SlideShare a Scribd company logo
1 of 53
Stoichiometry
Chapter 3
Stoichiometry:
Calculations with Chemical
Formulas and Equations
Stoichiometry
Anatomy of a Chemical Equation
CH4 (g) + 2O2 (g) CO2 (g) + 2 H2O (g)
Stoichiometry
Anatomy of a Chemical Equation
Reactants appear on the
left side of the equation.
CH4 (g) + 2 O2 (g) CO2 (g) + 2 H2O (g)
Stoichiometry
Anatomy of a Chemical Equation
Products appear on the
right side of the equation.
CH4 (g) + 2 O2 (g) CO2 (g) + 2 H2O (g)
Stoichiometry
Anatomy of a Chemical Equation
The states of the reactants and products
are written in parentheses to the right of
each compound.
CH4 (g) + 2 O2 (g) CO2 (g) + 2 H2O (g)
Stoichiometry
Anatomy of a Chemical Equation
Coefficients are inserted to
balance the equation.
CH4 (g) + 2 O2 (g) CO2 (g) + 2 H2O (g)
Stoichiometry
Subscripts and Coefficients Give
Different Information
• Subscripts tell the number of atoms of
each element in a molecule
Stoichiometry
Subscripts and Coefficients Give
Different Information
• Subscripts tell the number of atoms of
each element in a molecule
• Coefficients tell the number of
molecules (compounds).
Stoichiometry
Reaction
Types
Stoichiometry
Combination Reactions
• Examples:
N2 (g) + 3 H2 (g)  2 NH3 (g)
C3H6 (g) + Br2 (l)  C3H6Br2 (l)
2 Mg (s) + O2 (g)  2 MgO (s)
• Two or more
substances
react to form
one product
Stoichiometry
2 Mg (s) + O2 (g)  2 MgO (s)
Stoichiometry
Decomposition Reactions
• Examples:
CaCO3 (s)  CaO (s) + CO2 (g)
2 KClO3 (s)  2 KCl (s) + O2 (g)
2 NaN3 (s)  2 Na (s) + 3 N2 (g)
• One substance breaks down into two or more
substances
Stoichiometry
Combustion Reactions
• Examples:
CH4 (g) + 2 O2 (g)  CO2 (g) + 2 H2O (g)
C3H8 (g) + 5 O2 (g)  3 CO2 (g) + 4 H2O (g)
2H2 + O2 ------- 2H2O
• Rapid reactions that
have oxygen as a
reactant sometimes
produce a flame
• Most often involve
hydrocarbons reacting
with oxygen in the air to
produce CO2 and H2O.
Stoichiometry
Formula
Weights
Stoichiometry
The amu unit
• Defined (since 1961) as:
• 1/12 mass of the 12C isotope.
• 12C = 12 amu
Stoichiometry
Formula Weight (FW)
• Sum of the atomic weights for the atoms
in a chemical formula
• So, the formula weight of calcium
chloride, CaCl2, would be
Ca: 1(40.1 amu)
+ Cl: 2(35.5 amu)
111.1 amu
• These are generally reported for ionic
compounds
Stoichiometry
Molecular Weight (MW)
• Sum of the atomic weights of the atoms
in a molecule
• For the molecule ethane, C2H6, the
molecular weight would be
C: 2(12.0 amu)
+ H: 6(1.0 amu)
30.0 amu
Stoichiometry
Percent Composition
One can find the percentage of the mass
of a compound that comes from each of
the elements in the compound by using
this equation:
% element =
(number of atoms)(atomic weight)
(FW of the compound)
x 100
Stoichiometry
Percent Composition
So the percentage of carbon and
hydrogen in ethane (C2H6, molecular
mass = 30.0) is:
%C =
(2)(12.0 amu)
(30.0 amu)
24.0 amu
30.0 amu
= x 100 = 80.0%
%H =
(6)(1.01 amu)
(30.0 amu)
6.06 amu
30.0 amu
= x 100 = 20.0%
Stoichiometry
Moles
Stoichiometry
Atomic mass unit and the mole
• amu definition: 12C = 12 amu.
• The atomic mass unit is defined this
way.
• 1 amu = 1.6605 x 10-24 g
• How many 12C atoms weigh 12 g?
• 6.02x1023 12C weigh 12 g.
• Avogadro’s number
• The mole
Stoichiometry
Atomic mass unit and the mole
• amu definition: 12C = 12 amu.
• 1 amu = 1.6605 x 10-24 g
• How many 12C atoms weigh 12 g?
• 6.02x1023 12C weigh 12 g.
• Avogadro’s number
• The mole
