SlideShare a Scribd company logo
Waves
3. Statistics and Irregular Waves
Statistics and Irregular Waves
● Real wave fields are not regular
● Combination of many periods, heights, directions
● Design and simulation require realistic wave statistics:
‒ probability distribution of heights
‒ energy spectrum of frequencies (and directions)
3. STATISTICS AND IRREGULAR WAVES
3.1 Measures of height and period
3.2 Probability distribution of wave heights
3.3 Wave spectra
3.4 Reconstructing a wave field
3.5 Prediction of wave climate
Statistics and Irregular Waves
Measures of Wave Height
𝐻max Largest wave height in the sample 𝐻max = max
𝑖
(𝐻𝑖)
𝐻av Mean wave height 𝐻av =
1
𝑁
෍ 𝐻𝑖
𝐻rms Root-mean-square wave height 𝐻rms =
1
𝑁
෍ 𝐻𝑖
2
𝐻 Τ
1 3 Average of the highest 𝑁/3 waves 𝐻 Τ
1 3 =
1
𝑁/3
෍
1
𝑁/3
𝐻𝑖
𝐻𝑚0 Estimate based on the rms surface elevation 𝐻𝑚0 = 4 η2
Τ
1 2
𝐻𝑠 Significant wave height Either 𝐻 Τ
1 3 or 𝐻𝑚0
Measures of Wave Period
𝑇𝑠 Significant wave period (average of highest 𝑁/3 waves)
𝑇𝑝 Peak period (from peak frequency of energy spectrum)
𝑇𝑒
Energy period (period of a regular wave with same significant wave height and
power density; used in wave-energy prediction; derived from energy spectrum)
𝑇𝑧 Mean zero up-crossing period
3. STATISTICS AND IRREGULAR WAVES
3.1 Measures of height and period
3.2 Probability distribution of wave heights
3.3 Wave spectra
3.4 Reconstructing a wave field
3.5 Prediction of wave climate
Statistics and Irregular Waves
Probability Distribution of Wave Heights
For a narrow-banded frequency spectrum the Rayleigh probability distribution is
appropriate:
𝑃 height > 𝐻 = exp − Τ
(𝐻 )
𝐻rms
2
Cumulative distribution function:
𝐹 𝐻 = 𝑃 height < 𝐻 = 1 − e− Τ
𝐻 𝐻rms
2
Probability density function:
𝑓 𝐻 =
d𝐹
d𝐻
= 2
𝐻
𝐻rms
2 e− Τ
𝐻 𝐻rms
2
Rayleigh Distribution
𝐻av ≡ 𝐸 𝐻 = න
0
∞
𝐻 𝑓 𝐻 d𝐻
𝐻rms
2 ≡ 𝐸 𝐻2 = න
0
∞
𝐻2 𝑓 𝐻 d𝐻
𝐻av =
π
2
𝐻rms = 0.886 𝐻rms
𝐻 Τ
1 3 = 1.416 𝐻rms
𝐻 Τ
1 10 = 1.800 𝐻rms
𝐻 Τ
1 100 = 2.359 𝐻rms
Single parameter: 𝐻rms
𝑓 𝐻 = 2
𝐻
𝐻rms
2 e− Τ
𝐻 𝐻rms
2
Example
Near a pier, 400 consecutive wave heights are measured.
Assume that the sea state is narrow-banded.
(a) How many waves are expected to exceed 2𝐻rms?
(b) If the significant wave height is 2.5 m, what is 𝐻rms?
(c) Estimate the wave height exceeded by 80 waves.
(d) Estimate the number of waves with a height between
1.0 m and 3.0 m.
Near a pier, 400 consecutive wave heights are measured. Assume that the sea state is
narrow-banded.
(a) How many waves are expected to exceed 2𝐻rms?
(b) If the significant wave height is 2.5 m, what is 𝐻rms?
(c) Estimate the wave height exceeded by 80 waves.
(d) Estimate the number of waves with a height between 1.0 m and 3.0 m.
𝑃 height > 𝐻 = e− Τ
𝐻 𝐻rms
2
𝑃 height > 2𝐻rms = e−4
(a)
= 0.01832
In 400 waves, 𝑛 = 400 × 0.01832
𝐻 Τ
1 3 = 1.416 𝐻rms
(b)
2.5 = 1.416 𝐻rms
𝑯𝐫𝐦𝐬 = 𝟏. 𝟕𝟔𝟔 𝐦
(c) 𝑃 height > 𝐻 = e− Τ
𝐻 𝐻rms
2
=
80
400
= 0.2
𝐻/𝐻rms
2
= − ln 0.2
𝐻 = 𝐻rms × − ln 0.2 = 𝟐. 𝟐𝟒𝟎 𝐦
𝑃 1.0 < height < 3.0 = 𝑃 height > 1.0 − 𝑃 height > 3.0
= e− 1.0/𝐻rms
2
− e− 3.0/𝐻rms
2
= 0.6699
In 400 waves, 𝑛 = 400 × 0.6699
(d)
= 𝟕. 𝟑𝟐𝟖
= 𝟐𝟔𝟖. 𝟎
3. STATISTICS AND IRREGULAR WAVES
3.1 Measures of height and period
3.2 Probability distribution of wave heights
3.3 Wave spectra
3.4 Reconstructing a wave field
3.5 Prediction of wave climate
Statistics and Irregular Waves
Regular vs Irregular Waves
Regular wave:
- single frequency
Irregular wave:
- many frequencies
Wave energy depends on 𝜂2
Energy Spectrum
● “Spectral” means “by frequency”
● A spectrum is usually determined by a Fourier transform
● This splits a signal up into its component frequencies
● Energy in a wave is proportional to 𝜂2, where 𝜂 is surface
displacement
● The energy spectrum, or power spectrum, is the Fourier
transform of 𝜂2
Energy Spectrum
For regular waves (single frequency):
𝐸 =
1
2
𝜌𝑔𝐴2 = 𝜌𝑔 )
𝜂2(𝑡 =
1
8
𝜌𝑔𝐻2
For irregular waves (many frequencies):
𝑆 𝑓 d𝑓
න
𝑓1
𝑓2
𝑆 𝑓 d𝑓
is the “energy” in a small interval d𝑓 near frequency 𝑓
is the “energy” between frequencies 𝑓1 and 𝑓2
(strictly: energy/𝜌𝑔)
The energy spectrum 𝑆(𝑓) is determined by Fourier transforming 𝜂2
𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡
Model Spectra
Open ocean: Bretschneider spectrum
Fetch-limited seas: JONSWAP spectrum
Key parameters: peak frequency 𝑓𝑝 ( =1/(peak period, 𝑇𝑝) )
significant wave height 𝐻𝑚0
Model Spectra
Bretschneider spectrum:
JONSWAP spectrum:
𝑆 𝑓 =
5
16
𝐻𝑚0
2
𝑓𝑝
4
𝑓5
exp −
5
4
𝑓𝑝
4
𝑓4
𝑆 𝑓 = 𝐶 𝐻𝑚0
2
𝑓𝑝
4
𝑓5
exp −
5
4
𝑓𝑝
4
𝑓4
𝛾𝑏
𝜎 = ൝
0.07 𝑓 < 𝑓𝑝
0.09 𝑓 > 𝑓𝑝
𝑏 = exp −
1
2
Τ
𝑓 𝑓𝑝 − 1
𝜎
2
𝛾 = 3.3
Significant Wave Height, 𝑯𝒎𝟎
Bretschneider spectrum: 𝑆 𝑓 =
5
16
𝐻𝑚0
2
𝑓𝑝
4
𝑓5
exp −
5
4
𝑓𝑝
4
𝑓4
Total energy:
𝐸
𝜌𝑔
≡ න
0
∞
𝑆 𝑓 d𝑓 =
1
16
𝐻𝑚0
2
𝐻𝑚0 = 4 Τ
𝐸 𝜌 𝑔 = 4 )
η2(𝑡
Total energy for a regular wave:
𝐸
𝜌𝑔
=
1
8
𝐻rms
2
Same energy if 𝐻𝑚0 = 2𝐻𝑟𝑚𝑠 = 1.414𝐻rms
Rayleigh distribution: 𝐻 Τ
1 3 = 1.416𝐻rms
𝑯𝒎𝟎 and 𝑯 Τ
𝟏 𝟑 can be used synonymously for 𝑯𝒔 ...
… but 𝐻𝑚0 is easier to measure!
Finding Wave Parameters From a Spectrum
● Surface displacement 𝜂(𝑡) is measured (e.g. wave buoy)
● 𝜂2(𝑡) is Fourier-transformed to get energy spectrum 𝑆(𝑓)
