConversão Referenciais Motor CA 3F
Conversão Referenciais Motor CA 3F
Gerson Sena
 
3 torsion- Mechanics of Materials - 4th - Beer
3 torsion- Mechanics of Materials - 4th - Beer3 torsion- Mechanics of Materials - 4th - Beer
3 torsion- Mechanics of Materials - 4th - Beer
Nhan Tran
 
Aula 5-flambagem
Aula 5-flambagemAula 5-flambagem
Aula 5-flambagem
Anata_Fragnani
 
Centroid &amp; moi table
Centroid &amp; moi tableCentroid &amp; moi table
Centroid &amp; moi table
SUMESH C S
 
03 ruído em circuitos analógicos
03 ruído em circuitos analógicos03 ruído em circuitos analógicos
03 ruído em circuitos analógicos
Universidade Federal de Santa Catarina
 

What's hot (20)

Resmat ii material de aula com exercicios da av1 até av2
Resmat ii material de aula com exercicios da av1 até av2Resmat ii material de aula com exercicios da av1 até av2
Resmat ii material de aula com exercicios da av1 até av2
 
Lista de exercícios de Resistência dos Materiais
Lista de exercícios de Resistência dos MateriaisLista de exercícios de Resistência dos Materiais
Lista de exercícios de Resistência dos Materiais
 
Processos de fabricação
Processos de fabricaçãoProcessos de fabricação
Processos de fabricação
 
Capitulo 3 -_transmissao_por_correias
Capitulo 3 -_transmissao_por_correiasCapitulo 3 -_transmissao_por_correias
Capitulo 3 -_transmissao_por_correias
 
Design of machine elements - Helical gears
Design of machine elements - Helical gearsDesign of machine elements - Helical gears
Design of machine elements - Helical gears
 
crystallographic planes and directions
crystallographic planes and directionscrystallographic planes and directions
crystallographic planes and directions
 
14 produto misto volume paralelepipedo
14 produto misto volume paralelepipedo14 produto misto volume paralelepipedo
14 produto misto volume paralelepipedo
 
Exercicio 5 transformada de fourier no tempo continuo
Exercicio 5   transformada de fourier no tempo continuoExercicio 5   transformada de fourier no tempo continuo
Exercicio 5 transformada de fourier no tempo continuo
 
Exercicios de torção
Exercicios de torçãoExercicios de torção
Exercicios de torção
 
Ch06 07 pure bending transverse shear
Ch06 07 pure bending   transverse shearCh06 07 pure bending   transverse shear
Ch06 07 pure bending transverse shear
 
Mechanics Of Materials 9th Edition Hibbeler Solutions Manual
Mechanics Of Materials 9th Edition Hibbeler Solutions ManualMechanics Of Materials 9th Edition Hibbeler Solutions Manual
Mechanics Of Materials 9th Edition Hibbeler Solutions Manual
 
Damped system under Harmonic motion
Damped system under Harmonic motionDamped system under Harmonic motion
Damped system under Harmonic motion
 
Lista de exercícios produto vetorial produto misto
Lista de exercícios produto vetorial produto mistoLista de exercícios produto vetorial produto misto
Lista de exercícios produto vetorial produto misto
 
Tabela de centróide e mom. de inércia
Tabela de centróide e mom. de inérciaTabela de centróide e mom. de inércia
Tabela de centróide e mom. de inércia
 
Design of machine elements - Spur gears
Design of machine elements - Spur gearsDesign of machine elements - Spur gears
Design of machine elements - Spur gears
 
Conversão Referenciais Motor CA 3F
Conversão Referenciais Motor CA 3FConversão Referenciais Motor CA 3F
Conversão Referenciais Motor CA 3F
 
3 torsion- Mechanics of Materials - 4th - Beer
3 torsion- Mechanics of Materials - 4th - Beer3 torsion- Mechanics of Materials - 4th - Beer
3 torsion- Mechanics of Materials - 4th - Beer
 
Aula 5-flambagem
Aula 5-flambagemAula 5-flambagem
Aula 5-flambagem
 
Centroid &amp; moi table
Centroid &amp; moi tableCentroid &amp; moi table
Centroid &amp; moi table
 
03 ruído em circuitos analógicos
03 ruído em circuitos analógicos03 ruído em circuitos analógicos
03 ruído em circuitos analógicos
 