• #atoms = (1 atom/12 amu)(1 amu/1.66x10-24 g)(12g)
= 6.02x1023 12C weigh 12 g
Stoichiometry
Therefore:
• 6.02 x 1023
• 1 mole of 12C has a
mass of 12 g
Any
Stoichiometry
The mole
• The mole is just a number of things
• 1 dozen = 12 things
• 1 pair = 2 things
• 1 mole = 6.022141x1023 things
Stoichiometry
Molar Mass
The trick:
• By definition, this is the mass of 1 mol of
a substance (i.e., g/mol)
– The molar mass of an element is the mass
number for the element that we find on the
periodic table
– The formula weight (in amu’s) will be the
same number as the molar mass (in g/mol)
Stoichiometry
Using Moles
Moles provide a bridge from the molecular scale to the
real-world scale
The number of moles correspond to the number of
molecules. 1 mole of any substance has the same
number of molecules.
Stoichiometry
Mole Relationships
• One mole of atoms, ions, or molecules contains
Avogadro’s number of those particles
• One mole of molecules or formula units contains
Avogadro’s number times the number of atoms or
ions of each element in the compound
Stoichiometry
Finding
Empirical
Formulas
Stoichiometry
Combustion Analysis
gives % composition
• Compounds containing C, H and O are routinely
analyzed through combustion in a chamber like this
– %C is determined from the mass of CO2 produced
– %H is determined from the mass of H2O produced
– %O is determined by difference after the C and H have
been determined
CnHnOn + O2 nCO2 + 1/2nH2O
Stoichiometry
Calculating Empirical Formulas
One can calculate the empirical formula from
the percent composition
Stoichiometry
Calculating Empirical Formulas
The compound para-aminobenzoic acid (you may have
seen it listed as PABA on your bottle of sunscreen) is
composed of carbon (61.31%), hydrogen (5.14%),
nitrogen (10.21%), and oxygen (23.33%). Find the
empirical formula of PABA.
Stoichiometry
Calculating Empirical Formulas
Assuming 100.00 g of para-aminobenzoic acid,
C: 61.31 g x = 5.105 mol C
H: 5.14 g x = 5.09 mol H
N: 10.21 g x = 0.7288 mol N
O: 23.33 g x = 1.456 mol O
1 mol
12.01 g
1 mol
14.01 g
1 mol
1.01 g
1 mol
16.00 g
Stoichiometry
Calculating Empirical Formulas
Calculate the mole ratio by dividing by the smallest number
of moles:
C: = 7.005  7
H: = 6.984  7
N: = 1.000
O: = 2.001  2
5.105 mol
0.7288 mol
5.09 mol
0.7288 mol
0.7288 mol
0.7288 mol
1.458 mol
0.7288 mol
Stoichiometry
Calculating Empirical Formulas
These are the subscripts for the empirical formula:
C7H7NO2
H2N
O
O-
Stoichiometry
Elemental Analyses
Compounds
containing other
elements are
analyzed using
methods analogous
to those used for C,
H and O
Stoichiometry
Stoichiometric Calculations
The coefficients in the balanced equation give
the ratio of moles of reactants and products
Stoichiometry
Stoichiometric Calculations
From the mass of
Substance A you can
use the ratio of the
coefficients of A and
B to calculate the
mass of Substance B
formed (if it’s a
product) or used (if
it’s a reactant)
Stoichiometry
Stoichiometric Calculations
Starting with 10. g of C6H12O6…
we calculate the moles of C6H12O6…
use the coefficients to find the moles of H2O & CO2
and then turn the moles to grams
C6H12O6(s) + 6 O2(g)  6 CO2(g) + 6 H2O(l)
10.g ? + ?
Example: 10 grams of glucose (C6H12O6) react in a
combustion reaction. How many grams of each product are
produced?
Stoichiometry
Stoichiometric calculations
10.g ? + ?
MW: 180g/mol 44 g/mol 18g/mol
#mol: 10.g(1mol/180g)
0.055 mol 6(.055) 6(.055mol)
6(.055mol)44g/mol 6(.055mol)18g/mol
