SlideShare a Scribd company logo
LOGIC DESIGN
PART A
Unit 1:
PRINCIPLES OF COMBINATIONAL LOGIC-1
Definition of Combinational logic:
It deals with the techniques of combining
basic gates into circuits that perform
some desired function.
 Outputs are functions of (present)
inputs.
 No memory element. (like flipflops)
 Do not have feedback from output
to input.
 Egs. Adder, subtractor, decoder,
encoder, multiplexer.
COMBINATIONAL LOGIC
BASICS OF DIGITAL ELECTRONICS
 Digital Electronics represents information (0, 1) with only
two discrete values.
 Ideally
“no voltage” (e.g., 0v) represents a 0 and
“full source voltage” (e.g., 5v) represents a 1
 Realistically
“low voltage” (e.g., <1v) represents a 0 and
“high voltage” (e.g., >4v) represents a 1
 We achieve these discrete values by using switches.
 We use transistor switches, which operates at high speed,
electronically, and small in size.
GATES
 The most basic digital devices are called
gates.
 Gates got their name from their function
of allowing or blocking (gating) the flow of
digital information.
 A gate has one or more inputs and
produces an output depending on the
input(s).
 A gate is called a combinational circuit.
 Three most important gates are: AND, OR,
GATES
 Simple gates
 AND
 OR
 NOT
 Functionality can be
expressed by a truth table
 A truth table lists output for
each possible input
combination
 Precedence
 NOT > AND > OR
 F = A B + A B
= (A (B)) + ((A) B)
AND, OR, NOT GATES
GATES
 Additional useful gates
 NAND
 NOR
 XOR
 NAND = AND + NOT
 NOR = OR + NOT
 XOR implements
exclusive-OR function
 NAND and NOR gates
require only 2 transistors
 AND and OR need 3
transistors!
Equivalent symbols for NAND & NOR gates
GATES(CONT.)
 Proving NAND gate is universal
BASIC CONCEPTS (CONT.)
 Proving NOR gate is universal
LOGIC CHIPS
LOGIC CHIPS (CONT.)
 Integration levels
 SSI (small scale integration)
 Introduced in late 1960s
 1-10 gates (previous examples)
 MSI (medium scale integration)
 Introduced in late 1960s
 10-100 gates
 LSI (large scale integration)
 Introduced in early 1970s
 100-10,000 gates
 VLSI (very large scale integration)
 Introduced in late 1970s
 More than 10,000 gates
BOOLEAN ALGEBRA
BOOLEAN ALGEBRA
LOGIC FUNCTIONS
 Logical functions can be expressed in
several ways:
 Truth table
 Logical expressions
 Graphical form
 Example:
 Majority function
 Output is one whenever majority of inputs is 1
 We use 3-input majority function
LOGIC FUNCTIONS (CONT.)
3-input majority function
A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
 Logical expression form
after simplification:
F = A B + B C + A C
LOGIC CIRCUIT DESIGN PROCESS
 A simple logic design process involves
 Problem specification
 Truth table derivation
 Derivation of logical expression
 Simplification of logical expression
 Implementation
DERIVING LOGICAL EXPRESSIONS
 Derivation of logical expressions from truth
tables
 Sum-of-products (SOP) form
 Product-of-sums (POS) form
 SOP form
 Write an AND term for each input combination that
produces a 1 output
 Write the variable if its value is 1; complement otherwise
 OR the AND terms to get the final expression
 POS form
 Dual of the SOP form
SUM OF PRODUCT (SOP) FORM
 3-input majority
function
A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
SOP logical expression
F = A B C + A B C +
A B C + A B C
 Four product terms
 Because there are 4
rows with a 1 output



PRODUCT OF SUM (POS) FORM
 3-input majority function
A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1




POS logical expression
F = (A + B + C) (A + B + C)
(A + B + C) (A + B + C)
• Four sum terms
Because there are 4 rows with
a 0 output
DEFINITIONS:
1) Literal:
It is a Boolean variable or its complement.
Eg. A, B ,C, B
2) Product term:
It is a logical AND of literals or is a literal.
Eg. A B C , B C , AB
3) Sum term:
It is a logical OR of literals or is a literal.
Eg. (A + B + C), (A + B )
4) SOP:
It is the logical OR of multiple product terms.
5) POS:
It is the logical AND of multiple Sum terms.
Definitions: 6) Minterm
A minterm is a special case product term which
contains all the input variables (each literal occuring
only once) of the function.
• A function with n variables has 2n minterms
• A three-variable function, such as f(x,y,z), has
23 = 8 minterms.
Minterm Is true when… Shorthand
x’y’z’
x’y’z
x’yz’
x’yz
xy’z’
xy’z
xyz’
xyz
x=0, y=0, z=0
x=0, y=0, z=1
x=0, y=1, z=0
x=0, y=1, z=1
x=1, y=0, z=0
x=1, y=0, z=1
x=1, y=1, z=0
x=1, y=1, z=1
m0
m1
m2
m3
m4
m5
m6
m7
DEFINITIONS: 7) MAXTERM
It is a special case Sum term which contains all the
input variables of the function, occurring only once.
 A function with n variables has 2n minterms
 A three-variable function, such as f(x,y,z), has
23 = 8 minterms.
Maxterm Is false when… Shorthand
x + y + z x=0, y=0, z=0 M0
x + y + z’ x=0, y=0, z=1 M1
x + y’ + z x=0, y=1, z=0 M2
x + y’ + z’ x=0, y=1, z=1 M3
x’ + y + z x=1, y=0, z=0 M4
x’ + y + z’ x=1, y=0, z=1 M5
x’ + y’ + z x=1, y=1, z=0 M6
x’ + y’ + z’ x=1, y=1, z=1 M7
DEFINITIONS:
8) Canonical SOP
• It is a complete set of minterms that defines when an
O/P variable is a logical 1.
• Canonical or Standard SOP form is an SOP form of
expression in which each product term contains all the
literals.
Eg. A B C + A B C + A B C + A B C
9) Canonical POS
It is a POS form in which each Sum term contains all the
literals.
Eg. (A + B + C) (A + B + C)(A + B + C)
CANONICAL SOP FORM & MINTERM NOTATION
Every function can be written as a unique sum of
minterms. You can obtain the canonical SOP form by
picking the rows having O/P =1.



)6,3,2,1,0(
63210
m
mmmmm
CABBCACBACBACBAf
CANONICAL POS FORM & MAXTERM
NOTATION
CONVERSION
Express the following SOP equation in
1) Minterm notation 2) Maxterm notation
abccbabcacbacbaW ),,(
-- Minterm notation







)6,5,2,0(
)7,4,3,1(...
...
...
)2
7431
7431
74317431
7431
MW
MMMMMW
MMMMW
mmmmmmmmW
mmmmW
-- Maxterm notation
 ).7,4,3,1()1 mW
Express the following SOP equation in
1) Minterm notation 2) Maxterm notation










)6,4,1(
)7,5,3,2,0(....
)(....
....
)2
)7,5,3,2,0()1
75320
75320
7532075320
75320
MW
MMMMMMX
MmMMMMMX
mmmmmmmmmmX
mmmmmX
mX
abccbabcacbacbaX
ii
… Minterm notation
… Maxterm notation
Convert to Canonical SOP form
NMLNMLNLMLMN
NNMLNNMMLLML
LMMNMLR
srqpsrqpspqrsrqpsrqpsqrpqrsp
qqppsrssrrqp
srqpR
m








)())((
)()2
))(())((
)1
)14,10,7,6,5,4,2(
Convert to Canonical POS form
))()()((
))((
))(()2
))()((
))()()((
))()()((
))()()((
))((
))(()1
cbacbacbacba
cbaaccba
cbbaX
zyxwzyxwzyxw
zyxwzyxwzyxwzyxw
zyxwzyxwzyxwzyxw
zyxwzyxwzyxwzyxw
zyxxwwzzyyxw
zyxwP









