Mujahid ali
Bs. Applied geology
Silicates are classified on the basis of arrangement
of sio4 and Si-O polymerism
[SiO4]4- tetrahedron is basic
building of silicates
Structure depend upon sharing of oxygen of basic
unit cell [SiO4]4- Independent tetrahedral Nesosilicates
e.g. olivine and garnet
[Si2O7]6- Double tetrahedra Sorosilicates
e.g. epidote
n[SiO3]2- n = 3, 4, 6 Cyclosilicates
e.g. beryl and axinite.
Silicates are classified on the basis of Si-O
polymerism
[SiO3]2- single chains Inosilicates [Si4O11]4- Double tetrahedra
pryoxenes pyroxenoids amphiboles
Silicates are classified on the basis of Si-O
polymerism
[Si2O5]2- Sheets of tetrahedra Phyllosilicates
micas talc clay minerals serpentine
Silicates are classified on the basis of Si-O
polymerism
[SiO2] 3-D frameworks of tetrahedra: fully polymerized Tectosilicates
quartz and the silica minerals feldspars feldspathoids zeolites
low-quartz
Nesosilicates: independent SiO4 tetrahedra
Nesosilicates: independent SiO4 tetrahedra
Olivine (100) view blue = M1 yellow = M2
b
c
projection
Olivine (100) view blue = M1 yellow = M2
b
c
perspective
Nesosilicates: independent SiO4 tetrahedra
Olivine (001) view blue = M1 yellow = M2
M1 in rows
and share
edges
M2 form
layers in a-c
that share
corners
Some M2
and M1 share
edges
b
a
Nesosilicates: independent SiO4 tetrahedra
Nesosilicates: independent SiO4 tetrahedra
Olivine (100) view blue = M1 yellow = M2
b
c
M1 and M2 as polyhedra
Nesosilicates: independent SiO4 tetrahedra
Olivine Occurrences:
 Principally in mafic and ultramafic igneous and
meta-igneous rocks
 Fayalite in meta-ironstones and in some alkalic
granitoids
 Forsterite in some siliceous dolomitic marbles
Monticellite CaMgSiO4
Ca  M2 (larger ion, larger site)
High grade metamorphic siliceous carbonates
Nesosilicates: independent SiO4 tetrahedra
Garnet (001) view blue = Si purple = A turquoise = B
Garnet: A2+
3 B3+
2 [SiO4]3
“Pyralspites” - B = Al
Pyrope: Mg3 Al2 [SiO4]3
Almandine: Fe3 Al2 [SiO4]3
Spessartine: Mn3 Al2 [SiO4]3
“Ugrandites” - A = Ca
Uvarovite: Ca3 Cr2 [SiO4]3
Grossularite: Ca3 Al2 [SiO4]3
Andradite: Ca3 Fe2 [SiO4]3
Occurrence:
Mostly metamorphic
Some high-Al igneous
Also in some mantle peridotites
Nesosilicates: independent SiO4 tetrahedra
Garnet (001) view blue = Si purple = A turquoise = B
Garnet: A2+
3 B3+
2 [SiO4]3
“Pyralspites” - B = Al
Pyrope: Mg3 Al2 [SiO4]3
Almandine: Fe3 Al2 [SiO4]3
Spessartine: Mn3 Al2 [SiO4]3
“Ugrandites” - A = Ca
Uvarovite: Ca3 Cr2 [SiO4]3
Grossularite: Ca3 Al2 [SiO4]3
Andradite: Ca3 Fe2 [SiO4]3
Occurrence:
Mostly metamorphic
Pyralspites in meta-shales
Ugrandites in meta-carbonates
Some high-Al igneous
Also in some mantle peridotites
a1
a2
a3
Inosilicates: single chains- pyroxenes
Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)
Diopside: CaMg [Si2O6]
b
asin
Where are the Si-O-Si-O chains??
Inosilicates: single chains- pyroxenes
Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)
b
asin
Inosilicates: single chains- pyroxenes
Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)
b
asin
Inosilicates: single chains- pyroxenes
Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)
b
asin
Inosilicates: single chains- pyroxenes
Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)
b
asin
Inosilicates: single chains- pyroxenes
Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)
b
asin
Inosilicates: single chains- pyroxenes
Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)
Perspective view
Inosilicates: single chains- pyroxenes
Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca)
SiO4 as polygons
(and larger area)
IV slab
IV slab
IV slab
IV slab
VI slab
VI slab
VI slab
b
asin
Inosilicates: single chains- pyroxenes
M1 octahedron
Inosilicates: single chains- pyroxenes
M1 octahedron
Inosilicates: single chains- pyroxenes
M1 octahedron
(+) type by convention
(+)
Inosilicates: single chains- pyroxenes
M1 octahedron
This is a (-) type
(-)
Inosilicates: single chains- pyroxenes
T
M1
T
Creates an “I-beam”
like unit in the
structure.
