SlideShare a Scribd company logo
Reducing Concentration Uncertainty
Using
The Coupled Markov Chain
Approach
Amro Elfeki
Section Hydrology,
Dept. of Water Management,
TU Delft,
The Netherlands.
Outlines
• Motivation of this research.
• Methodology:
• Markov Chain in One-dimension.
• Markov Chain in Multi-dimensions: Coupled Markov Chain (CMC).
• Application of CMC at the Schelluinen study area (Bierkens, 94).
• Comparison between:
CMC (Elfeki and Dekking, 2001) and
SIS (Sequential Indicator Simulation, Gomez-Hernandez and
Srivastava, 1990) .
• Flow and Transport Models in a Monte-Carlo Framework.
• Geostatistical Results.
• Transport Results.
• Conclusions.
Motivation and Issues
Motivation of this research:
• Test the applicability of CMC model on field data at many sites.
• Incorporating CMC model in flow and transport models to study
uncertainty in concentration fields.
• Deviate from the literature:
- Non-Gaussian stochastic fields: (Markovian fields),
- Statistically heterogeneous fields, and
- Non-uniformity of the flow field (in the mean) due to
boundary conditions.
Geological and Parameter Uncertainties
Unconditional CMC
1 2 3 4
0 50 100 150 200 250 300
-50
0
0 50 100 150 200 250 300
-50
0
time = 1600 days
0 50 100 150 200 250 300
-50
0
0 50 100 150 200 250 300
-50
0
0 50 100 150 200 250 300
-50
0
0 50 100 150 200 250 300
-40
-20
0
0 50 100 150 200 250 300
-40
-20
0
Geology is Certain and Parameters are Uncertain
Geology is Uncertain and Parameters are Certain
0 0.01 0.1 1
C
C
actualC
C
C
Elfeki, Uffink and Barends, 1998
Geological Uncertainty:
Geological configuration.
Parameter Uncertainty:
Conductivity value of each unit.
( )
Markov property (One-Step transition probability)
Pr( )
Pr( ) : ,
Marginal Distribution
lim
Conditioning on the Fut
N
i i-1 i-2 i-3 0k l n pr
i i-1k l lk
N
klk
| , , S ,...,S S S SZ Z Z Z Z
| pS SZ Z
p w
     
  

( )
1 ( 1)
ure
Pr ( )
N i
kq lk
i i Nk l q N i
lq
p p
| ,S S SZ Z Z
p

  
   
S S
o d
One-dimensional Markov Chain
Dark Grey (Boundary Cells)
Light Grey (Previously Generated Cells)
White (Unknown Cells)
i-1,j i,j
i,j-1
1,1
Nx,Ny
Nx,1
1,Ny
Nx,j
, , 1, , 1
, 1, , 1 ,,
Unconditioinal Coupled Markov Chains
: Pr( | , ) . 1,...
Conditioinal Coupled Markov Chains
: Pr( | , , )x
h v
lk mk
lm k i j k i j l i j m h v
lf mf
f
i j k i j l i j m N j qlm k q
h
lk
.p p
p Z S Z S Z S k n
.p p
p Z S Z S Z S Z S
.p
 
 
     
     

( )
( )
, 1,... .
x
x
h N i v
kq mk
h h N i v
lf fq mf
f
.p p
k n
. .p p p




Coupled Markov Chain “CMC” in 2D
(Elfeki and Dekking, 2001)
CMC vs. Conventional Methods
CMC Conventional Methods
Based on conditional
probability (transition
matrix).
Based on variogram or
autocovariance.
Marginal Probability. Sill.
Asymmetry can be
described.
Asymmetry is
impossible to describe.
A model of spatial
dependence is not
necessary.
A model of spatial
dependence is needed
for implementation.
Compute only the one-
step transition and the
model takes care of the
n-step transition
probability.
Need to compute many
lags for the variogram
or auto-correlations.
(unreliable at large
lags)
Schelluinen study area, The Netherlands
Soil
Coding
Soil description
1 Channel deposits (sand)
2 Natural levee deposits (fine sand, sandy
clay, silty clay)
3 Crevasse splay deposits (fine sand,
sandy clay, silty clay)
4 Flood basin deposits (clay, humic clay)
5 Organic deposits (peaty clay, peat)
6 Subsoil (sand)
0 80 160 240
-10
-5
0
0 200 400 600 800 1000 1200 1400 1600
-10
-5
0
1 2 3 4 5 6
Data from Bierkens, 1994
Parameter Estimation and Procedure
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
Geological Image
Domain Discretization
Generated Realization
0 50 100 150 200
-10
-5
0
Superposition of the Grid over
the Geological Image and
Estimation of Transition Probability
Boreholes Locations
0 50 100 150 200
-10
-5
0
Parameters Estimation Conditional Simulation
1
v
v lk
lk n
v
lq
q
T
p
T



Horizontal transition probability matrix of 1650 m section
calculated over sampling intervals of 25 m.
Soil 1 2 3 4 5 6
1 0.979 0.004 0.001 0.006 0.009 0.001
2 0.020 0.965 0.001 0.008 0.006 0.000
3 0.003 0.002 0.966 0.013 0.016 0.000
4 0.000 0.001 0.009 0.983 0.007 0.000
5 0.001 0.001 0.006 0.007 0.984 0.001
6 0.000 0.000 0.001 0.000 0.002 0.997
Vertical transition probability matrix 1650 m section calculated
over sampling intervals of 0.25 m.
Soil 1 2 3 4 5 6
1 0.945 0.000 0.009 0.000 0.009 0.037
2 0.071 0.796 0.021 0.041 0.071 0.000
3 0.000 0.000 0.797 0.086 0.089 0.028
4 0.003 0.013 0.041 0.714 0.222 0.007
5 0.004 0.012 0.047 0.119 0.768 0.050
6 0.000 0.000 0.000 0.000 0.000 1.000
Transition Probabilities (1650 x10 m)
Transition Probabilities (240 x10 m)
Horizontal transition probability matrix Vertical transition probability matrix
State 3 4 5 6 State 3 4 5 6
3 0.979 0.010 0.011 0.000 3 0.969 0.027 0.004 0.000
4 0.011 0.974 0.015 0.000 4 0.008 0.724 0.268 0.000
5 0.008 0.120 0.977 0.003 5 0.025 0.139 0.791 0.045
6 0.010 0.000 0.007 0.983 6 0.000 0.000 0.000 1.000
0 80 160 240
-10
-5
0 3
4
5
6
Sampling intervals
Dx = 2 m
Dy= 0.25 m
0.966 0.013 0.016 0.000
0.009 0.983 0.007 0.000
0.006 0.007 0.984 0.001
0.001 0.000 0.002 0.997
0.797 0.086 0.089 0.028
0.041 0.714 0.222 0.007
0.047 0.119 0.768 0.050
0.000 0.000 0.000 1.000
Horizontal Transition Probability from 1650x10
Vertical Transition Probability from 1650x10
Parameter Numerical Value
Time step 5 [day]
Longitudinal dispersivity 0.1 [m]
Transverse dispersivity 0.01 [m]
Effective porosity 0.30 [-]
Injected tracer mass 1000 [grams]
Head difference at the site 1.0 [m]
Monte-Carlo Runs 50 MC
Number of particles 10,000 [particles]
Physical and Simulation Parameters
Soil Properties at the core scale from Bierkens, 1996 (Table 1).
Soil
Coding
Soil type Wi
6 Fine & loamy sand 0.12 0.60 1.76 4.40 0.09
5 Peat 0.39 -2.00 1.7 0.30 2.99
3 Sand & silty clay 0.19 -4.97 3.49 0.1 5.86
4 Clay & humic clay 0.30 -7.00 2.49 0.01 10.1
2
( )iLog K( )iLog K ( / )iK m day 2
iK
Convergence:
~14000 Iterations
Accuracy 0.00001
( , ) ( , ) 0
( , )
( , )
x
y
K x y K x y
x x y y
K x yV
x
K x yV
y
  