● Height and period parameters are deduced from the peak and the moments
of the spectrum:
𝑚𝑛 = න
0
∞
𝑓𝑛
𝑆 𝑓 d𝑓
Peak period: 𝑇𝑝 =
1
𝑓𝑝
Significant wave height: 𝐻𝑠 = 𝐻𝑚0 = 4 𝑚0
Energy period: 𝑇𝑒 =
𝑚−1
𝑚0
Multi-Modal Spectra
frequency f (Hz)
spectral
density
S
(m^2
s)
swell
wind
3. STATISTICS AND IRREGULAR WAVES
3.1 Measures of height and period
3.2 Probability distribution of wave heights
3.3 Wave spectra
3.4 Reconstructing a wave field
3.5 Prediction of wave climate
Statistics and Irregular Waves
Using a Spectrum To Generate a Wave Field
η 𝑡 = ෍ )
𝑎𝑖 cos(𝑘𝑖𝑥 − 𝜔𝑖𝑡 − 𝜙𝑖
amplitude
𝑆 𝑓𝑖 Δ𝑓 = 𝐸𝑖 =
1
2
𝑎𝑖
2
𝑎𝑖 = 2𝑆 𝑓𝑖 Δ𝑓
(angular) frequency
𝜔𝑖 = 2π𝑓𝑖
wavenumber
𝜔𝑖
2
= 𝑔𝑘𝑖 tanh 𝑘𝑖ℎ
random phase
Simulated Wave Field
𝑇𝑝 = 8 s
𝐻𝑠 = 1.0 m
ℎ = 30 m
Regular waves:
Irregular waves:
Focused waves:
Example
An irregular wavefield at a deep-water location is characterised
by peak period of 8.7 s and significant wave height of 1.5 m.
(a) Provide a sketch of a Bretschneider spectrum, labelling both
axes with variables and units and indicating the frequencies
corresponding to both the peak period and the energy period.
Note: Calculations are not needed for this part.
(b) Determine the power density (in kW m–1) of a regular wave
component with frequency 0.125 Hz that represents the
frequency range 0.12 to 0.13 Hz of the irregular wave field.
An irregular wavefield at a deep-water location is characterised by peak period of 8.7 s and
significant wave height of 1.5 m.
(a) Provide a sketch of a Bretschneider spectrum, labelling both axes with variables and units
and indicating the frequencies corresponding to both the peak period and the energy
period.
frequency f (Hz)
spectral
density
S
(m^2
s)
fp fe
An irregular wavefield at a deep-water location is characterised by peak period of 8.7 s and
significant wave height of 1.5 m.
(b) Determine the power density (in kW m–1) of a regular wave component with frequency
0.125 Hz that represents the frequency range 0.12 to 0.13 Hz of the irregular wave field.
𝑓 = 0.125 Hz
Δ𝑓 = 0.01 Hz
𝑇𝑝 = 8.7 s 𝐻𝑠 = 1.5 m
𝑓𝑝 =
1
𝑇𝑝
𝑆 𝑓 = 1.645 m2 s
𝐸 = 𝜌𝑔 × 𝑆 𝑓 Δ𝑓
𝑃 = 𝐸𝑐𝑔 = 𝐸(𝑛𝑐) Deep water: 𝑛 =
1
2
𝑐 =
𝑔𝑇
2π
𝑇 =
1
𝑓
= 8 s
𝑷 = 𝟏. 𝟎𝟑𝟑 𝐤𝐖 𝐦−𝟏
= 0.1149 Hz
= 165.4 J m−2
= 12.49 m s−1
𝑆 𝑓 =
5
16
𝐻𝑠
2
𝑓𝑝
4
𝑓5
ex p( −
5
4
𝑓𝑝
4
𝑓4
)
3. STATISTICS AND IRREGULAR WAVES
3.1 Measures of height and period
3.2 Probability distribution of wave heights
3.3 Wave spectra
3.4 Reconstructing a wave field
3.5 Prediction of wave climate
Statistics and Irregular Waves
Terminology
A wave climate or sea state is a model wave spectrum, usually
defined by a representative height and period, for use in:
● forecasting (from a weather forecast in advance)
● nowcasting (from ongoing weather)
● hindcasting (reconstruction from previous event)
Prediction of Sea State
Require: significant wave height, 𝐻𝑠
significant wave period, 𝑇𝑠 (or peak period, 𝑇𝑝)
Depend on: wind speed, 𝑈
fetch, 𝐹
duration, 𝑡
gravity, 𝑔
Dimensional analysis:
Empirical functions: JONSWAP or SMB curves
൰
𝑔𝐻𝑠
𝑈2
= function(
𝑔𝐹
𝑈2
,
𝑔𝑡
𝑈
ቇ
𝑔𝑇𝑝
𝑈
= function(
𝑔𝐹
𝑈2
,
𝑔𝑡
𝑈
Fetch-Limited vs Duration-Limited
distance travelled by wave energy greater than fetch F
F
distance travelled by wave energy less than fetch F
F
Feff
FETCH-LIMITED
DURATION-LIMITED
JONSWAP Curves
For fetch-limited waves:
𝑔𝐻𝑠
𝑈2
= 0.0016
𝑔𝐹
𝑈2
Τ
1 2
(up to maximum 0.2433)
𝑔𝑇𝑝
𝑈
= 0.286
𝑔𝐹
𝑈2
Τ
1 3
(up to maximum 8.134)
Waves are fetch-limited provided the storm has blown for a minimum time
𝑡𝑚𝑖𝑛 given by
𝑔𝑡
𝑈 min
= 68.8
𝑔𝐹
𝑈2
Τ
2 3
up to maximum 7.15 × 104
Otherwise the waves are duration-limited, and the fetch used to determine
height and period is an effective fetch determined by inversion using the actual
storm duration 𝑡:
𝑔𝐹
𝑈2
eff
=
1
68.8
𝑔𝑡
𝑈
Τ
3 2
JONSWAP Curves (reprise)
෡
𝐻𝑠 = 0.0016 ෠
𝐹 Τ
1 2
෠
𝑇𝑝 = 0.286 ෠
𝐹 Τ
1 3
Ƹ
𝑡min = 68.8 ෠
𝐹 Τ
2 3
෠
𝐹 ≡
𝑔𝐹
𝑈2
, Ƹ
𝑡 ≡
𝑔𝑡
𝑈
, ෡
𝐻𝑠 ≡
𝑔𝐻𝑠
𝑈2
, ෠
𝑇𝑝 ≡
𝑔𝑇𝑝
𝑈
JONSWAP and SMB Curves
Solid lines: JONSWAP
Dashed lines: SMB
Example
(a) Wind has blown at a consistent 𝑈 = 20 m s−1
over a fetch 𝐹 = 100 km for 𝑡 = 6 hrs .
Determine 𝐻𝑠 and 𝑇𝑝 using the JONSWAP curves.
(b) If the wind blows steadily for another 4 hours
what are 𝐻𝑠 and 𝑇𝑝?
(a) Wind has blown at a consistent 𝑈 = 20 m s−1
over a fetch 𝐹 = 100 km for 𝑡 = 6 hrs.
Determine 𝐻𝑠 and 𝑇𝑝 using the JONSWAP curves.
𝑈 = 20 m s−1
𝐹 = 105 m
𝑡 = 6 × 3600 = 21600 s
෠
𝐹 ≡
𝑔𝐹
𝑈2
Ƹ
𝑡 =
𝑔𝑡
𝑈
Ƹ
𝑡min = 68.8 ෠
𝐹 Τ
2 3
Ƹ
𝑡min = 68.8 ෠
𝐹 Τ
2 3
= 12510
෡
𝐻𝑠 = 0.0016 ෠
𝐹1/2
෠
𝑇𝑝 = 0.286 ෠
𝐹1/3
෠
𝐹 ≡
𝑔𝐹
𝑈2
Ƹ
𝑡 ≡
𝑔𝑡
𝑈
෡
𝐻𝑠 ≡
𝑔𝐻𝑠
𝑈2
Duration-limited
෠
𝐹eff =
Ƹ
𝑡
68.8
Τ
3 2
෡
𝐻𝑠 = 0.0016 ෠
𝐹eff
Τ
1 2
෠
𝑇𝑝 = 0.286 ෠
𝐹eff
Τ
1 3
𝐻𝑠 = ෡
𝐻𝑠 ×
𝑈2
𝑔
𝑇𝑝 = ෠
𝑇𝑝 ×
𝑈
𝑔
= 1910
= 0.06993
= 3.548
= 𝟐. 𝟖𝟓𝟏 𝐦
= 𝟕. 𝟐𝟑𝟑 𝐬
= 2453
= 10590
(b) If the wind blows steadily for another 4 hours what are 𝐻𝑠 and 𝑇𝑝?
𝑈 = 20 m s−1
𝐹 = 105 m
𝑡 = 10 × 3600 = 36000 s
෠
𝐹 = 2453
Ƹ
𝑡 =
𝑔𝑡
𝑈
Ƹ
𝑡min = 68.8 ෠
𝐹 Τ
2 3
Ƹ
𝑡min = 12510
෡
𝐻𝑠 = 0.0016 ෠
𝐹1/2
෠
𝑇𝑝 = 0.286 ෠
𝐹1/3
෠
𝐹 ≡
𝑔𝐹
𝑈2
Ƹ
𝑡 ≡
𝑔𝑡
𝑈
෡
𝐻𝑠 ≡
𝑔𝐻𝑠
𝑈2
Fetch-limited
෡
𝐻𝑠 = 0.0016 ෠
𝐹1/2
෠
𝑇𝑝 = 0.286 ෠
𝐹1/3
𝐻𝑠 = ෡
𝐻𝑠 ×
𝑈2
𝑔
𝑇𝑝 = ෠
𝑇𝑝 ×
𝑈
𝑔
= 0.07924
= 3.857
= 𝟑. 𝟐𝟑𝟏 𝐦
= 𝟕. 𝟖𝟔𝟑 𝐬
= 17660

