Properties of Exponents p. 323
Properties of Exponents a&b are real numbers, m&n are integers Product Property : Quotient of Powers :  Power of a Power Property :  Power of a Product Property : Negative Exponent Property : Zero Exponent Property :  Power of Quotient:
Example  – Product Property (-5)  3  (-5)  2  =  (-5)(-5)(-5)(-5)(-5)= (-5)  5 (-5) 3+2  = (-5)  5
Example – Product Property x 5   •  x 2  = x •x• x •x•x•x•x x 5+2  =  x 7
Product Property  a&b are real numbers, m&n are integers Product Property : (a m  )(a n )=a m+n a 3 •  a 5  •   a 4  = a 3 •  a 5  •   a 4  = a 3+5+4  a 3 •  a 5  •   a 4  = a 12
Product Property (a 3  b 2 ) (a 4  b 6 ) =  (a 3  a 4 ) (b 2  b 6 ) = a 3+4  b 2+6 a 3+4  b 2+6  = a 7  b 8 (x 5  y 2 ) (x 4  y 7 ) =  (x 5  x 4 ) (y 2  y 7 ) = x 5+4  y 2+7 x 5+2  y 2+7  = x 9  y 9
You try (3x 6  y 4 ) (4xy 7 ) = (3x 6  y 4 ) (4xy 7 ) = (3 •4) x 6+1   •  y 4+7 (3 •4) x 6+1   •  y 4+7  = 12x 7 y 11 (2x 12  y 5 ) (6x 3  y 9 ) = (2 • 6) x 12+3  y 5+9  =12x 15 y 14
Do now (2x 4  y 4 ) (5xy 7 ) = (2x 4  y 4 ) (5xy 7 ) = (2 •5) x 4+1   •  y 4+7 (2 •5) x 4+1   •  y 4+7  = 10x 5 y 11 (3x 14  y 5 ) (9x 3  y) = (3 • 9) x 14+3  y 5+1  =27x 17 y 6
Dividing Powers with Like bases -5  3  =  -5 •  -5 •  -5 -5  2  -5 •  -5 -5 •  -5 •  -5  = -5 -5 •  -5
Power of a Quotient with like bases x  4  =  x •  x  •  x •  x X 2  x •  x X 2
Quotient of Powers
Quotient of Powers Quotient of Powers :  a m   = a m-n ;   a≠0   a n
You try 4 5 x 4 y 7  =  4 3 x 2 y 6 4 5 x 4 y 7  =  4 5-3  x 4-2 y 7-6  4 3 x 2 y 6 4 5-3  x 4-2 y 7-6   =  4 2 x 2 y  =  16x 2 y
You try 3 7 x 9 y 12  =  3 4 x 5 y 6 3 7 x 9 y 12  =  3 7-4  x 9-5  y 12-6 3 4 x 5 y 6 3 7-4  x 9-5  y 12-6 =  3 3 x 4 y 8  =  27x 4 y 8
Negative Exponents x  2  =  x •  x_____   x 4  x •  x  •  x •  x 1   = x 2 x  2  = x  2 -4  = x -2  X 4 x -2  =  1   x 2
Negative exponets x  3  =  x •  x_  •  x___   x 5  x •  x  •  x •  x  •  x 1   =  x 3 x  3  = x  3 -5  = x -3  x 5 x -3  =  1 x 3
Example  – Quotient of Powers
You try x -2  = 1 x 2  2x -2 y =  2x -2 y =  2y x 2
You try (-5) -6 (-5) 4  =  (-5) -6+4  =  (-5) -2  =
Properties of Exponents a&b are real numbers, m&n are integers Negative Exponent Property :  a -m =  ; a ≠0
Zero Exponent Property x 0 x 2   = x 2-2  x 2 x 2-2  = x 0 x 2   = 1 x 2 x 0 = 1
You try (x -2 ) (x 2 ) = (x -2 ) (x 2 ) = x -2+2 x -2+2  = x 0 x 0  = 1
Properties of Exponents a&b are real numbers, m&n are integers ets Review Zero Exponent Property : a 0 =1; a≠0
Properties of Exponents a&b are real numbers, m&n are integers Product Property : a m  * a n =a m+n Quotient of Powers :  a m   = a m-n ;   a≠0   a n Negative Exponent Property : a -m =  ; a ≠0 Zero Exponent Property : a 0 =1; a≠0
