SlideShare a Scribd company logo
PHYSICAL CHEMISTRY
ANDRÉS FELIPE LOAIZA CARREÑO
M. SC. QUIMICA UN
HELMHOLTZ ZENTRUM BERLIN FÜR MATERIALIEN UND ENERGIE
PHYSICAL CHEMISTRY BRANCHES
• THERMODYNAMICS: MACROSCOPIC SCIENCE THAT STUDIES THE
INTERRELATIONSHIPS OF THE VARIOS EQUILIBRIUM PROPERTIES OF A SYSTEM
AND THEIR CHANGES IN PROCESSES.
• QUANTUM CHEMISTRY: QUANTUM MECHANICS APPLIED TO ATOMIC
STRUCTURE, MOLECULAR BONDING AND SPECTROSCOPY.
• STATISTICAL MECHANICS: RELATES THE MOLECULAR (MICROSCOPIC)
PHENOMENA WITH MACROSCOPIC SCIENCE OF THERMODYNAMIC. (CAUSE-
CONSEQUENCE).
• KINETICS: STUDIES THE RATES OF PROCESSES SUCH AS CHEMICAL REACTIONS,
DIFFUSION, CHARGE FLOW IN AN ELECTROCHEMICAL CELL, ETC.
PHYSICAL CHEMISTRY BRANCHES
PHYSICAL CHEMISTRY, WHY?
• CHEMICAL ENGINEERS USE THERMODYNAMICS TO PREDICT THE EQUILIBRIUM
COMPOSITION OF REACTION MIXTURES, USE KINETICS TO CALCULATE HOW
FAST PRODUCTS WILL BE FORMED, AND USE PRINCIPLES OF THERMODYNAMIC
PHASE EQUILIBRIA TO DESIGN SEPARATION PROCEDURES SUCH AS FRACTIONAL
DISTILLATION.
THERMO
DYNAMICS
• GREEK WORDS FOR HEAT AND POWER
• STUDIES HEAT, WORK AND ENERGY AND THE CHANGES THEY PRODUCE IN THE
STATES OF SYSTEMS. TEMPERATURE IS A KEY PROPERTY.
• SOMETIMES IS DEFINED AS THE RELATION OF TEMPERATURE TO THE
MACROSCOPIC PROPERTIES OF A SYSTEM.
THERMODYNAMIC SYSTEM AND
SURROUNDINGS
THERMODYNAMIC SYSTEM
• A SYSTEM COULD BE:
o OPEN/CLOSED
o ISOLATED/NON-ISOLATED
• WALLS CONFINING THE SYSTEM COULD BE:
o RIGID/NON-RIGID (MOVABLE)
o PERMEABLE/IMPERMEABLE
o ADIABATIC/NON-ADIABATIC (THERMALLY CONDUCTING)
CONTROL VOLUME
EQUILIBRIUM
• THE MACROSCOPIC PROPERTIES OF AN ISOLATED SYSTEM REMAIN CONSTANT
WITH TIME.
• THE MACROSCOPIC PROPERTIES OF A NON-ISOLATED SYSTEM
1. REMAIN CONSTANT WITH TIME.
2. REMAIN CONSTANT WHEN THE SYSTEM IS REMOVED FROM CONTACT WITH
ITS SURROUNDINGS.
THERMODYNAMIC EQUILIBRIUM
• MECHANICAL EQUILIBRIUM: THERE ARE NO UNBALANCED FORCES APPLIED ON
OR WITHIN THE SYSTEM; THE SYSTEM DOES NOT EXPERIMENT ACCELERATION,
NOR TURBULENCE.
• MATERIAL EQUILIBRIUM: THERE ARE NO CHEMICAL REACTIONS AND SYSTEM
AND THERE IS NO TRANSFER OF MATTER FROM ONE PART OF THE SYSTEM TO
ANOTHER OR BETWEEN IT AND ITS SURROUNDINGS. THE CONCENTRATIONS OF
CHEMICAL SPECIES IN THE VARIOUS PARTS OF THE SYSTEM ARE CONSTANT
WITH TIME
• THERMAL EQUILIBRIUM: THE PROPERTIES OF SYSTEM REMAIN CONSTANT WITH
TIME WHEN THERE IS A NON-ADIABATIC WALL BETWEEN IT AND ANOTHER PART
OR ITS SURROUNDINGS
THERMODYNAMIC PROPERTIES
• PROPERTIES THAT CHARACTERIZE A SYSTEM IN EQUILIBRIUM
 COMPOSITION
 VOLUME
 PRESSURE
 TEMPERATURE
 INTERNAL ENERGY
 ENTHALPY
 ENTROPY
 GIBBS FREE ENERGY
 HEMHOLTZ ENERGY (WORK FUNCTION)
EXTENSIVE AND INTENSIVE PROPERTIES
• REFRACTIVE INDEX
• MASS
• VOLUME
• MOLAR VOLUME
• SPECIFIC VOLUME
• ENTHALPY
• ENTROPY
• MOLAR ENTHALPY
• SPECIFIC ENTROPY
• TEMPERATURE
• PRESSURE
• DENSITY
• MOLAR FRACTION
• WEIGHT FRACTION
• SPECIFIC GRAVITY (RELATIVE DENSITY)
• SPECIFIC WEIGHT
If you sum the values of a property in every part of the system to obtain the to
of the property in the whole system, then the property is extensive
If all intensive porperties are constant throughout a system, the system is hom
An homogeneous part of as system is called a phase
A system composed of two or more phases is heterogenous
A thermodynamic property is also called a state function because a thermody
has a particular value for each thermodynamic property and the value of a sta
depends on the present state of the system and not on its past history
SPECIFIC GRAVITY OF SOME SUBSTANCES
AND COMPOUNDS
WHAT IS AN STATE?
• A SET OF PROPERTIES OF A GIVEN SYSTEM THAT MAKE IT DIFFERENT FROM ANY
OTHER SYSTEM. WE USE PROPERTIES TO SPECIFY THE STATE OF THE SYSTEM
• STATE POSTULATE:
THE STATE OF SIMPLE COMPRESSIBLE SYSTEM IS COMPLETELY SPECIFIED BY TWO
INDEPENDENT INTENSIVE PROPERTIES.
PROCESSES AND CYCLES• ANY PROCESS CAN BE USED TO CHANGE THE SYSTEM STATE TO ANOTHER,
THROUGHOUT A SERIES OF STATES THAT AS A SET ARE CALLED THE PATH.
• A REVERSIBLE OR QUASI-EQUILIBRIUM (QUASI-STATIC) PROCESS IS USED TO
CHANGE THE STATE OF A SYSTEM WITHOUT INHOMOGENEITY OF PROPERTIES
THROUGH THE SYSTEM VOLUME.
• A PROCESS COULD BE:
• ISOTHERMAL
• ISOBARIC
• ISOCHORIC (ISOMETRIC)
• CYCLIC
STEADY-FLOW PROCESS
ZEROTH LAW OF THERMODYNAMICS AND
TEMPERATURE
• PRESSURE IS A PROPERTY THAT CAN BE USED TO EVALUATE MECHANICAL
EQUILIBRIUM
• THERMAL EQUILIBRIUM IS EVALUATED WITH A PROPERTY CALLED
TEMPERATURE
• TWO SYSTEMS THAT ARE EACH FOUND IN THERMAL EQUILIBRIUM WITH A
THIRD SYSTEM, THEY WILL BE FOUND TO BE IN THERMAL EQUILIBRIUM WITH
EACH OTHER.
MEASURING TEMPERATURE
• WE NEED A SCALE BASED ON A PROPERTY OF A REFERENCE SYSTEM WE CALL
THERMOMETER
• WE SUPPOUSE FIXED COMPOSITION AND PRESSURE FOR THE REFERENCE SYSTEM
SO THAT A CHANGE IN A THIRD PROPERTY (VOLUME FOR EXAMPLE) WILL MEAN A
CHANGE IN TEMPERATURE. BUT NOT EVERY SUBSTANCE CAN BE USED IN THE
REFERENCE SYSTEM.
• WE SET THE ICE TEMPERATURE AS 0*C AND THE STEAM
TEMPERATURE AS 100*C AND SUPPOSE A LINEAR BEHAVIOR
BETWEEN THE LENGTH OF MERCURY COLUMN AND TEMPERATURE
IDEAL GASES
• BOYLE’S LAW 1662
• CHARLE’S LAW 1787
IDEAL GASES MIXTURE
• DALTON’S LAW OF PARTIAL PRESSURES:
CONSTANT PROPERTIES AND PARTIAL
DERIVATIVES
EQUATIONS OF STATE
Real Gases
Solids and Liquids
USING Α AND Κ
FIRST LAW OF THERMODYNAMICS;
REVERSIBLE P-V
WORK
FIRST LAW OF THERMODYNAMICS;
REVERSIBLE P-V
WORK
FIRST LAW OF THERMODYNAMICS; HEAT
• TRANSFER OF ENERGY BY USING HEAT BETWEEN TWO BODYS AT DIFFERENT
TEMPERATURES WHERE T2›T1.
FIRST LAW OF THERMODYNAMICS; INTERNAL
ENERGY
ENTALPHY AND HEAT CAPACITY• TRANSFER OF ENERGY BY USING HEAT BETWEEN TWO BODYS AT DIFFERENT
TEMPERATURES WHERE T2›T1.
SECOND LAW OF THERMODYNAMICS
• KELVIN PLANCK: IT IS IMPOSSIBLE FOR A SYSTEM TO UNDERGO A CYCLIC
PROCESS WHOSE SOLE EFFECTS ARE THE FLOW OF HEAT INTO THE SYSTEM
FROM A HEAT RESERVOIR AND THE PERFORMANCE OF AN EQUIVALENT AMOUNT
OF WORK BY THE SYSTEM ON THE SURROUNDINGS.
• CLAUSIUS STATEMENT: IT IS IMPOSSIBLE FOR A SYSTEM TO UNDERGO A CYCLIC
PROCESS WHOSE SOLE EFFECTS ARE THE FLOW OF HEAT INTO THE SYSTEM
FROM A COLD RESERVOIR AND THE FLOW OF AN EQUAL AMOUNT OF HEAT OUT
OF THE SYSTEM INTO A HOT RESERVOIR.
HEAT ENGINES
CARNOT CYCLE
• NO HEAT ENGINE CAN BE MORE EFFICIENT THAN A REVERSIBLE HEAT ENGINE
WHEN BOTH ENGINES WORK BETWEEN THE SAME PAIR OF TEMPERATURES TH AND
TC.
EXERCISE
• A MODERN STEAM POWER PLANT MIGHT HAVE THE BOILER AT 550°C AND THE
CONDENSER AT 40°C. IF IT OPERATES ON A CARNOT FIND THE EFFICIENCY OF
OPERATION.
ENTROPY
• ENTROPY IS EXTENSIVE
CALCULATION OF ENTROPY CHANGES
• IDENTIFY THE INITIAL AND FINAL STATES 1 AND 2.
• DEVISE A CONVENIENT REVERSIBLE PATH FROM 1 TO 2.
• CALCULATE S CHANGE.
1. CYCLIC PROCESS
2. ADIABATIC PROCESS
3. REVERSIBLE PHASE CHANGE AT CONSTANT T AND P
CALCULATION OF ENTROPY CHANGES
4. REVERSIBLE ISOTHERMAL PROCESS:
5. CONSTANT PRESSURE HEATING WITH NO PHASE CHANGE:
6.REVERSIBLE CHANGE OF STATE OF A PERFECT GAS
CALCULATION OF ENTROPY CHANGES
7. MIXING OF DIFFERENT INERT PERFECT GASES AT CONSTANT P AND T.
WHAT IS ENTROPY?
• PROBABILITY
• A PROCESS HAPPENS IF THE ENTROPY OF UNIVERSE IS TO BE MAXIMIZED
• FOR A SYSTEM IRREVERSIBLE PROCESS
THE GIBBS AND HELMHOLTZ ENERGY
• A=U-TS, CONSTANT VOLUME
• G=H-TS=U+PV-TS, CONSTANT PRESSURE
WORK FUNCTION AND GIBBS FREE ENERGY
BASIC EQUATIONS
THE MAXWELL RELATIONS
STANDARD STATES OF PURE SUBSTANCES
• THE STATE WHEN THE FOLLOWING CONDITIONS ARE STABLISHED.
STANDARD ENTHALPY OF REACTION
• STANDARD P AT T
STANDARD ENTHALPY OF FORMATION
• 1 MOL OF SUBSTANCES IS FORMED FROM THE REFERENCE FORM OF ELEMENTS
DEMOSTRATION
DETERMINATION OF STANDARD ENTHALPIES
OF FORMATION AND REACTION
1. CALCULATE THE ENTHALPY OF FORMATION OF A REAL GAS FROM AN IDEAL
GAS
2. MEASURE THE ENTHALPY FOR MIXING THE PURE ELEMENTS
3. USE TO FIND CHANGE OF ENTHALPY OF
BRINGING THE MIXTURE FROM 1 BAR AND T TO THE EXPERIMENTAL
CONDITIONS
4. USE A CALORIMETER TO MEASURE THE ENTHALPY CHANGE OF REACTION.
5. FOLLOW INVERTED 3 AND 1 STEPS FOR THE COMPOUND FORMED IN STEP 4.
6. SUM ALL THE CHANGE ENTHALPIES INVOLVED FROM 1 TO 5
STEP 4: CALORIMETRY; FINDING Q.
RELATION BETWEEN U AND H CHANGES
• IN QUALITATIVE MANNER CHANGES IN U AND H ARE CONSIDERED THE SAME,
BUT:
HESS LAW
• IT IS NO POSSIBLE TO DO SUCH A REACTION, SO…
EXERCISES
EXERCISES
KIRCHHOFF’S LAW: T DEPENDENCE OF
REACTION HEATS
KIRCHHOFF’S LAW: T DEPENDENCE OF REACTION
HEATS
CONVENTIONAL ENTROPIES
• CONVENTIONAL OR RELATIVE ENTROPIES ARE TABULATED INSTEAD OF
ENTROPIES OF FORMATION.