  
  
   
    
   






Flow Model













Contaminant Source
Plume at Time, t
Impermeable boundary
Impermeable boundary
is the hydraulic head,
Vx and Vy are pore velocities,
is the hydraulic conductivity, and
is the effective porosity.

( , )K x y

Hydrodynamic Condition:
Non-uniform Flow in the Mean
due to Boundary Conditions.
Transport Model
Governing equation of solute transport :
C is concentration
Vx and Vy are pore velocities, and
Dxx , Dyy , Dxy , Dyx are pore-scale dispersion coefficients
x y xx xy yx yy
C C C C C C CV V D D D D
t x y x x y y x y
   
   
   
   
   
             
        
* - i j
mij ijL L T
VV
D V D
V
   
       
     
*mD
ij
L

T

is effective molecular diffusion,
is delta function,
is longitudinal dispersivity, and
is lateral dispersivity.
1 1
1 1
cos sin sin cos
. / . / . / . /
n n n n
p p x p p yL T L T
n n n n
p p x x y p p y y xL T L T
X X V t Z Z Y Y V t Z Z
X X V t Z V V Z V V Y Y V t Z V V Z V V
    
 
         
         
6 4 4 4 44 7 4 4 4 4 486 7 8
dispersive termadvective term
    1 22 2xy yxx x
p p x L T
D VD V
X t t X t V t Z V t Z V t
x y V V
 
 
 
 
 

          
 
    1 22 2yx yy y x
p p y L T
D D V V
Y t t Y t V t Z V t Z V t
x y V V
 
 
 
 
 
 
          
 
The displacement is a normally distributed random variable, whose
mean is the advective movement and whose deviation from the mean
is the dispersive movement.
instantaneous injection
+ uniform flow
Random Walk Method
Effect of Conditioning on S. R. Plume
mg/lit
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0
0.1
1
10
3 4
Lithology Coding
6 5
T= 82 years
# drillings
2
3
5
9
25
31
Effect of Conditioning Single Realiz. Cmax
0 4 8 12 16 20 24 28 32
No. of Conditioning Boreholes
0
40
80
120
160
200
240
PeakConcentration(mg/lit)
Single Realization Cmax (t = 34.2 Years)
Single Realization Cmax (t = 68.4 Years)
Single Realization Cmax (t = 95.8 Years)
Single Realization Cmax (t = 136.9 Years)
Original Section (t = 34.2 Years)
Original Section (t = 68.4 Years)
Original Section (t = 95.8 Years)
Original Section (t = 136.9 Years)
Practical convergence
is reached after
about 21 boreholes
0 50 100 150 200
-10
-5
0
First Moment (Single Realization)
0 10000 20000 30000 40000
Time (days)
0
20
40
60
80
100
120
X_CoordinateoftheCentroid(m)
Original Section
Conditioning on 2 boreholes
Conditioning on 3 boreholes
Conditioning on 5 boreholes
Conditioning on 9 boreholes
Conditioning on 25 boreholes
0 10000 20000 30000 40000
Time (days)
-10
-8
-6
-4
-2
0
Y_CoordinateoftheCentroid(m)
Original Section
Conditioning on 2 boreholes
Conditioning on 3 boreholes
Conditioning on 5 boreholes
Conditioning on 9 boreholes
Conditioning on 25 boreholes
Trend is reached at
3 boreholes
Convergence at
9 boreholes













Contaminant Source
Plume at Time, t
Impermeable boundary
Impermeable boundary
Second Moment (Single Realization)
0 10000 20000 30000 40000
Time (days)
0
0.5
1
1.5
2
2.5
VarianceinY_direction(m2)
Original Section
Conditioning on 2 boreholes
Conditioning on 3 boreholes
Conditioning on 5 boreholes
Conditioning on 9 boreholes
Conditioning on 25 boreholes
0 10000 20000 30000 40000
Time (days)
0
1000
2000
3000
4000
VarianceinX_direction(m2)
Original Section
Conditioning on 2 boreholes
Conditioning on 3 boreholes
Conditioning on 5 boreholes
Conditioning on 9 boreholes
Conditioning on 25 boreholes
Trend is reached at
3 boreholes
Convergence at
5 and 25 boreholes
Convergence at
9 boreholes













Contaminant Source
Plume at Time, t
Impermeable boundary
Impermeable boundary
Breakthrough Curve (Single Realization)
0 10000 20000 30000 40000 50000
Time (days)
0
0.2
0.4
0.6
0.8
1
NormalizedMassDistribution
Original Section
Conditioning on 2 boreholes
Conditioning on 3 boreholes
Conditioning on 5 boreholes
Conditioning on 9 boreholes
Conditioning on 25 boreholes
0 50 100 150 200
-10
-5
0
Convergence at
25 boreholes
Conditioning on 2 boreholes (Ensemble )
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 0.1 1 10
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
CactualC C
mg/lit
T = 4.1 years
T = 82.2 years
T = 136.9 years
Conditioning on 5 boreholes (Ensemble)
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 0.1 1 10
mg/lit
actualC C C
Conditioning on 9 boreholes (Ensemble)
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
actualC C C
Conditioning on 21 boreholes(Ensemble)
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
actualC C C
Conditioning on 31 boreholes(Ensemble)
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
0 50 100 150 200
-10
-5
0
actualC C C
Effect of Conditioning on Ensemble Cmax
0 4 8 12 16 20 24 28 32
No. of Conditioning Boreholes
0
10
20
30
40
50
60
70
80
90
100
110
EnsemblePeakConcentration(mg/lit)
Ensemble Cmax (t = 34.2 Years)
Ensemble Cmax (t = 68.4 Years)
Ensemble Cmax (t = 95.8 Years)
Ensemble Cmax (t = 136.9 Years)
Original Section (t = 34.2 Years)
Original Section (t = 68.4 Years)
Original Section (t = 95.8 Years)
Original Section (t = 136.9 Years)
0 4 8 12 16 20 24 28 32
No. of Conditioning Boreholes
0
1
2
3
4
5
6
CVofCmax
t = 34.2 Years
t = 68.4 Years
t = 95.8 Years
t = 136.9 Years
max actualC Cp
max
1 for #boreholes 5