LOGICAL EXPRESSION SIMPLIFICATION
Methods:
 Algebraic manipulation
 Use Boolean laws to simplify the expression
 Difficult to use
 Don’t know if you have the simplified form
 Karnaugh map (K-map) method
 Graphical method
 Easy to use
 Can be used to simplify logical expressions with a few
variables.
 Quine Mc-Cluskey method
 Used for more than 6 variable functions
 Tedious procedure
1) ALGEBRAIC MANIPULATION METHOD
 Majority function example
A B C + A B C + A B C + A B C =
A B C + A B C + A B C + A B C + A B C + A
B C
 We can now simplify this expression as
B C + A C + A B
 A difficult method to use for complex
expressions
Added extra
KARNAUGH MAP METHOD OF SIMPLICATION
Note the order
5 VARIABLE K-MAP
dec A
BCDE
O/P
0 00000
1 00001
2 00010
3 00011
4 00100
5 00101
6 00110
7 00111
8 01000
9 01001
10 01010
11 01011
12 01100
13 01101
14 01110
15 01111
dec A
BCDE
O/P
16 10000
17 10001
18 10010
19 10011
20 10100
21 10101
22 10110
23 10111
24 11000
25 11001
26 11010
27 11011
28 11100
29 11101
30 11110
31 11111
LOGICALLY ADJACENT COLUMNS
DEFINITIONS
 Implicant: Any single minterm(cell) or permitted group
of minterms. Eg.
Implicants are:
 )6,4,2,0(mY
1 0 0 1
1 0 0 1
c
cbcbcaca
cabcbacbacba
,,,,
,,,,
0
1
00 01 11 10
A
BC
DEFINITIONS
 Prime Implicant: A group of minterms which
cannot be combined with any other minterms or
groups.
 P.I is c
 P.Is are:
x z, y
1 0 0 1
1 0 0 1
0
1
00 01 11 10
0 1 1 1
0 0 1 1
0
1
00 01 11 10
A
BC
A
BC
DEFINITIONS
Essential Prime Implicant:
A prime implicant in which one or more minterms are
unique i.e, it contains atleast one minterm that is not
contained in any other prime implicant.
E.P.Is are:
a c & b c
The simplified exprn. must
contain all EPIs & may or may
not contain non-essential PIs.
The aim is to choose the PI’s so that no cell with ‘1’ is left uncovered.
1 0 1 1
0 0 1 0
0
1
00 01 11 10
Unique ‘1’ cells
A
BC
GENERAL RULES FOR USING THE K-
MAP
Combine ones into groups of (1, 2, 4, 8, …)
squares
Form the largest group size.(PIs)
Form the min number of groups.
Two groups should not intersect unless this will
enable a small group to be larger in size.
 For every Minterm in the given expression, put a ‘1’
into the corresponding cell & ‘0’ in the other cells.
 Check for logical adjacency for the minterm cells.
( Cells are said to be logically adjacent if there occurs
change in only 1 bit b/w them)
 Eg. Cells 0 & 4 are adjacent 000 100 Arrow shows
changed bit.
 Group logically adjacent 1-cells to form subcubes
such that their size = 2n cells (2,4,8,16..) and it is as
large as possible.
 Then each group represents a product term with
reduced no. of variables.
PROBLEM 1: SIMPLIFY USING K-MAPS
 )7,6,3,2,1(),,( zyxfD
0 1 1 1
0 0 1 1
0
1
00 01 11 10
x
yz
PI’s : xz, y
EPI’s: xz, y
Minimal form of D = x z + y
PROBLEM 2: SIMPLIFY USING K-MAPS
 )7,5,4,3,2,0(),,( zyxfD
0
1
00 01 11 10
x
yz
1 0 1 1
1 1 1 0
PI’s : y z, x z, x y, x z, x y, yz
EPI’s: none ( because no unique ‘1’ cells)
Minimal form of D = y z + x z + x y OR
D = x z + x y + yz
There are 2 solutions because in each case, all ‘1’ cells
are covered with the chosen set of groups.
PROBLEM 3: SIMPLIFY USING K-MAPS
 )15,13,11,9,5,4,1,0(),,,( dcbafK
PI’s : a c, c d, a d
EPI’s: a c, a d
Non-essential PI: c d
Minimal form of K = a c + a d
1 1 0 0
1 1 0 0
0 1 1 0
0 1 1 0
cd
ab 00 01 11 10
00
01
11
10
Unique ‘1’ cells
PROBLEM 4: SIMPLIFY USING K-MAPS
 )15,13,10,8,7,5,2,0(),,,( dcbafX
PI’s : b d, b d
EPI’s: b d, b d
Minimal form of X = b d + b d = b d
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1
cd
ab 00 01 11 10
00
01
11
10
PROBLEM 5: SIMPLIFY USING K-MAPS
 )14,12,11,9,6,4,3,1(),,,( dcbafX
PI’s : b d, b d
EPI’s: b d, b d
Minimal form of X = b d + b d = b d
0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0
cd
ab 00 01 11 10
00
01
11
10
PROBLEM 6: SIMPLIFY USING K-MAPS
 )13,7,6,5,2(),,,( dcbafX
PI’s : a b d, b c d, a c d, a b c
EPI’s: a b d, a b c
Minimal form of X = a b d + a b c + a c d OR
X= a b d + a b c + b c d
0 0 0 1
0 1 1 1
0 1 0 0
0 0 0 0
cd
ab 00 01 11 10
00
01
11
10
Unique ‘1’ cells
PROBLEM 7: SIMPLIFY USING K-MAPS
 )14,13,12,9,8,6,5,4,2,1,0(),,,( dcbafX
PI’s : c , a d, b d
EPI’s: c , a d, b d
Minimal form of X = c + a d + b d
1 1 0 1
1 1 0 1
1 1 0 1
1 1 0 0
cd
ab 00 01 11 10
00
01
11
10
Unique ‘1’ cells
PROBLEM 8: SIMPLIFY USING K-MAPS
PI’s : cd , a b c, a b c, b d, a d
EPI’s: cd , a b c, a b c
Minimal form of X = cd + a b c + a b c + b d OR
X= cd + a b c + a b c + a d
0 1 1 0
1 1 1 0
0 0 1 0
1 1 1 0
cd
ab 00 01 11 10
00
01
11
10
Unique ‘1’ cells
PROBLEM 9: SIMPLIFY USING K-MAPS
 )15,13,11,10,9,8,7,5,1(),,,( dcbafX
0 1 0 0
0 1 1 0
0 1 1 0
1 1 1 1
cd
ab 00 01 11 10
00
01
11
10
Unique ‘1’ cells
PI’s : cd , a d, a b , b d
EPI’s: cd , b d, a b
Minimal form of X = cd + b d + a b
PROBLEM 10: SIMPLIFY USING K-MAPS
).......(),,,( OPformcanonicalStoconvertzxyzwxywzyxwfT 
 )14,12,10,8,7,6(mT
0 0 0 0
0 0 1 1
1 0 0 1
1 0 0 1
wx 00 01 11 10
00
01
11
10
Unique ‘1’ cells
yz
PI’s : x y z, w z , w x y.
EPI’s: w z , w x y.
Minimal form of T = w z + w x y.
PROBLEM 11: SIMPLIFY USING K-MAPS
 )14,13,12,11,9,6,5,4,3,1(),,,( mzyxwfT
0 1 1 0
1 1 0 1
1 1 0 1
0 1 1 0
wx 00 01 11 10
00
01
11
10
Unique ‘1’ cells
yz
PI’s : y z, x z , x y, x z
EPI’s: x z , x z
Minimal form of T = x z + x z + y z OR
T = x z + x z + x y
PROBLEM 12: SIMPLIFY USING K-MAPS
 )15,13,12,11,10,8,7,6,5,2,1,0(),,,( mzyxwfT
1 1 0 1
0 1 1 1
1 1 1 0
1 0 1 1
wx 00 01 11 10
00
01
11
10
yz
PI’s: x z , w y z, w x y , w y z , w x y, xz, w y z,w y z, w x y
w x y
EPI’s: none
Minimal form of T = x z + w y z + w x y + w y z + w x y OR
T = x z + w y z + w x y + w y z + w x y
1 1 0 1
0 1 1 1
1 1 1 0
1 0 1 1
1 1 0 1
0 1 1 1
1 1 1 0
1 0 1 1
PROBLEM 13: SIMPLIFY USING K-MAPS. WRITE THE
SIMPLIFIED SOP & POS EXPRESSIONS.
 )15,13,12,11,9,8,7,5,4,0(),,,( Mzyxwf
0 1 1 1
0 0 0 1
0 0 0 1
0 0 0 1
wx 00 01 11 10
00
01
11
10
yz
PI’s: w x y , w x z, y z
EPI’s: w x z , y z
0 1 1 1
0 0 0 1
0 0 0 1
0 0 0 1
wx 00 01 11 10
00
01
11
10
yz
Minimal SOP form of T = w x z + y z
PI’s: w +z , x +z,y+z,w+y,x+y
EPI’s: w +z , x +z, y+z
Minimal POS form of T =(w +z ).(x +z ).(y+z)
PROBLEM 14: SIMPLIFY USING K-MAPS & IDENTIFY
PRIME IMPLICANTS & ESSENTIAL PRIME IMPLICANTS
DCBACBADCBCDADCADCBAf ),,,(
1 1 1 1
0 1 1 0
0 0 0 0
1 0 1 1
AB 00 01 11 10
00
01
11
10
CD
PI’s: B D ,B C, A B , A D
EPI’s: B D ,B C, A D
Minimal form of T = B D + B C+ A D
After converting to Canonical SOP form, write in Minterm notation.
 )11,10,8,7,5,3,2,1,0(),,,( mDCBAf
PROBLEM 15: SIMPLIFY USING K-MAPS & IDENTIFY
PRIME IMPLICANTS & ESSENTIAL PRIME IMPLICANTS
))()()()((),,,( DCBADCBADCBADBADBADCBAf 
1 0 0 1
1 1 1 0
1 1 0 0
1 0 0 1
AB 00 01 11 10
00
01
11
10
CD
Minimal POS form of T =
After converting to Canonical POS form, write in Maxterm notation.
 )15,14,11,9,6,3,1(),,,( MDCBAf
B+D (EPI)
A+B+C (EPI)
B+C+D (EPI)
))()(( DCBCBADB 
DBBDACBT 
If u group 1’s, u can get Minimal POS form as
PROBLEM 16: SIMPLIFY USING K-MAPS & IMPLEMENT
USING BASIC GATES
 )12,11,10,7,6,4,3,2(),,,( MDCBAf
1 1 0 0
0 1 0 0
0 1 1 1
1 1 0 0
AB 00 01 11 10
00
01
11
10
CD
PI’s: B C, A B C, C D, ABD PI’s: B+C, A+C, B+C+D, A+B+D
EPI’s: B C, A B C, C D EPI’s: B+C, A+C, B+C+D
Minimal SOPform of R= B C+A B C+ C D
Minimal POSform of R =(B+C)(A+C)(B+C+D)
1 1 0 0
0 1 0 0
0 1 1 1
1 1 0 0
AB 00 01 11 10
00
01
11
10
CD
A
B
C
R
D
PROBLEM 16: SIMPLIFY USING K-MAPS &
IMPLEMENT USING BASIC GATES CONTD…
R =(B+C)( A+C)( B+C+D)
 )31,29,27,25,15,13,11,9(),,,,( mEDCBAf
PROBLEM 17: SIMPLIFY USING K-MAPS
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0
AB 000 001 011
00
01
11
10
CDE
110111101100010
NOTE THIS
BE
PROBLEM 18: SIMPLIFY USING K-MAPS
 )31,30,27,26,25,17,15,14,11,10,9,1(),,,,( mEDCBAf
0 1 0 0
0 1 1 1
0 1 1 1
0 1 0 0
0 0 0 0
0 0 1 1
0 0 1 1
0 0 0 0
AB 000 001 011
00
01
11
10
CDE
110111101100010
NOTE THIS
BD
C D E
B C E
BDEDCYofformMinimal 
PROBLEM 19: SIMPLIFY USING K-MAPS
 )31,29,27,25,21,19,15,14,13,11,10,9,5,3(),,,,( mEDCBAf
0 0 1 0
0 1 1 1
0 1 1 0
0 0 1 0
0 1 0 0
0 1 1 1
0 1 1 0
0 1 0 0
AB 000 001 011
00
01
11
10
CDE
110111101100010
BE
C D E
A B D
BDABEEDCDECYofformMinimal 
C D E
PROBLEM 20: SIMPLIFY USING K-MAPS