More Related Content

What's hot

Chapter 3 linear wave theory and wave propagation
Chapter  3 linear wave theory and wave propagationChapter  3 linear wave theory and wave propagation
Chapter 3 linear wave theory and wave propagation
Mohsin Siddique
 
slidesWaveRegular.pdf
slidesWaveRegular.pdfslidesWaveRegular.pdf
slidesWaveRegular.pdf
cfisicaster
 
Coastal defense structures
Coastal defense structuresCoastal defense structures
Coastal defense structures
Ajit Kumar
 
Marine hydrodynamics
Marine hydrodynamicsMarine hydrodynamics
Seismic sources
Seismic sourcesSeismic sources
Seismic sources
Shayan Ahmad Yar
 
Motion in the ocean
Motion in the oceanMotion in the ocean
Motion in the ocean
Saurav Saini
 
Effects of ocean currents on environment
Effects of ocean currents on environmentEffects of ocean currents on environment
Effects of ocean currents on environment
ANAMIKA RAJ
 
Waves and Water Dynamics
Waves and Water DynamicsWaves and Water Dynamics
Waves and Water Dynamics
rebelbrindley
 
Lapisan Batas Atmosfer
Lapisan Batas AtmosferLapisan Batas Atmosfer
Lapisan Batas Atmosfer
Andi Muttaqin
 
Stability of Fishing Vessels – 3 day training of trainers course
Stability of Fishing Vessels – 3 day training of trainers courseStability of Fishing Vessels – 3 day training of trainers course
Stability of Fishing Vessels – 3 day training of trainers course
FAO
 
Ship stability
Ship stabilityShip stability
Ship stability
Nerileima Capote Gómez
 
Principles of seismic data processing m.m.badawy
Principles of seismic data processing m.m.badawyPrinciples of seismic data processing m.m.badawy
Principles of seismic data processing m.m.badawy
Faculty of Science, Alexandria University, Egypt
 
slidesWaveTransformation.pdf
slidesWaveTransformation.pdfslidesWaveTransformation.pdf
slidesWaveTransformation.pdf
cfisicaster
 
Coastal engineering
Coastal engineeringCoastal engineering
Coastal engineering
R VIJAYAKUMAR
 
Exploration and analysis of oil and gas field ( 3D seismic survey)
Exploration and analysis of oil and gas field ( 3D seismic survey)Exploration and analysis of oil and gas field ( 3D seismic survey)
Exploration and analysis of oil and gas field ( 3D seismic survey)
Apurva Mittal
 
Interpretation and recognition of depositional systems using seismic data
Interpretation and recognition of depositional systems using seismic dataInterpretation and recognition of depositional systems using seismic data
Interpretation and recognition of depositional systems using seismic data
Diego Timoteo
 
Q913 re1 w2 lec 8
Q913 re1 w2 lec 8Q913 re1 w2 lec 8
Q913 re1 w2 lec 8
AFATous
 
Ocean Currents 1
Ocean Currents 1Ocean Currents 1
Ocean Currents 1
GeoCoops
 
Ocean waves
Ocean wavesOcean waves
Coastal and sea erosion
Coastal and sea erosionCoastal and sea erosion
Coastal and sea erosion
dhineshpandurangan
 