Similar to Solution homework2

Lecture5-FEA.pdf
Lecture5-FEA.pdfLecture5-FEA.pdf
Lecture5-FEA.pdf
SHABANHADAYAT
 
Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular
rahul183
 
Shape1 d
Shape1 dShape1 d
Shape1 d
Manoj Shukla
 
4. Analysis 1-D self weight problem
4. Analysis 1-D self weight problem4. Analysis 1-D self weight problem
4. Analysis 1-D self weight problem
Mohammed Imran
 
Hermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan groupHermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan group
Keigo Nitadori
 
C 9 Coordinate Geometry Graphs
C 9 Coordinate Geometry GraphsC 9 Coordinate Geometry Graphs
C 9 Coordinate Geometry Graphs
Rashmi Taneja
 
Section4 stochastic
Section4 stochasticSection4 stochastic
Section4 stochastic
cairo university
 
Krishna
KrishnaKrishna
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
HebaEng
 
Signals and systems: part i solutions
Signals and systems: part i solutionsSignals and systems: part i solutions
Signals and systems: part i solutions
PatrickMumba7
 
Me 530 assignment 2
Me 530 assignment 2Me 530 assignment 2
Me 530 assignment 2
Nishant Patil
 
2 backlash simulation
2 backlash simulation2 backlash simulation
2 backlash simulation
Solo Hermelin
 
UNIT I_3.pdf
UNIT I_3.pdfUNIT I_3.pdf
UNIT I_3.pdf
Muthukumar P
 
Intro Class.ppt
Intro Class.pptIntro Class.ppt
Intro Class.ppt
PrakashDuraisamyCIT
 
FEM 3 TwoD CST.ppt
FEM 3 TwoD CST.pptFEM 3 TwoD CST.ppt
FEM 3 TwoD CST.ppt
Praveen Kumar
 
Signals and Systems part 2 solutions
Signals and Systems part 2 solutions Signals and Systems part 2 solutions
Signals and Systems part 2 solutions
PatrickMumba7
 
Diffusion kernels on SNP data embedded in a non-Euclidean metric
Diffusion kernels on SNP data embedded in a non-Euclidean metricDiffusion kernels on SNP data embedded in a non-Euclidean metric
Diffusion kernels on SNP data embedded in a non-Euclidean metric
Gota Morota
 
Notions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsNotions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systems
Stavros Vologiannidis
 
Maths ms
Maths msMaths ms
Maths ms
B Bhuvanesh
 

Similar to Solution homework2 (20)

Lecture5-FEA.pdf
Lecture5-FEA.pdfLecture5-FEA.pdf
Lecture5-FEA.pdf
 
Constant strain triangular
Constant strain triangular Constant strain triangular
Constant strain triangular
 
Shape1 d
Shape1 dShape1 d
Shape1 d
 
4. Analysis 1-D self weight problem
4. Analysis 1-D self weight problem4. Analysis 1-D self weight problem
4. Analysis 1-D self weight problem
 
Hermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan groupHermite integrators and 2-parameter subgroup of Riordan group
Hermite integrators and 2-parameter subgroup of Riordan group
 
C 9 Coordinate Geometry Graphs
C 9 Coordinate Geometry GraphsC 9 Coordinate Geometry Graphs
C 9 Coordinate Geometry Graphs
 
Section4 stochastic
Section4 stochasticSection4 stochastic
Section4 stochastic
 
Krishna
KrishnaKrishna
Krishna
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
 
Signals and systems: part i solutions
Signals and systems: part i solutionsSignals and systems: part i solutions
Signals and systems: part i solutions
 
Me 530 assignment 2
Me 530 assignment 2Me 530 assignment 2
Me 530 assignment 2
 
2 backlash simulation
2 backlash simulation2 backlash simulation
2 backlash simulation
 
UNIT I_3.pdf
UNIT I_3.pdfUNIT I_3.pdf
UNIT I_3.pdf
 
Intro Class.ppt
Intro Class.pptIntro Class.ppt
Intro Class.ppt
 
FEM 3 TwoD CST.ppt
FEM 3 TwoD CST.pptFEM 3 TwoD CST.ppt
FEM 3 TwoD CST.ppt
 
Signals and Systems part 2 solutions
Signals and Systems part 2 solutions Signals and Systems part 2 solutions
Signals and Systems part 2 solutions
 