)31,19,11,3(can writeWe
),,,,(
T
decbaabcdedecbadecbaedcbafT
ABCDEDECBDECAYofformMinimal 
0 0 1 0
0 0 1 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
AB 000 001 011
00
01
11
10
CDE
110111101100010
B C D E
A C D E
ABCDE
PROBLEM 21: SIMPLIFY USING K-MAPS
 )27,26,25,24,19,18,17,16,14,12,11,10,9,8,6,4,2,0(),,,,( MEDCBAf
))()(( CBCAEAYofformMinimal 
0 1 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 1 0
0 1 1 0
1 1 1 1
1 1 1 1
AB 000 001 011
00
01
11
10
CDE
110111101100010
B +C (EPI)
A +C (EPI)
A +E (EPI)
C+E (PI)
 d)c,b,f(a,GthatShow  )15,13,10,8,7,5,2,0(
 )14,12,11,9,6,4,3,1(Gofcomplementtheis
equations.2theofnaturecomplementtheillustratetomap-KaUse
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1
AB 00 01 11 10
00
01
11
10
CD
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1
AB 00 01 11 10
00
01
11
10
CD
DB
DBBDG


DB
DBDBGsGrouping

 ))((,'0
PROBLEM 22:
INCOMPLETELY SPECIFIED FUNCTIONS(DON’T CARE TERMS)
When an O/P is not known for
every combination of I/P variables,
the function is said to be
incompletely specified.
Eg. BCD (B3B2B1B0)
to Excess-3 BCD (X3X2X1X0)
Code Converter
B3 B2 B1 B0 X3 X2 X1 X0
0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 0 X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X
1 0 1 0
1 0 1 0
x x x x
1 0 x x
BCD (B3B2B1B0) to Excess-3 BCD (X3X2X1X0) Code Converter eg.
We have 4 O/Ps here & hence we need to get 4 expressions.
1 0 0 1
1 0 0 1
x x x x
1 0 x x
B3B2
00 01 11 10
00
01
11
10
00 BX 
B1B0
2) K-map for X1
B3B2
00 01 11 10
00
01
11
10
B1B0
0101011 BBBBBBX 
1) K-map for X0
0 0 0 0
0 1 1 1
x x x x
1 1 x x
0 1 1 1
1 0 0 0
x x x x
0 1 x x
B3B2
00 01 11 10
00
01
11
10
)10(2
)01(2)10(2
01202122
BBB
BBBBBB
BBBBBBBX



B1B0
4) K-map for X3
B3B2
00 01 11 10
00
01
11
10
B1B0
120233 BBBBBX 
BCD (B3B2B1B0) to Excess-3 BCD (X3X2X1X0) Code Converter eg.
3) K-map for X2
0 0 1 1
1 1 0 0
0 1 1 0
X X X X
00 01 11 10
00
01
11
10
B1B0
Simplify using K-maps
 
 