#grams: 15g 5.9 g
C6H12O6 + 6O2  6CO2 + 6H2O
Stoichiometry
Limiting
Reactants
Stoichiometry
How Many Cookies Can I Make?
• You can make cookies until you run out of one of the ingredients
• Once you run out of sugar, you will stop making cookies
Stoichiometry
How Many Cookies Can I Make?
• In this example the sugar would be the limiting reactant,
because it will limit the amount of cookies you can make
Stoichiometry
Limiting Reactants
• The limiting reactant is the reactant present in
the smallest stoichiometric amount
2H2 + O2 --------> 2H2O
#moles 14 7
10 5 10
Left: 0 2 10
Stoichiometry
Limiting Reactants
In the example below, the O2 would be the
excess reagent
Stoichiometry
Limiting reagent, example:
Soda fizz comes from sodium bicarbonate and citric acid (H3C6H5O7)
reacting to make carbon dioxide, sodium citrate (Na3C6H5O7) and water.
If 1.0 g of sodium bicarbonate and 1.0g citric acid are reacted, which is
limiting? How much carbon dioxide is produced?
3NaHCO3(aq) + H3C6H5O7(aq) ------> 3CO2(g) + 3H2O(l) + Na3C6H5O7(aq)
1.0g 1.0g
84g/mol 192g/mol 44g/mol
1.0g(1mol/84g) 1.0(1mol/192g)
0.012 mol 0.0052 mol
(if citrate limiting)
0.0052(3)=0.016 0.0052 mol
So bicarbonate limiting:
0.012 mol 0.012(1/3)=.0040mol 0.012 moles CO2
44g/mol(0.012mol)=0.53g CO2
.0052-.0040=.0012mol left
0.0012 mol(192 g/mol)=
0.023 g left.
Stoichiometry
Theoretical Yield
• The theoretical yield is the amount of
product that can be made
– In other words it’s the amount of product
possible from stoichiometry. The “perfect
reaction.”
• This is different from the actual yield,
the amount one actually produces and
measures
Stoichiometry
Percent Yield
A comparison of the amount actually
obtained to the amount it was possible
to make
Actual Yield
Theoretical Yield
Percent Yield = x 100
Stoichiometry
Example
C6H6 + Br2 ------> C6H5Br + HBr
Benzene (C6H6) reacts with Bromine to produce
bromobenzene (C6H6Br) and hydrobromic acid. If 30. g of
benzene reacts with 65 g of bromine and produces 56.7 g of
bromobenzene, what is the percent yield of the reaction?
30.g 65 g 56.7 g
78g/mol 160.g/mol 157g/mol
30.g(1mol/78g) 65g(1mol/160g)
0.38 mol 0.41 mol
(If Br2 limiting)
0.41 mol 0.41 mol
(If C6H6 limiting)
0.38 mol 0.38 mol 0.38mol(157g/1mol) = 60.g
56.7g/60.g(100)=94.5%=95%
Stoichiometry
Example, one more
4NH3 + 5O2 --------> 4NO + 6H2O
React 1.5 g of NH3 with 2.75 g of O2. How much NO
and H2O is produced? What is left?
1.5g 2.75g ? ?
17g/mol 32g/mol 30.g/mol 18g/mol
1.5g(1mol/17g)= 2.75g(1mol/32g)=
.088mol .086
(If NH3 limiting):
.088mol .088(5/4)=.11
O2 limiting:
.086(4/5)= .086 mol .086 mol(4/5)= .086(6/5)=
.069mol .069 mol .10mol
.069mol(17g/mol) .069mol(30.g/mol) .10mol(18g/mol)
1.2g 2.75g 2.1 g 1.8g
Stoichiometry
Stoichiometry
Gun powder reaction
• 10KNO3(s) + 3S(s) + 8C(s) ---- 2K2CO3(s) + 3K2SO4(s) + 6CO2(g) + 5N2(g)
• Salt peter sulfur charcoal
•
And heat.
What is interesting about this reaction?
What kind of reaction is it?
What do you think makes it so powerful?
Stoichiometry
Gun powder reaction
• 10KNO3(s) + 3S(s) + 8C(s) ---- 2K2CO3(s) + 3K2SO4(s) + 6CO2(g) + 5N2(g)
• Salt peter sulfur charcoal
•
And heat.
What is interesting about this reaction?
Lots of energy, no oxygen
What kind of reaction is it?
Oxidation reduction
What do you think makes it so powerful and explosive?
Makes a lot of gas!!!!
Reducing
agent
Oxidizing
agent
Oxidizing
agent
Stoichiometry
White phosphorous and Oxygen under water