• WHAT HAPPENS WITH COMPOUNDS….?
WE HAVE A PROBLEM…
THE THIRD LAW OF THERMODYNAMICS
• IN 1900 RICHARDS MADE EXPERIMENTS OF G CHANGE IN FUNCTION OF
TEMPERATURE FOR ELECTROCHEMICAL SYSTEMS
• THEN, NERNST NOTICED THAT THOSE EXPERIMENTS HAD A CLEAR TENDENCY:
DETERMINATION OF CONVENTIONAL
ENTROPIES
• AND FINALLY, WE HAVE TO CONSIDER THE IDEALITY OF STANDARD STATES OF
GASES
DETERMINATION OF CONVENTIONAL
ENTROPIES
• BUT HOW DO WE VALUATE THE FIRST INTEGRAL IF 0K CANNOT BE ATTAINABLE?
FINDING STANDARD ENTROPY CHANGES OF
REACTIONS
STANDARD GIBBS ENERGY OF REACTIONS
THERMOCHEMISTRY OF SOLUTIONS
• BONDS ARE BROKEN AND FORMED BETWEEN ATOMS AND MOLECULES DURING DE
SOLUTION FORMATION
• ENERGY IS REQUIRED TO BREAK BONDS AND ENERGY IS RELEASED WHEN BONDS
ARE FORMED
• ENERGY COULD BE TRANSFERRED BETWEEN SYSTEM AND SURROUNDINGS OR
COULD SIMPLY CHANGE DE SYSTEM TEMPERATURE (OR BOTH)
• FOR AN IDEAL MIXTURE:
• HEAT OF SOLUTION (SOLUTES ARE SOLIDS OR GASES) IS EQUIVALENT TO HEAT OF
MIXING (SOLUTES ARE LIQUIDS)
• HEAT OF SOLUTION AT INFINITE DILUTION (SOLVENT IS IN MUCH LARGER
PROPORTION)
CALCULUS OF HEAT OF SOLUTION
o WHAT IS THE ENTHALPY CHANGE FOR A PROCESS IN WHICH 2 MOL OF KCN IS
DISSOLVED IN 400 MOL OF WATER AT 18OC?
• THE COMMONLY REPORTED IS DEFINED RELATIVE TO THE PURE
SOLUTE AND SOLVENT AT T.
• WE COULD ALSO CHOICE THE PURE SOLVENT AND AN INFINITELY DILUTE
SOLUTION AT T AS THE REFERENCE CONDITIONS.
o EXAMPLE: CONSIDER A SOLUTION WHERE HCL(G) IS DISSOLVED IN H2O(L) AT 25OC
SO THAT R=10. FIND THE ENTHALPY OF SOLUTION RELATIVE TO H2O(L) AND A
HIGHLY DILUTE SOLUTION
HEAT OF SOLUTION EXCERSISES
THERMOCHEMISTRY OF SOLUTIONS:
STANDARD HEAT OF A NEUTRALIZATION
REACTION
• STANDAR HEAT OF FORMATION OF A SOLUTION:
• EXAMPLE
THERMODYNAMIC RELATIONS FOR A SYSTEM
IN EQUILIBRIUM
• VOLUME DEPENDENCE OF U
• TEMPERATURE DEPENDENC OF U
• TEMPERATURE DEPENDENCE OF H
• PRESSURE DEPENDENCE OF H
• TEMPERATURE DEPENDENCE OF S
• PRESSURE DEPENDENCE OF S
• TEMPERATURE DEPENDENCE OF G
• PRESSURE DEPENDENCE OF G
HEAT CAPACITY DIFFERENCE
• FOR A PERFECT GAS
HEAT CAPACITY DIFFERENCE
• IF AND
THEN
JOULE EXPERIMENT
• JOULE TRIED TO DETERMINE THE CHANGE OF U IN FUNCTION OF V AT
CONSTANT T BY MEASURING T DURING THE EXPANSION OF A GAS INTO
VACCUM.
• IT IS DEFINED THE JOULE COEFFICIENT AS
• THEN
JOULE THOMSON EXPERIMENT
• 10 YEARS LATER JOULE AND THOMSON TRIED TO DETERMINE THE CHANGE OF H
IN FUNCTION OF P AT CONSTANT T BY MEASURING T DURING A CHANGE OF
PRESSURE OF A GAS.
• IT IS DEFINED THE JOULE-THOMSON COEFFICIENT AS
• THEN
HEATING AND COOLING BY JOULE-THOMSON
EXPERIMENT
• THE FOR EACH T AND P VALUES IN A JOULE-THOMSON EXPERIMENT, IS
OBTAINED BY FITTING THE EXPERIMENTAL DATA TO AN EXPRESSION OF T IN
FUNCTION OF P CURVE, AND WE FIND THE DERIVATIVE OF THE EXPRESSION IN
POINTS OF INTEREST.
• TO HEAT A GAS USING THE JOULE THOMSON EXPERIMENT WE HAVE TO WORK IN
T-P REGIONS WHERE IS NEGATIVE
• TO COOL A GAS WE HAVE TO WORK IN REGIONS T-P REGIONS WHERE IS
POSITIVE
THE JOULE THOMSON COEFFICIENT IN
FUNCTION OF EASILY MEASURABLE SYSTEM
PROPERTIES
CALCULATION OF CHANGES IN STATE
FUNCTIONS IN A PROCESS
• CALCULATION OF ENTROPY CHANGE IN FUNCTION OF T AND P
CALCULATION OF CHANGES IN STATE
FUNCTIONS IN A PROCESS
• CALCULATION OF ENTHALPY CHANGE IN FUNCTION OF T AND P
• CALCULATION OF INTERNAL ENERGY CHANGE IN FUNCTION OF T AND P
• CALCULATION OF GIBBS ENERGY CHANGE IN FUNCTION OF T AND P
• CALCULATION OF HELMHOLTZ ENERGY CHANGE IN FUNCTION OF T AND P
REAL GASES; COMPRESSION FACTORS
• THE Z COMPRESSION FACTOR IS A MEASURE OF THE IDEALITY DEVIATION
• Z BECOMES 1 WHEN DENSITY IS IN THE LIMIT OF ZERO
REAL GASES; EQUATIONS OF STATE
• VAN DER WAALS
• REDLICH-KWONG EQUATION
• VIRIAL EQUATION OF STATE (FROM STATISTICAL MECHANICS)
REAL GASES; EQUATIONS OF STATE
• EXAMPLE: WHAT IS THE MOLAR VOLUME OF AR(G) AT 250,00K AND 1,0000ATM
• THE COMPRESSION FACTOR CAN BE EXPRESSED IN TERMS OF ATTRACTION AND
REPULSION FACTORS OF THE VAN DER WAALS EQUATION
b IS APPROXIMATELY THE MOLAR VOLUME OF THE LIQUID
REAL GASES; EQUATIONS OF STATE
• B IS APPROXIMATELY THE MOLAR VOLUME OF THE LIQUID SO AND WE
CAN EXPRESS THE FOLLOWING EXPANSION
• COMPARING WITH THE VIRIAL EQUATION OF STATE
• AND Z
REAL GASES MIXTURES
• TO RELATE A TWO PARAMETER EQUATION OF STATE WITH A REAL GAS MIXTURE
BEHAVIOR WE HAVE TO USE THE MIXING RULE:
• WE NOW REFER TO THE MEAN MOLAR VOLUME OF THE SYSTEM
• AND FOR THE LOW P VIRIAL EQUATION
• THE MIXING RULE FOR NON SIMILAR GASES
CONDENSATION OF GASES AND CRITICAL
PROPERTIES
• THE NORMAL TEMPERATURE BOILING POINT AND THE CRITICAL TEMPERATURE ARE BOTH
DEPENDENT ON INTERMOLECULAR FORCES, THEN, THEY ARE CORRELATED
• REMEMBER THAT THE AVERAGE MOLECULAR KINETIC ENERGY IS
• WHAT IS A FLUID? WHAT IS A LIQUID? WHAT IS A GAS? WHAT IS A SUPERCRITICAL FLUID?
CRITICAL PROPERTIES AND A, B PARAMETERS
RELATION
• THEN
Van der Waals
Redlich Kwong
CALCULATION OF LIQUID VAPOR EQUILIBRIA
• USING REDLICH-KWONG (EOS)
• The condition of liquid vapor equilibria is that a
molecule being transferred from the vapor to the liquid
phase (or visc.) must not change the Gibbs free energy
of the system.
CALCULATION OF LIQUID VAPOR EQUILIBRIA
• USING REDLICH-KWONG (EOS)
SOAVE REDLICH KWONG (SRK) EQUATION OF
STATE
THE LAW OF CORRESPONDING STATES
• THE VALUES OF CERTAIN PHYSICAL PROPERTIES OF A GAS DEPENDS ON THE
PROXIMITY OF THE GAS TO ITS CRITICAL STATE
• FOR HE AND H, ADJUSTED CRITICAL PROPERTIES
MUST BE USED
COMPRESSIBILITY CHARTS
COMPRESSIBILITY CHARTS
COMPRESSIBILITY CHARTS
COMPRESSIBILITY CHARTS
GAS MIXTURES AND COMPRESSIBILITY CHARTS
• THE KAY’S RULE
REAL GAS THERMODYNAMIC PROPERTIES
CHANGES RELATIVE TO IDEAL VALUES
• IT IS POSSIBLE TO USE ANY OF THE REAL GAS EQUATIONS OF STATE TO FIND
EXPRESSIONS FOR:
CHEMICAL POTENTIAL
• FOR A SYSTEM UNDERGOING A COMPOSITION CHANGE DUE TO AN IRREVERSIBLE
REACTION OR MASS TRANSFER (WITHIN THE PHASES OF THE SYSTEM OR
BETWEEN THE SYSTEM AND SURROUNDINGS) THE GIBBS FREE ENERGY IS ALSO A
FUNCTION OF COMPOSITION.
• NOW WE CAN CONSIDER WHAT HAPPENS WITH THE SYSTEM PROPERTIES DUE TO
THE IRREVERSIBLE CHANGE OF MATTER (REMEMBER THAT A CHANGE IN A STATE
BY AN IRREVERSIBLE PROCESS CAN BE CALCULATED SUPPOSING A REVERSIBLE
PROCESS)
CHEMICAL POTENTIAL IN ONE PHASE SYSTEM• FOR A REVERSIBLE PROCESS:
CHEMICAL POTENTIAL IN Α PHASE SYSTEMS• THE TOTAL FREE GIBBS ENERGY IS EXPRESSED AS:
• CONSIDERING AN INFINITESIMAL CHANGE IN G IN PHASE Α;
• IT IS POSSIBLE TO WRITE AN INFINITESIMAL CHANGE OF G IN THE SYSTEM AS:
• FINALLY
MATERIAL EQUILIBRIUM AND CHEMICAL
POTENTIAL
• MATERIAL EQUILIBRIUM
• REVERSIBLE PROCESS
• REMEMBER THAT WHEN EQUILIBRIUM IS REACHED UNDER CONDITIONS OF
CONSTANT T AND P, THEN G IS MINIMIZED AND WHEN THE SYSTEM REACHES THE
EQUILIBRIUM UNDER CONDITIONS OF CONSTANT T AND V, THEN A IS MINIMIZED.
WHAT IS CHEMICAL POTENTIAL?
• IT IS AN INTENSIVE PROPERTY
• IT DEPENDS ON T, P AND NI OR XI.
• THE CHEMICAL POTENTIAL OF SUBSTANCE I EXPRESS HOW IS THE CHANGE OF G
WHEN N MOLES OF I ARE ADDED TO THE SOLUTION.
• CHEMICAL POTENTIAL IS STILL DEFINED FOR A SUBSTANCE THAT IS ABSENT FROM
THE SOLUTION.
• FOR THE SIMPLEST SYSTEM:
PHASE EQUILIBRIUM
• IN A SEVERAL PHASE SYSTEM THAT IS IN EQUILIBRIUM, WHERE dnJ MOLES OF J ARE
FLOWING FROM PHASE Β TO PHASE Δ THE CONDITION OF PHASE EQUILIBRIUM IS
DEFINED BY:
• SUPPOSE THE SAME PHASE SYSTEM TO BE SPONTANEOUSLY REACHING THE
EQUILIBRIUM AT CONSTANT T AND P:
• ALSO:
PHASE EQUILIBRIUM
• IN A SEVERAL PHASE SYSTEM THAT IS IN EQUILIBRIUM, WHERE DNJ MOLES OF ARE
FLOWING FROM PHASE Β TO PHASE Δ THE CONDITION OF PHASE EQUILIBRIUM IS
DEFINED BY:
• SUPPOSE THE SAME PHASE SYSTEM TO BE SPONTANEOUSLY REACHING THE
EQUILIBRIUM AT CONSTANT T AND P:
• ALSO:
EXTENT OF REACTION ξ
• FOR ANY REACTION:
• WE DEFINE THE EXTENT OF REACTION Ξ AS THE PROPORTIONALITY CONSTANT
BETWEEN THE STOICHIOMETRIC COEFFICIENTS OF THE REACTION AND CHANGE
IN MOLES OF EACH SUBSTANCE.
REACTION EQUILIBRIUM
• THE CONDITION OF MATERIAL EQUILIBRIUM IS:
• IN TERMS OF EXTENT OF REACTION:
CHEMICAL POTENTIAL IN IDEAL GASES
• AS PRESSURE GOES TO ZERO, ENTROPY GOES TO INFINITY AND THAT FACT
DEFINES THE BEHAVIOR OF CHEMICAL POTENTIAL IN FUNCTION OF PRESSURE
FOR AN IDEAL GAS.
• AN IDEAL GAS MIXTURE MUST OBEY THE PURE-IDEAL
-GAS CONDITIONS AND ALSO THE LAW OF PARTIAL PRESSURES;
THEY ARE EQUAL TO THE PRESSURES OF PURE GASES AT THE
SAME CONDITIONS:
CHEMICAL POTENTIAL IN IDEAL GASES
• AS PRESSURE GOES TO ZERO, ENTROPY GOES TO INFINITY AND THAT FACT
DEFINES THE BEHAVIOR OF CHEMICAL POTENTIAL IN FUNCTION OF PRESSURE