Inosilicates: single chains- pyroxenes
T
M1
T
Creates an “I-beam”
like unit in the
structure
(+)
The pyroxene
structure is then
composed of
alternating I-beams
Clinopyroxenes have
all I-beams oriented
the same: all are (+)
in this orientation
(+)
(+)(+)
(+)(+)
Inosilicates: single chains- pyroxenes
Note that M1 sites are
smaller than M2 sites, since
they are at the apices of the
tetrahedral chains
The pyroxene
structure is then
composed of
alternation I-beams
Clinopyroxenes have
all I-beams oriented
the same: all are (+)
in this orientation
(+)
(+)(+)
Inosilicates: single chains- pyroxenes
(+)(+)
Tetrehedra and M1
octahedra share
tetrahedral apical
oxygen atoms
Inosilicates: single chains- pyroxenes
The tetrahedral chain
above the M1s is thus
offset from that below
The M2 slabs have a
similar effect
The result is a
monoclinic unit cell,
hence clinopyroxenes
Inosilicates: single chains- pyroxenes
c
a
(+) M1
(+) M2
(+) M2
Orthopyroxenes have
alternating (+) and (-)
I-beams
the offsets thus
compensate and result
in an orthorhombic
unit cell
This also explains the
double a cell dimension
and why orthopyroxenes
have {210} cleavages
instead of {110) as in
clinopyroxenes (although
both are at 90o)
Inosilicates: single chains- pyroxenes
c
a
(+) M1
(-) M1
(-) M2
(+) M2
The general pyroxene formula:
W1-P (X,Y)1+P Z2O6
Where
 W = Ca Na
 X = Mg Fe2+ Mn Ni Li
 Y = Al Fe3+ Cr Ti
 Z = Si Al
Anhydrous so high-temperature or dry
conditions favor pyroxenes over amphiboles
The pyroxene quadrilateral and opx-cpx solvus
Coexisting opx + cpx in many rocks (pigeonite only in volcanics)
Diopside Hedenbergite
Wollastonite
Enstatite Ferrosilite
orthopyroxenes
clinopyroxenes
pigeonite (Mg,Fe)2Si2O6 Ca(Mg,Fe)Si2O6
pigeonite
orthopyroxenes
Solvus
1200oC
1000oC
800oC
“Non-quad” pyroxenes
Jadeite
NaAlSi2O6
Ca(Mg,Fe)Si2O6
Aegirine
NaFe3+Si2O6
Diopside-Hedenbergite
Ca-Tschermack’s
molecule CaAl2SiO6
Ca / (Ca + Na)
0.2
0.8
Omphacite
aegirine-
augite
Augite
Spodumene:
LiAlSi2O6
Pyroxenoids“Ideal” pyroxene chains with
5.2 A repeat (2 tetrahedra)
become distorted as other
cations occupy VI sites
Wollastonite
(Ca  M1)
 3-tet repeat
Rhodonite
MnSiO3
 5-tet repeat
Pyroxmangite
(Mn, Fe)SiO3
 7-tet repeat
Pyroxene
2-tet repeat
7.1 A
12.5 A
17.4 A
5.2 A
Inosilicates: double chains- amphiboles
Tremolite (001) view blue = Si purple = M1 rose = M2 gray = M3 (all Mg)
yellow = M4 (Ca)
Tremolite:
Ca2Mg5 [Si8O22] (OH)2
b
asin
Inosilicates: double chains- amphiboles
Hornblende:
(Ca, Na)2-3 (Mg, Fe, Al)5
[(Si,Al)8O22] (OH)2
b
asin
Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2
light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na)
little turquoise ball = H
Inosilicates: double chains- amphiboles
Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2
light blue = M3 (all Mg, Fe)
Hornblende:
(Ca, Na)2-3 (Mg, Fe,
Al)5 [(Si,Al)8O22]
(OH)2
Same I-beam
architecture, but
the I-beams are
fatter (double
chains)
Inosilicates: double chains- amphiboles
b
asin
(+) (+)
(+)
(+)
(+)
Same I-beam
architecture, but
the I-beams are
fatter (double
chains)
All are (+) on
clinoamphiboles
and alternate in
orthoamphiboles
Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2
light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na)
little turquoise ball = H
Hornblende:
(Ca, Na)2-3 (Mg, Fe,
Al)5 [(Si,Al)8O22]
(OH)2
Inosilicates: double chains- amphiboles
Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2
light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na)
little turquoise ball = H
Hornblende:
(Ca, Na)2-3 (Mg, Fe, Al)5
[(Si,Al)8O22] (OH)2
M1-M3 are small sites
M4 is larger (Ca)
A-site is really big
Variety of sites 
great chemical range
Inosilicates: double chains- amphiboles
Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2
light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na)
little turquoise ball = H
Hornblende:
(Ca, Na)2-3 (Mg, Fe, Al)5
[(Si,Al)8O22] (OH)2
(OH) is in center of
tetrahedral ring where O
is a part of M1 and M3
octahedra