 c
C
max
1 for #boreholes 5

c
C
p
max
time

 c
C
Conclusions
1. CMC model proved to be a valuable tool in predicting heterogeneous
geological structures which lead to reducing uncertainty in
concentration distributions of contaminant plumes.
2. Convergence to actual concentration is of oscillatory type, due to
the fact that some layers are connected in one scenario and
disconnected in another scenario.
3. In non-Gaussian fields, single realization concentration fields and
the ensemble concentration fields are non-Gaussian in space with
peak skewed to the left.
4. Reproduction of peak concentration, plume spatial moments and
breakthrough curves in a single realization requires many
conditioning boreholes (20-31 boreholes). However, reproduction of
plume shapes require less boreholes (5 boreholes).
Conclusions
5. Ensemble concentration and ensemble variance have the same
pattern. Ensemble variance is peaked at the location of the peak
ensemble concentration and decreases when one goes far from the
peak concentration. This supports early work by Rubin (1991).
However, in Rubin’s case the maximum concentration was in the
center of the plume which is attributed to Gaussian fields. The non-
centered peak concentration, in this study, is attributed to the non-
G a u s s i a n f i e l d s .
6. Coefficient of variation of max concentration [CV(Cmax)] decreases
significantly when conditioning is performed on more than 5
b o r e h o l e s .
7. Reproduction of peak concentration, plume spatial moments and
breakthrough curves in a single realization requires many conditioning
boreholes (20-31 boreholes). However, reproduction of plume shapes
r e q u i r e l e s s b o r e h o l e s ( 5 b o r e h o l e s ) .

More Related Content

What's hot

Slip boundary conditions for the moving contact line in molecular dynamics an...
Slip boundary conditions for the moving contact line in molecular dynamics an...Slip boundary conditions for the moving contact line in molecular dynamics an...
Slip boundary conditions for the moving contact line in molecular dynamics an...
Nikolai Priezjev
 
WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHE...
WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHE...WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHE...
WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHE...
Nikolai Priezjev
 
Dynamical heterogeneity and structural relaxation in periodically deformed po...
Dynamical heterogeneity and structural relaxation in periodically deformed po...Dynamical heterogeneity and structural relaxation in periodically deformed po...
Dynamical heterogeneity and structural relaxation in periodically deformed po...
Nikolai Priezjev
 
Molecular Dynamics Simulations of Oscillatory Couette Flows with Slip Boundar...
Molecular Dynamics Simulations of Oscillatory Couette Flows with Slip Boundar...Molecular Dynamics Simulations of Oscillatory Couette Flows with Slip Boundar...
Molecular Dynamics Simulations of Oscillatory Couette Flows with Slip Boundar...
Nikolai Priezjev
 
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...Komal Goyal
 
Molecular origin of surface tension at liquid-vapor interfaces
Molecular origin of surface tension at liquid-vapor interfacesMolecular origin of surface tension at liquid-vapor interfaces
Molecular origin of surface tension at liquid-vapor interfaces
Nikolai Priezjev
 
4 matched filters and ambiguity functions for radar signals-2
4 matched filters and ambiguity functions for radar signals-24 matched filters and ambiguity functions for radar signals-2
4 matched filters and ambiguity functions for radar signals-2
Solo Hermelin
 

What's hot (8)

Inorg nmr-06
Inorg nmr-06Inorg nmr-06
Inorg nmr-06
 
Slip boundary conditions for the moving contact line in molecular dynamics an...
Slip boundary conditions for the moving contact line in molecular dynamics an...Slip boundary conditions for the moving contact line in molecular dynamics an...
Slip boundary conditions for the moving contact line in molecular dynamics an...
 
WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHE...
WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHE...WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHE...
WETTING PROPERTIES OF STRUCTURED INTERFACES COMPOSED OF SURFACE-ATTACHED SPHE...
 
Dynamical heterogeneity and structural relaxation in periodically deformed po...
Dynamical heterogeneity and structural relaxation in periodically deformed po...Dynamical heterogeneity and structural relaxation in periodically deformed po...
Dynamical heterogeneity and structural relaxation in periodically deformed po...
 
Molecular Dynamics Simulations of Oscillatory Couette Flows with Slip Boundar...
Molecular Dynamics Simulations of Oscillatory Couette Flows with Slip Boundar...Molecular Dynamics Simulations of Oscillatory Couette Flows with Slip Boundar...
Molecular Dynamics Simulations of Oscillatory Couette Flows with Slip Boundar...
 
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
Simple Comparison of Convergence of GeneralIterations and Effect of Variation...
 
Molecular origin of surface tension at liquid-vapor interfaces
Molecular origin of surface tension at liquid-vapor interfacesMolecular origin of surface tension at liquid-vapor interfaces
Molecular origin of surface tension at liquid-vapor interfaces
 
4 matched filters and ambiguity functions for radar signals-2
4 matched filters and ambiguity functions for radar signals-24 matched filters and ambiguity functions for radar signals-2
4 matched filters and ambiguity functions for radar signals-2
 

Viewers also liked

Data Information
Data InformationData Information
Data Information
Larry Nelson
 
презентация Microsoft power point
презентация Microsoft power pointпрезентация Microsoft power point
презентация Microsoft power point
imokse
 
Aircel telecom
Aircel telecomAircel telecom
Aircel telecom
aircelmarketing
 
Nathalie Nasser_Curriculum Vitae
Nathalie Nasser_Curriculum VitaeNathalie Nasser_Curriculum Vitae
Nathalie Nasser_Curriculum VitaeNathalie Nasser
 
A media es_a_posztmodern
A media es_a_posztmodernA media es_a_posztmodern
A media es_a_posztmodern
Jardek19
 
tik kelas IX Bab 1
tik kelas IX Bab 1tik kelas IX Bab 1
tik kelas IX Bab 1
dinoartacahyono
 