Diffusion kernels on SNP data embedded in a non-Euclidean metric
Diffusion kernels on SNP data embedded in a non-Euclidean metricDiffusion kernels on SNP data embedded in a non-Euclidean metric
Diffusion kernels on SNP data embedded in a non-Euclidean metric
 
Notions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systemsNotions of equivalence for linear multivariable systems
Notions of equivalence for linear multivariable systems
 
Ch05 6
Ch05 6Ch05 6
Ch05 6
 
Maths ms
Maths msMaths ms
Maths ms
 

Recently uploaded

CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
Kamal Acharya
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
MdTanvirMahtab2
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
 
addressing modes in computer architecture
addressing modes  in computer architectureaddressing modes  in computer architecture
addressing modes in computer architecture
ShahidSultan24
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 

Recently uploaded (20)

CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
Industrial Training at Shahjalal Fertilizer Company Limited (SFCL)
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
 
addressing modes in computer architecture
addressing modes  in computer architectureaddressing modes  in computer architecture
addressing modes in computer architecture
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 

Solution homework2

  • 1. 1 ES 128: Homework 2 Solutions Problem 1 Show that the weak form of 02)( =+ x dx du AE dx d on 31 << x , 1.0)1( 1 =      = =xdx du Eσ , 001.0)3( =u is given by ∫∫ +−= = 3 1 1 3 1 2)(1.0 xwdxwAdx dx du AE dx dw x w∀ with 0)3( =w . Solution We multiply the governing equation and the natural boundary condition over the domain [1, 3] by an arbitrary weight function: 02 3 1 =            +      ∫ dxx dx du AE dx d w )(xw∀ , (1.1) 01.0 1 =            − =x dx du EwA )1(w∀ . (1.2) We integrate (1.1) by parts as dx dx du AE dx dw dx du wAEdx dx du AE dx d w x x ∫∫       −      =                  = = 3 1 3 1 3 1 . (1.3) Substituting (1.3) into (1.1) gives 02 13 3 1 3 1 =      −      ++      − == ∫∫ xx dx du wAE dx du wAEwxdxdx dx du AE dx dw )(xw∀ . (1.4) With 0)3( =w and 1.0)1( =σ , we obtain ( ) 1 3 1 3 1 1.02 = −=      ∫∫ x wAwxdxdx dx du AE dx dw )(xw∀ with 0)3( =w . (1.5)
  • 2. 2 El (1) El (2) 1 2 3 Figure 1a x Problem 2 Consider the (steel) bar in Figure 1. The bar has a uniform thickness t=1cm, Young’s modulus E=200 9 10× Pa, and weight density ρ =7 3 10× 3 /mkg . In addition to its self-weight, the bar is subjected to a point load P=100N at its midpoint. (a) Model the bar with two finite elements. (b) Write down expressions for the element stiffness matrices and element body force vectors. (c) Assemble the structural stiffness matrix K and global load vector F . (d) Solve for the global displacement vector d. (e) Evaluate the stresses in each element. (f) Determine the reaction force at the support. Solution (a) Using two elements, each of 0.3m in length, we obtain the finite element model in Figure 1a. In this model, 0)1( 1 =x , 3.0)1( 2 =x , 3.0)2( 1 =x , 6.0)2( 2 =x , and A(x)=0.0012-0.001x . (b) For element 1, [ ]xx−= 3.0 3.0 1 N(1) , [ ]11 3.0 1 B(1) −= , the element stiffness matrix is , 7.07.0 7.07.0 10 11 11 )001.00012.0( 09.0 10200 BBK 9 3.0 0 9 3.0 0 )1((1)T(1)       − − =       − − − × = = ∫ ∫ dxx dxAE the element body force vector is ( )       +      − −−× = += ∫ ∫ = 100 0 )001.00012.0( )001.00012.0)(3.0( 3.0 107 NNf 3.0 0 3 3.0 (1)T 3.0 0 (1)T(1) dx xx xx PAdx x ρ =       05.101 155.1 , and the scatter matrix is       = 010 001 L(1) .