FOR AN IDEAL GAS.
• AN IDEAL GAS MIXTURE MUST OBEY THE PURE-IDEAL
-GAS CONDITIONS AND ALSO THE LAW OF PARTIAL PRESSURES;
THEY ARE EQUAL TO THE PRESSURES OF PURE GASES AT THE
SAME CONDITIONS:
CHEMICAL POTENTIAL IN IDEAL GAS MIXTURE
IDEAL GAS REACTION EQUILIBRIUM
Standard Equilibrium
Constant
Equilibrium Constant
IDEAL GAS REACTION EQUILIBRIUM
CONCENTRATION AND MOLE FRACTION
EQUILIBRIUM CONSTANTS
TEMPERATURE DEPENDENCE OF EQUILIBRIUM
CONSTANT
• THE VANT’T HOFF EQ.
Constant enthalpy of reaction Constant delta(Cp)
TEMPERATURE DEPENDENCE OF EQUILIBRIUM
CONSTANT
PHASE EQUILIBRIUM; THE PHASE RULE
IT MAKE SENSE TO TRY SOLVING THE EQUATIONS THAT RELATE THE INTENSIVE
VARIABLES OF THE SYSTEM TO SPECIFY ITS INTENSIVE THERMODYNAMIC STATE.
IT MEANS TO KNOW ALL THE MOLAR FRACTIONS IN ALL PHASES, T AND P.
THE TOTAL INTENSIVE VARIABLES ARE:
IT IS POSSIBLE TO RELATE THE MOLAR FRACTIONS WITH ONE EQUATION IN EACH
PHASE, EG. SO WE CAN FORGET A NUMBER OF P
VARIABLES BECAUSE THEY ARE DEPENDENT.
IT IS POSSIBLE TO STATE C(P-1) PHASE EQUILIBRIUM CONDITION EQUATIONS, AND
EACH THEM ALLOW US TO FORGET ONE DEPENDENT COMPONENT.
THEN WE HAVE THE GENERAL PHASE RULE THAT LET US TO OBTAIN THE NUMBER
OF INDEPENDENT VARIABLES THAT NEED TO BE FIXED TO SPECIFY THE INTENSIVE
PHASE EQUILIBRIUM; THE PHASE RULE
• WHEN THERE IS A REACTION HAPPENING IN THE SYSTEM WE CAN DROP A
NUMBER OF INTENSIVE VARIABLES EQUAL TO THE NUMBER OF CHEMICAL
REACTIONS (R) CONSIDERING THAT EACH OF THEM ALLOWS TO WRITE AN
EQUILIBRIUM CONDITION.
• ALSO WE CAN DROP A NUMBER OF INTENSIVE VARIABLES EQUAL TO SPECIAL
STOICHIOMETRIC OR NEUTRALITY CONDITIONS (A). Independent
Components
PHASE EQUILIBRIUM; THE PHASE RULE
• ALSO WE CAN DROP A NUMBER OF INTENSIVE VARIABLES EQUAL TO SPECIAL
STOICHIOMETRIC OR NEUTRALITY CONDITIONS (A).
ONE COMPONENT, PHASE EQUILIBRIUM
• ALSO WE CAN DROP A NUMBER OF INTENSIVE VARIABLES EQUAL TO SPECIAL
STOICHIOMETRIC OR NEUTRALITY CONDITIONS (A).
ONE COMPONENT, PHASE EQUILIBRIUM
• ALSO WE CAN DROP A NUMBER OF INTENSIVE VARIABLES EQUAL TO SPECIAL
STOICHIOMETRIC OR NEUTRALITY CONDITIONS (A).
ONE COMPONENT, PHASE EQUILIBRIUM
• ALSO WE CAN DROP A NUMBER OF INTENSIVE VARIABLES EQUAL TO SPECIAL
STOICHIOMETRIC OR NEUTRALITY CONDITIONS (A).
ONE COMPONENT, PHASE EQUILIBRIUM
• OA AND AC SHOW THE BEHAVIOR OF SOLID VAPOR PRESSURE AND LIQUID VAPOR
PRESSURE IN FUNCTION OF TEMPERATURE
ENTHALPIES AND ENTROPIES OF PHASE
CHANGES
• STARTING FROM LIQUID VAPOR EQUILIBRIUM, BY LOWERING PRESSURES THE
VAPOR PHASE BECOMES MORE STABLE BECAUSE OF ITS GREAT DECREASING OF
GIBBS FREE ENERGY.
• INCREASING TEMPERATURE FAVORS THE ENTROPY CONTRIBUTION TO THE
MOLAR GIBBS FREE ENERGY AND GAS PHASE IS FAVORED.
• DECREASING TEMPERATURE FAVORS THE ENTHALPY CONTRIBUTION TO THE
MOLAR GIBBS FREE ENERGY AND LIQUID PHASE IS FAVORED.
• THE TROUTON’S RULE
• THE TROUTONS-HILDEBRAND-EVERETT’S RULE
ENTHALPIES AND ENTROPIES OF PHASE
CHANGES
• THE TROUTON’S RULE
• THE TROUTONS-HILDEBRAND-EVERETT’S RULE
THE CLAPEYRON EQUATION
• THE CLAPEYRON EQUATION PREDICTS THE BEHAVIOR OF THE SLOPE OF PHASE
EQUILIBRIA LINES.
THE CLAPEYRON EQUATION
• LIQUID-VAPOR AND SOLID-VAPOR EQUILIBRIUM
Take care!!!
THE CLAPEYRON EQUATION
• SOLID-LIQUID EQUILIBRIUM
THE ANTOINE EQUATION
• THE ANTOINE EQUATION IS AN EMPIRICAL EXPRESSION THAT WORKS VERY WELL
BETWEEN 10 AND 1500 TORR AND RELATES THE VAPOR PRESSURE OF A
SUBSTANCE WITH TEMPERATURE.
SOLUTIONS; COMPOSITION
SOLUTIONS; PARTIAL MOLAR QUANTITIES
• A START ABOVE A PROPERTY MEANS THE PROPERTY OF A PURE SUBSTANCE OR THE
PROPERTY OF A COLLECTION OF PURE SUBSTANCES.
• BUT IN GENERAL THE PROPERTY OF A SOLUTION IS DIFFERENT TO THE PURE
SUBSTANCE PROPERTY SUM
• SO… WE KNOW THAT ALL PROPERTIES OF A SYSTEM ARE FUNCTIONS OF T, P AND NI:
• AND WE DEFINE THE PARTIAL MOLAR VOLUME OF J AS
SOLUTIONS; PARTIAL MOLAR QUANTITIES
• REMEMBER THAT FOR A PURE SUBSTANCE SYSTEM, Μ=GM. IN SIMILAR WAY BUT
IT DOES NOT MEANS THAT THE PARTIAL MOLAR VOLUME OF COMPONENT IN A
SOLUTION IS EQUAL TO THE MOLAR VOLUME OF PURE J.
• IF ALL INTENSIVE PROPERTIES ARE FIXED:
DIFFERENTIATION:
AND WE KNOW THAT: OR
SO OR
SOLUTIONS; PARTIAL MOLAR QUANTITIES
• SIMILAR TO THE PARTIAL MOLAR VOLUMES:
• IN GENERAL
SOLUTIONS; PARTIAL MOLAR QUANTITIES
• SIMILAR TO THE PARTIAL MOLAR VOLUMES:
• IN GENERAL
RELATIONS BETWEEN PARTIAL MOLAR
QUANTITIES
• WE KNOW THAT G=H-TS SO:
• ALSO , THEN:
• IN SIMILAR WAY: AND
IMPORTANCE OF CHEMICAL POTENTIAL
• CHEMICAL POTENTIAL IS USED TO DEFINE REACTION AND PHASE EQUILIBRIA, BUT
ALSO IS USED TO FIND ALL OTHER PARTIAL MOLAR PROPERTIES AND ALL
THERMODYNAMIC PROPERTIES.
MIXING QUANTITIES
• IN MOST CASES WHEN YOU MAKE A SOLUTION, THERE IS DIFFERENCE BETWEEN THE
SUM OF THE PURE COMPONENT PROPERTIES AND THE REAL VALUE OF THE PROPERTY.
WE CALL SUCH A DIFFERENCE MIXING QUANTITIES.
Mixing properties relations
DETERMINATION OF MIXING QUANTITIES
• WE CAN FIND THE MIXING VOLUME BY MEASURING THE DEINSITIES OF THE SOLUTION
AND THE PURE COMPONENTS AT P, T AND X. OR WE CAN DIRECTLY MEASURE THE
CHANGE IN VOLUME WHEN A COMPONENT IS ADDED AT CONSTANT T. THE MIXING
ENTHALPY CAN BE FOUND WITH A CONSTANT PRESSURE CALORIMETER
• FOR MIXING GIBBS FREE ENERGY WE HAVE:
DETERMINATION OF PARTIAL MOLAR
QUANTITIES
DETERMINATION OF PARTIAL MOLAR
QUANTITIES
DETERMINATION OF PARTIAL MOLAR
QUANTITIES
INTEGRAL AND DIFFERENTIAL HEATS OF
SOLUTIONS
At infinite dilution
IDEAL SOLUTIONS
• SOME OF THE MIXTURES THAT CAN BE CONSIDERED IDEAL ARE
• ISOTOPIC MIXTURE
• BENZENE-TOLUENE
•
•
•
THERMODYNAMIC FUNCTIONS OF IDEAL
SOLUTIONS
• MIXING GIBBS FREE ENERGY
CYCLOHEXANE-CYCLOPENTANE
BENZENE-DEUTERATED BENZENE
• MIXING ENTROPY
CHEMICAL POTENTIAL OF IDEAL SOLUTIONS
• AS NOTED EARLIER
AND WE CAN WRITE
SO
THAT HOLDS ONLY IF
• NOTE THAT ΜI INCREASES AS XI INCREASES
• IN SUMMARY
CHEMICAL POTENTIAL OF IDEAL SOLUTIONS
• AS NOTED EARLIER
AND WE CAN WRITE
SO
THAT HOLDS ONLY IF
• NOTE THAT ΜI INCREASES AS XI INCREASES
• IN SUMMARY
VAPOR PRESSURE OF IDEAL SOLUTIONS
(RAOULT’S LAW)
• THE CONDITION OF PHASE EQUILIBRIUM IS:
• SUPPOSING A PURE SUBSTANCE SYSTEM:
• USING THE SECOND AND THIRD EQUATIONS:
• REMEMBER THAT THE PROPERTIES OF A LIQUID VARY SLOWLY WITH PRESSURE, SO:
• AND THE RAOULT’S LAW:
VAPOR PRESSURE OF IDEAL SOLUTIONS
(RAOULT’S LAW)
• OTHER USEFUL FORM OF THE ROULT’S LAW IS:
• AND FOR TWO COMPONENTS:
• THE LAST FORM MEANS THAT
THE TOTAL VAPOR PRESSURE OF
AN IDEAL SOLUTION VARIES
LINEARLY WITH THE MOLE
FRACTION OF A COMPONENT
IN A TWO COMPONENTS SYSTEM.
VAPOR PRESSURE OF IDEAL SOLUTIONS
(RAOULT’S LAW)
• OTHER USEFUL FORM OF THE ROULT’S LAW IS:
• AND FOR TWO COMPONENTS:
• THE LAST FORM MEANS THAT
THE TOTAL VAPOR PRESSURE OF
AN IDEAL SOLUTION VARIES
LINEARLY WITH THE MOLE
FRACTION OF A COMPONENT
IN A TWO COMPONENTS SYSTEM.
Note that an ideal gas mixtu
Is an ideal solution, so:
IDEALLY DILUTE SOLUTIONS
• IN AN IDEALLY DILUTE SOLUTIONS, SOLUTE MOLECULES INTERACT ESSENTIALLY
ONLY WITH SOLVENT MOLECULES BECAUSE OF THE HIGH DILUTION OF SOLUTES
At low
concentrations
VAPOR PRESSURE IN IDEALLY DILUTE
SOLUTIONS (HENRY’S LAW)
• IN AN IDEALLY DILUTE SOLUTIONS, SOLUTE MOLECULES INTERACT ESSENTIALLY
ONLY WITH SOLVENT MOLECULES BECAUSE OF THE HIGH DILUTION OF SOLUTES
VAPOR PRESSURE IN IDEALLY DILUTE
SOLUTIONS (HENRY’S LAW)
• SOLVENTS OBEY RAOULT’S LAW AND SOLUTES HENRY’S LAW
SOLUBILITY OF GASES IN LIQUIDS
• FOR GASES THAT ARE SOLUBLE IN A GIVEN LIQUID THE CONCENTRATION OF THE
GAS IS LOW ENOUGH TO CONSIDER THE SOLUTION AS IDEALLY DILUTED. SO HENRY
LAW HOLDS WELL
At low concentrations
SOLUBILITY OF GASES IN LIQUIDS
• FOR GASES THAT ARE SOLUBLE IN A GIVEN LIQUID THE CONCENTRATION OF THE
GAS IS LOW ENOUGH TO CONSIDER THE SOLUTION AS IDEALLY DILUTED. SO HENRY
LAW HOLDS WELL
At low concentrations
SOLUBILITY OF GASES IN LIQUIDS
• FOR GASES THAT ARE SOLUBLE IN A GIVEN LIQUID THE CONCENTRATION OF THE
GAS IS LOW ENOUGH TO CONSIDER THE SOLUTION AS IDEALLY DILUTED. SO HENRY
LAW HOLDS WELL
At low concentrations
VAPOR PRESSURE LOWERING
• IT HOLDS IN SOLUTIONS WHERE THE SOLUTES ARE NON-VOLATILE (SOLID SOLUTES)
Equal to 1 for ideally diluted solutions
Elevation of boling point
FREEZING POINT DEPRESSION
• IT HOLDS IN SOLUTIONS WHERE THE SOLUTES ARE NON-VOLATILE (SOLID SOLUTES)
OSMOTIC PRESSURE
• CHEMICAL POTENTIAL IS LOWER IN THE SOLUTION SO SOLVENT TENDS TO FLOW
THROUGH THE SEMIPERMEABLE MEMBRANE TO EQUATE THE CHEMICAL POTENTIALS
OSMOTIC PRESSURE
• CHEMICAL POTENTIAL IS LOWER IN THE SOLUTION SO SOLVENT TENDS TO FLOW
THROUGH THE SEMIPERMEABLE MEMBRANE TO EQUATE THE CHEMICAL POTENTIALS