ネットマーケットのご提案
ネットマーケットのご提案ネットマーケットのご提案
ネットマーケットのご提案Ryan Groshong
 
Secure Routing Protocol
Secure Routing ProtocolSecure Routing Protocol
Secure Routing Protocol
KentaMuranaka
 
Me4Map presentation at Universidad Carlos III of Madrid
Me4Map presentation at Universidad Carlos III of MadridMe4Map presentation at Universidad Carlos III of Madrid
Me4Map presentation at Universidad Carlos III of Madrid
Uned Laboratorio de Innovación en Humanidades
 
Zaid_Ahmed_Resume_30th_Oct_2015
Zaid_Ahmed_Resume_30th_Oct_2015Zaid_Ahmed_Resume_30th_Oct_2015
Zaid_Ahmed_Resume_30th_Oct_2015Sheikh Zaid Ahmed
 
Mahendiran Resume 07.08.15
Mahendiran Resume 07.08.15Mahendiran Resume 07.08.15
Mahendiran Resume 07.08.15Mahendiran N
 
Mediat2
Mediat2Mediat2
Mediat2
sarahlouise12
 
проектная деятельность на уроках технологии
проектная деятельность на уроках технологиипроектная деятельность на уроках технологии
проектная деятельность на уроках технологии
TPingacheva
 
Body language presentation
Body language presentationBody language presentation
Body language presentation
Alla Bykova
 

Viewers also liked (16)

Data Information
Data InformationData Information
Data Information
 
презентация Microsoft power point
презентация Microsoft power pointпрезентация Microsoft power point
презентация Microsoft power point
 
Aircel telecom
Aircel telecomAircel telecom
Aircel telecom
 
Nathalie Nasser_Curriculum Vitae
Nathalie Nasser_Curriculum VitaeNathalie Nasser_Curriculum Vitae
Nathalie Nasser_Curriculum Vitae
 
idrees resume
idrees resumeidrees resume
idrees resume
 
A media es_a_posztmodern
A media es_a_posztmodernA media es_a_posztmodern
A media es_a_posztmodern
 
tik kelas IX Bab 1
tik kelas IX Bab 1tik kelas IX Bab 1
tik kelas IX Bab 1
 
ネットマーケットのご提案
ネットマーケットのご提案ネットマーケットのご提案
ネットマーケットのご提案
 
Secure Routing Protocol
Secure Routing ProtocolSecure Routing Protocol
Secure Routing Protocol
 
Me4Map presentation at Universidad Carlos III of Madrid
Me4Map presentation at Universidad Carlos III of MadridMe4Map presentation at Universidad Carlos III of Madrid
Me4Map presentation at Universidad Carlos III of Madrid
 
Zaid_Ahmed_Resume_30th_Oct_2015
Zaid_Ahmed_Resume_30th_Oct_2015Zaid_Ahmed_Resume_30th_Oct_2015
Zaid_Ahmed_Resume_30th_Oct_2015
 
Mahendiran Resume 07.08.15
Mahendiran Resume 07.08.15Mahendiran Resume 07.08.15
Mahendiran Resume 07.08.15
 
AllensResume.docx
AllensResume.docxAllensResume.docx
AllensResume.docx
 
Mediat2
Mediat2Mediat2
Mediat2
 
проектная деятельность на уроках технологии
проектная деятельность на уроках технологиипроектная деятельность на уроках технологии
проектная деятельность на уроках технологии
 
Body language presentation
Body language presentationBody language presentation
Body language presentation
 

Similar to Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach

Reducing Uncertainty of Groundwater Contaminant Transport Using Markov Chains
Reducing Uncertainty of Groundwater Contaminant Transport Using  Markov Chains Reducing Uncertainty of Groundwater Contaminant Transport Using  Markov Chains
Reducing Uncertainty of Groundwater Contaminant Transport Using Markov Chains
Amro Elfeki
 
Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...
Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...
Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...
Amro Elfeki
 
Modeling Subsurface Heterogeneity by Coupled Markov Chains: Directional Depen...
Modeling Subsurface Heterogeneity by Coupled Markov Chains: Directional Depen...Modeling Subsurface Heterogeneity by Coupled Markov Chains: Directional Depen...
Modeling Subsurface Heterogeneity by Coupled Markov Chains: Directional Depen...
Amro Elfeki
 
Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)
Amro Elfeki
 
Oil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk TechniqueOil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Amro Elfeki
 
Geohydrology ii (1)
Geohydrology ii (1)Geohydrology ii (1)
Geohydrology ii (1)
Amro Elfeki
 
2012-TFM1 Economic Gas-like Models
2012-TFM1 Economic Gas-like Models2012-TFM1 Economic Gas-like Models
2012-TFM1 Economic Gas-like Models
Ricardo Lopez-Ruiz
 
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...
Amro Elfeki
 
Semi-Classical Transport Theory.ppt
Semi-Classical Transport Theory.pptSemi-Classical Transport Theory.ppt
Semi-Classical Transport Theory.ppt
VivekDixit100
 
Sprittles presentation
Sprittles presentationSprittles presentation
Sprittles presentationJamesSprittles
 
New folderelec425_2016_hw5.pdfMar 25, 2016 ELEC 425 S.docx
New folderelec425_2016_hw5.pdfMar 25, 2016 ELEC 425 S.docxNew folderelec425_2016_hw5.pdfMar 25, 2016 ELEC 425 S.docx
New folderelec425_2016_hw5.pdfMar 25, 2016 ELEC 425 S.docx
curwenmichaela
 
Future cosmology with CMB lensing and galaxy clustering
Future cosmology with CMB lensing and galaxy clusteringFuture cosmology with CMB lensing and galaxy clustering
Future cosmology with CMB lensing and galaxy clustering
Marcel Schmittfull
 
Qualitative model of transport
Qualitative model of transportQualitative model of transport
Qualitative model of transport
RokhitTharshini
 
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loadingHeterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
Nikolai Priezjev
 
Mobility Measurements Probe Conformational Changes in Membrane-embedded prote...
Mobility Measurements Probe Conformational Changes in Membrane-embedded prote...Mobility Measurements Probe Conformational Changes in Membrane-embedded prote...
Mobility Measurements Probe Conformational Changes in Membrane-embedded prote...
richardgmorris
 
kasami spreading code example with explanation.pdf
kasami spreading code example with explanation.pdfkasami spreading code example with explanation.pdf
kasami spreading code example with explanation.pdf
GeletaAman
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing
ssuser2797e4
 
final poster
final posterfinal poster
final posterNeal Woo
 
SLAM of Multi-Robot System Considering Its Network Topology
SLAM of Multi-Robot System Considering Its Network TopologySLAM of Multi-Robot System Considering Its Network Topology
SLAM of Multi-Robot System Considering Its Network Topologytoukaigi
 
My Prize Winning Physics Poster from 2006
My Prize Winning Physics Poster from 2006My Prize Winning Physics Poster from 2006
My Prize Winning Physics Poster from 2006
Dr. Catherine Sinclair She/Her
 

Similar to Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach (20)

Reducing Uncertainty of Groundwater Contaminant Transport Using Markov Chains
Reducing Uncertainty of Groundwater Contaminant Transport Using  Markov Chains Reducing Uncertainty of Groundwater Contaminant Transport Using  Markov Chains
Reducing Uncertainty of Groundwater Contaminant Transport Using Markov Chains
 
Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...
Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...
Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...
 
