Definition:Definition:
Piecewise FunctionPiecewise Function –a–a
function defined by two orfunction defined by two or
more functions over amore functions over a
specified domain.specified domain.
What do they look like?
f(x) =
x2
+ 1 , x < 0
x – 1 , x ≥ 0
You can EVALUATE piecewise
functions.
You can GRAPH piecewise functions.
Evaluating Piecewise Functions:
Evaluating piecewise functions is just
like evaluating functions that you are
already familiar with.
f(x) =
x2
+ 1 , x < 0
x – 1 , x ≥ 0
Let’s calculate f(2).
You are being asked to find y when
x = 2. Since 2 is ≥ 0, you will only
substitute into the second part of
the function.
f(2) = 2 – 1 = 1
f(x) =
x2
+ 1 , x < 0
x – 1 , x ≥ 0
Let’s calculate f(-2).
You are being asked to find y when
x = -2. Since -2 is < 0, you will only
substitute into the first part of
the function.
f(-2) = (-2)2
+ 1 = 5
Your turn:
f(x) =
2x + 1, x < 0
2x + 2, x ≥ 0
Evaluate the following:
f(-2) = -3?
f(0) = 2?
f(5) = 12?
f(1) = 4?
One more:
f(x) =
3x - 2, x < -2
-x , -2 ≤ x < 1
x2
– 7x, x ≥ 1
Evaluate the following:
f(-2) = 2?
f(-4) = -14?
f(3) = -12?
f(1) = -6?
Graphing Piecewise Functions:
f(x) =
x2
+ 1 , x < 0
x – 1 , x ≥ 0
Determine the shapes of the graphs.
Parabola and Line
Determine the boundaries of each graph.
                       
                       
                       
                       
                       
                       
                       
                       
Graph the
parabola where x
is less than zero. •
•
•
•
•
°
Graph the line
where x is
greater than or
equal to zero. •
•
•
•
•
•
•
•
•
•
•
•
•
3x + 2, x < -2
-x , -2 ≤ x < 1
x2
– 2, x ≥ 1
f(x) =
Graphing Piecewise Functions:
Determine the shapes of the graphs.
Line, Line, Parabola
Determine the boundaries of each graph.
                       
                       
                       
                       
                       
                       
                       
                       
°
•
•
•
•
•
•
°•
•
• •
•
Graphing Piecewise Functions
( )
x 4 x 4
2x
x 3 x
1
1
g x 5 4 x+ − ≤
− + >
 + < −
= ≤




Domain - ( ),−∞ ∞
Range - ( ), 7−∞
( )
3 7 x 4
1
x 2 4 x 0
2
1
x 4
x
0 x 5
5 x 7
g
−
− −
− <
− − <



= 
<
< ≤ −
+ ≤ ≤
≤



Domain - (-7, 7]
Range - (-4, -2), [-1, 4]
( )
1
x 6 x 3
3
x 1 3 x 0h x
x 4 0 x 3
x 3 3 x 7

− − ≤ ≤ −
 + − < ≤= 
 + < <

− + ≤ ≤
Domain - [-6, 7]
Range - [-4, 2], (4, 7)
( )
4 x 3
h x 2x 3 3 x 4
4x 7 x 6
≤ −

= + − < ≤
 − ≥
Piecewise Function – Domain and Range
Domain -
Range -
Domain - (-6, 7)
Range - [-1, 5 )
[-7, 7]
(-4.5,-1], [0, 4)
Domain -
Range -
Domain -
Range -
(-7, -1), (-1, 7]
[-1, 5), [6, 6]
(-7, 4), [5, 7)
[-7, -5), (-2, 7)
Domain -
Range -
Domain -
Range -
( ),−∞ ∞
( ], 4−∞
[-1, 5]
[-5, 3]

Piecewise functions updated_2016

  • 2.
    Definition:Definition: Piecewise FunctionPiecewise Function–a–a function defined by two orfunction defined by two or more functions over amore functions over a specified domain.specified domain.
  • 3.
    What do theylook like? f(x) = x2 + 1 , x < 0 x – 1 , x ≥ 0 You can EVALUATE piecewise functions. You can GRAPH piecewise functions.
  • 4.
    Evaluating Piecewise Functions: Evaluatingpiecewise functions is just like evaluating functions that you are already familiar with. f(x) = x2 + 1 , x < 0 x – 1 , x ≥ 0 Let’s calculate f(2). You are being asked to find y when x = 2. Since 2 is ≥ 0, you will only substitute into the second part of the function. f(2) = 2 – 1 = 1
  • 5.
    f(x) = x2 + 1, x < 0 x – 1 , x ≥ 0 Let’s calculate f(-2). You are being asked to find y when x = -2. Since -2 is < 0, you will only substitute into the first part of the function. f(-2) = (-2)2 + 1 = 5
  • 6.
    Your turn: f(x) = 2x+ 1, x < 0 2x + 2, x ≥ 0 Evaluate the following: f(-2) = -3? f(0) = 2? f(5) = 12? f(1) = 4?
  • 7.
    One more: f(x) = 3x- 2, x < -2 -x , -2 ≤ x < 1 x2 – 7x, x ≥ 1 Evaluate the following: f(-2) = 2? f(-4) = -14? f(3) = -12? f(1) = -6?
  • 8.
    Graphing Piecewise Functions: f(x)= x2 + 1 , x < 0 x – 1 , x ≥ 0 Determine the shapes of the graphs. Parabola and Line Determine the boundaries of each graph.                                                                                                                                                                                                 Graph the parabola where x is less than zero. • • • • • ° Graph the line where x is greater than or equal to zero. • • • • • • •
  • 9.
    • • • • • • 3x + 2,x < -2 -x , -2 ≤ x < 1 x2 – 2, x ≥ 1 f(x) = Graphing Piecewise Functions: Determine the shapes of the graphs. Line, Line, Parabola Determine the boundaries of each graph.                                                                                                                                                                                                 ° • • • • • • °• • • • •
  • 10.
    Graphing Piecewise Functions () x 4 x 4 2x x 3 x 1 1 g x 5 4 x+ − ≤ − + >  + < − = ≤     Domain - ( ),−∞ ∞ Range - ( ), 7−∞
  • 11.
    ( ) 3 7x 4 1 x 2 4 x 0 2 1 x 4 x 0 x 5 5 x 7 g − − − − < − − <    =  < < ≤ − + ≤ ≤ ≤    Domain - (-7, 7] Range - (-4, -2), [-1, 4]
  • 12.
    ( ) 1 x 6x 3 3 x 1 3 x 0h x x 4 0 x 3 x 3 3 x 7  − − ≤ ≤ −  + − < ≤=   + < <  − + ≤ ≤ Domain - [-6, 7] Range - [-4, 2], (4, 7)
  • 13.
    ( ) 4 x3 h x 2x 3 3 x 4 4x 7 x 6 ≤ −  = + − < ≤  − ≥
  • 14.
    Piecewise Function –Domain and Range Domain - Range - Domain - (-6, 7) Range - [-1, 5 ) [-7, 7] (-4.5,-1], [0, 4)
  • 15.
    Domain - Range - Domain- Range - (-7, -1), (-1, 7] [-1, 5), [6, 6] (-7, 4), [5, 7) [-7, -5), (-2, 7)
  • 16.
    Domain - Range - Domain- Range - ( ),−∞ ∞ ( ], 4−∞ [-1, 5] [-5, 3]