More Related Content

What's hot

presentation of physical chemistry...........
presentation of physical  chemistry...........presentation of physical  chemistry...........
presentation of physical chemistry...........
ABU UMEER BANBHAN
 
Catalyst
CatalystCatalyst
Catalyst
ravikumar s
 
Chapter 1 ppt
Chapter 1 pptChapter 1 ppt
Chapter 1 ppt
AlemuMekonnen3
 
Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibrium
Arunesh Gupta
 
Electronic spectra of metal complexes-1
Electronic spectra of metal complexes-1Electronic spectra of metal complexes-1
Electronic spectra of metal complexes-1
SANTHANAM V
 
Catalyst & Catalysis
Catalyst & CatalysisCatalyst & Catalysis
Catalyst & Catalysis
Nofal Umair
 
Chemical kinetics I
Chemical kinetics IChemical kinetics I
Chemical kinetics I
PRAVIN SINGARE
 
Basic concepts in electrochemistry
Basic concepts in electrochemistryBasic concepts in electrochemistry
Basic concepts in electrochemistry
Dagobert Aldus
 
Transition Metal Carbonyl Compounds
Transition Metal Carbonyl  CompoundsTransition Metal Carbonyl  Compounds
Transition Metal Carbonyl Compounds
Shivaji Burungale
 
Phase Rule in three component system
Phase Rule in three component systemPhase Rule in three component system
Phase Rule in three component system
SPCGC AJMER
 
Methods of Determining Reaction Mechanisms - Andria D'Souza
Methods of Determining Reaction Mechanisms - Andria D'SouzaMethods of Determining Reaction Mechanisms - Andria D'Souza
Methods of Determining Reaction Mechanisms - Andria D'Souza
Bebeto G
 
Aromatic Nucleophilic Substitution
Aromatic Nucleophilic SubstitutionAromatic Nucleophilic Substitution
Aromatic Nucleophilic Substitution
VijayalakshmiNair1
 
REDOX REACTION : inner & outer sphere Complimentary & non-complimentary reaction
REDOX REACTION : inner & outer sphere Complimentary & non-complimentary reactionREDOX REACTION : inner & outer sphere Complimentary & non-complimentary reaction
REDOX REACTION : inner & outer sphere Complimentary & non-complimentary reaction
Sachin Kale
 
Stereochemistry
StereochemistryStereochemistry
Stereochemistry
Arvind Singh Heer
 
Applications of organometallic compounds
Applications of organometallic compoundsApplications of organometallic compounds
Applications of organometallic compounds
Priyanka Jaiswal
 
Metal carbonyls
Metal carbonylsMetal carbonyls
Metal carbonyls
satyabrata sendh
 
Coordination chemistry
Coordination chemistryCoordination chemistry
Coordination chemistry
Rawat DA Greatt
 
Hinshel wood theory
Hinshel wood   theoryHinshel wood   theory
Hinshel wood theory
Dongguk University
 

What's hot (20)

presentation of physical chemistry...........
presentation of physical  chemistry...........presentation of physical  chemistry...........
presentation of physical chemistry...........
 