More Related Content

Similar to STOICHIMETRY.ppt

Ch03 outline
Ch03 outlineCh03 outline
Ch03 outlineAP_Chem
 
AP Chemistry Chapter 3 Outline
AP Chemistry Chapter 3 OutlineAP Chemistry Chapter 3 Outline
AP Chemistry Chapter 3 OutlineJane Hamze
 
Chapter Three Lecture- Stoichiometry
Chapter Three Lecture- StoichiometryChapter Three Lecture- Stoichiometry
Chapter Three Lecture- StoichiometryMary Beth Smith
 
ASP Chemistry - Ch 4 Notes.pdf
ASP Chemistry - Ch 4 Notes.pdfASP Chemistry - Ch 4 Notes.pdf
ASP Chemistry - Ch 4 Notes.pdfShammaAhmed7
 
Introduction to stocihiometry milestone
Introduction to stocihiometry milestoneIntroduction to stocihiometry milestone
Introduction to stocihiometry milestonetkruzic
 
lect-2 molarity and molality.pptx
lect-2 molarity and molality.pptxlect-2 molarity and molality.pptx
lect-2 molarity and molality.pptxPoonumTyagi
 
Analytical instruments week 1
Analytical instruments week 1Analytical instruments week 1
Analytical instruments week 1andreapearce
 
Unit-1 : Some basic concepts of chemistry
 Unit-1 : Some basic concepts of chemistry Unit-1 : Some basic concepts of chemistry
Unit-1 : Some basic concepts of chemistryJatindranath Mandal
 
Worked-Problems-on-Stoichiometry.pptx
Worked-Problems-on-Stoichiometry.pptxWorked-Problems-on-Stoichiometry.pptx
Worked-Problems-on-Stoichiometry.pptxJemaimaMentiza
 
Chapter 3 notes
Chapter 3 notes Chapter 3 notes
Chapter 3 notes Wong Hsiung
 
Chemistry - Chp 12 - Stoichiometry - PowerPoint
Chemistry - Chp 12 - Stoichiometry - PowerPointChemistry - Chp 12 - Stoichiometry - PowerPoint
Chemistry - Chp 12 - Stoichiometry - PowerPointMr. Walajtys
 
Chapter 1-mole concept.ppt
Chapter 1-mole concept.pptChapter 1-mole concept.ppt
Chapter 1-mole concept.pptabid masood
 
Chemistry - Chp 12 - Stoichiometry - PowerPoint
Chemistry - Chp 12 - Stoichiometry - PowerPointChemistry - Chp 12 - Stoichiometry - PowerPoint
Chemistry - Chp 12 - Stoichiometry - PowerPointMel Anthony Pepito
 

Similar to STOICHIMETRY.ppt (20)

Ch03 outline
Ch03 outlineCh03 outline
Ch03 outline
 
AP Chemistry Chapter 3 Outline
AP Chemistry Chapter 3 OutlineAP Chemistry Chapter 3 Outline
AP Chemistry Chapter 3 Outline
 
Chemistry.
Chemistry.Chemistry.
Chemistry.
 
Stoichiometry
StoichiometryStoichiometry
Stoichiometry
 
Chemistry
ChemistryChemistry
Chemistry
 
Chapter Three Lecture- Stoichiometry
Chapter Three Lecture- StoichiometryChapter Three Lecture- Stoichiometry
Chapter Three Lecture- Stoichiometry
 
ASP Chemistry - Ch 4 Notes.pdf
ASP Chemistry - Ch 4 Notes.pdfASP Chemistry - Ch 4 Notes.pdf
ASP Chemistry - Ch 4 Notes.pdf
 
CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATION
CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATIONCALCULATIONS WITH CHEMICAL FORMULAS AND EQUATION
CALCULATIONS WITH CHEMICAL FORMULAS AND EQUATION
 
Stoichiometry 2nd Tri 0910
Stoichiometry 2nd Tri 0910Stoichiometry 2nd Tri 0910
Stoichiometry 2nd Tri 0910
 
Introduction to stocihiometry milestone
Introduction to stocihiometry milestoneIntroduction to stocihiometry milestone
Introduction to stocihiometry milestone
 
lect-2 molarity and molality.pptx
lect-2 molarity and molality.pptxlect-2 molarity and molality.pptx
lect-2 molarity and molality.pptx
 