Modeling Subsurface Heterogeneity by Coupled Markov Chains: Directional Depen...
Modeling Subsurface Heterogeneity by Coupled Markov Chains: Directional Depen...Modeling Subsurface Heterogeneity by Coupled Markov Chains: Directional Depen...
Modeling Subsurface Heterogeneity by Coupled Markov Chains: Directional Depen...
 
Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)
 
Oil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk TechniqueOil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk Technique
 
Geohydrology ii (1)
Geohydrology ii (1)Geohydrology ii (1)
Geohydrology ii (1)
 
2012-TFM1 Economic Gas-like Models
2012-TFM1 Economic Gas-like Models2012-TFM1 Economic Gas-like Models
2012-TFM1 Economic Gas-like Models
 
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...
 
Semi-Classical Transport Theory.ppt
Semi-Classical Transport Theory.pptSemi-Classical Transport Theory.ppt
Semi-Classical Transport Theory.ppt
 
Sprittles presentation
Sprittles presentationSprittles presentation
Sprittles presentation
 
New folderelec425_2016_hw5.pdfMar 25, 2016 ELEC 425 S.docx
New folderelec425_2016_hw5.pdfMar 25, 2016 ELEC 425 S.docxNew folderelec425_2016_hw5.pdfMar 25, 2016 ELEC 425 S.docx
New folderelec425_2016_hw5.pdfMar 25, 2016 ELEC 425 S.docx
 
Future cosmology with CMB lensing and galaxy clustering
Future cosmology with CMB lensing and galaxy clusteringFuture cosmology with CMB lensing and galaxy clustering
Future cosmology with CMB lensing and galaxy clustering
 
Qualitative model of transport
Qualitative model of transportQualitative model of transport
Qualitative model of transport
 
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loadingHeterogeneous relaxation dynamics in amorphous materials under cyclic loading
Heterogeneous relaxation dynamics in amorphous materials under cyclic loading
 
Mobility Measurements Probe Conformational Changes in Membrane-embedded prote...
Mobility Measurements Probe Conformational Changes in Membrane-embedded prote...Mobility Measurements Probe Conformational Changes in Membrane-embedded prote...
Mobility Measurements Probe Conformational Changes in Membrane-embedded prote...
 
kasami spreading code example with explanation.pdf
kasami spreading code example with explanation.pdfkasami spreading code example with explanation.pdf
kasami spreading code example with explanation.pdf
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing
 
final poster
final posterfinal poster
final poster
 
SLAM of Multi-Robot System Considering Its Network Topology
SLAM of Multi-Robot System Considering Its Network TopologySLAM of Multi-Robot System Considering Its Network Topology
SLAM of Multi-Robot System Considering Its Network Topology
 
My Prize Winning Physics Poster from 2006
My Prize Winning Physics Poster from 2006My Prize Winning Physics Poster from 2006
My Prize Winning Physics Poster from 2006
 

More from Amro Elfeki

Simulation of Tracer Injection from a Well in a Nearly Radial Flow
Simulation of Tracer Injection from a Well in a Nearly Radial FlowSimulation of Tracer Injection from a Well in a Nearly Radial Flow
Simulation of Tracer Injection from a Well in a Nearly Radial Flow
Amro Elfeki
 
Aquifer recharge from flash floods in the arid environment: A mass balance ap...
Aquifer recharge from flash floods in the arid environment: A mass balance ap...Aquifer recharge from flash floods in the arid environment: A mass balance ap...
Aquifer recharge from flash floods in the arid environment: A mass balance ap...
Amro Elfeki
 
Basics of Contaminant Transport in Aquifers (Lecture)
Basics of Contaminant Transport in Aquifers (Lecture)Basics of Contaminant Transport in Aquifers (Lecture)
Basics of Contaminant Transport in Aquifers (Lecture)
Amro Elfeki
 
Well Hydraulics (Lecture 1)
Well Hydraulics (Lecture 1)Well Hydraulics (Lecture 1)
Well Hydraulics (Lecture 1)
Amro Elfeki
 
Gradually Varied Flow in Open Channel
Gradually Varied Flow in Open ChannelGradually Varied Flow in Open Channel
Gradually Varied Flow in Open Channel
Amro Elfeki
 
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
Amro Elfeki
 
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Amro Elfeki
 
Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology
Amro Elfeki
 
Lecture 4: Stochastic Hydrology (Site Characterization)
Lecture 4: Stochastic Hydrology (Site Characterization)Lecture 4: Stochastic Hydrology (Site Characterization)
Lecture 4: Stochastic Hydrology (Site Characterization)
Amro Elfeki
 
Lecture 3: Stochastic Hydrology
Lecture 3: Stochastic HydrologyLecture 3: Stochastic Hydrology
Lecture 3: Stochastic Hydrology
Amro Elfeki
 
Lecture 2: Stochastic Hydrology
Lecture 2: Stochastic Hydrology Lecture 2: Stochastic Hydrology
Lecture 2: Stochastic Hydrology
Amro Elfeki
 
Stochastic Hydrology Lecture 1: Introduction
Stochastic Hydrology Lecture 1: Introduction Stochastic Hydrology Lecture 1: Introduction
Stochastic Hydrology Lecture 1: Introduction
Amro Elfeki
 
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
Amro Elfeki
 
Soft Computing and Simulation in Water Resources: Chapter 1 introduction
Soft Computing and Simulation in Water Resources: Chapter 1 introductionSoft Computing and Simulation in Water Resources: Chapter 1 introduction
Soft Computing and Simulation in Water Resources: Chapter 1 introduction
Amro Elfeki
 
Derivation of unit hydrograph of Al-Lith basin in the south west of saudi ar...
Derivation of unit hydrograph of Al-Lith basin in the south  west of saudi ar...Derivation of unit hydrograph of Al-Lith basin in the south  west of saudi ar...
Derivation of unit hydrograph of Al-Lith basin in the south west of saudi ar...
Amro Elfeki
 