)10,8,7,5,0()15,14,13,11,4,2,1(),,,()2
)11,10,9,8()15,13,5,4,3,2(),,,()1
dmDCBAf
dmDCBAfV
CBAADCBV 
X 1 0 1
1 X X 0
0 1 1 1
X 0 1 X
00 01 11 10
00
01
11
10
B1B0
B3B2 B3B2
DBACBDCAf 
Simplify using K-maps
 
 


)28,24,14,10()30,26,23,21,8,7,5(),,,,()2
)26,24,10,8(30,28,27,25,22,20,19,17,14,12,11,9,6,4,3,1(),,,,()1
dMEDCBAf
dmEDCBAf
ECECV  ))()(( HFEHGEHFEf 
0 1 1 0
X 1 1 X
X 1 1 X
0 1 1 0
1 0 0 1
1 0 0 1
1 0 0 1
1 0 0 1
AB 000 001 011
00
01
11
10
CDE
110111101100010
1 1 1 1
0 1 1 X
X 1 1 0
1 1 1 1
1 0 0 1
1 1 1 X
X 1 1 0
1 0 0 1
DE 000 001 011
00
01
11
10
FGH
110111101100010
)( HFE  )( HGE 
)( HFE EC EC
PROBLEMS ON CIRCUIT DESIGN
PROBLEMS ON DESIGN
1) Design a logic circuit which has a single O/P variable z which
is to be true when I/P variables a & b are true or when b is
false but a & c are true.
a b c Z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
OPCanonicalSabccabcbaz 
0 0 0 0
0 1 1 1
00 01 11 10
0
1
a
bc
)( bcaz
SOPMinimalabacz


a
b
c
z
2) Design a logic circuit whose O/P is to be true when the value
if I/P s exceeds 3. The weighting for each I/P variable is as
follows.
w=3, x=3, y=2, z=1. (Left as an exercise)
3) Design a logic circuit that controls the passage of a signal ‘A’
according to the following requirement.
i. O/P ‘X’ will = ‘A’ when control I/Ps B & C are the same.
ii. ‘X’ will remain ‘HIGH’ when B & C are different.
Implement the ckt using suitable gates.
PROBLEMS ON DESIGN
A B C X
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1
0 0 1
1 1 1 1
00 01 11 10
0
1
a
bc
CBAX 
A
B
C
X
1. Difficult to use when no. of variables is > 6.
2. The recognition of groups that form EPI’s becomes
difficult for large K-maps.
3. The technique does not involve a systematic
algorithmic procedure that is suitable for computers.
Since it is a manual technique, simplification
process depends on human abilities.

More Related Content

What's hot

Binary Arithmetic Operations
Binary Arithmetic OperationsBinary Arithmetic Operations
Binary Arithmetic Operations
Digital System Design
 
multiplexers and demultiplexers
 multiplexers and demultiplexers multiplexers and demultiplexers
multiplexers and demultiplexers
Unsa Shakir
 
Karnaugh map or K-map method
Karnaugh map or K-map methodKarnaugh map or K-map method
Karnaugh map or K-map method
Abdullah Moin
 
Ceng232 Decoder Multiplexer Adder
Ceng232 Decoder Multiplexer AdderCeng232 Decoder Multiplexer Adder
Ceng232 Decoder Multiplexer Adder
gueste731a4
 
Boolean Algebra
Boolean AlgebraBoolean Algebra
Boolean Algebragavhays
 
Chapter 03 Boolean Algebra and Combinational Logic
Chapter 03 Boolean Algebra and Combinational LogicChapter 03 Boolean Algebra and Combinational Logic
Chapter 03 Boolean Algebra and Combinational Logic
SSE_AndyLi
 
KARNAUGH MAP(K-MAP)
KARNAUGH MAP(K-MAP)KARNAUGH MAP(K-MAP)
KARNAUGH MAP(K-MAP)
mihir jain
 
Boolean Algebra.pdf
Boolean Algebra.pdfBoolean Algebra.pdf
Boolean Algebra.pdf
ssusere02873
 
Codificador electronica digital
Codificador electronica digitalCodificador electronica digital
Codificador electronica digital
JoseAngelVelasquez
 
Chapter 4. logic function and boolean algebra
Chapter 4. logic function and boolean algebraChapter 4. logic function and boolean algebra
Chapter 4. logic function and boolean algebra
Ashish KC
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitance
Pei-Che Chang
 
Binary multipliers
Binary multipliersBinary multipliers
Binary multipliers
Syed Saeed
 
Pe 4030 digital logic chapter 7 (weeks 11 12)
Pe 4030 digital logic chapter 7 (weeks 11 12)Pe 4030 digital logic chapter 7 (weeks 11 12)
Pe 4030 digital logic chapter 7 (weeks 11 12)
Charlton Inao
 
Combinational circuit
Combinational circuitCombinational circuit
Combinational circuit
Satya P. Joshi
 
Subtractor
SubtractorSubtractor
Subtractor
Syed Saeed
 
18 pc09 1.2_ digital logic gates _ boolean algebra_basic theorems
18 pc09 1.2_ digital logic gates _ boolean algebra_basic theorems18 pc09 1.2_ digital logic gates _ boolean algebra_basic theorems
18 pc09 1.2_ digital logic gates _ boolean algebra_basic theorems
arunachalamr16
 
presentation on (Boolean rules & laws)
presentation on (Boolean rules & laws)presentation on (Boolean rules & laws)
presentation on (Boolean rules & laws)kinza arshad
 
logical circuits substractors
logical circuits substractors logical circuits substractors
logical circuits substractors
Fâhém Ähmêd
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Simen Li
 
Algebra de bool
Algebra de boolAlgebra de bool
Algebra de bool
Maricusa Valdivia
 

What's hot (20)

Binary Arithmetic Operations
Binary Arithmetic OperationsBinary Arithmetic Operations
Binary Arithmetic Operations
 
multiplexers and demultiplexers
 multiplexers and demultiplexers multiplexers and demultiplexers
multiplexers and demultiplexers
 
Karnaugh map or K-map method
Karnaugh map or K-map methodKarnaugh map or K-map method
Karnaugh map or K-map method
 
Ceng232 Decoder Multiplexer Adder
Ceng232 Decoder Multiplexer AdderCeng232 Decoder Multiplexer Adder
Ceng232 Decoder Multiplexer Adder
 
Boolean Algebra
Boolean AlgebraBoolean Algebra
Boolean Algebra
 
Chapter 03 Boolean Algebra and Combinational Logic
Chapter 03 Boolean Algebra and Combinational LogicChapter 03 Boolean Algebra and Combinational Logic
Chapter 03 Boolean Algebra and Combinational Logic
 
KARNAUGH MAP(K-MAP)
KARNAUGH MAP(K-MAP)KARNAUGH MAP(K-MAP)
KARNAUGH MAP(K-MAP)
 
Boolean Algebra.pdf
Boolean Algebra.pdfBoolean Algebra.pdf
Boolean Algebra.pdf
 
Codificador electronica digital
Codificador electronica digitalCodificador electronica digital
Codificador electronica digital
 
Chapter 4. logic function and boolean algebra
Chapter 4. logic function and boolean algebraChapter 4. logic function and boolean algebra
Chapter 4. logic function and boolean algebra
 
Use s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitanceUse s parameters-determining_inductance_capacitance
Use s parameters-determining_inductance_capacitance
 
Binary multipliers
Binary multipliersBinary multipliers
Binary multipliers
 
Pe 4030 digital logic chapter 7 (weeks 11 12)
Pe 4030 digital logic chapter 7 (weeks 11 12)Pe 4030 digital logic chapter 7 (weeks 11 12)
Pe 4030 digital logic chapter 7 (weeks 11 12)
 
Combinational circuit
Combinational circuitCombinational circuit
Combinational circuit
 