What's hot (20)

Chapter 3 linear wave theory and wave propagation
Chapter  3 linear wave theory and wave propagationChapter  3 linear wave theory and wave propagation
Chapter 3 linear wave theory and wave propagation
 
slidesWaveRegular.pdf
slidesWaveRegular.pdfslidesWaveRegular.pdf
slidesWaveRegular.pdf
 
Coastal defense structures
Coastal defense structuresCoastal defense structures
Coastal defense structures
 
Marine hydrodynamics
Marine hydrodynamicsMarine hydrodynamics
Marine hydrodynamics
 
Seismic sources
Seismic sourcesSeismic sources
Seismic sources
 
Motion in the ocean
Motion in the oceanMotion in the ocean
Motion in the ocean
 
Effects of ocean currents on environment
Effects of ocean currents on environmentEffects of ocean currents on environment
Effects of ocean currents on environment
 
Waves and Water Dynamics
Waves and Water DynamicsWaves and Water Dynamics
Waves and Water Dynamics
 
Lapisan Batas Atmosfer
Lapisan Batas AtmosferLapisan Batas Atmosfer
Lapisan Batas Atmosfer
 
Stability of Fishing Vessels – 3 day training of trainers course
Stability of Fishing Vessels – 3 day training of trainers courseStability of Fishing Vessels – 3 day training of trainers course
Stability of Fishing Vessels – 3 day training of trainers course
 
Ship stability
Ship stabilityShip stability
Ship stability
 
Principles of seismic data processing m.m.badawy
Principles of seismic data processing m.m.badawyPrinciples of seismic data processing m.m.badawy
Principles of seismic data processing m.m.badawy
 
slidesWaveTransformation.pdf
slidesWaveTransformation.pdfslidesWaveTransformation.pdf
slidesWaveTransformation.pdf
 
Coastal engineering
Coastal engineeringCoastal engineering
Coastal engineering
 
Exploration and analysis of oil and gas field ( 3D seismic survey)
Exploration and analysis of oil and gas field ( 3D seismic survey)Exploration and analysis of oil and gas field ( 3D seismic survey)
Exploration and analysis of oil and gas field ( 3D seismic survey)
 
Interpretation and recognition of depositional systems using seismic data
Interpretation and recognition of depositional systems using seismic dataInterpretation and recognition of depositional systems using seismic data
Interpretation and recognition of depositional systems using seismic data
 
Q913 re1 w2 lec 8
Q913 re1 w2 lec 8Q913 re1 w2 lec 8
Q913 re1 w2 lec 8
 
Ocean Currents 1
Ocean Currents 1Ocean Currents 1
Ocean Currents 1
 
Ocean waves
Ocean wavesOcean waves
Ocean waves
 
Coastal and sea erosion
Coastal and sea erosionCoastal and sea erosion
Coastal and sea erosion
 

Similar to slidesWaveStatistics.pdf

Extended abstract
Extended abstractExtended abstract
Extended abstract
André Figueira Martins
 
01_Warren (1).ppt
01_Warren (1).ppt01_Warren (1).ppt
01_Warren (1).ppt
ssuser61f95d
 
1.1 Generation of alternating voltage, phasor representation of sinusoidal qu...
1.1 Generation of alternating voltage, phasor representation of sinusoidal qu...1.1 Generation of alternating voltage, phasor representation of sinusoidal qu...
1.1 Generation of alternating voltage, phasor representation of sinusoidal qu...
KrishnaKorankar
 
ac slides type 2.pdf
ac slides type 2.pdfac slides type 2.pdf
ac slides type 2.pdf
17111ASIFNOORJAMEE
 
AGU2014-SA31B-4098
AGU2014-SA31B-4098AGU2014-SA31B-4098
AGU2014-SA31B-4098
Jonathan Pugmire
 
gvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptx
gvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptxgvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptx
gvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptx
DEEPAKCHAURASIYA37
 
Introduction of travelling wave & magnetrons
Introduction of travelling wave & magnetronsIntroduction of travelling wave & magnetrons
Introduction of travelling wave & magnetrons
VISHNUBEN
 
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhbWAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
chettanagarwal
 
for LIVE Teaching- EM Wave.pptx
for LIVE Teaching- EM Wave.pptxfor LIVE Teaching- EM Wave.pptx
for LIVE Teaching- EM Wave.pptx
RowelVeridianoEngres
 
for LIVE Teaching- EM Wave.pptx
for LIVE Teaching- EM Wave.pptxfor LIVE Teaching- EM Wave.pptx
for LIVE Teaching- EM Wave.pptx
RowelEngreso3
 
WavesNotesAnswers.pdf
WavesNotesAnswers.pdfWavesNotesAnswers.pdf
WavesNotesAnswers.pdf
cfisicaster
 
DLA_Presentation
DLA_PresentationDLA_Presentation
DLA_Presentation
Alan Sanchez
 
ultrasonic
ultrasonicultrasonic
ultrasonic
stanley christy
 
WaReS Validation Report
WaReS Validation ReportWaReS Validation Report
WaReS Validation Report
Marine Analytica
 
Ultrasonic Absorption Technique.pptx
Ultrasonic Absorption Technique.pptxUltrasonic Absorption Technique.pptx
Ultrasonic Absorption Technique.pptx
Sudha durairaj
 
3 wave representations
3 wave representations3 wave representations
3 wave representations
MissingWaldo
 
Fukao Plenary.ppt
Fukao Plenary.pptFukao Plenary.ppt
Fukao Plenary.ppt
grssieee
 
Seismic attribute analysis using complex trace analysis
Seismic attribute analysis using complex trace analysisSeismic attribute analysis using complex trace analysis
Seismic attribute analysis using complex trace analysis
Somak Hajra
 
Phys 101 lo3
Phys 101 lo3 Phys 101 lo3
Phys 101 lo3
Alvin Parappilly
 
Waveguides.ppt
Waveguides.pptWaveguides.ppt
Waveguides.ppt
Fenilkhunt3
 

Similar to slidesWaveStatistics.pdf (20)

Extended abstract
Extended abstractExtended abstract
Extended abstract
 
01_Warren (1).ppt
01_Warren (1).ppt01_Warren (1).ppt
01_Warren (1).ppt
 
1.1 Generation of alternating voltage, phasor representation of sinusoidal qu...
1.1 Generation of alternating voltage, phasor representation of sinusoidal qu...1.1 Generation of alternating voltage, phasor representation of sinusoidal qu...
1.1 Generation of alternating voltage, phasor representation of sinusoidal qu...
 
ac slides type 2.pdf
ac slides type 2.pdfac slides type 2.pdf
ac slides type 2.pdf
 
AGU2014-SA31B-4098
AGU2014-SA31B-4098AGU2014-SA31B-4098
AGU2014-SA31B-4098
 
gvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptx
gvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptxgvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptx
gvfctdrxserxdcytfvygbhunijihbugvyftcdrxesxrdctfgvybuh.pptx
 
Introduction of travelling wave & magnetrons
Introduction of travelling wave & magnetronsIntroduction of travelling wave & magnetrons
Introduction of travelling wave & magnetrons
 