Catalyst
CatalystCatalyst
Catalyst
 
Chapter 1 ppt
Chapter 1 pptChapter 1 ppt
Chapter 1 ppt
 
Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibrium
 
Electronic spectra of metal complexes-1
Electronic spectra of metal complexes-1Electronic spectra of metal complexes-1
Electronic spectra of metal complexes-1
 
Catalyst & Catalysis
Catalyst & CatalysisCatalyst & Catalysis
Catalyst & Catalysis
 
Werner's theory
Werner's theoryWerner's theory
Werner's theory
 
Chemical kinetics I
Chemical kinetics IChemical kinetics I
Chemical kinetics I
 
Basic concepts in electrochemistry
Basic concepts in electrochemistryBasic concepts in electrochemistry
Basic concepts in electrochemistry
 
Transition Metal Carbonyl Compounds
Transition Metal Carbonyl  CompoundsTransition Metal Carbonyl  Compounds
Transition Metal Carbonyl Compounds
 
Phase Rule in three component system
Phase Rule in three component systemPhase Rule in three component system
Phase Rule in three component system
 
Chemical thermodynamics
Chemical thermodynamicsChemical thermodynamics
Chemical thermodynamics
 
Methods of Determining Reaction Mechanisms - Andria D'Souza
Methods of Determining Reaction Mechanisms - Andria D'SouzaMethods of Determining Reaction Mechanisms - Andria D'Souza
Methods of Determining Reaction Mechanisms - Andria D'Souza
 
Aromatic Nucleophilic Substitution
Aromatic Nucleophilic SubstitutionAromatic Nucleophilic Substitution
Aromatic Nucleophilic Substitution
 
REDOX REACTION : inner & outer sphere Complimentary & non-complimentary reaction
REDOX REACTION : inner & outer sphere Complimentary & non-complimentary reactionREDOX REACTION : inner & outer sphere Complimentary & non-complimentary reaction
REDOX REACTION : inner & outer sphere Complimentary & non-complimentary reaction
 
Stereochemistry
StereochemistryStereochemistry
Stereochemistry
 
Applications of organometallic compounds
Applications of organometallic compoundsApplications of organometallic compounds
Applications of organometallic compounds
 
Metal carbonyls
Metal carbonylsMetal carbonyls
Metal carbonyls
 
Coordination chemistry
Coordination chemistryCoordination chemistry
Coordination chemistry
 
Hinshel wood theory
Hinshel wood   theoryHinshel wood   theory
Hinshel wood theory
 

Similar to Physical chemistry

Basics of thermodynamics
Basics of thermodynamicsBasics of thermodynamics
Basics of thermodynamics
jagannath reddy
 
Basis review of thermodynamics_Aircraft Propulsion
Basis review of thermodynamics_Aircraft PropulsionBasis review of thermodynamics_Aircraft Propulsion
Basis review of thermodynamics_Aircraft Propulsion
Suthan Rajendran
 
Thermodynamic Aspects of Evaporation Process .pdf
Thermodynamic Aspects of Evaporation Process .pdfThermodynamic Aspects of Evaporation Process .pdf
Thermodynamic Aspects of Evaporation Process .pdf
nishik5
 
Fundamentals of thermodynamics
Fundamentals of thermodynamicsFundamentals of thermodynamics
Fundamentals of thermodynamics
Ankit Tomar
 
Second law of thermodynamics
Second law of thermodynamicsSecond law of thermodynamics
Second law of thermodynamics
sravanthi chandanala
 
Thermo 2& 3
Thermo 2& 3Thermo 2& 3
Thermo 2& 3
Usman Shah
 
THERMODYNAMICS GOOD PPT.pptx
THERMODYNAMICS GOOD PPT.pptxTHERMODYNAMICS GOOD PPT.pptx
THERMODYNAMICS GOOD PPT.pptx
punith59
 
Bab 1 Thermodynamic of Engineering Approach
Bab 1 Thermodynamic of Engineering ApproachBab 1 Thermodynamic of Engineering Approach
Bab 1 Thermodynamic of Engineering Approach
Ibnu Hasan
 
THERMODYNAMICS UNIT - I
THERMODYNAMICS UNIT - ITHERMODYNAMICS UNIT - I
THERMODYNAMICS UNIT - I
sureshkcet
 
Chapter-1.pdf
Chapter-1.pdfChapter-1.pdf
Chapter-1.pdf
TolossaKebede1
 
thermodynamic chapter1 introduction and basic concepts.pdf
thermodynamic chapter1 introduction and basic concepts.pdfthermodynamic chapter1 introduction and basic concepts.pdf
thermodynamic chapter1 introduction and basic concepts.pdf
DebasDessie1
 
Thermodynamics Chapter 1 (Introduction)
Thermodynamics Chapter 1 (Introduction)Thermodynamics Chapter 1 (Introduction)
Thermodynamics Chapter 1 (Introduction)Sangidha Jagatheesan
 
Chap_1_lecture.ppt
Chap_1_lecture.pptChap_1_lecture.ppt
Chap_1_lecture.ppt
AhmedMohamed449761
 
Et. Prasang Patel
Et. Prasang PatelEt. Prasang Patel
Et. Prasang Patel
PrasangPatel2
 
Fundamentals
FundamentalsFundamentals
Fundamentals
Yasir Hashmi
 
Introduction and first law of tehrmodynamics
Introduction and first law of tehrmodynamicsIntroduction and first law of tehrmodynamics
Introduction and first law of tehrmodynamics
HEENAKATARIYA1
 
Thermo-Lecture 1-Ch.1.pptx
Thermo-Lecture 1-Ch.1.pptxThermo-Lecture 1-Ch.1.pptx
Thermo-Lecture 1-Ch.1.pptx
HassanShehadi3
 

Similar to Physical chemistry (20)

Basics of thermodynamics
Basics of thermodynamicsBasics of thermodynamics
Basics of thermodynamics
 
Basis review of thermodynamics_Aircraft Propulsion
Basis review of thermodynamics_Aircraft PropulsionBasis review of thermodynamics_Aircraft Propulsion
Basis review of thermodynamics_Aircraft Propulsion
 
Thermodynamic Aspects of Evaporation Process .pdf
Thermodynamic Aspects of Evaporation Process .pdfThermodynamic Aspects of Evaporation Process .pdf
Thermodynamic Aspects of Evaporation Process .pdf
 
Fundamentals of thermodynamics
Fundamentals of thermodynamicsFundamentals of thermodynamics
Fundamentals of thermodynamics
 
Second law of thermodynamics
Second law of thermodynamicsSecond law of thermodynamics
Second law of thermodynamics
 
Thermo 2& 3
Thermo 2& 3Thermo 2& 3
Thermo 2& 3
 
THERMODYNAMICS GOOD PPT.pptx
THERMODYNAMICS GOOD PPT.pptxTHERMODYNAMICS GOOD PPT.pptx
THERMODYNAMICS GOOD PPT.pptx
 
Bab 1 Thermodynamic of Engineering Approach
Bab 1 Thermodynamic of Engineering ApproachBab 1 Thermodynamic of Engineering Approach
Bab 1 Thermodynamic of Engineering Approach
 
Thermo chapter 1
Thermo chapter 1Thermo chapter 1
Thermo chapter 1
 
THERMODYNAMICS UNIT - I
THERMODYNAMICS UNIT - ITHERMODYNAMICS UNIT - I
THERMODYNAMICS UNIT - I
 
Chapter-1.pdf
Chapter-1.pdfChapter-1.pdf
Chapter-1.pdf
 
thermodynamic chapter1 introduction and basic concepts.pdf
thermodynamic chapter1 introduction and basic concepts.pdfthermodynamic chapter1 introduction and basic concepts.pdf
thermodynamic chapter1 introduction and basic concepts.pdf
 
Thermodynamics Chapter 1 (Introduction)
Thermodynamics Chapter 1 (Introduction)Thermodynamics Chapter 1 (Introduction)
Thermodynamics Chapter 1 (Introduction)
 
Chap_1_lecture.ppt
Chap_1_lecture.pptChap_1_lecture.ppt
Chap_1_lecture.ppt
 
Et. Prasang Patel
Et. Prasang PatelEt. Prasang Patel
Et. Prasang Patel
 
Creation day 2 lecture
Creation day 2 lectureCreation day 2 lecture
Creation day 2 lecture
 
Creation day 2 lecture
Creation day 2 lectureCreation day 2 lecture
Creation day 2 lecture
 
Fundamentals
FundamentalsFundamentals
Fundamentals
 
Introduction and first law of tehrmodynamics
Introduction and first law of tehrmodynamicsIntroduction and first law of tehrmodynamics
Introduction and first law of tehrmodynamics
 
Thermo-Lecture 1-Ch.1.pptx
Thermo-Lecture 1-Ch.1.pptxThermo-Lecture 1-Ch.1.pptx
Thermo-Lecture 1-Ch.1.pptx
 

Recently uploaded

HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
Robbie Edward Sayers
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
TeeVichai
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
ydteq
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
Jayaprasanna4
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
thanhdowork
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
Vijay Dialani, PhD
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
karthi keyan
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
AmarGB2
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 

Recently uploaded (20)

HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
Railway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdfRailway Signalling Principles Edition 3.pdf
Railway Signalling Principles Edition 3.pdf
 
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
一比一原版(UofT毕业证)多伦多大学毕业证成绩单如何办理
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
ethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.pptethical hacking in wireless-hacking1.ppt
ethical hacking in wireless-hacking1.ppt
 
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
RAT: Retrieval Augmented Thoughts Elicit Context-Aware Reasoning in Long-Hori...
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
ML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptxML for identifying fraud using open blockchain data.pptx
ML for identifying fraud using open blockchain data.pptx
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
Investor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptxInvestor-Presentation-Q1FY2024 investor presentation document.pptx
Investor-Presentation-Q1FY2024 investor presentation document.pptx
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 