  • 3. 3 For element 2, [ ]3.06.0 3.0 1 N(2) −−= xx , [ ]11 3.0 1 B(2) −= , the element stiffness matrix is dxxdxAE ∫∫       − − − × == 6.0 3.0 9 6.0 3.0 )2((2)T(2) 11 11 )001.00012.0( 09.0 10200 BBK , 5.05.0 5.05.0 109       − − = the element body force vector is dx xx xx Adx ∫∫       −− −−× == 6.0 3.0 3 6.0 3.0 (2)T(2) )001.00012.0)(3.0( )001.00012.0)(6.0( 3.0 107 Nf ρ =       735.0 84.0 , and the scatter matrix is       = 100 010 L(2) . (c) The global stiffness matrix is =+== ∑= (2)(2)(2)T(1)(1)(1)T 2 1e eeeT LKLLKLLKLK           − −− − 5.05.00 5.02.17.0 07.07.0 109 . The global load vector is =+== ∑= (2)(2)T(1)(1)T 2 1e eeT fLfLfLf           735.0 89.101 155.1 . (d) Note that only the reaction force at node 1 is not zero, thus           + =+ 735.0 89.101 155.1 rf 1r . The resulting global system of equations is           − −− − 5.05.00 5.02.17.0 07.07.0 109           3 2 0 u u =           + 735.0 89.101 155.11r . Solving the above equation, 2u = 1.46607 7_ 10× (m), 3u = 1.48077 7_ 10× (m), and 1r =-103.78(N). (e) The stress field in element 1 is given by       × −××== −7 9(1)(1))1( 1046607.1 0 ]11[ 3.0 1 10200dB)( Exσ =9.7738 4 10× (Pa). The stress field in element 2 is given by       × × −××== − − 7 7 9(2)(2))2( 1048077.1 1046607.1 ]11[ 3.0 1 10200dB)( Exσ =980 (Pa). (f) The reaction force at the support Node 1 is -103.78N.
  • 4. 4 Problem 3 Consider the mesh shown in Figure 2. The model consists of two linear displacement constant strain elements. The cross-sectional area is A=1, Young’s modulus is E; both are constant. A body force b(x)=cx is applied. (a) Solve and plot u(x) and )(xε for the FEM solution. (b) Compare (by plotting) the finite element solution against the exact solution for the equation .)(2 2 cxxb dx ud E −=−= (c) Solve the above problem using a single quadratic displacement element. (d) Compare the accuracy of stress and displacement at the right end with that of two linear displacement elements. (e) Check whether the equilibrium equation and traction boundary condition are satisfied for the two meshes. Solution (a) Using two linear displacement constant strain elements, each of l in length, we obtain the finite element model with 0)1( 1 =x , lx =)1( 2 , lx =)2( 1 , and lx 2)2( 2 = . For element 1, [ ]xxl l −= 1 N(1) , [ ]11 1 B(1) −= l , the element stiffness matrix is       − − = 11 11 K(1) l EA , the element body force vector is       == ∫ 3/ 6/ Nf 2 2 0 (1)T(1) cl cl cxdx l , and the scatter matrix is       = 010 001 L(1) . For element 2, [ ]lxxl l −−= 2 1 N(2) , [ ]11 1 B(2) −= l , the element stiffness matrix is       − − = 11 11 K(2) l EA , the element body force vector is       == ∫ 6/5 3/2 Nf 2 2 2 (2)T(2) cl cl cxdx l l , and the scatter matrix is       = 100 010 L(2) . The global stiffness matrix is =+== ∑= (2)(2)(2)T(1)(1)(1)T 2 1e eeeT LKLLKLLKLK           − −− − 110 121 011 l EA . The global load vector is Figure 2