(OH)
See handout for more information
General formula:
W0-1 X2 Y5 [Z8O22] (OH, F, Cl)2
W = Na K
X = Ca Na Mg Fe2+ (Mn Li)
Y = Mg Fe2+ Mn Al Fe3+ Ti
Z = Si Al
Again, the great variety of sites and sizes  a great chemical range, and
hence a broad stability range
The hydrous nature implies an upper temperature stability limit
Amphibole Chemistry
Ca-Mg-Fe Amphibole “quadrilateral” (good analogy with pyroxenes)
Amphibole Chemistry
Al and Na tend to stabilize the orthorhombic form in low-Ca amphiboles, so anthophyllite
 gedrite orthorhombic series extends to Fe-rich gedrite in more Na-Al-rich compositions
Tremolite
Ca2Mg5Si8O22(OH)2
Ferroactinolite
Ca2Fe5Si8O22(OH)2
Anthophyllite
Mg7Si8O22(OH)2
Fe7Si8O22(OH)2
Actinolite
Cummingtonite-grunerite
Orthoamphiboles
Clinoamphiboles
Hornblende has Al in the tetrahedral site
Geologists traditionally use the term “hornblende” as a catch-all term for practically
any dark amphibole. Now the common use of the microprobe has petrologists
casting “hornblende” into end-member compositions and naming amphiboles
after a well-represented end-member.
Sodic amphiboles
Glaucophane: Na2 Mg3 Al2 [Si8O22] (OH)2
Riebeckite: Na2 Fe2+
3 Fe3+
2 [Si8O22] (OH)2
Sodic amphiboles are commonly blue, and often called “blue amphiboles”
Amphibole Chemistry
Tremolite (Ca-Mg) occurs in meta-carbonates
Actinolite occurs in low-grade metamorphosed basic igneous rocks
Orthoamphiboles and cummingtonite-grunerite (all Ca-free, Mg-Fe-rich
amphiboles) are metamorphic and occur in meta-ultrabasic rocks and some
meta-sediments. The Fe-rich grunerite occurs in meta-ironstones
The complex solid solution called hornblende occurs in a broad variety of both
igenous and metamorphic rocks
Sodic amphiboles are predominantly metamorphic where they are
characteristic of high P/T subduction-zone metamorphism (commonly called
“blueschist” in reference to the predominant blue sodic amphiboles
Riebeckite occurs commonly in sodic granitoid rocks
Amphibole Occurrences
Inosilicates
Pyroxenes and amphiboles are very similar:
 Both have chains of SiO4 tetrahedra
 The chains are connected into stylized I-beams by M octahedra
 High-Ca monoclinic forms have all the T-O-T offsets in the same direction
 Low-Ca orthorhombic forms have alternating (+) and (-) offsets
+
+ +
+
++
+
++
-
- -
-
-
-
+
++
a
a
+
+ +
+
+ +
+
+ +
+
+ +
-
-
-
-
-
-
Clinopyroxene
Orthopyroxene Orthoamphibole
Clinoamphibole
Inosilicates
Cleavage angles can be interpreted in terms of weak bonds in M2 sites
(around I-beams instead of through them)
Narrow single-chain I-beams  90o cleavages in pyroxenes while wider double-
chain I-beams  60-120o cleavages in amphiboles
pyroxene amphibole
a
b
SiO4 tetrahedra polymerized into 2-D sheets: [Si2O5]
Apical O’s are unpolymerized and are bonded to other constituents
Phyllosilicates
Tetrahedral layers are bonded to octahedral layers
(OH) pairs are located in center of T rings where no apical O
Phyllosilicates
Octahedral layers can be understood by analogy with hydroxides
Phyllosilicates
Brucite: Mg(OH)2
Layers of octahedral Mg in
coordination with (OH)
Large spacing along c due
to weak van der waals
bonds
c
Phyllosilicates
Gibbsite: Al(OH)3
Layers of octahedral Al in coordination with (OH)
Al3+ means that only 2/3 of the VI sites may be occupied for charge-balance reasons
Brucite-type layers may be called trioctahedral and gibbsite-type dioctahedral
a1
a2
Phyllosilicates
Kaolinite: Al2 [Si2O5] (OH)4
T-layers and diocathedral (Al3+) layers
(OH) at center of T-rings and fill base of VI layer 
Yellow = (OH)
T
O
-
T
O
-
T
O
vdw
vdw
weak van der Waals bonds between T-O groups
Phyllosilicates
Serpentine: Mg3 [Si2O5] (OH)4
T-layers and triocathedral (Mg2+) layers
(OH) at center of T-rings and fill base of VI layer 
Yellow = (OH)
T
O
-
T
O
-
T
O
vdw
vdw
weak van der Waals bonds between T-O groups
Serpentine
Octahedra are a bit larger than tetrahedral
match, so they cause bending of the T-O
layers (after Klein and Hurlbut, 1999).