Analytical instruments week 1
Analytical instruments week 1Analytical instruments week 1
Analytical instruments week 1
 
Unit-1 : Some basic concepts of chemistry
 Unit-1 : Some basic concepts of chemistry Unit-1 : Some basic concepts of chemistry
Unit-1 : Some basic concepts of chemistry
 
Worked-Problems-on-Stoichiometry.pptx
Worked-Problems-on-Stoichiometry.pptxWorked-Problems-on-Stoichiometry.pptx
Worked-Problems-on-Stoichiometry.pptx
 
Chapter 3 notes
Chapter 3 notes Chapter 3 notes
Chapter 3 notes
 
Chemistry - Chp 12 - Stoichiometry - PowerPoint
Chemistry - Chp 12 - Stoichiometry - PowerPointChemistry - Chp 12 - Stoichiometry - PowerPoint
Chemistry - Chp 12 - Stoichiometry - PowerPoint
 
Chapter 1-mole concept.ppt
Chapter 1-mole concept.pptChapter 1-mole concept.ppt
Chapter 1-mole concept.ppt
 
Chemistry - Chp 12 - Stoichiometry - PowerPoint
Chemistry - Chp 12 - Stoichiometry - PowerPointChemistry - Chp 12 - Stoichiometry - PowerPoint
Chemistry - Chp 12 - Stoichiometry - PowerPoint
 
SI #7 Key
SI #7 KeySI #7 Key
SI #7 Key
 
Chemical reactions
Chemical reactionsChemical reactions
Chemical reactions
 

More from Benjamin Madrigal

More from Benjamin Madrigal (20)

dinosaur_trivia.pptx
dinosaur_trivia.pptxdinosaur_trivia.pptx
dinosaur_trivia.pptx
 
Art of renaissance - Toñito.pptx
Art of renaissance - Toñito.pptxArt of renaissance - Toñito.pptx
Art of renaissance - Toñito.pptx
 
Semejanza.ppt
Semejanza.pptSemejanza.ppt
Semejanza.ppt
 
pythagthm.ppt
pythagthm.pptpythagthm.ppt
pythagthm.ppt
 
3° NIVEL_ TEMA 3.pptx
3° NIVEL_ TEMA 3.pptx3° NIVEL_ TEMA 3.pptx
3° NIVEL_ TEMA 3.pptx
 
sociallearningtheory.pptx
sociallearningtheory.pptxsociallearningtheory.pptx
sociallearningtheory.pptx
 
Actividad Innovadora entre pares.pptx
Actividad Innovadora entre pares.pptxActividad Innovadora entre pares.pptx
Actividad Innovadora entre pares.pptx
 
CTEV.pptx
CTEV.pptxCTEV.pptx
CTEV.pptx
 
food-pyramid-simple-version.pdf
food-pyramid-simple-version.pdffood-pyramid-simple-version.pdf
food-pyramid-simple-version.pdf
 
Métodos Directos.pptx
Métodos Directos.pptxMétodos Directos.pptx
Métodos Directos.pptx
 
Equipo 3 Constructivismo.pptx
Equipo 3 Constructivismo.pptxEquipo 3 Constructivismo.pptx
Equipo 3 Constructivismo.pptx
 
The Galaxies Physics proyect.pptx
The Galaxies Physics proyect.pptxThe Galaxies Physics proyect.pptx
The Galaxies Physics proyect.pptx
 
solar system.pptx
solar system.pptxsolar system.pptx
solar system.pptx
 
Proyecto Física.pptx
Proyecto Física.pptxProyecto Física.pptx
Proyecto Física.pptx
 
intro.ppt
intro.pptintro.ppt
intro.ppt
 
periodic_table.ppt
periodic_table.pptperiodic_table.ppt
periodic_table.ppt
 
Laboratory Equipment.ppt.pptx
Laboratory Equipment.ppt.pptxLaboratory Equipment.ppt.pptx
Laboratory Equipment.ppt.pptx
 
Characteristics of Life--updated.ppt
Characteristics of Life--updated.pptCharacteristics of Life--updated.ppt
Characteristics of Life--updated.ppt
 
Scientific Method PowerPoint.ppt
Scientific Method PowerPoint.pptScientific Method PowerPoint.ppt
Scientific Method PowerPoint.ppt
 