Physical chemistry

  • 1. PHYSICAL CHEMISTRY ANDRÉS FELIPE LOAIZA CARREÑO M. SC. QUIMICA UN HELMHOLTZ ZENTRUM BERLIN FÜR MATERIALIEN UND ENERGIE
  • 2. PHYSICAL CHEMISTRY BRANCHES • THERMODYNAMICS: MACROSCOPIC SCIENCE THAT STUDIES THE INTERRELATIONSHIPS OF THE VARIOS EQUILIBRIUM PROPERTIES OF A SYSTEM AND THEIR CHANGES IN PROCESSES. • QUANTUM CHEMISTRY: QUANTUM MECHANICS APPLIED TO ATOMIC STRUCTURE, MOLECULAR BONDING AND SPECTROSCOPY. • STATISTICAL MECHANICS: RELATES THE MOLECULAR (MICROSCOPIC) PHENOMENA WITH MACROSCOPIC SCIENCE OF THERMODYNAMIC. (CAUSE- CONSEQUENCE). • KINETICS: STUDIES THE RATES OF PROCESSES SUCH AS CHEMICAL REACTIONS, DIFFUSION, CHARGE FLOW IN AN ELECTROCHEMICAL CELL, ETC.
  • 4. PHYSICAL CHEMISTRY, WHY? • CHEMICAL ENGINEERS USE THERMODYNAMICS TO PREDICT THE EQUILIBRIUM COMPOSITION OF REACTION MIXTURES, USE KINETICS TO CALCULATE HOW FAST PRODUCTS WILL BE FORMED, AND USE PRINCIPLES OF THERMODYNAMIC PHASE EQUILIBRIA TO DESIGN SEPARATION PROCEDURES SUCH AS FRACTIONAL DISTILLATION.
  • 5. THERMO DYNAMICS • GREEK WORDS FOR HEAT AND POWER • STUDIES HEAT, WORK AND ENERGY AND THE CHANGES THEY PRODUCE IN THE STATES OF SYSTEMS. TEMPERATURE IS A KEY PROPERTY. • SOMETIMES IS DEFINED AS THE RELATION OF TEMPERATURE TO THE MACROSCOPIC PROPERTIES OF A SYSTEM.
  • 7. THERMODYNAMIC SYSTEM • A SYSTEM COULD BE: o OPEN/CLOSED o ISOLATED/NON-ISOLATED • WALLS CONFINING THE SYSTEM COULD BE: o RIGID/NON-RIGID (MOVABLE) o PERMEABLE/IMPERMEABLE o ADIABATIC/NON-ADIABATIC (THERMALLY CONDUCTING)
  • 9. EQUILIBRIUM • THE MACROSCOPIC PROPERTIES OF AN ISOLATED SYSTEM REMAIN CONSTANT WITH TIME. • THE MACROSCOPIC PROPERTIES OF A NON-ISOLATED SYSTEM 1. REMAIN CONSTANT WITH TIME. 2. REMAIN CONSTANT WHEN THE SYSTEM IS REMOVED FROM CONTACT WITH ITS SURROUNDINGS.
  • 10. THERMODYNAMIC EQUILIBRIUM • MECHANICAL EQUILIBRIUM: THERE ARE NO UNBALANCED FORCES APPLIED ON OR WITHIN THE SYSTEM; THE SYSTEM DOES NOT EXPERIMENT ACCELERATION, NOR TURBULENCE. • MATERIAL EQUILIBRIUM: THERE ARE NO CHEMICAL REACTIONS AND SYSTEM AND THERE IS NO TRANSFER OF MATTER FROM ONE PART OF THE SYSTEM TO ANOTHER OR BETWEEN IT AND ITS SURROUNDINGS. THE CONCENTRATIONS OF CHEMICAL SPECIES IN THE VARIOUS PARTS OF THE SYSTEM ARE CONSTANT WITH TIME • THERMAL EQUILIBRIUM: THE PROPERTIES OF SYSTEM REMAIN CONSTANT WITH TIME WHEN THERE IS A NON-ADIABATIC WALL BETWEEN IT AND ANOTHER PART OR ITS SURROUNDINGS
  • 11. THERMODYNAMIC PROPERTIES • PROPERTIES THAT CHARACTERIZE A SYSTEM IN EQUILIBRIUM  COMPOSITION  VOLUME  PRESSURE  TEMPERATURE  INTERNAL ENERGY  ENTHALPY  ENTROPY  GIBBS FREE ENERGY  HEMHOLTZ ENERGY (WORK FUNCTION)
  • 12. EXTENSIVE AND INTENSIVE PROPERTIES • REFRACTIVE INDEX • MASS • VOLUME • MOLAR VOLUME • SPECIFIC VOLUME • ENTHALPY • ENTROPY • MOLAR ENTHALPY • SPECIFIC ENTROPY • TEMPERATURE • PRESSURE • DENSITY • MOLAR FRACTION • WEIGHT FRACTION • SPECIFIC GRAVITY (RELATIVE DENSITY) • SPECIFIC WEIGHT If you sum the values of a property in every part of the system to obtain the to of the property in the whole system, then the property is extensive If all intensive porperties are constant throughout a system, the system is hom An homogeneous part of as system is called a phase A system composed of two or more phases is heterogenous A thermodynamic property is also called a state function because a thermody has a particular value for each thermodynamic property and the value of a sta depends on the present state of the system and not on its past history
  • 13. SPECIFIC GRAVITY OF SOME SUBSTANCES AND COMPOUNDS
  • 14. WHAT IS AN STATE? • A SET OF PROPERTIES OF A GIVEN SYSTEM THAT MAKE IT DIFFERENT FROM ANY OTHER SYSTEM. WE USE PROPERTIES TO SPECIFY THE STATE OF THE SYSTEM • STATE POSTULATE: THE STATE OF SIMPLE COMPRESSIBLE SYSTEM IS COMPLETELY SPECIFIED BY TWO INDEPENDENT INTENSIVE PROPERTIES.
  • 15. PROCESSES AND CYCLES• ANY PROCESS CAN BE USED TO CHANGE THE SYSTEM STATE TO ANOTHER, THROUGHOUT A SERIES OF STATES THAT AS A SET ARE CALLED THE PATH. • A REVERSIBLE OR QUASI-EQUILIBRIUM (QUASI-STATIC) PROCESS IS USED TO CHANGE THE STATE OF A SYSTEM WITHOUT INHOMOGENEITY OF PROPERTIES THROUGH THE SYSTEM VOLUME. • A PROCESS COULD BE: • ISOTHERMAL • ISOBARIC • ISOCHORIC (ISOMETRIC) • CYCLIC
  • 17. ZEROTH LAW OF THERMODYNAMICS AND TEMPERATURE • PRESSURE IS A PROPERTY THAT CAN BE USED TO EVALUATE MECHANICAL EQUILIBRIUM • THERMAL EQUILIBRIUM IS EVALUATED WITH A PROPERTY CALLED TEMPERATURE • TWO SYSTEMS THAT ARE EACH FOUND IN THERMAL EQUILIBRIUM WITH A THIRD SYSTEM, THEY WILL BE FOUND TO BE IN THERMAL EQUILIBRIUM WITH EACH OTHER.
  • 18. MEASURING TEMPERATURE • WE NEED A SCALE BASED ON A PROPERTY OF A REFERENCE SYSTEM WE CALL THERMOMETER • WE SUPPOUSE FIXED COMPOSITION AND PRESSURE FOR THE REFERENCE SYSTEM SO THAT A CHANGE IN A THIRD PROPERTY (VOLUME FOR EXAMPLE) WILL MEAN A CHANGE IN TEMPERATURE. BUT NOT EVERY SUBSTANCE CAN BE USED IN THE REFERENCE SYSTEM. • WE SET THE ICE TEMPERATURE AS 0*C AND THE STEAM TEMPERATURE AS 100*C AND SUPPOSE A LINEAR BEHAVIOR BETWEEN THE LENGTH OF MERCURY COLUMN AND TEMPERATURE
  • 19. IDEAL GASES • BOYLE’S LAW 1662 • CHARLE’S LAW 1787
  • 20. IDEAL GASES MIXTURE • DALTON’S LAW OF PARTIAL PRESSURES:
  • 21. CONSTANT PROPERTIES AND PARTIAL DERIVATIVES
  • 22. EQUATIONS OF STATE Real Gases Solids and Liquids
  • 24. FIRST LAW OF THERMODYNAMICS; REVERSIBLE P-V WORK
  • 25. FIRST LAW OF THERMODYNAMICS; REVERSIBLE P-V WORK
  • 26. FIRST LAW OF THERMODYNAMICS; HEAT • TRANSFER OF ENERGY BY USING HEAT BETWEEN TWO BODYS AT DIFFERENT TEMPERATURES WHERE T2›T1.
  • 27. FIRST LAW OF THERMODYNAMICS; INTERNAL ENERGY ENTALPHY AND HEAT CAPACITY• TRANSFER OF ENERGY BY USING HEAT BETWEEN TWO BODYS AT DIFFERENT TEMPERATURES WHERE T2›T1.
  • 28. SECOND LAW OF THERMODYNAMICS • KELVIN PLANCK: IT IS IMPOSSIBLE FOR A SYSTEM TO UNDERGO A CYCLIC PROCESS WHOSE SOLE EFFECTS ARE THE FLOW OF HEAT INTO THE SYSTEM FROM A HEAT RESERVOIR AND THE PERFORMANCE OF AN EQUIVALENT AMOUNT OF WORK BY THE SYSTEM ON THE SURROUNDINGS. • CLAUSIUS STATEMENT: IT IS IMPOSSIBLE FOR A SYSTEM TO UNDERGO A CYCLIC PROCESS WHOSE SOLE EFFECTS ARE THE FLOW OF HEAT INTO THE SYSTEM FROM A COLD RESERVOIR AND THE FLOW OF AN EQUAL AMOUNT OF HEAT OUT OF THE SYSTEM INTO A HOT RESERVOIR.
  • 30. CARNOT CYCLE • NO HEAT ENGINE CAN BE MORE EFFICIENT THAN A REVERSIBLE HEAT ENGINE WHEN BOTH ENGINES WORK BETWEEN THE SAME PAIR OF TEMPERATURES TH AND TC.
  • 31. EXERCISE • A MODERN STEAM POWER PLANT MIGHT HAVE THE BOILER AT 550°C AND THE CONDENSER AT 40°C. IF IT OPERATES ON A CARNOT FIND THE EFFICIENCY OF OPERATION.
  • 33. CALCULATION OF ENTROPY CHANGES • IDENTIFY THE INITIAL AND FINAL STATES 1 AND 2. • DEVISE A CONVENIENT REVERSIBLE PATH FROM 1 TO 2. • CALCULATE S CHANGE. 1. CYCLIC PROCESS 2. ADIABATIC PROCESS 3. REVERSIBLE PHASE CHANGE AT CONSTANT T AND P
  • 34. CALCULATION OF ENTROPY CHANGES 4. REVERSIBLE ISOTHERMAL PROCESS: 5. CONSTANT PRESSURE HEATING WITH NO PHASE CHANGE: 6.REVERSIBLE CHANGE OF STATE OF A PERFECT GAS
  • 35. CALCULATION OF ENTROPY CHANGES 7. MIXING OF DIFFERENT INERT PERFECT GASES AT CONSTANT P AND T.
  • 36. WHAT IS ENTROPY? • PROBABILITY • A PROCESS HAPPENS IF THE ENTROPY OF UNIVERSE IS TO BE MAXIMIZED • FOR A SYSTEM IRREVERSIBLE PROCESS
  • 37. THE GIBBS AND HELMHOLTZ ENERGY • A=U-TS, CONSTANT VOLUME • G=H-TS=U+PV-TS, CONSTANT PRESSURE
  • 38. WORK FUNCTION AND GIBBS FREE ENERGY
  • 41. STANDARD STATES OF PURE SUBSTANCES • THE STATE WHEN THE FOLLOWING CONDITIONS ARE STABLISHED.
  • 42. STANDARD ENTHALPY OF REACTION • STANDARD P AT T
  • 43. STANDARD ENTHALPY OF FORMATION • 1 MOL OF SUBSTANCES IS FORMED FROM THE REFERENCE FORM OF ELEMENTS