Antigorite maintains a
sheet-like form by
alternating segments of
opposite curvature
Chrysotile does not do this
and tends to roll into tubes
Serpentine
The rolled tubes in chrysotile resolves the apparent
paradox of asbestosform sheet silicates
S = serpentine T = talc
Nagby and Faust (1956) Am.
Mineralogist 41, 817-836.
Veblen and Busek, 1979,
Science 206, 1398-1400.
Phyllosilicates
Pyrophyllite: Al2 [Si4O10] (OH)2
T-layer - diocathedral (Al3+) layer - T-layer
T
O
T
-
T
O
T
-
T
O
T
vdw
vdw
weak van der Waals bonds between T - O - T groups
Yellow = (OH)
Phyllosilicates
Talc: Mg3 [Si4O10] (OH)2
T-layer - triocathedral (Mg2+) layer - T-layer
T
O
T
-
T
O
T
-
T
O
T
vdw
vdw
weak van der Waals bonds between T - O - T groups
Yellow = (OH)
Phyllosilicates
Muscovite: K Al2 [Si3AlO10] (OH)2 (coupled K - AlIV)
T-layer - diocathedral (Al3+) layer - T-layer - K
T
O
T
K
T
O
T
K
T
O
T
K between T - O - T groups is stronger than vdw
Phyllosilicates
Phlogopite: K Mg3 [Si3AlO10] (OH)2
T-layer - triocathedral (Mg2+) layer - T-layer - K
T
O
T
K
T
O
T
K
T
O
T
K between T - O - T groups is stronger than vdw
A Summary of
Phyllosilicate Structures
Phyllosilicates
Fig 13.84 Klein and Hurlbut
Manual of Mineralogy, © John
Wiley & Sons
Chlorite: (Mg, Fe)3 [(Si, Al)4O10] (OH)2 (Mg, Fe)3 (OH)6
= T - O - T - (brucite) - T - O - T - (brucite) - T - O - T -
Very hydrated (OH)8, so low-temperature stability (low-T metamorphism
and alteration of mafics as cool)
Phyllosilicates
Why are there single-chain-, double-chain-, and sheet-polymer types,
and not triple chains, quadruple chains, etc??
“Biopyriboles”
It turns out that there are some
intermediate types, predicted by
J.B. Thompson and discovered in
1977 Veblen, Buseck, and
Burnham
Cover of Science: anthophyllite
(yellow) reacted to form chesterite
(blue & green) and jimthompsonite
(red)
Streaked areas are highly
disordered
“Biopyriboles”
Cover of Science, October 28, 1977 © AAAS
HRTEM image of anthophyllite (left) with typical double-chain width
Jimthompsonite (center) has triple-chains
Chesterite is an ordered alternation of double- and triple-chains
anthophyllite jimthompsonite chesterite
Fig. 6, Veblen et al (1977) Science 198 © AAAS
Disordered structures show 4-chain widths and even a 7-chain width
Obscures the distinction between pyroxenes, amphiboles, and micas
(hence the term biopyriboles: biotite-pyroxene-amphibole)
“Biopyriboles”
Fig. 7, Veblen et al (1977)
Science 198 © AAAS
Stishovite
Coesite
- quartz
- quartz
Liquid
Tridymite
Cristobalite
600 1000 1400 1800 2200 2600
2
4
6
8
10
Pressure(GPa)
Temperature oC
After Swamy and
Saxena (1994) J.
Geophys. Res., 99,
11,787-11,794.
Low Quartz
001 Projection Crystal Class 32
Stishovite
Coesite
- quartz
- quartz
Liquid
Tridymite
Cristobalite
High Quartz at 581oC
001 Projection Crystal Class 622
Stishovite
Coesite
- quartz
- quartz
Liquid
Tridymite
Cristobalite
Cristobalite
001 Projection Cubic Structure
Stishovite
Coesite
- quartz
- quartz
Liquid
Tridymite
Cristobalite
Stishovite
High pressure  SiVI
Stishovite
Coesite
- quartz
- quartz
Liquid
Tridymite
Cristobalite
Low Quartz Stishovite
SiIV SiVI
Feldspars
Albite: NaAlSi3O8
Substitute two
Al3+ for Si4+
allows Ca2+ to
be added
Substitute Al3+
for Si4+ allows
Na+ or K+ to be
added

silicate structure

  • 1.