Microenseñanza para profesores.ppt
Microenseñanza para profesores.pptMicroenseñanza para profesores.ppt
Microenseñanza para profesores.ppt
 

Recently uploaded

Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Quarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayQuarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayMakMakNepo
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 

Recently uploaded (20)

Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Quarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up FridayQuarter 4 Peace-education.pptx Catch Up Friday
Quarter 4 Peace-education.pptx Catch Up Friday
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 

STOICHIMETRY.ppt

  • 2. Stoichiometry Anatomy of a Chemical Equation CH4 (g) + 2O2 (g) CO2 (g) + 2 H2O (g)
  • 3. Stoichiometry Anatomy of a Chemical Equation Reactants appear on the left side of the equation. CH4 (g) + 2 O2 (g) CO2 (g) + 2 H2O (g)
  • 4. Stoichiometry Anatomy of a Chemical Equation Products appear on the right side of the equation. CH4 (g) + 2 O2 (g) CO2 (g) + 2 H2O (g)
  • 5. Stoichiometry Anatomy of a Chemical Equation The states of the reactants and products are written in parentheses to the right of each compound. CH4 (g) + 2 O2 (g) CO2 (g) + 2 H2O (g)
  • 6. Stoichiometry Anatomy of a Chemical Equation Coefficients are inserted to balance the equation. CH4 (g) + 2 O2 (g) CO2 (g) + 2 H2O (g)
  • 7. Stoichiometry Subscripts and Coefficients Give Different Information • Subscripts tell the number of atoms of each element in a molecule
  • 8. Stoichiometry Subscripts and Coefficients Give Different Information • Subscripts tell the number of atoms of each element in a molecule • Coefficients tell the number of molecules (compounds).
  • 10. Stoichiometry Combination Reactions • Examples: N2 (g) + 3 H2 (g)  2 NH3 (g) C3H6 (g) + Br2 (l)  C3H6Br2 (l) 2 Mg (s) + O2 (g)  2 MgO (s) • Two or more substances react to form one product
  • 11. Stoichiometry 2 Mg (s) + O2 (g)  2 MgO (s)
  • 12. Stoichiometry Decomposition Reactions • Examples: CaCO3 (s)  CaO (s) + CO2 (g) 2 KClO3 (s)  2 KCl (s) + O2 (g) 2 NaN3 (s)  2 Na (s) + 3 N2 (g) • One substance breaks down into two or more substances
  • 13. Stoichiometry Combustion Reactions • Examples: CH4 (g) + 2 O2 (g)  CO2 (g) + 2 H2O (g) C3H8 (g) + 5 O2 (g)  3 CO2 (g) + 4 H2O (g) 2H2 + O2 ------- 2H2O • Rapid reactions that have oxygen as a reactant sometimes produce a flame • Most often involve hydrocarbons reacting with oxygen in the air to produce CO2 and H2O.
  • 15. Stoichiometry The amu unit • Defined (since 1961) as: • 1/12 mass of the 12C isotope. • 12C = 12 amu
  • 16. Stoichiometry Formula Weight (FW) • Sum of the atomic weights for the atoms in a chemical formula • So, the formula weight of calcium chloride, CaCl2, would be Ca: 1(40.1 amu) + Cl: 2(35.5 amu) 111.1 amu • These are generally reported for ionic compounds
  • 17. Stoichiometry Molecular Weight (MW) • Sum of the atomic weights of the atoms in a molecule • For the molecule ethane, C2H6, the molecular weight would be C: 2(12.0 amu) + H: 6(1.0 amu) 30.0 amu
  • 18. Stoichiometry Percent Composition One can find the percentage of the mass of a compound that comes from each of the elements in the compound by using this equation: % element = (number of atoms)(atomic weight) (FW of the compound) x 100
  • 19. Stoichiometry Percent Composition So the percentage of carbon and hydrogen in ethane (C2H6, molecular mass = 30.0) is: %C = (2)(12.0 amu) (30.0 amu) 24.0 amu 30.0 amu = x 100 = 80.0% %H = (6)(1.01 amu) (30.0 amu) 6.06 amu 30.0 amu = x 100 = 20.0%