  • 45. DETERMINATION OF STANDARD ENTHALPIES OF FORMATION AND REACTION 1. CALCULATE THE ENTHALPY OF FORMATION OF A REAL GAS FROM AN IDEAL GAS 2. MEASURE THE ENTHALPY FOR MIXING THE PURE ELEMENTS 3. USE TO FIND CHANGE OF ENTHALPY OF BRINGING THE MIXTURE FROM 1 BAR AND T TO THE EXPERIMENTAL CONDITIONS 4. USE A CALORIMETER TO MEASURE THE ENTHALPY CHANGE OF REACTION. 5. FOLLOW INVERTED 3 AND 1 STEPS FOR THE COMPOUND FORMED IN STEP 4. 6. SUM ALL THE CHANGE ENTHALPIES INVOLVED FROM 1 TO 5
  • 46. STEP 4: CALORIMETRY; FINDING Q.
  • 47. RELATION BETWEEN U AND H CHANGES • IN QUALITATIVE MANNER CHANGES IN U AND H ARE CONSIDERED THE SAME, BUT:
  • 48. HESS LAW • IT IS NO POSSIBLE TO DO SUCH A REACTION, SO…
  • 51. KIRCHHOFF’S LAW: T DEPENDENCE OF REACTION HEATS
  • 52. KIRCHHOFF’S LAW: T DEPENDENCE OF REACTION HEATS
  • 53. CONVENTIONAL ENTROPIES • CONVENTIONAL OR RELATIVE ENTROPIES ARE TABULATED INSTEAD OF ENTROPIES OF FORMATION. • WHAT HAPPENS WITH COMPOUNDS….? WE HAVE A PROBLEM…
  • 54. THE THIRD LAW OF THERMODYNAMICS • IN 1900 RICHARDS MADE EXPERIMENTS OF G CHANGE IN FUNCTION OF TEMPERATURE FOR ELECTROCHEMICAL SYSTEMS • THEN, NERNST NOTICED THAT THOSE EXPERIMENTS HAD A CLEAR TENDENCY:
  • 55. DETERMINATION OF CONVENTIONAL ENTROPIES • AND FINALLY, WE HAVE TO CONSIDER THE IDEALITY OF STANDARD STATES OF GASES
  • 56. DETERMINATION OF CONVENTIONAL ENTROPIES • BUT HOW DO WE VALUATE THE FIRST INTEGRAL IF 0K CANNOT BE ATTAINABLE?
  • 57. FINDING STANDARD ENTROPY CHANGES OF REACTIONS
  • 58. STANDARD GIBBS ENERGY OF REACTIONS
  • 59. THERMOCHEMISTRY OF SOLUTIONS • BONDS ARE BROKEN AND FORMED BETWEEN ATOMS AND MOLECULES DURING DE SOLUTION FORMATION • ENERGY IS REQUIRED TO BREAK BONDS AND ENERGY IS RELEASED WHEN BONDS ARE FORMED • ENERGY COULD BE TRANSFERRED BETWEEN SYSTEM AND SURROUNDINGS OR COULD SIMPLY CHANGE DE SYSTEM TEMPERATURE (OR BOTH) • FOR AN IDEAL MIXTURE: • HEAT OF SOLUTION (SOLUTES ARE SOLIDS OR GASES) IS EQUIVALENT TO HEAT OF MIXING (SOLUTES ARE LIQUIDS) • HEAT OF SOLUTION AT INFINITE DILUTION (SOLVENT IS IN MUCH LARGER PROPORTION)
  • 60. CALCULUS OF HEAT OF SOLUTION o WHAT IS THE ENTHALPY CHANGE FOR A PROCESS IN WHICH 2 MOL OF KCN IS DISSOLVED IN 400 MOL OF WATER AT 18OC? • THE COMMONLY REPORTED IS DEFINED RELATIVE TO THE PURE SOLUTE AND SOLVENT AT T. • WE COULD ALSO CHOICE THE PURE SOLVENT AND AN INFINITELY DILUTE SOLUTION AT T AS THE REFERENCE CONDITIONS. o EXAMPLE: CONSIDER A SOLUTION WHERE HCL(G) IS DISSOLVED IN H2O(L) AT 25OC SO THAT R=10. FIND THE ENTHALPY OF SOLUTION RELATIVE TO H2O(L) AND A HIGHLY DILUTE SOLUTION
  • 61. HEAT OF SOLUTION EXCERSISES
  • 62. THERMOCHEMISTRY OF SOLUTIONS: STANDARD HEAT OF A NEUTRALIZATION REACTION • STANDAR HEAT OF FORMATION OF A SOLUTION: • EXAMPLE
  • 63.
  • 64. THERMODYNAMIC RELATIONS FOR A SYSTEM IN EQUILIBRIUM • VOLUME DEPENDENCE OF U • TEMPERATURE DEPENDENC OF U • TEMPERATURE DEPENDENCE OF H • PRESSURE DEPENDENCE OF H • TEMPERATURE DEPENDENCE OF S • PRESSURE DEPENDENCE OF S • TEMPERATURE DEPENDENCE OF G • PRESSURE DEPENDENCE OF G
  • 65. HEAT CAPACITY DIFFERENCE • FOR A PERFECT GAS
  • 67. JOULE EXPERIMENT • JOULE TRIED TO DETERMINE THE CHANGE OF U IN FUNCTION OF V AT CONSTANT T BY MEASURING T DURING THE EXPANSION OF A GAS INTO VACCUM. • IT IS DEFINED THE JOULE COEFFICIENT AS • THEN
  • 68. JOULE THOMSON EXPERIMENT • 10 YEARS LATER JOULE AND THOMSON TRIED TO DETERMINE THE CHANGE OF H IN FUNCTION OF P AT CONSTANT T BY MEASURING T DURING A CHANGE OF PRESSURE OF A GAS. • IT IS DEFINED THE JOULE-THOMSON COEFFICIENT AS • THEN
  • 69. HEATING AND COOLING BY JOULE-THOMSON EXPERIMENT • THE FOR EACH T AND P VALUES IN A JOULE-THOMSON EXPERIMENT, IS OBTAINED BY FITTING THE EXPERIMENTAL DATA TO AN EXPRESSION OF T IN FUNCTION OF P CURVE, AND WE FIND THE DERIVATIVE OF THE EXPRESSION IN POINTS OF INTEREST. • TO HEAT A GAS USING THE JOULE THOMSON EXPERIMENT WE HAVE TO WORK IN T-P REGIONS WHERE IS NEGATIVE • TO COOL A GAS WE HAVE TO WORK IN REGIONS T-P REGIONS WHERE IS POSITIVE
  • 70. THE JOULE THOMSON COEFFICIENT IN FUNCTION OF EASILY MEASURABLE SYSTEM PROPERTIES
  • 71. CALCULATION OF CHANGES IN STATE FUNCTIONS IN A PROCESS • CALCULATION OF ENTROPY CHANGE IN FUNCTION OF T AND P
  • 72. CALCULATION OF CHANGES IN STATE FUNCTIONS IN A PROCESS • CALCULATION OF ENTHALPY CHANGE IN FUNCTION OF T AND P • CALCULATION OF INTERNAL ENERGY CHANGE IN FUNCTION OF T AND P • CALCULATION OF GIBBS ENERGY CHANGE IN FUNCTION OF T AND P • CALCULATION OF HELMHOLTZ ENERGY CHANGE IN FUNCTION OF T AND P
  • 73. REAL GASES; COMPRESSION FACTORS • THE Z COMPRESSION FACTOR IS A MEASURE OF THE IDEALITY DEVIATION • Z BECOMES 1 WHEN DENSITY IS IN THE LIMIT OF ZERO
  • 74. REAL GASES; EQUATIONS OF STATE • VAN DER WAALS • REDLICH-KWONG EQUATION • VIRIAL EQUATION OF STATE (FROM STATISTICAL MECHANICS)
  • 75. REAL GASES; EQUATIONS OF STATE • EXAMPLE: WHAT IS THE MOLAR VOLUME OF AR(G) AT 250,00K AND 1,0000ATM • THE COMPRESSION FACTOR CAN BE EXPRESSED IN TERMS OF ATTRACTION AND REPULSION FACTORS OF THE VAN DER WAALS EQUATION b IS APPROXIMATELY THE MOLAR VOLUME OF THE LIQUID
  • 76. REAL GASES; EQUATIONS OF STATE • B IS APPROXIMATELY THE MOLAR VOLUME OF THE LIQUID SO AND WE CAN EXPRESS THE FOLLOWING EXPANSION • COMPARING WITH THE VIRIAL EQUATION OF STATE • AND Z
  • 77. REAL GASES MIXTURES • TO RELATE A TWO PARAMETER EQUATION OF STATE WITH A REAL GAS MIXTURE BEHAVIOR WE HAVE TO USE THE MIXING RULE: • WE NOW REFER TO THE MEAN MOLAR VOLUME OF THE SYSTEM • AND FOR THE LOW P VIRIAL EQUATION • THE MIXING RULE FOR NON SIMILAR GASES
  • 78. CONDENSATION OF GASES AND CRITICAL PROPERTIES • THE NORMAL TEMPERATURE BOILING POINT AND THE CRITICAL TEMPERATURE ARE BOTH DEPENDENT ON INTERMOLECULAR FORCES, THEN, THEY ARE CORRELATED • REMEMBER THAT THE AVERAGE MOLECULAR KINETIC ENERGY IS • WHAT IS A FLUID? WHAT IS A LIQUID? WHAT IS A GAS? WHAT IS A SUPERCRITICAL FLUID?
  • 79. CRITICAL PROPERTIES AND A, B PARAMETERS RELATION • THEN Van der Waals Redlich Kwong
  • 80. CALCULATION OF LIQUID VAPOR EQUILIBRIA • USING REDLICH-KWONG (EOS) • The condition of liquid vapor equilibria is that a molecule being transferred from the vapor to the liquid phase (or visc.) must not change the Gibbs free energy of the system.
  • 81. CALCULATION OF LIQUID VAPOR EQUILIBRIA • USING REDLICH-KWONG (EOS)
  • 82.
  • 83. SOAVE REDLICH KWONG (SRK) EQUATION OF STATE
  • 84. THE LAW OF CORRESPONDING STATES • THE VALUES OF CERTAIN PHYSICAL PROPERTIES OF A GAS DEPENDS ON THE PROXIMITY OF THE GAS TO ITS CRITICAL STATE • FOR HE AND H, ADJUSTED CRITICAL PROPERTIES MUST BE USED
  • 89. GAS MIXTURES AND COMPRESSIBILITY CHARTS • THE KAY’S RULE
  • 90. REAL GAS THERMODYNAMIC PROPERTIES CHANGES RELATIVE TO IDEAL VALUES • IT IS POSSIBLE TO USE ANY OF THE REAL GAS EQUATIONS OF STATE TO FIND EXPRESSIONS FOR:
  • 91. CHEMICAL POTENTIAL • FOR A SYSTEM UNDERGOING A COMPOSITION CHANGE DUE TO AN IRREVERSIBLE REACTION OR MASS TRANSFER (WITHIN THE PHASES OF THE SYSTEM OR BETWEEN THE SYSTEM AND SURROUNDINGS) THE GIBBS FREE ENERGY IS ALSO A FUNCTION OF COMPOSITION. • NOW WE CAN CONSIDER WHAT HAPPENS WITH THE SYSTEM PROPERTIES DUE TO THE IRREVERSIBLE CHANGE OF MATTER (REMEMBER THAT A CHANGE IN A STATE BY AN IRREVERSIBLE PROCESS CAN BE CALCULATED SUPPOSING A REVERSIBLE PROCESS)
  • 92. CHEMICAL POTENTIAL IN ONE PHASE SYSTEM• FOR A REVERSIBLE PROCESS:
  • 93. CHEMICAL POTENTIAL IN Α PHASE SYSTEMS• THE TOTAL FREE GIBBS ENERGY IS EXPRESSED AS: • CONSIDERING AN INFINITESIMAL CHANGE IN G IN PHASE Α; • IT IS POSSIBLE TO WRITE AN INFINITESIMAL CHANGE OF G IN THE SYSTEM AS: • FINALLY