Empirical equations for flood analysis in arid zones
Empirical equations for flood analysis in arid zonesEmpirical equations for flood analysis in arid zones
Empirical equations for flood analysis in arid zones
Amro Elfeki
 
Simulation of the central limit theorem
Simulation of the central limit theoremSimulation of the central limit theorem
Simulation of the central limit theorem
Amro Elfeki
 
Empirical equations for estimation of transmission losses
Empirical equations for estimation  of transmission lossesEmpirical equations for estimation  of transmission losses
Empirical equations for estimation of transmission losses
Amro Elfeki
 
Representative elementary volume (rev) in porous
Representative elementary volume (rev) in porousRepresentative elementary volume (rev) in porous
Representative elementary volume (rev) in porous
Amro Elfeki
 
Civil Engineering Drawings (Collection of Sheets)
Civil Engineering Drawings (Collection of Sheets)Civil Engineering Drawings (Collection of Sheets)
Civil Engineering Drawings (Collection of Sheets)
Amro Elfeki
 

More from Amro Elfeki (20)

Simulation of Tracer Injection from a Well in a Nearly Radial Flow
Simulation of Tracer Injection from a Well in a Nearly Radial FlowSimulation of Tracer Injection from a Well in a Nearly Radial Flow
Simulation of Tracer Injection from a Well in a Nearly Radial Flow
 
Aquifer recharge from flash floods in the arid environment: A mass balance ap...
Aquifer recharge from flash floods in the arid environment: A mass balance ap...Aquifer recharge from flash floods in the arid environment: A mass balance ap...
Aquifer recharge from flash floods in the arid environment: A mass balance ap...
 
Basics of Contaminant Transport in Aquifers (Lecture)
Basics of Contaminant Transport in Aquifers (Lecture)Basics of Contaminant Transport in Aquifers (Lecture)
Basics of Contaminant Transport in Aquifers (Lecture)
 
Well Hydraulics (Lecture 1)
Well Hydraulics (Lecture 1)Well Hydraulics (Lecture 1)
Well Hydraulics (Lecture 1)
 
Gradually Varied Flow in Open Channel
Gradually Varied Flow in Open ChannelGradually Varied Flow in Open Channel
Gradually Varied Flow in Open Channel
 
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
 
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
 
Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology
 
Lecture 4: Stochastic Hydrology (Site Characterization)
Lecture 4: Stochastic Hydrology (Site Characterization)Lecture 4: Stochastic Hydrology (Site Characterization)
Lecture 4: Stochastic Hydrology (Site Characterization)
 
Lecture 3: Stochastic Hydrology
Lecture 3: Stochastic HydrologyLecture 3: Stochastic Hydrology
Lecture 3: Stochastic Hydrology
 
Lecture 2: Stochastic Hydrology
Lecture 2: Stochastic Hydrology Lecture 2: Stochastic Hydrology
Lecture 2: Stochastic Hydrology
 
Stochastic Hydrology Lecture 1: Introduction
Stochastic Hydrology Lecture 1: Introduction Stochastic Hydrology Lecture 1: Introduction
Stochastic Hydrology Lecture 1: Introduction
 
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
 
Soft Computing and Simulation in Water Resources: Chapter 1 introduction
Soft Computing and Simulation in Water Resources: Chapter 1 introductionSoft Computing and Simulation in Water Resources: Chapter 1 introduction
Soft Computing and Simulation in Water Resources: Chapter 1 introduction
 
Derivation of unit hydrograph of Al-Lith basin in the south west of saudi ar...
Derivation of unit hydrograph of Al-Lith basin in the south  west of saudi ar...Derivation of unit hydrograph of Al-Lith basin in the south  west of saudi ar...
Derivation of unit hydrograph of Al-Lith basin in the south west of saudi ar...
 
Empirical equations for flood analysis in arid zones
Empirical equations for flood analysis in arid zonesEmpirical equations for flood analysis in arid zones
Empirical equations for flood analysis in arid zones
 
Simulation of the central limit theorem
Simulation of the central limit theoremSimulation of the central limit theorem
Simulation of the central limit theorem
 
Empirical equations for estimation of transmission losses
Empirical equations for estimation  of transmission lossesEmpirical equations for estimation  of transmission losses
Empirical equations for estimation of transmission losses
 
Representative elementary volume (rev) in porous
Representative elementary volume (rev) in porousRepresentative elementary volume (rev) in porous
Representative elementary volume (rev) in porous
 
Civil Engineering Drawings (Collection of Sheets)
Civil Engineering Drawings (Collection of Sheets)Civil Engineering Drawings (Collection of Sheets)
Civil Engineering Drawings (Collection of Sheets)
 

Recently uploaded

LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
ssuser9bd3ba
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
Kamal Acharya
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
PrashantGoswami42
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
Kamal Acharya
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 

Recently uploaded (20)

LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 

Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach

  • 1. Reducing Concentration Uncertainty Using The Coupled Markov Chain Approach Amro Elfeki Section Hydrology, Dept. of Water Management, TU Delft, The Netherlands.
  • 2. Outlines • Motivation of this research. • Methodology: • Markov Chain in One-dimension. • Markov Chain in Multi-dimensions: Coupled Markov Chain (CMC). • Application of CMC at the Schelluinen study area (Bierkens, 94). • Comparison between: CMC (Elfeki and Dekking, 2001) and SIS (Sequential Indicator Simulation, Gomez-Hernandez and Srivastava, 1990) . • Flow and Transport Models in a Monte-Carlo Framework. • Geostatistical Results. • Transport Results. • Conclusions.
  • 3. Motivation and Issues Motivation of this research: • Test the applicability of CMC model on field data at many sites. • Incorporating CMC model in flow and transport models to study uncertainty in concentration fields. • Deviate from the literature: - Non-Gaussian stochastic fields: (Markovian fields), - Statistically heterogeneous fields, and - Non-uniformity of the flow field (in the mean) due to boundary conditions.
  • 4. Geological and Parameter Uncertainties Unconditional CMC 1 2 3 4 0 50 100 150 200 250 300 -50 0 0 50 100 150 200 250 300 -50 0 time = 1600 days 0 50 100 150 200 250 300 -50 0 0 50 100 150 200 250 300 -50 0 0 50 100 150 200 250 300 -50 0 0 50 100 150 200 250 300 -40 -20 0 0 50 100 150 200 250 300 -40 -20 0 Geology is Certain and Parameters are Uncertain Geology is Uncertain and Parameters are Certain 0 0.01 0.1 1 C C actualC C C Elfeki, Uffink and Barends, 1998 Geological Uncertainty: Geological configuration. Parameter Uncertainty: Conductivity value of each unit.
  • 5. ( ) Markov property (One-Step transition probability) Pr( ) Pr( ) : , Marginal Distribution lim Conditioning on the Fut N i i-1 i-2 i-3 0k l n pr i i-1k l lk N klk | , , S ,...,S S S SZ Z Z Z Z | pS SZ Z p w           ( ) 1 ( 1) ure Pr ( ) N i kq lk i i Nk l q N i lq p p | ,S S SZ Z Z p         S S o d One-dimensional Markov Chain
  • 6. Dark Grey (Boundary Cells) Light Grey (Previously Generated Cells) White (Unknown Cells) i-1,j i,j i,j-1 1,1 Nx,Ny Nx,1 1,Ny Nx,j , , 1, , 1 , 1, , 1 ,, Unconditioinal Coupled Markov Chains : Pr( | , ) . 1,... Conditioinal Coupled Markov Chains : Pr( | , , )x h v lk mk lm k i j k i j l i j m h v lf mf f i j k i j l i j m N j qlm k q h lk .p p p Z S Z S Z S k n .p p p Z S Z S Z S Z S .p                  ( ) ( ) , 1,... . x x h N i v kq mk h h N i v lf fq mf f .p p k n . .p p p     Coupled Markov Chain “CMC” in 2D (Elfeki and Dekking, 2001)
  • 7. CMC vs. Conventional Methods CMC Conventional Methods Based on conditional probability (transition matrix). Based on variogram or autocovariance. Marginal Probability. Sill. Asymmetry can be described. Asymmetry is impossible to describe. A model of spatial dependence is not necessary. A model of spatial dependence is needed for implementation. Compute only the one- step transition and the model takes care of the n-step transition probability. Need to compute many lags for the variogram or auto-correlations. (unreliable at large lags)
  • 8. Schelluinen study area, The Netherlands Soil Coding Soil description 1 Channel deposits (sand) 2 Natural levee deposits (fine sand, sandy clay, silty clay) 3 Crevasse splay deposits (fine sand, sandy clay, silty clay) 4 Flood basin deposits (clay, humic clay) 5 Organic deposits (peaty clay, peat) 6 Subsoil (sand) 0 80 160 240 -10 -5 0 0 200 400 600 800 1000 1200 1400 1600 -10 -5 0 1 2 3 4 5 6 Data from Bierkens, 1994
  • 9. Parameter Estimation and Procedure 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 Geological Image Domain Discretization Generated Realization 0 50 100 150 200 -10 -5 0 Superposition of the Grid over the Geological Image and Estimation of Transition Probability Boreholes Locations 0 50 100 150 200 -10 -5 0 Parameters Estimation Conditional Simulation 1 v v lk lk n v lq q T p T   
  • 10. Horizontal transition probability matrix of 1650 m section calculated over sampling intervals of 25 m. Soil 1 2 3 4 5 6 1 0.979 0.004 0.001 0.006 0.009 0.001 2 0.020 0.965 0.001 0.008 0.006 0.000 3 0.003 0.002 0.966 0.013 0.016 0.000 4 0.000 0.001 0.009 0.983 0.007 0.000 5 0.001 0.001 0.006 0.007 0.984 0.001 6 0.000 0.000 0.001 0.000 0.002 0.997 Vertical transition probability matrix 1650 m section calculated over sampling intervals of 0.25 m. Soil 1 2 3 4 5 6 1 0.945 0.000 0.009 0.000 0.009 0.037 2 0.071 0.796 0.021 0.041 0.071 0.000 3 0.000 0.000 0.797 0.086 0.089 0.028 4 0.003 0.013 0.041 0.714 0.222 0.007 5 0.004 0.012 0.047 0.119 0.768 0.050 6 0.000 0.000 0.000 0.000 0.000 1.000 Transition Probabilities (1650 x10 m)
  • 11. Transition Probabilities (240 x10 m) Horizontal transition probability matrix Vertical transition probability matrix State 3 4 5 6 State 3 4 5 6 3 0.979 0.010 0.011 0.000 3 0.969 0.027 0.004 0.000 4 0.011 0.974 0.015 0.000 4 0.008 0.724 0.268 0.000 5 0.008 0.120 0.977 0.003 5 0.025 0.139 0.791 0.045 6 0.010 0.000 0.007 0.983 6 0.000 0.000 0.000 1.000 0 80 160 240 -10 -5 0 3 4 5 6 Sampling intervals Dx = 2 m Dy= 0.25 m 0.966 0.013 0.016 0.000 0.009 0.983 0.007 0.000 0.006 0.007 0.984 0.001 0.001 0.000 0.002 0.997 0.797 0.086 0.089 0.028 0.041 0.714 0.222 0.007 0.047 0.119 0.768 0.050 0.000 0.000 0.000 1.000 Horizontal Transition Probability from 1650x10 Vertical Transition Probability from 1650x10
  • 12. Parameter Numerical Value Time step 5 [day] Longitudinal dispersivity 0.1 [m] Transverse dispersivity 0.01 [m] Effective porosity 0.30 [-] Injected tracer mass 1000 [grams] Head difference at the site 1.0 [m] Monte-Carlo Runs 50 MC Number of particles 10,000 [particles] Physical and Simulation Parameters Soil Properties at the core scale from Bierkens, 1996 (Table 1). Soil Coding Soil type Wi 6 Fine & loamy sand 0.12 0.60 1.76 4.40 0.09 5 Peat 0.39 -2.00 1.7 0.30 2.99 3 Sand & silty clay 0.19 -4.97 3.49 0.1 5.86 4 Clay & humic clay 0.30 -7.00 2.49 0.01 10.1 2 ( )iLog K( )iLog K ( / )iK m day 2 iK Convergence: ~14000 Iterations Accuracy 0.00001
  • 13. ( , ) ( , ) 0 ( , ) ( , ) x y K x y K x y x x y y K x yV x K x yV y                             Flow Model              Contaminant Source Plume at Time, t Impermeable boundary Impermeable boundary is the hydraulic head, Vx and Vy are pore velocities, is the hydraulic conductivity, and is the effective porosity.  ( , )K x y  Hydrodynamic Condition: Non-uniform Flow in the Mean due to Boundary Conditions.