Subtractor
SubtractorSubtractor
Subtractor
 
18 pc09 1.2_ digital logic gates _ boolean algebra_basic theorems
18 pc09 1.2_ digital logic gates _ boolean algebra_basic theorems18 pc09 1.2_ digital logic gates _ boolean algebra_basic theorems
18 pc09 1.2_ digital logic gates _ boolean algebra_basic theorems
 
presentation on (Boolean rules & laws)
presentation on (Boolean rules & laws)presentation on (Boolean rules & laws)
presentation on (Boolean rules & laws)
 
logical circuits substractors
logical circuits substractors logical circuits substractors
logical circuits substractors
 
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
Agilent ADS 模擬手冊 [實習1] 基本操作與射頻放大器設計
 
Algebra de bool
Algebra de boolAlgebra de bool
Algebra de bool
 

Similar to Principles of Combinational Logic-1

Minimization Technique .ppt
 Minimization Technique .ppt Minimization Technique .ppt
Minimization Technique .ppt
AshishChandrakar12
 
13 Boolean Algebra
13 Boolean Algebra13 Boolean Algebra
13 Boolean Algebra
Praveen M Jigajinni
 
Boolean algebra
Boolean algebraBoolean algebra
Boolean algebra
Manish Kumar
 
1Boolean Alegebra 3booleanalgebraold-160325120651.pdf
1Boolean Alegebra 3booleanalgebraold-160325120651.pdf1Boolean Alegebra 3booleanalgebraold-160325120651.pdf
1Boolean Alegebra 3booleanalgebraold-160325120651.pdf
siliconvalley6203
 
Module 1 ppt class.pptx
Module 1 ppt class.pptxModule 1 ppt class.pptx
Module 1 ppt class.pptx
VivekNaik55
 
Module ppt class.pptx
Module ppt class.pptxModule ppt class.pptx
Module ppt class.pptx
VivekNaik71
 
Chapter 2 Boolean Algebra (part 2)
Chapter 2 Boolean Algebra (part 2)Chapter 2 Boolean Algebra (part 2)
Chapter 2 Boolean Algebra (part 2)
Frankie Jones
 
B sc ii sem unit 2(b) ba
B sc ii sem unit 2(b) baB sc ii sem unit 2(b) ba
B sc ii sem unit 2(b) ba
MahiboobAliMulla
 
Document from Saikrish.S.pdf
Document from Saikrish.S.pdfDocument from Saikrish.S.pdf
Document from Saikrish.S.pdf
MeenakshiKS22BCE1551
 
BOOLEAN ALGEBRA & LOGIC GATE
BOOLEAN ALGEBRA & LOGIC GATEBOOLEAN ALGEBRA & LOGIC GATE
BOOLEAN ALGEBRA & LOGIC GATE
Ideal Eyes Business College
 
B sc3 unit 3 boolean algebra
B sc3 unit 3 boolean algebraB sc3 unit 3 boolean algebra
B sc3 unit 3 boolean algebra
MahiboobAliMulla
 
Boolean algebra
Boolean algebraBoolean algebra
Boolean algebra
LingalaSowjanya
 
pos and do not care ppt.pptx
pos and do not care ppt.pptxpos and do not care ppt.pptx
pos and do not care ppt.pptx
Dr. Pravin Prajapati
 
K-map Digital Logic Design DLD Theory l
K-map  Digital Logic Design DLD Theory lK-map  Digital Logic Design DLD Theory l
K-map Digital Logic Design DLD Theory l
khanyz4884
 
Chapter 2.pdf
Chapter 2.pdfChapter 2.pdf
Chapter 2.pdf
ssuserf7cd2b
 
Boolean Algebra
Boolean AlgebraBoolean Algebra
Boolean Algebra
blaircomp2003
 

Similar to Principles of Combinational Logic-1 (20)

Digital Basics
Digital BasicsDigital Basics
Digital Basics
 
Lec 2 digital basics
Lec 2 digital basicsLec 2 digital basics
Lec 2 digital basics
 
Minimization Technique .ppt
 Minimization Technique .ppt Minimization Technique .ppt
Minimization Technique .ppt
 
13 Boolean Algebra
13 Boolean Algebra13 Boolean Algebra
13 Boolean Algebra
 
Boolean algebra
Boolean algebraBoolean algebra
Boolean algebra
 
1Boolean Alegebra 3booleanalgebraold-160325120651.pdf
1Boolean Alegebra 3booleanalgebraold-160325120651.pdf1Boolean Alegebra 3booleanalgebraold-160325120651.pdf
1Boolean Alegebra 3booleanalgebraold-160325120651.pdf
 
Module 1 ppt class.pptx
Module 1 ppt class.pptxModule 1 ppt class.pptx
Module 1 ppt class.pptx
 
Module ppt class.pptx
Module ppt class.pptxModule ppt class.pptx
Module ppt class.pptx
 
Chapter 2 Boolean Algebra (part 2)
Chapter 2 Boolean Algebra (part 2)Chapter 2 Boolean Algebra (part 2)
Chapter 2 Boolean Algebra (part 2)
 
B sc ii sem unit 2(b) ba
B sc ii sem unit 2(b) baB sc ii sem unit 2(b) ba
B sc ii sem unit 2(b) ba
 
Document from Saikrish.S.pdf
Document from Saikrish.S.pdfDocument from Saikrish.S.pdf
Document from Saikrish.S.pdf
 
2dig circ
2dig circ2dig circ
2dig circ
 
BOOLEAN ALGEBRA & LOGIC GATE
BOOLEAN ALGEBRA & LOGIC GATEBOOLEAN ALGEBRA & LOGIC GATE
BOOLEAN ALGEBRA & LOGIC GATE
 
B sc3 unit 3 boolean algebra
B sc3 unit 3 boolean algebraB sc3 unit 3 boolean algebra
B sc3 unit 3 boolean algebra
 
Boolean algebra
Boolean algebraBoolean algebra
Boolean algebra
 
pos and do not care ppt.pptx
pos and do not care ppt.pptxpos and do not care ppt.pptx
pos and do not care ppt.pptx
 
K-map Digital Logic Design DLD Theory l
K-map  Digital Logic Design DLD Theory lK-map  Digital Logic Design DLD Theory l
K-map Digital Logic Design DLD Theory l
 
Chapter 2.pdf
Chapter 2.pdfChapter 2.pdf
Chapter 2.pdf
 
Boolean Algebra
Boolean AlgebraBoolean Algebra
Boolean Algebra
 
14 Lec11 2003
14 Lec11 200314 Lec11 2003
14 Lec11 2003
 

Recently uploaded

NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
ssuser9bd3ba
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
Kamal Acharya
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
PrashantGoswami42
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
AhmedHussein950959
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
Kamal Acharya
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
 

Recently uploaded (20)

NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
Vaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdfVaccine management system project report documentation..pdf
Vaccine management system project report documentation..pdf
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
 