Journal Entry: Describe the rules for the follwoing Product Property :  Quotient of Powers :  Negative Exponent Property : Zero Exponent Property :
Example  – Power of a Power (2 3 ) 4  = (2 3 ) (2 3 ) (2 3 ) (2 3 ) 4   2 3+3+3+3  =  (2 3 ) 4  = 2 12
Example - Power of a Power (3 4 ) 3  = (3 4 ) (3 4 ) (3 4 ) (3 4 ) (3 4 ) (3 4 ) = 3 4+4+4 (3 4 ) 3  = 3 12
Raising a Power to a Power (X 5 ) 2  = (X 5 ) (X 5 ) (X 5 ) (X 5 )= x 5+5 (X 5 ) 2  = x 10
Power of a Power Property   a&b are real numbers, m&n are integers Power of a Power Property : (a m ) n =a mn (x 5 ) 3  = x 5 • 3 x 5 • 3 = x 15
You try (y 4 ) 8  = (y 4 ) 8  = y 4 •8  = y 24 (s 3 ) 4  = (s 3 ) 4  = s 3 •4  = s 12
Power of a Product Property (-2x 7 ) 2  = (-2x 7 )   (-2x 7 )   (-2x 7 )   (-2x 7 )   = (-2 • - 2)   (x 7   • x 7 )   =4x 14 (-2x 7 ) 2  = (-2) 2  (x 7 ) 2  = -2 1 •2   x 7 • 2 = 4x 14
Power of a Product Property :  (ab) m =a m b m (a 3 b 2 ) 4 = (a 3 ) 4  (b 2 ) 4  (a 3 ) 4  (b 2 ) 4  =   a 3 •4 b 2 •4  =a 12 b 8
You try (-2x 4 ) 3  = (-2) 1 • 3  x 5 • 3 (-2x 4 ) 3  = (-2) 1 • 3  x 4 • 3 (-2) 1 • 3  x 4 • 3  = (-2) 3  x 12  = -16x 12   (4x 4 y 5 ) 2 (4x 4 y 5 ) 2 =  4 1 • 2 x 4  • 2 y 5 • 2 (4x 4 y 5 ) 2 =  16x 8 y 10
You try (-3x 5 y 3 ) 4  = (-3) 1 • 4  x 5 • 4  y 4 • 4 = (-3) 4  x 20  y 16  (7x 3 y -5 ) 2 7 1 • 2 x 3  • 2 y -5 • 2 16x 8 y -10  =  16x 8 y 10
Example – Power of Quotient
Properties of Exponents a&b are real numbers, m&n are integers Power of Quotient:     b≠0
Properties of Exponents a&b are real numbers, m&n are integers Product Property : a m  * a n =a m+n Quotient of Powers :  a m   = a m-n ;   a≠0   a n Power of a Power Property : (a m ) n =a mn Power of a Product Property :  (ab) m =a m b m Negative Exponent Property : a -m =  ; a ≠0 Zero Exponent Property : a 0 =1; a≠0 Power of Quotient:     b≠0
Multiplying and Dividing Monomials Monomial – an expression that is either a numeral, a variable or a product of numerals and variables with whole number exponents. Constant – Monomial that is a numeral. Example -  2
Journal Entry: Describe the rules for the follwoing Power of a Power Property :  Power of a Product Property : Power of Quotient:
Multiplying Monomials (-2x 4 y 2 ) (-3xy 2 z 3 )  =  (-2)(-3)(x 4 x )(y 2 y 2  ) z 3 6x 5 y 4  z 3 (-2x 3 y 4 )  2  (-3xy 2 )  (-2   )  2  x 3∙2 y 4∙2  ) (-3xy 2 )  (4)(-3)(x 6 x) (y 8  y 2  )  -12x 7 y 10
Scientific Notation A number is expressed in scientific notation when it is written as the product of a factor and a power of 10.  The factor must be greater than or equal to 1 and less then 10 a x 10ⁿ, where 1 ≤ a < 10
Scientific Notation 131,400,000,000=  1.314 x 10 11 Move the decimal behind the 1 st  number How many places did you have to move the decimal? Put that number here!