  • 14. Transport Model Governing equation of solute transport : C is concentration Vx and Vy are pore velocities, and Dxx , Dyy , Dxy , Dyx are pore-scale dispersion coefficients x y xx xy yx yy C C C C C C CV V D D D D t x y x x y y x y                                            * - i j mij ijL L T VV D V D V                   *mD ij L  T  is effective molecular diffusion, is delta function, is longitudinal dispersivity, and is lateral dispersivity.
  • 15. 1 1 1 1 cos sin sin cos . / . / . / . / n n n n p p x p p yL T L T n n n n p p x x y p p y y xL T L T X X V t Z Z Y Y V t Z Z X X V t Z V V Z V V Y Y V t Z V V Z V V                            6 4 4 4 44 7 4 4 4 4 486 7 8 dispersive termadvective term     1 22 2xy yxx x p p x L T D VD V X t t X t V t Z V t Z V t x y V V                             1 22 2yx yy y x p p y L T D D V V Y t t Y t V t Z V t Z V t x y V V                          The displacement is a normally distributed random variable, whose mean is the advective movement and whose deviation from the mean is the dispersive movement. instantaneous injection + uniform flow Random Walk Method
  • 16. Effect of Conditioning on S. R. Plume mg/lit 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 0.1 1 10 3 4 Lithology Coding 6 5 T= 82 years # drillings 2 3 5 9 25 31
  • 17. Effect of Conditioning Single Realiz. Cmax 0 4 8 12 16 20 24 28 32 No. of Conditioning Boreholes 0 40 80 120 160 200 240 PeakConcentration(mg/lit) Single Realization Cmax (t = 34.2 Years) Single Realization Cmax (t = 68.4 Years) Single Realization Cmax (t = 95.8 Years) Single Realization Cmax (t = 136.9 Years) Original Section (t = 34.2 Years) Original Section (t = 68.4 Years) Original Section (t = 95.8 Years) Original Section (t = 136.9 Years) Practical convergence is reached after about 21 boreholes 0 50 100 150 200 -10 -5 0
  • 18. First Moment (Single Realization) 0 10000 20000 30000 40000 Time (days) 0 20 40 60 80 100 120 X_CoordinateoftheCentroid(m) Original Section Conditioning on 2 boreholes Conditioning on 3 boreholes Conditioning on 5 boreholes Conditioning on 9 boreholes Conditioning on 25 boreholes 0 10000 20000 30000 40000 Time (days) -10 -8 -6 -4 -2 0 Y_CoordinateoftheCentroid(m) Original Section Conditioning on 2 boreholes Conditioning on 3 boreholes Conditioning on 5 boreholes Conditioning on 9 boreholes Conditioning on 25 boreholes Trend is reached at 3 boreholes Convergence at 9 boreholes              Contaminant Source Plume at Time, t Impermeable boundary Impermeable boundary
  • 19. Second Moment (Single Realization) 0 10000 20000 30000 40000 Time (days) 0 0.5 1 1.5 2 2.5 VarianceinY_direction(m2) Original Section Conditioning on 2 boreholes Conditioning on 3 boreholes Conditioning on 5 boreholes Conditioning on 9 boreholes Conditioning on 25 boreholes 0 10000 20000 30000 40000 Time (days) 0 1000 2000 3000 4000 VarianceinX_direction(m2) Original Section Conditioning on 2 boreholes Conditioning on 3 boreholes Conditioning on 5 boreholes Conditioning on 9 boreholes Conditioning on 25 boreholes Trend is reached at 3 boreholes Convergence at 5 and 25 boreholes Convergence at 9 boreholes              Contaminant Source Plume at Time, t Impermeable boundary Impermeable boundary
  • 20. Breakthrough Curve (Single Realization) 0 10000 20000 30000 40000 50000 Time (days) 0 0.2 0.4 0.6 0.8 1 NormalizedMassDistribution Original Section Conditioning on 2 boreholes Conditioning on 3 boreholes Conditioning on 5 boreholes Conditioning on 9 boreholes Conditioning on 25 boreholes 0 50 100 150 200 -10 -5 0 Convergence at 25 boreholes
  • 21. Conditioning on 2 boreholes (Ensemble ) 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 0.1 1 10 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 CactualC C mg/lit T = 4.1 years T = 82.2 years T = 136.9 years
  • 22. Conditioning on 5 boreholes (Ensemble) 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 0.1 1 10 mg/lit actualC C C
  • 23. Conditioning on 9 boreholes (Ensemble) 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 actualC C C
  • 24. Conditioning on 21 boreholes(Ensemble) 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 actualC C C
  • 25. Conditioning on 31 boreholes(Ensemble) 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 0 50 100 150 200 -10 -5 0 actualC C C
  • 26. Effect of Conditioning on Ensemble Cmax 0 4 8 12 16 20 24 28 32 No. of Conditioning Boreholes 0 10 20 30 40 50 60 70 80 90 100 110 EnsemblePeakConcentration(mg/lit) Ensemble Cmax (t = 34.2 Years) Ensemble Cmax (t = 68.4 Years) Ensemble Cmax (t = 95.8 Years) Ensemble Cmax (t = 136.9 Years) Original Section (t = 34.2 Years) Original Section (t = 68.4 Years) Original Section (t = 95.8 Years) Original Section (t = 136.9 Years) 0 4 8 12 16 20 24 28 32 No. of Conditioning Boreholes 0 1 2 3 4 5 6 CVofCmax t = 34.2 Years t = 68.4 Years t = 95.8 Years t = 136.9 Years max actualC Cp max 1 for #boreholes 5   c C max 1 for #boreholes 5  c C p max time   c C
  • 27. Conclusions 1. CMC model proved to be a valuable tool in predicting heterogeneous geological structures which lead to reducing uncertainty in concentration distributions of contaminant plumes. 2. Convergence to actual concentration is of oscillatory type, due to the fact that some layers are connected in one scenario and disconnected in another scenario. 3. In non-Gaussian fields, single realization concentration fields and the ensemble concentration fields are non-Gaussian in space with peak skewed to the left. 4. Reproduction of peak concentration, plume spatial moments and breakthrough curves in a single realization requires many conditioning boreholes (20-31 boreholes). However, reproduction of plume shapes require less boreholes (5 boreholes).
  • 28. Conclusions 5. Ensemble concentration and ensemble variance have the same pattern. Ensemble variance is peaked at the location of the peak ensemble concentration and decreases when one goes far from the peak concentration. This supports early work by Rubin (1991). However, in Rubin’s case the maximum concentration was in the center of the plume which is attributed to Gaussian fields. The non- centered peak concentration, in this study, is attributed to the non- G a u s s i a n f i e l d s . 6. Coefficient of variation of max concentration [CV(Cmax)] decreases significantly when conditioning is performed on more than 5 b o r e h o l e s . 7. Reproduction of peak concentration, plume spatial moments and breakthrough curves in a single realization requires many conditioning boreholes (20-31 boreholes). However, reproduction of plume shapes r e q u i r e l e s s b o r e h o l e s ( 5 b o r e h o l e s ) .