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhbWAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
WAVES-converted.pdfgggghjnhdhbxbdbhdbdbbdhdhb
 
for LIVE Teaching- EM Wave.pptx
for LIVE Teaching- EM Wave.pptxfor LIVE Teaching- EM Wave.pptx
for LIVE Teaching- EM Wave.pptx
 
for LIVE Teaching- EM Wave.pptx
for LIVE Teaching- EM Wave.pptxfor LIVE Teaching- EM Wave.pptx
for LIVE Teaching- EM Wave.pptx
 
WavesNotesAnswers.pdf
WavesNotesAnswers.pdfWavesNotesAnswers.pdf
WavesNotesAnswers.pdf
 
DLA_Presentation
DLA_PresentationDLA_Presentation
DLA_Presentation
 
ultrasonic
ultrasonicultrasonic
ultrasonic
 
WaReS Validation Report
WaReS Validation ReportWaReS Validation Report
WaReS Validation Report
 
Ultrasonic Absorption Technique.pptx
Ultrasonic Absorption Technique.pptxUltrasonic Absorption Technique.pptx
Ultrasonic Absorption Technique.pptx
 
3 wave representations
3 wave representations3 wave representations
3 wave representations
 
Fukao Plenary.ppt
Fukao Plenary.pptFukao Plenary.ppt
Fukao Plenary.ppt
 
Seismic attribute analysis using complex trace analysis
Seismic attribute analysis using complex trace analysisSeismic attribute analysis using complex trace analysis
Seismic attribute analysis using complex trace analysis
 
Phys 101 lo3
Phys 101 lo3 Phys 101 lo3
Phys 101 lo3
 
Waveguides.ppt
Waveguides.pptWaveguides.ppt
Waveguides.ppt
 

More from cfisicaster

WavesLoading.pdf
WavesLoading.pdfWavesLoading.pdf
WavesLoading.pdf
cfisicaster
 
WavesTransformation.pdf
WavesTransformation.pdfWavesTransformation.pdf
WavesTransformation.pdf
cfisicaster
 
WavesAppendix.pdf
WavesAppendix.pdfWavesAppendix.pdf
WavesAppendix.pdf
cfisicaster
 
WavesLinear.pdf
WavesLinear.pdfWavesLinear.pdf
WavesLinear.pdf
cfisicaster
 
WavesExamplesAnswers.pdf
WavesExamplesAnswers.pdfWavesExamplesAnswers.pdf
WavesExamplesAnswers.pdf
cfisicaster
 
slidesWaveLoading.pdf
slidesWaveLoading.pdfslidesWaveLoading.pdf
slidesWaveLoading.pdf
cfisicaster
 
WavesExamples.pdf
WavesExamples.pdfWavesExamples.pdf
WavesExamples.pdf
cfisicaster
 
WavesSchedule.pdf
WavesSchedule.pdfWavesSchedule.pdf
WavesSchedule.pdf
cfisicaster
 
Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...
Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...
Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...
cfisicaster
 
Mario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdf
Mario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdfMario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdf
Mario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdf
cfisicaster
 
David R. Anderson - Estadistica para administracion y economia (2010) - libge...
David R. Anderson - Estadistica para administracion y economia (2010) - libge...David R. Anderson - Estadistica para administracion y economia (2010) - libge...
David R. Anderson - Estadistica para administracion y economia (2010) - libge...
cfisicaster
 
Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...
Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...
Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...
cfisicaster
 
N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...
N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...
N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...
cfisicaster
 
Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...
Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...
Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...
cfisicaster
 
Fisica2.pdf
Fisica2.pdfFisica2.pdf
Fisica2.pdf
cfisicaster
 
Problemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdf
Problemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdfProblemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdf
Problemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdf
cfisicaster
 
Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...
Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...
Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...
cfisicaster
 
TOC_6320_01_01.pdf
TOC_6320_01_01.pdfTOC_6320_01_01.pdf
TOC_6320_01_01.pdf
cfisicaster
 
IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...
IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...
IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...
cfisicaster
 
TOC_4108_02_05.pdf
TOC_4108_02_05.pdfTOC_4108_02_05.pdf
TOC_4108_02_05.pdf
cfisicaster
 

More from cfisicaster (20)

WavesLoading.pdf
WavesLoading.pdfWavesLoading.pdf
WavesLoading.pdf
 
WavesTransformation.pdf
WavesTransformation.pdfWavesTransformation.pdf
WavesTransformation.pdf
 
WavesAppendix.pdf
WavesAppendix.pdfWavesAppendix.pdf
WavesAppendix.pdf
 
WavesLinear.pdf
WavesLinear.pdfWavesLinear.pdf
WavesLinear.pdf
 
WavesExamplesAnswers.pdf
WavesExamplesAnswers.pdfWavesExamplesAnswers.pdf
WavesExamplesAnswers.pdf
 
slidesWaveLoading.pdf
slidesWaveLoading.pdfslidesWaveLoading.pdf
slidesWaveLoading.pdf
 
WavesExamples.pdf
WavesExamples.pdfWavesExamples.pdf
WavesExamples.pdf
 
WavesSchedule.pdf
WavesSchedule.pdfWavesSchedule.pdf
WavesSchedule.pdf
 
Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...
Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...
Richard I. Levine - Estadistica para administración (2009, Pearson Educación)...
 
Mario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdf
Mario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdfMario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdf
Mario F. Triola - Estadística (2006, Pearson_Educación) - libgen.li.pdf
 
David R. Anderson - Estadistica para administracion y economia (2010) - libge...
David R. Anderson - Estadistica para administracion y economia (2010) - libge...David R. Anderson - Estadistica para administracion y economia (2010) - libge...
David R. Anderson - Estadistica para administracion y economia (2010) - libge...
 
Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...
Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...
Richard I. Levin, David S. Rubin - Estadística para administradores (2004, Pe...
 
N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...
N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...
N. Schlager - Study Materials for MIT Course [8.02T] - Electricity and Magnet...
 
Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...
Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...
Teruo Matsushita - Electricity and Magnetism_ New Formulation by Introduction...
 
Fisica2.pdf
Fisica2.pdfFisica2.pdf
Fisica2.pdf
 
Problemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdf
Problemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdfProblemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdf
Problemas_Propuestos_y_Resueltos_de_Electromagnetismo_RChi.pdf
 
Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...
Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...
Joan Costa Quintana_ Fernando López Aguilar - Interacción electromagnética _ ...
 
TOC_6320_01_01.pdf
TOC_6320_01_01.pdfTOC_6320_01_01.pdf
TOC_6320_01_01.pdf
 
IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...
IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...
IPP-Gaja;Sancho;Moreno - Nociones teóricas, cuestiones y problemas de electro...
 