Principles of Combinational Logic-1

  • 1. LOGIC DESIGN PART A Unit 1: PRINCIPLES OF COMBINATIONAL LOGIC-1 Definition of Combinational logic: It deals with the techniques of combining basic gates into circuits that perform some desired function.
  • 2.  Outputs are functions of (present) inputs.  No memory element. (like flipflops)  Do not have feedback from output to input.  Egs. Adder, subtractor, decoder, encoder, multiplexer. COMBINATIONAL LOGIC
  • 3. BASICS OF DIGITAL ELECTRONICS  Digital Electronics represents information (0, 1) with only two discrete values.  Ideally “no voltage” (e.g., 0v) represents a 0 and “full source voltage” (e.g., 5v) represents a 1  Realistically “low voltage” (e.g., <1v) represents a 0 and “high voltage” (e.g., >4v) represents a 1  We achieve these discrete values by using switches.  We use transistor switches, which operates at high speed, electronically, and small in size.
  • 4. GATES  The most basic digital devices are called gates.  Gates got their name from their function of allowing or blocking (gating) the flow of digital information.  A gate has one or more inputs and produces an output depending on the input(s).  A gate is called a combinational circuit.  Three most important gates are: AND, OR,
  • 5. GATES  Simple gates  AND  OR  NOT  Functionality can be expressed by a truth table  A truth table lists output for each possible input combination  Precedence  NOT > AND > OR  F = A B + A B = (A (B)) + ((A) B)
  • 6. AND, OR, NOT GATES
  • 7. GATES  Additional useful gates  NAND  NOR  XOR  NAND = AND + NOT  NOR = OR + NOT  XOR implements exclusive-OR function  NAND and NOR gates require only 2 transistors  AND and OR need 3 transistors!
  • 8. Equivalent symbols for NAND & NOR gates
  • 9. GATES(CONT.)  Proving NAND gate is universal
  • 10. BASIC CONCEPTS (CONT.)  Proving NOR gate is universal
  • 12. LOGIC CHIPS (CONT.)  Integration levels  SSI (small scale integration)  Introduced in late 1960s  1-10 gates (previous examples)  MSI (medium scale integration)  Introduced in late 1960s  10-100 gates  LSI (large scale integration)  Introduced in early 1970s  100-10,000 gates  VLSI (very large scale integration)  Introduced in late 1970s  More than 10,000 gates
  • 15. LOGIC FUNCTIONS  Logical functions can be expressed in several ways:  Truth table  Logical expressions  Graphical form  Example:  Majority function  Output is one whenever majority of inputs is 1  We use 3-input majority function
  • 16. LOGIC FUNCTIONS (CONT.) 3-input majority function A B C F 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1  Logical expression form after simplification: F = A B + B C + A C
  • 17. LOGIC CIRCUIT DESIGN PROCESS  A simple logic design process involves  Problem specification  Truth table derivation  Derivation of logical expression  Simplification of logical expression  Implementation
  • 18. DERIVING LOGICAL EXPRESSIONS  Derivation of logical expressions from truth tables  Sum-of-products (SOP) form  Product-of-sums (POS) form  SOP form  Write an AND term for each input combination that produces a 1 output  Write the variable if its value is 1; complement otherwise  OR the AND terms to get the final expression  POS form  Dual of the SOP form
  • 19. SUM OF PRODUCT (SOP) FORM  3-input majority function A B C F 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 SOP logical expression F = A B C + A B C + A B C + A B C  Four product terms  Because there are 4 rows with a 1 output   
  • 20. PRODUCT OF SUM (POS) FORM  3-input majority function A B C F 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1     POS logical expression F = (A + B + C) (A + B + C) (A + B + C) (A + B + C) • Four sum terms Because there are 4 rows with a 0 output
  • 21. DEFINITIONS: 1) Literal: It is a Boolean variable or its complement. Eg. A, B ,C, B 2) Product term: It is a logical AND of literals or is a literal. Eg. A B C , B C , AB 3) Sum term: It is a logical OR of literals or is a literal. Eg. (A + B + C), (A + B ) 4) SOP: It is the logical OR of multiple product terms. 5) POS: It is the logical AND of multiple Sum terms.
  • 22. Definitions: 6) Minterm A minterm is a special case product term which contains all the input variables (each literal occuring only once) of the function. • A function with n variables has 2n minterms • A three-variable function, such as f(x,y,z), has 23 = 8 minterms. Minterm Is true when… Shorthand x’y’z’ x’y’z x’yz’ x’yz xy’z’ xy’z xyz’ xyz x=0, y=0, z=0 x=0, y=0, z=1 x=0, y=1, z=0 x=0, y=1, z=1 x=1, y=0, z=0 x=1, y=0, z=1 x=1, y=1, z=0 x=1, y=1, z=1 m0 m1 m2 m3 m4 m5 m6 m7
  • 23. DEFINITIONS: 7) MAXTERM It is a special case Sum term which contains all the input variables of the function, occurring only once.  A function with n variables has 2n minterms  A three-variable function, such as f(x,y,z), has 23 = 8 minterms. Maxterm Is false when… Shorthand x + y + z x=0, y=0, z=0 M0 x + y + z’ x=0, y=0, z=1 M1 x + y’ + z x=0, y=1, z=0 M2 x + y’ + z’ x=0, y=1, z=1 M3 x’ + y + z x=1, y=0, z=0 M4 x’ + y + z’ x=1, y=0, z=1 M5 x’ + y’ + z x=1, y=1, z=0 M6 x’ + y’ + z’ x=1, y=1, z=1 M7
  • 24.
  • 25. DEFINITIONS: 8) Canonical SOP • It is a complete set of minterms that defines when an O/P variable is a logical 1. • Canonical or Standard SOP form is an SOP form of expression in which each product term contains all the literals. Eg. A B C + A B C + A B C + A B C 9) Canonical POS It is a POS form in which each Sum term contains all the literals. Eg. (A + B + C) (A + B + C)(A + B + C)
  • 26. CANONICAL SOP FORM & MINTERM NOTATION Every function can be written as a unique sum of minterms. You can obtain the canonical SOP form by picking the rows having O/P =1.    )6,3,2,1,0( 63210 m mmmmm CABBCACBACBACBAf
  • 27. CANONICAL POS FORM & MAXTERM NOTATION
  • 29. Express the following SOP equation in 1) Minterm notation 2) Maxterm notation abccbabcacbacbaW ),,( -- Minterm notation        )6,5,2,0( )7,4,3,1(... ... ... )2 7431 7431 74317431 7431 MW MMMMMW MMMMW mmmmmmmmW mmmmW -- Maxterm notation  ).7,4,3,1()1 mW
  • 30. Express the following SOP equation in 1) Minterm notation 2) Maxterm notation           )6,4,1( )7,5,3,2,0(.... )(.... .... )2 )7,5,3,2,0()1 75320 75320 7532075320 75320 MW MMMMMMX MmMMMMMX mmmmmmmmmmX mmmmmX mX abccbabcacbacbaX ii … Minterm notation … Maxterm notation