Write using scientific notation 12,300=  1.23 x 10 4 Write using standard notation 1.76 x 10 3 1,760
Example – Scientific Notation 131,400,000,000  = 5,284,000 1.314 x 10 11   = 5.284 x 10 6
Example – Scientific Notation (5.2 x 10 9 )(3.0 x 10 -3  )= (5.2 x 3.0) (10 9  x 10 -3  )= 15.6 x 10 6 1.56 x 10 7 2.45 x 10 -3  = 0.00245
Properties of Exponents a&b are real numbers, m&n are integers Product Property : a m  * a n =a m+n Quotient of Powers :  a m   = a m-n ;   a≠0   a n Power of a Power Property : (a m ) n =a mn Power of a Product Property :  (ab) m =a m b m Negative Exponent Property : a -m =  ; a ≠0 Zero Exponent Property : a 0 =1; a≠0 Power of Quotient:     b≠0

Properties Of Exponents

  • 1.
  • 2.
    Properties of Exponentsa&b are real numbers, m&n are integers Product Property : Quotient of Powers : Power of a Power Property : Power of a Product Property : Negative Exponent Property : Zero Exponent Property : Power of Quotient:
  • 3.
    Example –Product Property (-5) 3 (-5) 2 = (-5)(-5)(-5)(-5)(-5)= (-5) 5 (-5) 3+2 = (-5) 5
  • 4.
    Example – ProductProperty x 5 • x 2 = x •x• x •x•x•x•x x 5+2 = x 7
  • 5.
    Product Property a&b are real numbers, m&n are integers Product Property : (a m )(a n )=a m+n a 3 • a 5 • a 4 = a 3 • a 5 • a 4 = a 3+5+4 a 3 • a 5 • a 4 = a 12
  • 6.
    Product Property (a3 b 2 ) (a 4 b 6 ) = (a 3 a 4 ) (b 2 b 6 ) = a 3+4 b 2+6 a 3+4 b 2+6 = a 7 b 8 (x 5 y 2 ) (x 4 y 7 ) = (x 5 x 4 ) (y 2 y 7 ) = x 5+4 y 2+7 x 5+2 y 2+7 = x 9 y 9
  • 7.
    You try (3x6 y 4 ) (4xy 7 ) = (3x 6 y 4 ) (4xy 7 ) = (3 •4) x 6+1 • y 4+7 (3 •4) x 6+1 • y 4+7 = 12x 7 y 11 (2x 12 y 5 ) (6x 3 y 9 ) = (2 • 6) x 12+3 y 5+9 =12x 15 y 14
  • 8.
    Do now (2x4 y 4 ) (5xy 7 ) = (2x 4 y 4 ) (5xy 7 ) = (2 •5) x 4+1 • y 4+7 (2 •5) x 4+1 • y 4+7 = 10x 5 y 11 (3x 14 y 5 ) (9x 3 y) = (3 • 9) x 14+3 y 5+1 =27x 17 y 6
  • 9.
    Dividing Powers withLike bases -5 3 = -5 • -5 • -5 -5 2 -5 • -5 -5 • -5 • -5 = -5 -5 • -5
  • 10.