TOC_4108_02_05.pdf
TOC_4108_02_05.pdfTOC_4108_02_05.pdf
TOC_4108_02_05.pdf
 

Recently uploaded

A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...
nooriasukmaningtyas
 
CSM Cloud Service Management Presentarion
CSM Cloud Service Management PresentarionCSM Cloud Service Management Presentarion
CSM Cloud Service Management Presentarion
rpskprasana
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Christina Lin
 
The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.
sachin chaurasia
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
IJNSA Journal
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
Madan Karki
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
171ticu
 
Heat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation pptHeat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation ppt
mamunhossenbd75
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
kandramariana6
 
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
ihlasbinance2003
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
mahammadsalmanmech
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
171ticu
 
Modelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdfModelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdf
camseq
 
Textile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdfTextile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdf
NazakatAliKhoso2
 
Recycled Concrete Aggregate in Construction Part II
Recycled Concrete Aggregate in Construction Part IIRecycled Concrete Aggregate in Construction Part II
Recycled Concrete Aggregate in Construction Part II
Aditya Rajan Patra
 
Casting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdfCasting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdf
zubairahmad848137
 
Engine Lubrication performance System.pdf
Engine Lubrication performance System.pdfEngine Lubrication performance System.pdf
Engine Lubrication performance System.pdf
mamamaam477
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
IJECEIAES
 
New techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdfNew techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdf
wisnuprabawa3
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
VICTOR MAESTRE RAMIREZ
 

Recently uploaded (20)

A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...
 
CSM Cloud Service Management Presentarion
CSM Cloud Service Management PresentarionCSM Cloud Service Management Presentarion
CSM Cloud Service Management Presentarion
 
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming PipelinesHarnessing WebAssembly for Real-time Stateless Streaming Pipelines
Harnessing WebAssembly for Real-time Stateless Streaming Pipelines
 
The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
 
Manufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptxManufacturing Process of molasses based distillery ppt.pptx
Manufacturing Process of molasses based distillery ppt.pptx
 
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样学校原版美国波士顿大学毕业证学历学位证书原版一模一样
学校原版美国波士顿大学毕业证学历学位证书原版一模一样
 
Heat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation pptHeat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation ppt
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
 
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
5214-1693458878915-Unit 6 2023 to 2024 academic year assignment (AutoRecovere...
 
Question paper of renewable energy sources
Question paper of renewable energy sourcesQuestion paper of renewable energy sources
Question paper of renewable energy sources
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
 
Modelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdfModelagem de um CSTR com reação endotermica.pdf
Modelagem de um CSTR com reação endotermica.pdf
 
Textile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdfTextile Chemical Processing and Dyeing.pdf
Textile Chemical Processing and Dyeing.pdf
 
Recycled Concrete Aggregate in Construction Part II
Recycled Concrete Aggregate in Construction Part IIRecycled Concrete Aggregate in Construction Part II
Recycled Concrete Aggregate in Construction Part II
 
Casting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdfCasting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdf
 
Engine Lubrication performance System.pdf
Engine Lubrication performance System.pdfEngine Lubrication performance System.pdf
Engine Lubrication performance System.pdf
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
 
New techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdfNew techniques for characterising damage in rock slopes.pdf
New techniques for characterising damage in rock slopes.pdf
 
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student MemberIEEE Aerospace and Electronic Systems Society as a Graduate Student Member
IEEE Aerospace and Electronic Systems Society as a Graduate Student Member
 