  • 2.
    Silicates are classifiedon the basis of arrangement of sio4 and Si-O polymerism [SiO4]4- tetrahedron is basic building of silicates
  • 3.
    Structure depend uponsharing of oxygen of basic unit cell [SiO4]4- Independent tetrahedral Nesosilicates e.g. olivine and garnet [Si2O7]6- Double tetrahedra Sorosilicates e.g. epidote n[SiO3]2- n = 3, 4, 6 Cyclosilicates e.g. beryl and axinite.
  • 4.
    Silicates are classifiedon the basis of Si-O polymerism [SiO3]2- single chains Inosilicates [Si4O11]4- Double tetrahedra pryoxenes pyroxenoids amphiboles
  • 5.
    Silicates are classifiedon the basis of Si-O polymerism [Si2O5]2- Sheets of tetrahedra Phyllosilicates micas talc clay minerals serpentine
  • 6.
    Silicates are classifiedon the basis of Si-O polymerism [SiO2] 3-D frameworks of tetrahedra: fully polymerized Tectosilicates quartz and the silica minerals feldspars feldspathoids zeolites low-quartz
  • 7.
  • 8.
    Nesosilicates: independent SiO4tetrahedra Olivine (100) view blue = M1 yellow = M2 b c projection
  • 9.
    Olivine (100) viewblue = M1 yellow = M2 b c perspective Nesosilicates: independent SiO4 tetrahedra
  • 10.
    Olivine (001) viewblue = M1 yellow = M2 M1 in rows and share edges M2 form layers in a-c that share corners Some M2 and M1 share edges b a Nesosilicates: independent SiO4 tetrahedra
  • 11.
    Nesosilicates: independent SiO4tetrahedra Olivine (100) view blue = M1 yellow = M2 b c M1 and M2 as polyhedra
  • 12.
    Nesosilicates: independent SiO4tetrahedra Olivine Occurrences:  Principally in mafic and ultramafic igneous and meta-igneous rocks  Fayalite in meta-ironstones and in some alkalic granitoids  Forsterite in some siliceous dolomitic marbles Monticellite CaMgSiO4 Ca  M2 (larger ion, larger site) High grade metamorphic siliceous carbonates
  • 13.
    Nesosilicates: independent SiO4tetrahedra Garnet (001) view blue = Si purple = A turquoise = B Garnet: A2+ 3 B3+ 2 [SiO4]3 “Pyralspites” - B = Al Pyrope: Mg3 Al2 [SiO4]3 Almandine: Fe3 Al2 [SiO4]3 Spessartine: Mn3 Al2 [SiO4]3 “Ugrandites” - A = Ca Uvarovite: Ca3 Cr2 [SiO4]3 Grossularite: Ca3 Al2 [SiO4]3 Andradite: Ca3 Fe2 [SiO4]3 Occurrence: Mostly metamorphic Some high-Al igneous Also in some mantle peridotites
  • 14.
    Nesosilicates: independent SiO4tetrahedra Garnet (001) view blue = Si purple = A turquoise = B Garnet: A2+ 3 B3+ 2 [SiO4]3 “Pyralspites” - B = Al Pyrope: Mg3 Al2 [SiO4]3 Almandine: Fe3 Al2 [SiO4]3 Spessartine: Mn3 Al2 [SiO4]3 “Ugrandites” - A = Ca Uvarovite: Ca3 Cr2 [SiO4]3 Grossularite: Ca3 Al2 [SiO4]3 Andradite: Ca3 Fe2 [SiO4]3 Occurrence: Mostly metamorphic Pyralspites in meta-shales Ugrandites in meta-carbonates Some high-Al igneous Also in some mantle peridotites a1 a2 a3
  • 15.
    Inosilicates: single chains-pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca) Diopside: CaMg [Si2O6] b asin Where are the Si-O-Si-O chains??
  • 16.
    Inosilicates: single chains-pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca) b asin
  • 17.
    Inosilicates: single chains-pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca) b asin
  • 18.
    Inosilicates: single chains-pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca) b asin
  • 19.
    Inosilicates: single chains-pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca) b asin
  • 20.
    Inosilicates: single chains-pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca) b asin
  • 21.
    Inosilicates: single chains-pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca) Perspective view
  • 22.
    Inosilicates: single chains-pyroxenes Diopside (001) view blue = Si purple = M1 (Mg) yellow = M2 (Ca) SiO4 as polygons (and larger area) IV slab IV slab IV slab IV slab VI slab VI slab VI slab b asin
  • 23.