  • 21. Stoichiometry Atomic mass unit and the mole • amu definition: 12C = 12 amu. • The atomic mass unit is defined this way. • 1 amu = 1.6605 x 10-24 g • How many 12C atoms weigh 12 g? • 6.02x1023 12C weigh 12 g. • Avogadro’s number • The mole
  • 22. Stoichiometry Atomic mass unit and the mole • amu definition: 12C = 12 amu. • 1 amu = 1.6605 x 10-24 g • How many 12C atoms weigh 12 g? • 6.02x1023 12C weigh 12 g. • Avogadro’s number • The mole • #atoms = (1 atom/12 amu)(1 amu/1.66x10-24 g)(12g) = 6.02x1023 12C weigh 12 g
  • 23. Stoichiometry Therefore: • 6.02 x 1023 • 1 mole of 12C has a mass of 12 g Any
  • 24. Stoichiometry The mole • The mole is just a number of things • 1 dozen = 12 things • 1 pair = 2 things • 1 mole = 6.022141x1023 things
  • 25. Stoichiometry Molar Mass The trick: • By definition, this is the mass of 1 mol of a substance (i.e., g/mol) – The molar mass of an element is the mass number for the element that we find on the periodic table – The formula weight (in amu’s) will be the same number as the molar mass (in g/mol)
  • 26. Stoichiometry Using Moles Moles provide a bridge from the molecular scale to the real-world scale The number of moles correspond to the number of molecules. 1 mole of any substance has the same number of molecules.
  • 27. Stoichiometry Mole Relationships • One mole of atoms, ions, or molecules contains Avogadro’s number of those particles • One mole of molecules or formula units contains Avogadro’s number times the number of atoms or ions of each element in the compound
  • 29. Stoichiometry Combustion Analysis gives % composition • Compounds containing C, H and O are routinely analyzed through combustion in a chamber like this – %C is determined from the mass of CO2 produced – %H is determined from the mass of H2O produced – %O is determined by difference after the C and H have been determined CnHnOn + O2 nCO2 + 1/2nH2O
  • 30. Stoichiometry Calculating Empirical Formulas One can calculate the empirical formula from the percent composition
  • 31. Stoichiometry Calculating Empirical Formulas The compound para-aminobenzoic acid (you may have seen it listed as PABA on your bottle of sunscreen) is composed of carbon (61.31%), hydrogen (5.14%), nitrogen (10.21%), and oxygen (23.33%). Find the empirical formula of PABA.
  • 32. Stoichiometry Calculating Empirical Formulas Assuming 100.00 g of para-aminobenzoic acid, C: 61.31 g x = 5.105 mol C H: 5.14 g x = 5.09 mol H N: 10.21 g x = 0.7288 mol N O: 23.33 g x = 1.456 mol O 1 mol 12.01 g 1 mol 14.01 g 1 mol 1.01 g 1 mol 16.00 g
  • 33. Stoichiometry Calculating Empirical Formulas Calculate the mole ratio by dividing by the smallest number of moles: C: = 7.005  7 H: = 6.984  7 N: = 1.000 O: = 2.001  2 5.105 mol 0.7288 mol 5.09 mol 0.7288 mol 0.7288 mol 0.7288 mol 1.458 mol 0.7288 mol
  • 34. Stoichiometry Calculating Empirical Formulas These are the subscripts for the empirical formula: C7H7NO2 H2N O O-
  • 35. Stoichiometry Elemental Analyses Compounds containing other elements are analyzed using methods analogous to those used for C, H and O
  • 36. Stoichiometry Stoichiometric Calculations The coefficients in the balanced equation give the ratio of moles of reactants and products
  • 37. Stoichiometry Stoichiometric Calculations From the mass of Substance A you can use the ratio of the coefficients of A and B to calculate the mass of Substance B formed (if it’s a product) or used (if it’s a reactant)
  • 38. Stoichiometry Stoichiometric Calculations Starting with 10. g of C6H12O6… we calculate the moles of C6H12O6… use the coefficients to find the moles of H2O & CO2 and then turn the moles to grams C6H12O6(s) + 6 O2(g)  6 CO2(g) + 6 H2O(l) 10.g ? + ? Example: 10 grams of glucose (C6H12O6) react in a combustion reaction. How many grams of each product are produced?