slidesWaveStatistics.pdf

  • 1. Waves 3. Statistics and Irregular Waves
  • 2. Statistics and Irregular Waves ● Real wave fields are not regular ● Combination of many periods, heights, directions ● Design and simulation require realistic wave statistics: ‒ probability distribution of heights ‒ energy spectrum of frequencies (and directions)
  • 3. 3. STATISTICS AND IRREGULAR WAVES 3.1 Measures of height and period 3.2 Probability distribution of wave heights 3.3 Wave spectra 3.4 Reconstructing a wave field 3.5 Prediction of wave climate Statistics and Irregular Waves
  • 4. Measures of Wave Height 𝐻max Largest wave height in the sample 𝐻max = max 𝑖 (𝐻𝑖) 𝐻av Mean wave height 𝐻av = 1 𝑁 ෍ 𝐻𝑖 𝐻rms Root-mean-square wave height 𝐻rms = 1 𝑁 ෍ 𝐻𝑖 2 𝐻 Τ 1 3 Average of the highest 𝑁/3 waves 𝐻 Τ 1 3 = 1 𝑁/3 ෍ 1 𝑁/3 𝐻𝑖 𝐻𝑚0 Estimate based on the rms surface elevation 𝐻𝑚0 = 4 η2 Τ 1 2 𝐻𝑠 Significant wave height Either 𝐻 Τ 1 3 or 𝐻𝑚0
  • 5. Measures of Wave Period 𝑇𝑠 Significant wave period (average of highest 𝑁/3 waves) 𝑇𝑝 Peak period (from peak frequency of energy spectrum) 𝑇𝑒 Energy period (period of a regular wave with same significant wave height and power density; used in wave-energy prediction; derived from energy spectrum) 𝑇𝑧 Mean zero up-crossing period
  • 6. 3. STATISTICS AND IRREGULAR WAVES 3.1 Measures of height and period 3.2 Probability distribution of wave heights 3.3 Wave spectra 3.4 Reconstructing a wave field 3.5 Prediction of wave climate Statistics and Irregular Waves
  • 7. Probability Distribution of Wave Heights For a narrow-banded frequency spectrum the Rayleigh probability distribution is appropriate: 𝑃 height > 𝐻 = exp − Τ (𝐻 ) 𝐻rms 2 Cumulative distribution function: 𝐹 𝐻 = 𝑃 height < 𝐻 = 1 − e− Τ 𝐻 𝐻rms 2 Probability density function: 𝑓 𝐻 = d𝐹 d𝐻 = 2 𝐻 𝐻rms 2 e− Τ 𝐻 𝐻rms 2
  • 8. Rayleigh Distribution 𝐻av ≡ 𝐸 𝐻 = න 0 ∞ 𝐻 𝑓 𝐻 d𝐻 𝐻rms 2 ≡ 𝐸 𝐻2 = න 0 ∞ 𝐻2 𝑓 𝐻 d𝐻 𝐻av = π 2 𝐻rms = 0.886 𝐻rms 𝐻 Τ 1 3 = 1.416 𝐻rms 𝐻 Τ 1 10 = 1.800 𝐻rms 𝐻 Τ 1 100 = 2.359 𝐻rms Single parameter: 𝐻rms 𝑓 𝐻 = 2 𝐻 𝐻rms 2 e− Τ 𝐻 𝐻rms 2
  • 9. Example Near a pier, 400 consecutive wave heights are measured. Assume that the sea state is narrow-banded. (a) How many waves are expected to exceed 2𝐻rms? (b) If the significant wave height is 2.5 m, what is 𝐻rms? (c) Estimate the wave height exceeded by 80 waves. (d) Estimate the number of waves with a height between 1.0 m and 3.0 m.
  • 10. Near a pier, 400 consecutive wave heights are measured. Assume that the sea state is narrow-banded. (a) How many waves are expected to exceed 2𝐻rms? (b) If the significant wave height is 2.5 m, what is 𝐻rms? (c) Estimate the wave height exceeded by 80 waves. (d) Estimate the number of waves with a height between 1.0 m and 3.0 m. 𝑃 height > 𝐻 = e− Τ 𝐻 𝐻rms 2 𝑃 height > 2𝐻rms = e−4 (a) = 0.01832 In 400 waves, 𝑛 = 400 × 0.01832 𝐻 Τ 1 3 = 1.416 𝐻rms (b) 2.5 = 1.416 𝐻rms 𝑯𝐫𝐦𝐬 = 𝟏. 𝟕𝟔𝟔 𝐦 (c) 𝑃 height > 𝐻 = e− Τ 𝐻 𝐻rms 2 = 80 400 = 0.2 𝐻/𝐻rms 2 = − ln 0.2 𝐻 = 𝐻rms × − ln 0.2 = 𝟐. 𝟐𝟒𝟎 𝐦 𝑃 1.0 < height < 3.0 = 𝑃 height > 1.0 − 𝑃 height > 3.0 = e− 1.0/𝐻rms 2 − e− 3.0/𝐻rms 2 = 0.6699 In 400 waves, 𝑛 = 400 × 0.6699 (d) = 𝟕. 𝟑𝟐𝟖 = 𝟐𝟔𝟖. 𝟎
  • 11. 3. STATISTICS AND IRREGULAR WAVES 3.1 Measures of height and period 3.2 Probability distribution of wave heights 3.3 Wave spectra 3.4 Reconstructing a wave field 3.5 Prediction of wave climate Statistics and Irregular Waves
  • 12. Regular vs Irregular Waves Regular wave: - single frequency Irregular wave: - many frequencies Wave energy depends on 𝜂2
  • 13. Energy Spectrum ● “Spectral” means “by frequency” ● A spectrum is usually determined by a Fourier transform ● This splits a signal up into its component frequencies ● Energy in a wave is proportional to 𝜂2, where 𝜂 is surface displacement ● The energy spectrum, or power spectrum, is the Fourier transform of 𝜂2
  • 14. Energy Spectrum For regular waves (single frequency): 𝐸 = 1 2 𝜌𝑔𝐴2 = 𝜌𝑔 ) 𝜂2(𝑡 = 1 8 𝜌𝑔𝐻2 For irregular waves (many frequencies): 𝑆 𝑓 d𝑓 න 𝑓1 𝑓2 𝑆 𝑓 d𝑓 is the “energy” in a small interval d𝑓 near frequency 𝑓 is the “energy” between frequencies 𝑓1 and 𝑓2 (strictly: energy/𝜌𝑔) The energy spectrum 𝑆(𝑓) is determined by Fourier transforming 𝜂2 𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡
  • 15. Model Spectra Open ocean: Bretschneider spectrum Fetch-limited seas: JONSWAP spectrum Key parameters: peak frequency 𝑓𝑝 ( =1/(peak period, 𝑇𝑝) ) significant wave height 𝐻𝑚0
  • 16. Model Spectra Bretschneider spectrum: JONSWAP spectrum: 𝑆 𝑓 = 5 16 𝐻𝑚0 2 𝑓𝑝 4 𝑓5 exp − 5 4 𝑓𝑝 4 𝑓4 𝑆 𝑓 = 𝐶 𝐻𝑚0 2 𝑓𝑝 4 𝑓5 exp − 5 4 𝑓𝑝 4 𝑓4 𝛾𝑏 𝜎 = ൝ 0.07 𝑓 < 𝑓𝑝 0.09 𝑓 > 𝑓𝑝 𝑏 = exp − 1 2 Τ 𝑓 𝑓𝑝 − 1 𝜎 2 𝛾 = 3.3
  • 17. Significant Wave Height, 𝑯𝒎𝟎 Bretschneider spectrum: 𝑆 𝑓 = 5 16 𝐻𝑚0 2 𝑓𝑝 4 𝑓5 exp − 5 4 𝑓𝑝 4 𝑓4 Total energy: 𝐸 𝜌𝑔 ≡ න 0 ∞ 𝑆 𝑓 d𝑓 = 1 16 𝐻𝑚0 2 𝐻𝑚0 = 4 Τ 𝐸 𝜌 𝑔 = 4 ) η2(𝑡 Total energy for a regular wave: 𝐸 𝜌𝑔 = 1 8 𝐻rms 2 Same energy if 𝐻𝑚0 = 2𝐻𝑟𝑚𝑠 = 1.414𝐻rms Rayleigh distribution: 𝐻 Τ 1 3 = 1.416𝐻rms 𝑯𝒎𝟎 and 𝑯 Τ 𝟏 𝟑 can be used synonymously for 𝑯𝒔 ... … but 𝐻𝑚0 is easier to measure!