    Power of aQuotient with like bases x 4 = x • x • x • x X 2 x • x X 2
  • 11.
  • 12.
    Quotient of PowersQuotient of Powers : a m = a m-n ; a≠0 a n
  • 13.
    You try 45 x 4 y 7 = 4 3 x 2 y 6 4 5 x 4 y 7 = 4 5-3 x 4-2 y 7-6 4 3 x 2 y 6 4 5-3 x 4-2 y 7-6 = 4 2 x 2 y = 16x 2 y
  • 14.
    You try 37 x 9 y 12 = 3 4 x 5 y 6 3 7 x 9 y 12 = 3 7-4 x 9-5 y 12-6 3 4 x 5 y 6 3 7-4 x 9-5 y 12-6 = 3 3 x 4 y 8 = 27x 4 y 8
  • 15.
    Negative Exponents x 2 = x • x_____ x 4 x • x • x • x 1 = x 2 x 2 = x 2 -4 = x -2 X 4 x -2 = 1 x 2
  • 16.
    Negative exponets x 3 = x • x_ • x___ x 5 x • x • x • x • x 1 = x 3 x 3 = x 3 -5 = x -3 x 5 x -3 = 1 x 3
  • 17.
    Example –Quotient of Powers
  • 18.
    You try x-2 = 1 x 2 2x -2 y = 2x -2 y = 2y x 2
  • 19.
    You try (-5)-6 (-5) 4 = (-5) -6+4 = (-5) -2 =
  • 20.
    Properties of Exponentsa&b are real numbers, m&n are integers Negative Exponent Property : a -m = ; a ≠0
  • 21.
    Zero Exponent Propertyx 0 x 2 = x 2-2 x 2 x 2-2 = x 0 x 2 = 1 x 2 x 0 = 1
  • 22.
    You try (x-2 ) (x 2 ) = (x -2 ) (x 2 ) = x -2+2 x -2+2 = x 0 x 0 = 1
  • 23.
    Properties of Exponentsa&b are real numbers, m&n are integers ets Review Zero Exponent Property : a 0 =1; a≠0
  • 24.
    Properties of Exponentsa&b are real numbers, m&n are integers Product Property : a m * a n =a m+n Quotient of Powers : a m = a m-n ; a≠0 a n Negative Exponent Property : a -m = ; a ≠0 Zero Exponent Property : a 0 =1; a≠0
  • 25.
    Journal Entry: Describethe rules for the follwoing Product Property : Quotient of Powers : Negative Exponent Property : Zero Exponent Property :
  • 26.
    Example –Power of a Power (2 3 ) 4 = (2 3 ) (2 3 ) (2 3 ) (2 3 ) 4 2 3+3+3+3 = (2 3 ) 4 = 2 12
  • 27.
    Example - Powerof a Power (3 4 ) 3 = (3 4 ) (3 4 ) (3 4 ) (3 4 ) (3 4 ) (3 4 ) = 3 4+4+4 (3 4 ) 3 = 3 12
  • 28.
    Raising a Powerto a Power (X 5 ) 2 = (X 5 ) (X 5 ) (X 5 ) (X 5 )= x 5+5 (X 5 ) 2 = x 10
  • 29.
    Power of aPower Property a&b are real numbers, m&n are integers Power of a Power Property : (a m ) n =a mn (x 5 ) 3 = x 5 • 3 x 5 • 3 = x 15
  • 30.
    You try (y4 ) 8 = (y 4 ) 8 = y 4 •8 = y 24 (s 3 ) 4 = (s 3 ) 4 = s 3 •4 = s 12
  • 31.
    Power of aProduct Property (-2x 7 ) 2 = (-2x 7 ) (-2x 7 ) (-2x 7 ) (-2x 7 ) = (-2 • - 2) (x 7 • x 7 ) =4x 14 (-2x 7 ) 2 = (-2) 2 (x 7 ) 2 = -2 1 •2 x 7 • 2 = 4x 14
  • 32.