  • 39. Stoichiometry Stoichiometric calculations 10.g ? + ? MW: 180g/mol 44 g/mol 18g/mol #mol: 10.g(1mol/180g) 0.055 mol 6(.055) 6(.055mol) 6(.055mol)44g/mol 6(.055mol)18g/mol #grams: 15g 5.9 g C6H12O6 + 6O2  6CO2 + 6H2O
  • 41. Stoichiometry How Many Cookies Can I Make? • You can make cookies until you run out of one of the ingredients • Once you run out of sugar, you will stop making cookies
  • 42. Stoichiometry How Many Cookies Can I Make? • In this example the sugar would be the limiting reactant, because it will limit the amount of cookies you can make
  • 43. Stoichiometry Limiting Reactants • The limiting reactant is the reactant present in the smallest stoichiometric amount 2H2 + O2 --------> 2H2O #moles 14 7 10 5 10 Left: 0 2 10
  • 44. Stoichiometry Limiting Reactants In the example below, the O2 would be the excess reagent
  • 45. Stoichiometry Limiting reagent, example: Soda fizz comes from sodium bicarbonate and citric acid (H3C6H5O7) reacting to make carbon dioxide, sodium citrate (Na3C6H5O7) and water. If 1.0 g of sodium bicarbonate and 1.0g citric acid are reacted, which is limiting? How much carbon dioxide is produced? 3NaHCO3(aq) + H3C6H5O7(aq) ------> 3CO2(g) + 3H2O(l) + Na3C6H5O7(aq) 1.0g 1.0g 84g/mol 192g/mol 44g/mol 1.0g(1mol/84g) 1.0(1mol/192g) 0.012 mol 0.0052 mol (if citrate limiting) 0.0052(3)=0.016 0.0052 mol So bicarbonate limiting: 0.012 mol 0.012(1/3)=.0040mol 0.012 moles CO2 44g/mol(0.012mol)=0.53g CO2 .0052-.0040=.0012mol left 0.0012 mol(192 g/mol)= 0.023 g left.
  • 46. Stoichiometry Theoretical Yield • The theoretical yield is the amount of product that can be made – In other words it’s the amount of product possible from stoichiometry. The “perfect reaction.” • This is different from the actual yield, the amount one actually produces and measures
  • 47. Stoichiometry Percent Yield A comparison of the amount actually obtained to the amount it was possible to make Actual Yield Theoretical Yield Percent Yield = x 100
  • 48. Stoichiometry Example C6H6 + Br2 ------> C6H5Br + HBr Benzene (C6H6) reacts with Bromine to produce bromobenzene (C6H6Br) and hydrobromic acid. If 30. g of benzene reacts with 65 g of bromine and produces 56.7 g of bromobenzene, what is the percent yield of the reaction? 30.g 65 g 56.7 g 78g/mol 160.g/mol 157g/mol 30.g(1mol/78g) 65g(1mol/160g) 0.38 mol 0.41 mol (If Br2 limiting) 0.41 mol 0.41 mol (If C6H6 limiting) 0.38 mol 0.38 mol 0.38mol(157g/1mol) = 60.g 56.7g/60.g(100)=94.5%=95%
  • 49. Stoichiometry Example, one more 4NH3 + 5O2 --------> 4NO + 6H2O React 1.5 g of NH3 with 2.75 g of O2. How much NO and H2O is produced? What is left? 1.5g 2.75g ? ? 17g/mol 32g/mol 30.g/mol 18g/mol 1.5g(1mol/17g)= 2.75g(1mol/32g)= .088mol .086 (If NH3 limiting): .088mol .088(5/4)=.11 O2 limiting: .086(4/5)= .086 mol .086 mol(4/5)= .086(6/5)= .069mol .069 mol .10mol .069mol(17g/mol) .069mol(30.g/mol) .10mol(18g/mol) 1.2g 2.75g 2.1 g 1.8g
  • 51. Stoichiometry Gun powder reaction • 10KNO3(s) + 3S(s) + 8C(s) ---- 2K2CO3(s) + 3K2SO4(s) + 6CO2(g) + 5N2(g) • Salt peter sulfur charcoal • And heat. What is interesting about this reaction? What kind of reaction is it? What do you think makes it so powerful?
  • 52. Stoichiometry Gun powder reaction • 10KNO3(s) + 3S(s) + 8C(s) ---- 2K2CO3(s) + 3K2SO4(s) + 6CO2(g) + 5N2(g) • Salt peter sulfur charcoal • And heat. What is interesting about this reaction? Lots of energy, no oxygen What kind of reaction is it? Oxidation reduction What do you think makes it so powerful and explosive? Makes a lot of gas!!!! Reducing agent Oxidizing agent Oxidizing agent