  • 18. Finding Wave Parameters From a Spectrum ● Surface displacement 𝜂(𝑡) is measured (e.g. wave buoy) ● 𝜂2(𝑡) is Fourier-transformed to get energy spectrum 𝑆(𝑓) ● Height and period parameters are deduced from the peak and the moments of the spectrum: 𝑚𝑛 = න 0 ∞ 𝑓𝑛 𝑆 𝑓 d𝑓 Peak period: 𝑇𝑝 = 1 𝑓𝑝 Significant wave height: 𝐻𝑠 = 𝐻𝑚0 = 4 𝑚0 Energy period: 𝑇𝑒 = 𝑚−1 𝑚0
  • 19. Multi-Modal Spectra frequency f (Hz) spectral density S (m^2 s) swell wind
  • 20. 3. STATISTICS AND IRREGULAR WAVES 3.1 Measures of height and period 3.2 Probability distribution of wave heights 3.3 Wave spectra 3.4 Reconstructing a wave field 3.5 Prediction of wave climate Statistics and Irregular Waves
  • 21. Using a Spectrum To Generate a Wave Field η 𝑡 = ෍ ) 𝑎𝑖 cos(𝑘𝑖𝑥 − 𝜔𝑖𝑡 − 𝜙𝑖 amplitude 𝑆 𝑓𝑖 Δ𝑓 = 𝐸𝑖 = 1 2 𝑎𝑖 2 𝑎𝑖 = 2𝑆 𝑓𝑖 Δ𝑓 (angular) frequency 𝜔𝑖 = 2π𝑓𝑖 wavenumber 𝜔𝑖 2 = 𝑔𝑘𝑖 tanh 𝑘𝑖ℎ random phase
  • 22. Simulated Wave Field 𝑇𝑝 = 8 s 𝐻𝑠 = 1.0 m ℎ = 30 m Regular waves: Irregular waves: Focused waves:
  • 23. Example An irregular wavefield at a deep-water location is characterised by peak period of 8.7 s and significant wave height of 1.5 m. (a) Provide a sketch of a Bretschneider spectrum, labelling both axes with variables and units and indicating the frequencies corresponding to both the peak period and the energy period. Note: Calculations are not needed for this part. (b) Determine the power density (in kW m–1) of a regular wave component with frequency 0.125 Hz that represents the frequency range 0.12 to 0.13 Hz of the irregular wave field.
  • 24. An irregular wavefield at a deep-water location is characterised by peak period of 8.7 s and significant wave height of 1.5 m. (a) Provide a sketch of a Bretschneider spectrum, labelling both axes with variables and units and indicating the frequencies corresponding to both the peak period and the energy period. frequency f (Hz) spectral density S (m^2 s) fp fe
  • 25. An irregular wavefield at a deep-water location is characterised by peak period of 8.7 s and significant wave height of 1.5 m. (b) Determine the power density (in kW m–1) of a regular wave component with frequency 0.125 Hz that represents the frequency range 0.12 to 0.13 Hz of the irregular wave field. 𝑓 = 0.125 Hz Δ𝑓 = 0.01 Hz 𝑇𝑝 = 8.7 s 𝐻𝑠 = 1.5 m 𝑓𝑝 = 1 𝑇𝑝 𝑆 𝑓 = 1.645 m2 s 𝐸 = 𝜌𝑔 × 𝑆 𝑓 Δ𝑓 𝑃 = 𝐸𝑐𝑔 = 𝐸(𝑛𝑐) Deep water: 𝑛 = 1 2 𝑐 = 𝑔𝑇 2π 𝑇 = 1 𝑓 = 8 s 𝑷 = 𝟏. 𝟎𝟑𝟑 𝐤𝐖 𝐦−𝟏 = 0.1149 Hz = 165.4 J m−2 = 12.49 m s−1 𝑆 𝑓 = 5 16 𝐻𝑠 2 𝑓𝑝 4 𝑓5 ex p( − 5 4 𝑓𝑝 4 𝑓4 )
  • 26. 3. STATISTICS AND IRREGULAR WAVES 3.1 Measures of height and period 3.2 Probability distribution of wave heights 3.3 Wave spectra 3.4 Reconstructing a wave field 3.5 Prediction of wave climate Statistics and Irregular Waves
  • 27. Terminology A wave climate or sea state is a model wave spectrum, usually defined by a representative height and period, for use in: ● forecasting (from a weather forecast in advance) ● nowcasting (from ongoing weather) ● hindcasting (reconstruction from previous event)
  • 28. Prediction of Sea State Require: significant wave height, 𝐻𝑠 significant wave period, 𝑇𝑠 (or peak period, 𝑇𝑝) Depend on: wind speed, 𝑈 fetch, 𝐹 duration, 𝑡 gravity, 𝑔 Dimensional analysis: Empirical functions: JONSWAP or SMB curves ൰ 𝑔𝐻𝑠 𝑈2 = function( 𝑔𝐹 𝑈2 , 𝑔𝑡 𝑈 ቇ 𝑔𝑇𝑝 𝑈 = function( 𝑔𝐹 𝑈2 , 𝑔𝑡 𝑈
  • 29. Fetch-Limited vs Duration-Limited distance travelled by wave energy greater than fetch F F distance travelled by wave energy less than fetch F F Feff FETCH-LIMITED DURATION-LIMITED
  • 30. JONSWAP Curves For fetch-limited waves: 𝑔𝐻𝑠 𝑈2 = 0.0016 𝑔𝐹 𝑈2 Τ 1 2 (up to maximum 0.2433) 𝑔𝑇𝑝 𝑈 = 0.286 𝑔𝐹 𝑈2 Τ 1 3 (up to maximum 8.134) Waves are fetch-limited provided the storm has blown for a minimum time 𝑡𝑚𝑖𝑛 given by 𝑔𝑡 𝑈 min = 68.8 𝑔𝐹 𝑈2 Τ 2 3 up to maximum 7.15 × 104 Otherwise the waves are duration-limited, and the fetch used to determine height and period is an effective fetch determined by inversion using the actual storm duration 𝑡: 𝑔𝐹 𝑈2 eff = 1 68.8 𝑔𝑡 𝑈 Τ 3 2
  • 31. JONSWAP Curves (reprise) ෡ 𝐻𝑠 = 0.0016 ෠ 𝐹 Τ 1 2 ෠ 𝑇𝑝 = 0.286 ෠ 𝐹 Τ 1 3 Ƹ 𝑡min = 68.8 ෠ 𝐹 Τ 2 3 ෠ 𝐹 ≡ 𝑔𝐹 𝑈2 , Ƹ 𝑡 ≡ 𝑔𝑡 𝑈 , ෡ 𝐻𝑠 ≡ 𝑔𝐻𝑠 𝑈2 , ෠ 𝑇𝑝 ≡ 𝑔𝑇𝑝 𝑈
  • 32. JONSWAP and SMB Curves Solid lines: JONSWAP Dashed lines: SMB
  • 33. Example (a) Wind has blown at a consistent 𝑈 = 20 m s−1 over a fetch 𝐹 = 100 km for 𝑡 = 6 hrs . Determine 𝐻𝑠 and 𝑇𝑝 using the JONSWAP curves. (b) If the wind blows steadily for another 4 hours what are 𝐻𝑠 and 𝑇𝑝?
  • 34. (a) Wind has blown at a consistent 𝑈 = 20 m s−1 over a fetch 𝐹 = 100 km for 𝑡 = 6 hrs. Determine 𝐻𝑠 and 𝑇𝑝 using the JONSWAP curves. 𝑈 = 20 m s−1 𝐹 = 105 m 𝑡 = 6 × 3600 = 21600 s ෠ 𝐹 ≡ 𝑔𝐹 𝑈2 Ƹ 𝑡 = 𝑔𝑡 𝑈 Ƹ 𝑡min = 68.8 ෠ 𝐹 Τ 2 3 Ƹ 𝑡min = 68.8 ෠ 𝐹 Τ 2 3 = 12510 ෡ 𝐻𝑠 = 0.0016 ෠ 𝐹1/2 ෠ 𝑇𝑝 = 0.286 ෠ 𝐹1/3 ෠ 𝐹 ≡ 𝑔𝐹 𝑈2 Ƹ 𝑡 ≡ 𝑔𝑡 𝑈 ෡ 𝐻𝑠 ≡ 𝑔𝐻𝑠 𝑈2 Duration-limited ෠ 𝐹eff = Ƹ 𝑡 68.8 Τ 3 2 ෡ 𝐻𝑠 = 0.0016 ෠ 𝐹eff Τ 1 2 ෠ 𝑇𝑝 = 0.286 ෠ 𝐹eff Τ 1 3 𝐻𝑠 = ෡ 𝐻𝑠 × 𝑈2 𝑔 𝑇𝑝 = ෠ 𝑇𝑝 × 𝑈 𝑔 = 1910 = 0.06993 = 3.548 = 𝟐. 𝟖𝟓𝟏 𝐦 = 𝟕. 𝟐𝟑𝟑 𝐬 = 2453 = 10590
  • 35. (b) If the wind blows steadily for another 4 hours what are 𝐻𝑠 and 𝑇𝑝? 𝑈 = 20 m s−1 𝐹 = 105 m 𝑡 = 10 × 3600 = 36000 s ෠ 𝐹 = 2453 Ƹ 𝑡 = 𝑔𝑡 𝑈 Ƹ 𝑡min = 68.8 ෠ 𝐹 Τ 2 3 Ƹ 𝑡min = 12510 ෡ 𝐻𝑠 = 0.0016 ෠ 𝐹1/2 ෠ 𝑇𝑝 = 0.286 ෠ 𝐹1/3 ෠ 𝐹 ≡ 𝑔𝐹 𝑈2 Ƹ 𝑡 ≡ 𝑔𝑡 𝑈 ෡ 𝐻𝑠 ≡ 𝑔𝐻𝑠 𝑈2 Fetch-limited ෡ 𝐻𝑠 = 0.0016 ෠ 𝐹1/2 ෠ 𝑇𝑝 = 0.286 ෠ 𝐹1/3 𝐻𝑠 = ෡ 𝐻𝑠 × 𝑈2 𝑔 𝑇𝑝 = ෠ 𝑇𝑝 × 𝑈 𝑔 = 0.07924 = 3.857 = 𝟑. 𝟐𝟑𝟏 𝐦 = 𝟕. 𝟖𝟔𝟑 𝐬 = 17660