    Inosilicates: single chains-pyroxenes M1 octahedron
  • 24.
    Inosilicates: single chains-pyroxenes M1 octahedron
  • 25.
    Inosilicates: single chains-pyroxenes M1 octahedron (+) type by convention (+)
  • 26.
    Inosilicates: single chains-pyroxenes M1 octahedron This is a (-) type (-)
  • 27.
    Inosilicates: single chains-pyroxenes T M1 T Creates an “I-beam” like unit in the structure.
  • 28.
    Inosilicates: single chains-pyroxenes T M1 T Creates an “I-beam” like unit in the structure (+)
  • 29.
    The pyroxene structure isthen composed of alternating I-beams Clinopyroxenes have all I-beams oriented the same: all are (+) in this orientation (+) (+)(+) (+)(+) Inosilicates: single chains- pyroxenes Note that M1 sites are smaller than M2 sites, since they are at the apices of the tetrahedral chains
  • 30.
    The pyroxene structure isthen composed of alternation I-beams Clinopyroxenes have all I-beams oriented the same: all are (+) in this orientation (+) (+)(+) Inosilicates: single chains- pyroxenes (+)(+)
  • 31.
    Tetrehedra and M1 octahedrashare tetrahedral apical oxygen atoms Inosilicates: single chains- pyroxenes
  • 32.
    The tetrahedral chain abovethe M1s is thus offset from that below The M2 slabs have a similar effect The result is a monoclinic unit cell, hence clinopyroxenes Inosilicates: single chains- pyroxenes c a (+) M1 (+) M2 (+) M2
  • 33.
    Orthopyroxenes have alternating (+)and (-) I-beams the offsets thus compensate and result in an orthorhombic unit cell This also explains the double a cell dimension and why orthopyroxenes have {210} cleavages instead of {110) as in clinopyroxenes (although both are at 90o) Inosilicates: single chains- pyroxenes c a (+) M1 (-) M1 (-) M2 (+) M2
  • 34.
    The general pyroxeneformula: W1-P (X,Y)1+P Z2O6 Where  W = Ca Na  X = Mg Fe2+ Mn Ni Li  Y = Al Fe3+ Cr Ti  Z = Si Al Anhydrous so high-temperature or dry conditions favor pyroxenes over amphiboles
  • 35.
    The pyroxene quadrilateraland opx-cpx solvus Coexisting opx + cpx in many rocks (pigeonite only in volcanics) Diopside Hedenbergite Wollastonite Enstatite Ferrosilite orthopyroxenes clinopyroxenes pigeonite (Mg,Fe)2Si2O6 Ca(Mg,Fe)Si2O6 pigeonite orthopyroxenes Solvus 1200oC 1000oC 800oC
  • 36.
  • 37.
    Pyroxenoids“Ideal” pyroxene chainswith 5.2 A repeat (2 tetrahedra) become distorted as other cations occupy VI sites Wollastonite (Ca  M1)  3-tet repeat Rhodonite MnSiO3  5-tet repeat Pyroxmangite (Mn, Fe)SiO3  7-tet repeat Pyroxene 2-tet repeat 7.1 A 12.5 A 17.4 A 5.2 A
  • 38.
    Inosilicates: double chains-amphiboles Tremolite (001) view blue = Si purple = M1 rose = M2 gray = M3 (all Mg) yellow = M4 (Ca) Tremolite: Ca2Mg5 [Si8O22] (OH)2 b asin
  • 39.
    Inosilicates: double chains-amphiboles Hornblende: (Ca, Na)2-3 (Mg, Fe, Al)5 [(Si,Al)8O22] (OH)2 b asin Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2 light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na) little turquoise ball = H
  • 40.
    Inosilicates: double chains-amphiboles Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2 light blue = M3 (all Mg, Fe) Hornblende: (Ca, Na)2-3 (Mg, Fe, Al)5 [(Si,Al)8O22] (OH)2 Same I-beam architecture, but the I-beams are fatter (double chains)
  • 41.
    Inosilicates: double chains-amphiboles b asin (+) (+) (+) (+) (+) Same I-beam architecture, but the I-beams are fatter (double chains) All are (+) on clinoamphiboles and alternate in orthoamphiboles Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2 light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na) little turquoise ball = H Hornblende: (Ca, Na)2-3 (Mg, Fe, Al)5 [(Si,Al)8O22] (OH)2
  • 42.
    Inosilicates: double chains-amphiboles Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2 light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na) little turquoise ball = H Hornblende: (Ca, Na)2-3 (Mg, Fe, Al)5 [(Si,Al)8O22] (OH)2 M1-M3 are small sites M4 is larger (Ca) A-site is really big Variety of sites  great chemical range
  • 43.