  • 31. Convert to Canonical SOP form NMLNMLNLMLMN NNMLNNMMLLML LMMNMLR srqpsrqpspqrsrqpsrqpsqrpqrsp qqppsrssrrqp srqpR m         )())(( )()2 ))(())(( )1 )14,10,7,6,5,4,2(
  • 32. Convert to Canonical POS form ))()()(( ))(( ))(()2 ))()(( ))()()(( ))()()(( ))()()(( ))(( ))(()1 cbacbacbacba cbaaccba cbbaX zyxwzyxwzyxw zyxwzyxwzyxwzyxw zyxwzyxwzyxwzyxw zyxwzyxwzyxwzyxw zyxxwwzzyyxw zyxwP         
  • 33. LOGICAL EXPRESSION SIMPLIFICATION Methods:  Algebraic manipulation  Use Boolean laws to simplify the expression  Difficult to use  Don’t know if you have the simplified form  Karnaugh map (K-map) method  Graphical method  Easy to use  Can be used to simplify logical expressions with a few variables.  Quine Mc-Cluskey method  Used for more than 6 variable functions  Tedious procedure
  • 34. 1) ALGEBRAIC MANIPULATION METHOD  Majority function example A B C + A B C + A B C + A B C = A B C + A B C + A B C + A B C + A B C + A B C  We can now simplify this expression as B C + A C + A B  A difficult method to use for complex expressions Added extra
  • 35. KARNAUGH MAP METHOD OF SIMPLICATION Note the order
  • 36. 5 VARIABLE K-MAP dec A BCDE O/P 0 00000 1 00001 2 00010 3 00011 4 00100 5 00101 6 00110 7 00111 8 01000 9 01001 10 01010 11 01011 12 01100 13 01101 14 01110 15 01111 dec A BCDE O/P 16 10000 17 10001 18 10010 19 10011 20 10100 21 10101 22 10110 23 10111 24 11000 25 11001 26 11010 27 11011 28 11100 29 11101 30 11110 31 11111 LOGICALLY ADJACENT COLUMNS
  • 37. DEFINITIONS  Implicant: Any single minterm(cell) or permitted group of minterms. Eg. Implicants are:  )6,4,2,0(mY 1 0 0 1 1 0 0 1 c cbcbcaca cabcbacbacba ,,,, ,,,, 0 1 00 01 11 10 A BC
  • 38. DEFINITIONS  Prime Implicant: A group of minterms which cannot be combined with any other minterms or groups.  P.I is c  P.Is are: x z, y 1 0 0 1 1 0 0 1 0 1 00 01 11 10 0 1 1 1 0 0 1 1 0 1 00 01 11 10 A BC A BC
  • 39. DEFINITIONS Essential Prime Implicant: A prime implicant in which one or more minterms are unique i.e, it contains atleast one minterm that is not contained in any other prime implicant. E.P.Is are: a c & b c The simplified exprn. must contain all EPIs & may or may not contain non-essential PIs. The aim is to choose the PI’s so that no cell with ‘1’ is left uncovered. 1 0 1 1 0 0 1 0 0 1 00 01 11 10 Unique ‘1’ cells A BC
  • 40. GENERAL RULES FOR USING THE K- MAP Combine ones into groups of (1, 2, 4, 8, …) squares Form the largest group size.(PIs) Form the min number of groups. Two groups should not intersect unless this will enable a small group to be larger in size.
  • 41.  For every Minterm in the given expression, put a ‘1’ into the corresponding cell & ‘0’ in the other cells.  Check for logical adjacency for the minterm cells. ( Cells are said to be logically adjacent if there occurs change in only 1 bit b/w them)  Eg. Cells 0 & 4 are adjacent 000 100 Arrow shows changed bit.  Group logically adjacent 1-cells to form subcubes such that their size = 2n cells (2,4,8,16..) and it is as large as possible.  Then each group represents a product term with reduced no. of variables.
  • 42. PROBLEM 1: SIMPLIFY USING K-MAPS  )7,6,3,2,1(),,( zyxfD 0 1 1 1 0 0 1 1 0 1 00 01 11 10 x yz PI’s : xz, y EPI’s: xz, y Minimal form of D = x z + y
  • 43. PROBLEM 2: SIMPLIFY USING K-MAPS  )7,5,4,3,2,0(),,( zyxfD 0 1 00 01 11 10 x yz 1 0 1 1 1 1 1 0 PI’s : y z, x z, x y, x z, x y, yz EPI’s: none ( because no unique ‘1’ cells) Minimal form of D = y z + x z + x y OR D = x z + x y + yz There are 2 solutions because in each case, all ‘1’ cells are covered with the chosen set of groups.
  • 44. PROBLEM 3: SIMPLIFY USING K-MAPS  )15,13,11,9,5,4,1,0(),,,( dcbafK PI’s : a c, c d, a d EPI’s: a c, a d Non-essential PI: c d Minimal form of K = a c + a d 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 cd ab 00 01 11 10 00 01 11 10 Unique ‘1’ cells
  • 45. PROBLEM 4: SIMPLIFY USING K-MAPS  )15,13,10,8,7,5,2,0(),,,( dcbafX PI’s : b d, b d EPI’s: b d, b d Minimal form of X = b d + b d = b d 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 cd ab 00 01 11 10 00 01 11 10
  • 46. PROBLEM 5: SIMPLIFY USING K-MAPS  )14,12,11,9,6,4,3,1(),,,( dcbafX PI’s : b d, b d EPI’s: b d, b d Minimal form of X = b d + b d = b d 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 cd ab 00 01 11 10 00 01 11 10
  • 47. PROBLEM 6: SIMPLIFY USING K-MAPS  )13,7,6,5,2(),,,( dcbafX PI’s : a b d, b c d, a c d, a b c EPI’s: a b d, a b c Minimal form of X = a b d + a b c + a c d OR X= a b d + a b c + b c d 0 0 0 1 0 1 1 1 0 1 0 0 0 0 0 0 cd ab 00 01 11 10 00 01 11 10 Unique ‘1’ cells
  • 48. PROBLEM 7: SIMPLIFY USING K-MAPS  )14,13,12,9,8,6,5,4,2,1,0(),,,( dcbafX PI’s : c , a d, b d EPI’s: c , a d, b d Minimal form of X = c + a d + b d 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 0 cd ab 00 01 11 10 00 01 11 10 Unique ‘1’ cells
  • 49. PROBLEM 8: SIMPLIFY USING K-MAPS PI’s : cd , a b c, a b c, b d, a d EPI’s: cd , a b c, a b c Minimal form of X = cd + a b c + a b c + b d OR X= cd + a b c + a b c + a d 0 1 1 0 1 1 1 0 0 0 1 0 1 1 1 0 cd ab 00 01 11 10 00 01 11 10 Unique ‘1’ cells
  • 50. PROBLEM 9: SIMPLIFY USING K-MAPS  )15,13,11,10,9,8,7,5,1(),,,( dcbafX 0 1 0 0 0 1 1 0 0 1 1 0 1 1 1 1 cd ab 00 01 11 10 00 01 11 10 Unique ‘1’ cells PI’s : cd , a d, a b , b d EPI’s: cd , b d, a b Minimal form of X = cd + b d + a b
  • 51. PROBLEM 10: SIMPLIFY USING K-MAPS ).......(),,,( OPformcanonicalStoconvertzxyzwxywzyxwfT   )14,12,10,8,7,6(mT 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 wx 00 01 11 10 00 01 11 10 Unique ‘1’ cells yz PI’s : x y z, w z , w x y. EPI’s: w z , w x y. Minimal form of T = w z + w x y.
  • 52. PROBLEM 11: SIMPLIFY USING K-MAPS  )14,13,12,11,9,6,5,4,3,1(),,,( mzyxwfT 0 1 1 0 1 1 0 1 1 1 0 1 0 1 1 0 wx 00 01 11 10 00 01 11 10 Unique ‘1’ cells yz PI’s : y z, x z , x y, x z EPI’s: x z , x z Minimal form of T = x z + x z + y z OR T = x z + x z + x y
  • 53. PROBLEM 12: SIMPLIFY USING K-MAPS  )15,13,12,11,10,8,7,6,5,2,1,0(),,,( mzyxwfT 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 wx 00 01 11 10 00 01 11 10 yz PI’s: x z , w y z, w x y , w y z , w x y, xz, w y z,w y z, w x y w x y EPI’s: none Minimal form of T = x z + w y z + w x y + w y z + w x y OR T = x z + w y z + w x y + w y z + w x y 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 1 0 1 0 1 1