    Power of aProduct Property : (ab) m =a m b m (a 3 b 2 ) 4 = (a 3 ) 4 (b 2 ) 4 (a 3 ) 4 (b 2 ) 4 = a 3 •4 b 2 •4 =a 12 b 8
  • 33.
    You try (-2x4 ) 3 = (-2) 1 • 3 x 5 • 3 (-2x 4 ) 3 = (-2) 1 • 3 x 4 • 3 (-2) 1 • 3 x 4 • 3 = (-2) 3 x 12 = -16x 12 (4x 4 y 5 ) 2 (4x 4 y 5 ) 2 = 4 1 • 2 x 4 • 2 y 5 • 2 (4x 4 y 5 ) 2 = 16x 8 y 10
  • 34.
    You try (-3x5 y 3 ) 4 = (-3) 1 • 4 x 5 • 4 y 4 • 4 = (-3) 4 x 20 y 16 (7x 3 y -5 ) 2 7 1 • 2 x 3 • 2 y -5 • 2 16x 8 y -10 = 16x 8 y 10
  • 35.
    Example – Powerof Quotient
  • 36.
    Properties of Exponentsa&b are real numbers, m&n are integers Power of Quotient: b≠0
  • 37.
    Properties of Exponentsa&b are real numbers, m&n are integers Product Property : a m * a n =a m+n Quotient of Powers : a m = a m-n ; a≠0 a n Power of a Power Property : (a m ) n =a mn Power of a Product Property : (ab) m =a m b m Negative Exponent Property : a -m = ; a ≠0 Zero Exponent Property : a 0 =1; a≠0 Power of Quotient: b≠0
  • 38.
    Multiplying and DividingMonomials Monomial – an expression that is either a numeral, a variable or a product of numerals and variables with whole number exponents. Constant – Monomial that is a numeral. Example - 2
  • 39.
    Journal Entry: Describethe rules for the follwoing Power of a Power Property : Power of a Product Property : Power of Quotient:
  • 40.
    Multiplying Monomials (-2x4 y 2 ) (-3xy 2 z 3 ) = (-2)(-3)(x 4 x )(y 2 y 2 ) z 3 6x 5 y 4 z 3 (-2x 3 y 4 ) 2 (-3xy 2 ) (-2 ) 2 x 3∙2 y 4∙2 ) (-3xy 2 ) (4)(-3)(x 6 x) (y 8 y 2 ) -12x 7 y 10
  • 41.
    Scientific Notation Anumber is expressed in scientific notation when it is written as the product of a factor and a power of 10. The factor must be greater than or equal to 1 and less then 10 a x 10ⁿ, where 1 ≤ a < 10
  • 42.
    Scientific Notation 131,400,000,000= 1.314 x 10 11 Move the decimal behind the 1 st number How many places did you have to move the decimal? Put that number here!
  • 43.
    Write using scientificnotation 12,300= 1.23 x 10 4 Write using standard notation 1.76 x 10 3 1,760
  • 44.
    Example – ScientificNotation 131,400,000,000 = 5,284,000 1.314 x 10 11 = 5.284 x 10 6
  • 45.
    Example – ScientificNotation (5.2 x 10 9 )(3.0 x 10 -3 )= (5.2 x 3.0) (10 9 x 10 -3 )= 15.6 x 10 6 1.56 x 10 7 2.45 x 10 -3 = 0.00245
  • 46.
    Properties of Exponentsa&b are real numbers, m&n are integers Product Property : a m * a n =a m+n Quotient of Powers : a m = a m-n ; a≠0 a n Power of a Power Property : (a m ) n =a mn Power of a Product Property : (ab) m =a m b m Negative Exponent Property : a -m = ; a ≠0 Zero Exponent Property : a 0 =1; a≠0 Power of Quotient: b≠0