  • 5. 5 =+== ∑= (2)(2)T(1)(1)T 2 1e eeT fLfLfLf           8333.0 0.1 1667.0 2 cl . The resulting global system of equations is           − −− − 110 121 011 l EA           3 2 0 u u =           + 2 2 2 1 8333.0 1667.0 cl cl clr . Solving the above equation, 2u = 1.8333 EA cl3 , 3u = 2.6666 EA cl3 , and 1r =-2 2 cl . When lx ≤≤0 [ ] EA xcl EA clxxl l xu 2 3(1)(1) 8333.1 8333.1 01 dN)( =         −== , and EA cl dx du x 2 8333.1)( ==ε . When lxl 2≤≤ [ ] x EA cl EA cl EA cl EA cl lxxl l xu 23 3 3 (2)(2) 8333.0 6666.2 8333.1 2 1 dN)( +=             −−== , and EA cl dx du x 2 8333.0)( ==ε . (b). The governing equation is ,)(2 2 cxxb dx ud EA −=−= where A=1. The boundary condition is u(0)=0, and 0)2( =lσ . Solving this linear ODE, we obtain the exact solution 21 3 6 )( cxcx EA c xu ++−= . Since u(0)=0, 02 =c . Since 0)2( =lσ , EA cl c 2 1 2 = . Thus x EA cl x EA c xu 2 3 2 6 )( +−= . EA cl EA cx x 22 2 2 )( +−=ε The comparisons between the approximation results and the exact solutions are shown in Figures 2a (displacement), and 2b (strain).
  • 6. 6 2 )( cl EA l xu 2 )( cl EA xε Exact solution Exact solution Approximation results Approximation results Figure 2a Figure 2b (c) Using a single quadratic displacement element with 0)1( 1 =x , lx =)1( 2 , and lx 2)1( 3 = , the element shape functions are ( )( ) ( )( ) 2)1( 3 )1( 1 )1( 2 )1( 1 )1( 3 )1( 2(1) 1 2 )2)(( )2)(( )2)(( N l lxlx ll lxlx xxxx xxxx −− = −− −− = −− −− = , ( )( ) ( )( ) 2)1( 3 )1( 2 )1( 1 )1( 2 )1( 3 )1( 1(1) 2 )2( )( )2( N l lxx ll lxx xxxx xxxx − − = − − = −− −− = , ( )( ) ( )( ) 22)1( 2 )1( 3 )1( 1 )1( 3 )1( 2 )1( 1(1) 3 2 )( 2 )( N l lxx l lxx xxxx xxxx − = − = −− −− = . The corresponding B-matrix is 2 (1) 1(1) 1 2/3N B l lx dx d − == , 2 (1) 2(1) 2 22N B l lx dx d − − == , 2 (1) 3(1) 3 2/N B l lx dx d − == . The element stiffness matrix is dx l lx l lx l lx l lx l lx l lx EAdxEA ll       − − −−                 − − − − == ∫∫ 222 2 2 2 2 2 2 0 (1)(1)T(1) 2/222/3 2/ 22 2/3 BBK
  • 7. 7 dx l lx l lx l lx l lx l lx l lx l lx l lx l lx l lx l lx l lx l lx l lx l lx EA l ∫                     −       −       − −       −       −       −       − −       − −       − −       −       −       −       − −       −       − = 2 0 22222 22 2 222 2222 2 2 2/2/222/2/3 2/2222222/3 2/2/3222/32/3 . 6/73/46/1 3/43/83/4 6/13/46/7           − −− − = l EA The element body force vector is           == ∫ 3/2 3/4 0 Nf 2 2 2 0 (1)T(1) cl clcxdx l . The resulting global system of equations is           − −− − 6/73/46/1 3/43/83/4 6/13/46/7 l EA           3 2 0 u u =           3/2 3/4 2 2 1 cl cl r . Solving the above equation, we obtain 2u = 1.8333 EA cl3 , 3u = 2.6666 EA cl3 , and 1r =-2 2 cl .                       − − −−− == EA cl EA cl l lxx l lxx l lxlx xu 3 3 222 (1)(1) 6666.2 8333.1 0 2 )()2( 2 )2)(( dN)( , x EA cl x EA cl 2 2 3333.2 5.0 +−= . EA cl x EA cl x 2 3333.2)( +−=ε . (d) At the right end with x=2l, for both of two linear displacement elements and a single quadratic displacement element, the displacements are same to the exact result ( 3u = 2.6666 EA cl3 ). As for the stress and strain, with two linear displacement elements, we obtain EA cl l 2 8333.0)2( =ε and A cl l 2 8333.0)2( =σ .
  • 8. 8 With a single quadratic displacement element, EA cl l 2 3333.0)2( =ε , and A cl l 2 3333.0)2( =σ . It is found that the approximation result of the stress and strain with a single quadratic displacement element is closer to the exact result ( 0=σ and 0=ε ). (e). For both of two linear displacement elements and a single quadratic displacement element, the reaction forces acting on node 1 are 1r =-2 2 cl , which satisfy the equilibrium equation ( 0 2 0 1 =+ ∫ l cxdxr ). However, as shown in (d), the stress boundary conditions are not satisfied for the two meshes.