    Inosilicates: double chains-amphiboles Hornblende (001) view dark blue = Si, Al purple = M1 rose = M2 light blue = M3 (all Mg, Fe) yellow ball = M4 (Ca) purple ball = A (Na) little turquoise ball = H Hornblende: (Ca, Na)2-3 (Mg, Fe, Al)5 [(Si,Al)8O22] (OH)2 (OH) is in center of tetrahedral ring where O is a part of M1 and M3 octahedra (OH)
  • 44.
    See handout formore information General formula: W0-1 X2 Y5 [Z8O22] (OH, F, Cl)2 W = Na K X = Ca Na Mg Fe2+ (Mn Li) Y = Mg Fe2+ Mn Al Fe3+ Ti Z = Si Al Again, the great variety of sites and sizes  a great chemical range, and hence a broad stability range The hydrous nature implies an upper temperature stability limit Amphibole Chemistry
  • 45.
    Ca-Mg-Fe Amphibole “quadrilateral”(good analogy with pyroxenes) Amphibole Chemistry Al and Na tend to stabilize the orthorhombic form in low-Ca amphiboles, so anthophyllite  gedrite orthorhombic series extends to Fe-rich gedrite in more Na-Al-rich compositions Tremolite Ca2Mg5Si8O22(OH)2 Ferroactinolite Ca2Fe5Si8O22(OH)2 Anthophyllite Mg7Si8O22(OH)2 Fe7Si8O22(OH)2 Actinolite Cummingtonite-grunerite Orthoamphiboles Clinoamphiboles
  • 46.
    Hornblende has Alin the tetrahedral site Geologists traditionally use the term “hornblende” as a catch-all term for practically any dark amphibole. Now the common use of the microprobe has petrologists casting “hornblende” into end-member compositions and naming amphiboles after a well-represented end-member. Sodic amphiboles Glaucophane: Na2 Mg3 Al2 [Si8O22] (OH)2 Riebeckite: Na2 Fe2+ 3 Fe3+ 2 [Si8O22] (OH)2 Sodic amphiboles are commonly blue, and often called “blue amphiboles” Amphibole Chemistry
  • 47.
    Tremolite (Ca-Mg) occursin meta-carbonates Actinolite occurs in low-grade metamorphosed basic igneous rocks Orthoamphiboles and cummingtonite-grunerite (all Ca-free, Mg-Fe-rich amphiboles) are metamorphic and occur in meta-ultrabasic rocks and some meta-sediments. The Fe-rich grunerite occurs in meta-ironstones The complex solid solution called hornblende occurs in a broad variety of both igenous and metamorphic rocks Sodic amphiboles are predominantly metamorphic where they are characteristic of high P/T subduction-zone metamorphism (commonly called “blueschist” in reference to the predominant blue sodic amphiboles Riebeckite occurs commonly in sodic granitoid rocks Amphibole Occurrences
  • 48.
    Inosilicates Pyroxenes and amphibolesare very similar:  Both have chains of SiO4 tetrahedra  The chains are connected into stylized I-beams by M octahedra  High-Ca monoclinic forms have all the T-O-T offsets in the same direction  Low-Ca orthorhombic forms have alternating (+) and (-) offsets + + + + ++ + ++ - - - - - - + ++ a a + + + + + + + + + + + + - - - - - - Clinopyroxene Orthopyroxene Orthoamphibole Clinoamphibole
  • 49.
    Inosilicates Cleavage angles canbe interpreted in terms of weak bonds in M2 sites (around I-beams instead of through them) Narrow single-chain I-beams  90o cleavages in pyroxenes while wider double- chain I-beams  60-120o cleavages in amphiboles pyroxene amphibole a b
  • 50.
    SiO4 tetrahedra polymerizedinto 2-D sheets: [Si2O5] Apical O’s are unpolymerized and are bonded to other constituents Phyllosilicates
  • 51.
    Tetrahedral layers arebonded to octahedral layers (OH) pairs are located in center of T rings where no apical O Phyllosilicates
  • 52.
    Octahedral layers canbe understood by analogy with hydroxides Phyllosilicates Brucite: Mg(OH)2 Layers of octahedral Mg in coordination with (OH) Large spacing along c due to weak van der waals bonds c
  • 53.
    Phyllosilicates Gibbsite: Al(OH)3 Layers ofoctahedral Al in coordination with (OH) Al3+ means that only 2/3 of the VI sites may be occupied for charge-balance reasons Brucite-type layers may be called trioctahedral and gibbsite-type dioctahedral a1 a2
  • 54.
    Phyllosilicates Kaolinite: Al2 [Si2O5](OH)4 T-layers and diocathedral (Al3+) layers (OH) at center of T-rings and fill base of VI layer  Yellow = (OH) T O - T O - T O vdw vdw weak van der Waals bonds between T-O groups
  • 55.