  • 54. PROBLEM 13: SIMPLIFY USING K-MAPS. WRITE THE SIMPLIFIED SOP & POS EXPRESSIONS.  )15,13,12,11,9,8,7,5,4,0(),,,( Mzyxwf 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 wx 00 01 11 10 00 01 11 10 yz PI’s: w x y , w x z, y z EPI’s: w x z , y z 0 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 wx 00 01 11 10 00 01 11 10 yz Minimal SOP form of T = w x z + y z PI’s: w +z , x +z,y+z,w+y,x+y EPI’s: w +z , x +z, y+z Minimal POS form of T =(w +z ).(x +z ).(y+z)
  • 55. PROBLEM 14: SIMPLIFY USING K-MAPS & IDENTIFY PRIME IMPLICANTS & ESSENTIAL PRIME IMPLICANTS DCBACBADCBCDADCADCBAf ),,,( 1 1 1 1 0 1 1 0 0 0 0 0 1 0 1 1 AB 00 01 11 10 00 01 11 10 CD PI’s: B D ,B C, A B , A D EPI’s: B D ,B C, A D Minimal form of T = B D + B C+ A D After converting to Canonical SOP form, write in Minterm notation.  )11,10,8,7,5,3,2,1,0(),,,( mDCBAf
  • 56. PROBLEM 15: SIMPLIFY USING K-MAPS & IDENTIFY PRIME IMPLICANTS & ESSENTIAL PRIME IMPLICANTS ))()()()((),,,( DCBADCBADCBADBADBADCBAf  1 0 0 1 1 1 1 0 1 1 0 0 1 0 0 1 AB 00 01 11 10 00 01 11 10 CD Minimal POS form of T = After converting to Canonical POS form, write in Maxterm notation.  )15,14,11,9,6,3,1(),,,( MDCBAf B+D (EPI) A+B+C (EPI) B+C+D (EPI) ))()(( DCBCBADB  DBBDACBT  If u group 1’s, u can get Minimal POS form as
  • 57. PROBLEM 16: SIMPLIFY USING K-MAPS & IMPLEMENT USING BASIC GATES  )12,11,10,7,6,4,3,2(),,,( MDCBAf 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 AB 00 01 11 10 00 01 11 10 CD PI’s: B C, A B C, C D, ABD PI’s: B+C, A+C, B+C+D, A+B+D EPI’s: B C, A B C, C D EPI’s: B+C, A+C, B+C+D Minimal SOPform of R= B C+A B C+ C D Minimal POSform of R =(B+C)(A+C)(B+C+D) 1 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 AB 00 01 11 10 00 01 11 10 CD
  • 58. A B C R D PROBLEM 16: SIMPLIFY USING K-MAPS & IMPLEMENT USING BASIC GATES CONTD… R =(B+C)( A+C)( B+C+D)
  • 59.  )31,29,27,25,15,13,11,9(),,,,( mEDCBAf PROBLEM 17: SIMPLIFY USING K-MAPS 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 AB 000 001 011 00 01 11 10 CDE 110111101100010 NOTE THIS BE
  • 60. PROBLEM 18: SIMPLIFY USING K-MAPS  )31,30,27,26,25,17,15,14,11,10,9,1(),,,,( mEDCBAf 0 1 0 0 0 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 AB 000 001 011 00 01 11 10 CDE 110111101100010 NOTE THIS BD C D E B C E BDEDCYofformMinimal 
  • 61. PROBLEM 19: SIMPLIFY USING K-MAPS  )31,29,27,25,21,19,15,14,13,11,10,9,5,3(),,,,( mEDCBAf 0 0 1 0 0 1 1 1 0 1 1 0 0 0 1 0 0 1 0 0 0 1 1 1 0 1 1 0 0 1 0 0 AB 000 001 011 00 01 11 10 CDE 110111101100010 BE C D E A B D BDABEEDCDECYofformMinimal  C D E
  • 62. PROBLEM 20: SIMPLIFY USING K-MAPS   )31,19,11,3(can writeWe ),,,,( T decbaabcdedecbadecbaedcbafT ABCDEDECBDECAYofformMinimal  0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 AB 000 001 011 00 01 11 10 CDE 110111101100010 B C D E A C D E ABCDE
  • 63. PROBLEM 21: SIMPLIFY USING K-MAPS  )27,26,25,24,19,18,17,16,14,12,11,10,9,8,6,4,2,0(),,,,( MEDCBAf ))()(( CBCAEAYofformMinimal  0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 AB 000 001 011 00 01 11 10 CDE 110111101100010 B +C (EPI) A +C (EPI) A +E (EPI) C+E (PI)
  • 64.  d)c,b,f(a,GthatShow  )15,13,10,8,7,5,2,0(  )14,12,11,9,6,4,3,1(Gofcomplementtheis equations.2theofnaturecomplementtheillustratetomap-KaUse 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 AB 00 01 11 10 00 01 11 10 CD 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 AB 00 01 11 10 00 01 11 10 CD DB DBBDG   DB DBDBGsGrouping   ))((,'0 PROBLEM 22:
  • 65. INCOMPLETELY SPECIFIED FUNCTIONS(DON’T CARE TERMS) When an O/P is not known for every combination of I/P variables, the function is said to be incompletely specified. Eg. BCD (B3B2B1B0) to Excess-3 BCD (X3X2X1X0) Code Converter B3 B2 B1 B0 X3 X2 X1 X0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 X X X X 1 0 1 1 X X X X 1 1 0 0 X X X X 1 1 0 1 X X X X 1 1 1 0 X X X X 1 1 1 1 X X X X
  • 66. 1 0 1 0 1 0 1 0 x x x x 1 0 x x BCD (B3B2B1B0) to Excess-3 BCD (X3X2X1X0) Code Converter eg. We have 4 O/Ps here & hence we need to get 4 expressions. 1 0 0 1 1 0 0 1 x x x x 1 0 x x B3B2 00 01 11 10 00 01 11 10 00 BX  B1B0 2) K-map for X1 B3B2 00 01 11 10 00 01 11 10 B1B0 0101011 BBBBBBX  1) K-map for X0
  • 67. 0 0 0 0 0 1 1 1 x x x x 1 1 x x 0 1 1 1 1 0 0 0 x x x x 0 1 x x B3B2 00 01 11 10 00 01 11 10 )10(2 )01(2)10(2 01202122 BBB BBBBBB BBBBBBBX    B1B0 4) K-map for X3 B3B2 00 01 11 10 00 01 11 10 B1B0 120233 BBBBBX  BCD (B3B2B1B0) to Excess-3 BCD (X3X2X1X0) Code Converter eg. 3) K-map for X2
  • 68. 0 0 1 1 1 1 0 0 0 1 1 0 X X X X 00 01 11 10 00 01 11 10 B1B0 Simplify using K-maps       )10,8,7,5,0()15,14,13,11,4,2,1(),,,()2 )11,10,9,8()15,13,5,4,3,2(),,,()1 dmDCBAf dmDCBAfV CBAADCBV  X 1 0 1 1 X X 0 0 1 1 1 X 0 1 X 00 01 11 10 00 01 11 10 B1B0 B3B2 B3B2 DBACBDCAf 
  • 69. Simplify using K-maps       )28,24,14,10()30,26,23,21,8,7,5(),,,,()2 )26,24,10,8(30,28,27,25,22,20,19,17,14,12,11,9,6,4,3,1(),,,,()1 dMEDCBAf dmEDCBAf ECECV  ))()(( HFEHGEHFEf  0 1 1 0 X 1 1 X X 1 1 X 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 AB 000 001 011 00 01 11 10 CDE 110111101100010 1 1 1 1 0 1 1 X X 1 1 0 1 1 1 1 1 0 0 1 1 1 1 X X 1 1 0 1 0 0 1 DE 000 001 011 00 01 11 10 FGH 110111101100010 )( HFE  )( HGE  )( HFE EC EC
  • 71. PROBLEMS ON DESIGN 1) Design a logic circuit which has a single O/P variable z which is to be true when I/P variables a & b are true or when b is false but a & c are true. a b c Z 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 OPCanonicalSabccabcbaz  0 0 0 0 0 1 1 1 00 01 11 10 0 1 a bc )( bcaz SOPMinimalabacz   a b c z
  • 72. 2) Design a logic circuit whose O/P is to be true when the value if I/P s exceeds 3. The weighting for each I/P variable is as follows. w=3, x=3, y=2, z=1. (Left as an exercise) 3) Design a logic circuit that controls the passage of a signal ‘A’ according to the following requirement. i. O/P ‘X’ will = ‘A’ when control I/Ps B & C are the same. ii. ‘X’ will remain ‘HIGH’ when B & C are different. Implement the ckt using suitable gates. PROBLEMS ON DESIGN A B C X 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 00 01 11 10 0 1 a bc CBAX  A B C X
  • 73. 1. Difficult to use when no. of variables is > 6. 2. The recognition of groups that form EPI’s becomes difficult for large K-maps. 3. The technique does not involve a systematic algorithmic procedure that is suitable for computers. Since it is a manual technique, simplification process depends on human abilities.