    Phyllosilicates Serpentine: Mg3 [Si2O5](OH)4 T-layers and triocathedral (Mg2+) layers (OH) at center of T-rings and fill base of VI layer  Yellow = (OH) T O - T O - T O vdw vdw weak van der Waals bonds between T-O groups
  • 56.
    Serpentine Octahedra are abit larger than tetrahedral match, so they cause bending of the T-O layers (after Klein and Hurlbut, 1999). Antigorite maintains a sheet-like form by alternating segments of opposite curvature Chrysotile does not do this and tends to roll into tubes
  • 57.
    Serpentine The rolled tubesin chrysotile resolves the apparent paradox of asbestosform sheet silicates S = serpentine T = talc Nagby and Faust (1956) Am. Mineralogist 41, 817-836. Veblen and Busek, 1979, Science 206, 1398-1400.
  • 58.
    Phyllosilicates Pyrophyllite: Al2 [Si4O10](OH)2 T-layer - diocathedral (Al3+) layer - T-layer T O T - T O T - T O T vdw vdw weak van der Waals bonds between T - O - T groups Yellow = (OH)
  • 59.
    Phyllosilicates Talc: Mg3 [Si4O10](OH)2 T-layer - triocathedral (Mg2+) layer - T-layer T O T - T O T - T O T vdw vdw weak van der Waals bonds between T - O - T groups Yellow = (OH)
  • 60.
    Phyllosilicates Muscovite: K Al2[Si3AlO10] (OH)2 (coupled K - AlIV) T-layer - diocathedral (Al3+) layer - T-layer - K T O T K T O T K T O T K between T - O - T groups is stronger than vdw
  • 61.
    Phyllosilicates Phlogopite: K Mg3[Si3AlO10] (OH)2 T-layer - triocathedral (Mg2+) layer - T-layer - K T O T K T O T K T O T K between T - O - T groups is stronger than vdw
  • 62.
    A Summary of PhyllosilicateStructures Phyllosilicates Fig 13.84 Klein and Hurlbut Manual of Mineralogy, © John Wiley & Sons
  • 63.
    Chlorite: (Mg, Fe)3[(Si, Al)4O10] (OH)2 (Mg, Fe)3 (OH)6 = T - O - T - (brucite) - T - O - T - (brucite) - T - O - T - Very hydrated (OH)8, so low-temperature stability (low-T metamorphism and alteration of mafics as cool) Phyllosilicates
  • 64.
    Why are theresingle-chain-, double-chain-, and sheet-polymer types, and not triple chains, quadruple chains, etc?? “Biopyriboles”
  • 65.
    It turns outthat there are some intermediate types, predicted by J.B. Thompson and discovered in 1977 Veblen, Buseck, and Burnham Cover of Science: anthophyllite (yellow) reacted to form chesterite (blue & green) and jimthompsonite (red) Streaked areas are highly disordered “Biopyriboles” Cover of Science, October 28, 1977 © AAAS
  • 66.
    HRTEM image ofanthophyllite (left) with typical double-chain width Jimthompsonite (center) has triple-chains Chesterite is an ordered alternation of double- and triple-chains anthophyllite jimthompsonite chesterite Fig. 6, Veblen et al (1977) Science 198 © AAAS
  • 67.
    Disordered structures show4-chain widths and even a 7-chain width Obscures the distinction between pyroxenes, amphiboles, and micas (hence the term biopyriboles: biotite-pyroxene-amphibole) “Biopyriboles” Fig. 7, Veblen et al (1977) Science 198 © AAAS
  • 68.
    Stishovite Coesite - quartz - quartz Liquid Tridymite Cristobalite 6001000 1400 1800 2200 2600 2 4 6 8 10 Pressure(GPa) Temperature oC After Swamy and Saxena (1994) J. Geophys. Res., 99, 11,787-11,794.
  • 69.
    Low Quartz 001 ProjectionCrystal Class 32 Stishovite Coesite - quartz - quartz Liquid Tridymite Cristobalite
  • 70.
    High Quartz at581oC 001 Projection Crystal Class 622 Stishovite Coesite - quartz - quartz Liquid Tridymite Cristobalite
  • 71.
    Cristobalite 001 Projection CubicStructure Stishovite Coesite - quartz - quartz Liquid Tridymite Cristobalite
  • 72.
    Stishovite High pressure SiVI Stishovite Coesite - quartz - quartz Liquid Tridymite Cristobalite
  • 73.
  • 74.
    Feldspars Albite: NaAlSi3O8 Substitute two Al3+for Si4+ allows Ca2+ to be added Substitute Al3+ for Si4+ allows Na+ or K+ to be added