  • 94. MATERIAL EQUILIBRIUM AND CHEMICAL POTENTIAL • MATERIAL EQUILIBRIUM • REVERSIBLE PROCESS • REMEMBER THAT WHEN EQUILIBRIUM IS REACHED UNDER CONDITIONS OF CONSTANT T AND P, THEN G IS MINIMIZED AND WHEN THE SYSTEM REACHES THE EQUILIBRIUM UNDER CONDITIONS OF CONSTANT T AND V, THEN A IS MINIMIZED.
  • 95. WHAT IS CHEMICAL POTENTIAL? • IT IS AN INTENSIVE PROPERTY • IT DEPENDS ON T, P AND NI OR XI. • THE CHEMICAL POTENTIAL OF SUBSTANCE I EXPRESS HOW IS THE CHANGE OF G WHEN N MOLES OF I ARE ADDED TO THE SOLUTION. • CHEMICAL POTENTIAL IS STILL DEFINED FOR A SUBSTANCE THAT IS ABSENT FROM THE SOLUTION. • FOR THE SIMPLEST SYSTEM:
  • 96. PHASE EQUILIBRIUM • IN A SEVERAL PHASE SYSTEM THAT IS IN EQUILIBRIUM, WHERE dnJ MOLES OF J ARE FLOWING FROM PHASE Β TO PHASE Δ THE CONDITION OF PHASE EQUILIBRIUM IS DEFINED BY: • SUPPOSE THE SAME PHASE SYSTEM TO BE SPONTANEOUSLY REACHING THE EQUILIBRIUM AT CONSTANT T AND P: • ALSO:
  • 97. PHASE EQUILIBRIUM • IN A SEVERAL PHASE SYSTEM THAT IS IN EQUILIBRIUM, WHERE DNJ MOLES OF ARE FLOWING FROM PHASE Β TO PHASE Δ THE CONDITION OF PHASE EQUILIBRIUM IS DEFINED BY: • SUPPOSE THE SAME PHASE SYSTEM TO BE SPONTANEOUSLY REACHING THE EQUILIBRIUM AT CONSTANT T AND P: • ALSO:
  • 98.
  • 99. EXTENT OF REACTION ξ • FOR ANY REACTION: • WE DEFINE THE EXTENT OF REACTION Ξ AS THE PROPORTIONALITY CONSTANT BETWEEN THE STOICHIOMETRIC COEFFICIENTS OF THE REACTION AND CHANGE IN MOLES OF EACH SUBSTANCE.
  • 100. REACTION EQUILIBRIUM • THE CONDITION OF MATERIAL EQUILIBRIUM IS: • IN TERMS OF EXTENT OF REACTION:
  • 101. CHEMICAL POTENTIAL IN IDEAL GASES • AS PRESSURE GOES TO ZERO, ENTROPY GOES TO INFINITY AND THAT FACT DEFINES THE BEHAVIOR OF CHEMICAL POTENTIAL IN FUNCTION OF PRESSURE FOR AN IDEAL GAS. • AN IDEAL GAS MIXTURE MUST OBEY THE PURE-IDEAL -GAS CONDITIONS AND ALSO THE LAW OF PARTIAL PRESSURES; THEY ARE EQUAL TO THE PRESSURES OF PURE GASES AT THE SAME CONDITIONS:
  • 102. CHEMICAL POTENTIAL IN IDEAL GASES • AS PRESSURE GOES TO ZERO, ENTROPY GOES TO INFINITY AND THAT FACT DEFINES THE BEHAVIOR OF CHEMICAL POTENTIAL IN FUNCTION OF PRESSURE FOR AN IDEAL GAS. • AN IDEAL GAS MIXTURE MUST OBEY THE PURE-IDEAL -GAS CONDITIONS AND ALSO THE LAW OF PARTIAL PRESSURES; THEY ARE EQUAL TO THE PRESSURES OF PURE GASES AT THE SAME CONDITIONS:
  • 103. CHEMICAL POTENTIAL IN IDEAL GAS MIXTURE
  • 104. IDEAL GAS REACTION EQUILIBRIUM Standard Equilibrium Constant Equilibrium Constant
  • 105. IDEAL GAS REACTION EQUILIBRIUM
  • 106. CONCENTRATION AND MOLE FRACTION EQUILIBRIUM CONSTANTS
  • 107. TEMPERATURE DEPENDENCE OF EQUILIBRIUM CONSTANT • THE VANT’T HOFF EQ. Constant enthalpy of reaction Constant delta(Cp)
  • 108. TEMPERATURE DEPENDENCE OF EQUILIBRIUM CONSTANT
  • 109. PHASE EQUILIBRIUM; THE PHASE RULE IT MAKE SENSE TO TRY SOLVING THE EQUATIONS THAT RELATE THE INTENSIVE VARIABLES OF THE SYSTEM TO SPECIFY ITS INTENSIVE THERMODYNAMIC STATE. IT MEANS TO KNOW ALL THE MOLAR FRACTIONS IN ALL PHASES, T AND P. THE TOTAL INTENSIVE VARIABLES ARE: IT IS POSSIBLE TO RELATE THE MOLAR FRACTIONS WITH ONE EQUATION IN EACH PHASE, EG. SO WE CAN FORGET A NUMBER OF P VARIABLES BECAUSE THEY ARE DEPENDENT. IT IS POSSIBLE TO STATE C(P-1) PHASE EQUILIBRIUM CONDITION EQUATIONS, AND EACH THEM ALLOW US TO FORGET ONE DEPENDENT COMPONENT. THEN WE HAVE THE GENERAL PHASE RULE THAT LET US TO OBTAIN THE NUMBER OF INDEPENDENT VARIABLES THAT NEED TO BE FIXED TO SPECIFY THE INTENSIVE
  • 110. PHASE EQUILIBRIUM; THE PHASE RULE • WHEN THERE IS A REACTION HAPPENING IN THE SYSTEM WE CAN DROP A NUMBER OF INTENSIVE VARIABLES EQUAL TO THE NUMBER OF CHEMICAL REACTIONS (R) CONSIDERING THAT EACH OF THEM ALLOWS TO WRITE AN EQUILIBRIUM CONDITION. • ALSO WE CAN DROP A NUMBER OF INTENSIVE VARIABLES EQUAL TO SPECIAL STOICHIOMETRIC OR NEUTRALITY CONDITIONS (A). Independent Components
  • 111. PHASE EQUILIBRIUM; THE PHASE RULE • ALSO WE CAN DROP A NUMBER OF INTENSIVE VARIABLES EQUAL TO SPECIAL STOICHIOMETRIC OR NEUTRALITY CONDITIONS (A).
  • 112. ONE COMPONENT, PHASE EQUILIBRIUM • ALSO WE CAN DROP A NUMBER OF INTENSIVE VARIABLES EQUAL TO SPECIAL STOICHIOMETRIC OR NEUTRALITY CONDITIONS (A).
  • 113. ONE COMPONENT, PHASE EQUILIBRIUM • ALSO WE CAN DROP A NUMBER OF INTENSIVE VARIABLES EQUAL TO SPECIAL STOICHIOMETRIC OR NEUTRALITY CONDITIONS (A).
  • 114. ONE COMPONENT, PHASE EQUILIBRIUM • ALSO WE CAN DROP A NUMBER OF INTENSIVE VARIABLES EQUAL TO SPECIAL STOICHIOMETRIC OR NEUTRALITY CONDITIONS (A).
  • 115. ONE COMPONENT, PHASE EQUILIBRIUM • OA AND AC SHOW THE BEHAVIOR OF SOLID VAPOR PRESSURE AND LIQUID VAPOR PRESSURE IN FUNCTION OF TEMPERATURE
  • 116. ENTHALPIES AND ENTROPIES OF PHASE CHANGES • STARTING FROM LIQUID VAPOR EQUILIBRIUM, BY LOWERING PRESSURES THE VAPOR PHASE BECOMES MORE STABLE BECAUSE OF ITS GREAT DECREASING OF GIBBS FREE ENERGY. • INCREASING TEMPERATURE FAVORS THE ENTROPY CONTRIBUTION TO THE MOLAR GIBBS FREE ENERGY AND GAS PHASE IS FAVORED. • DECREASING TEMPERATURE FAVORS THE ENTHALPY CONTRIBUTION TO THE MOLAR GIBBS FREE ENERGY AND LIQUID PHASE IS FAVORED. • THE TROUTON’S RULE • THE TROUTONS-HILDEBRAND-EVERETT’S RULE
  • 117. ENTHALPIES AND ENTROPIES OF PHASE CHANGES • THE TROUTON’S RULE • THE TROUTONS-HILDEBRAND-EVERETT’S RULE
  • 118. THE CLAPEYRON EQUATION • THE CLAPEYRON EQUATION PREDICTS THE BEHAVIOR OF THE SLOPE OF PHASE EQUILIBRIA LINES.
  • 119. THE CLAPEYRON EQUATION • LIQUID-VAPOR AND SOLID-VAPOR EQUILIBRIUM Take care!!!
  • 120. THE CLAPEYRON EQUATION • SOLID-LIQUID EQUILIBRIUM
  • 121. THE ANTOINE EQUATION • THE ANTOINE EQUATION IS AN EMPIRICAL EXPRESSION THAT WORKS VERY WELL BETWEEN 10 AND 1500 TORR AND RELATES THE VAPOR PRESSURE OF A SUBSTANCE WITH TEMPERATURE.
  • 123. SOLUTIONS; PARTIAL MOLAR QUANTITIES • A START ABOVE A PROPERTY MEANS THE PROPERTY OF A PURE SUBSTANCE OR THE PROPERTY OF A COLLECTION OF PURE SUBSTANCES. • BUT IN GENERAL THE PROPERTY OF A SOLUTION IS DIFFERENT TO THE PURE SUBSTANCE PROPERTY SUM • SO… WE KNOW THAT ALL PROPERTIES OF A SYSTEM ARE FUNCTIONS OF T, P AND NI: • AND WE DEFINE THE PARTIAL MOLAR VOLUME OF J AS
  • 124. SOLUTIONS; PARTIAL MOLAR QUANTITIES • REMEMBER THAT FOR A PURE SUBSTANCE SYSTEM, Μ=GM. IN SIMILAR WAY BUT IT DOES NOT MEANS THAT THE PARTIAL MOLAR VOLUME OF COMPONENT IN A SOLUTION IS EQUAL TO THE MOLAR VOLUME OF PURE J. • IF ALL INTENSIVE PROPERTIES ARE FIXED: DIFFERENTIATION: AND WE KNOW THAT: OR SO OR
  • 125. SOLUTIONS; PARTIAL MOLAR QUANTITIES • SIMILAR TO THE PARTIAL MOLAR VOLUMES: • IN GENERAL
  • 126. SOLUTIONS; PARTIAL MOLAR QUANTITIES • SIMILAR TO THE PARTIAL MOLAR VOLUMES: • IN GENERAL
  • 127. RELATIONS BETWEEN PARTIAL MOLAR QUANTITIES • WE KNOW THAT G=H-TS SO: • ALSO , THEN: • IN SIMILAR WAY: AND
  • 128. IMPORTANCE OF CHEMICAL POTENTIAL • CHEMICAL POTENTIAL IS USED TO DEFINE REACTION AND PHASE EQUILIBRIA, BUT ALSO IS USED TO FIND ALL OTHER PARTIAL MOLAR PROPERTIES AND ALL THERMODYNAMIC PROPERTIES.
  • 129. MIXING QUANTITIES • IN MOST CASES WHEN YOU MAKE A SOLUTION, THERE IS DIFFERENCE BETWEEN THE SUM OF THE PURE COMPONENT PROPERTIES AND THE REAL VALUE OF THE PROPERTY. WE CALL SUCH A DIFFERENCE MIXING QUANTITIES. Mixing properties relations
  • 130. DETERMINATION OF MIXING QUANTITIES • WE CAN FIND THE MIXING VOLUME BY MEASURING THE DEINSITIES OF THE SOLUTION AND THE PURE COMPONENTS AT P, T AND X. OR WE CAN DIRECTLY MEASURE THE CHANGE IN VOLUME WHEN A COMPONENT IS ADDED AT CONSTANT T. THE MIXING ENTHALPY CAN BE FOUND WITH A CONSTANT PRESSURE CALORIMETER • FOR MIXING GIBBS FREE ENERGY WE HAVE:
  • 131. DETERMINATION OF PARTIAL MOLAR QUANTITIES
  • 132. DETERMINATION OF PARTIAL MOLAR QUANTITIES
  • 133. DETERMINATION OF PARTIAL MOLAR QUANTITIES
  • 134. INTEGRAL AND DIFFERENTIAL HEATS OF SOLUTIONS At infinite dilution
  • 135. IDEAL SOLUTIONS • SOME OF THE MIXTURES THAT CAN BE CONSIDERED IDEAL ARE • ISOTOPIC MIXTURE • BENZENE-TOLUENE • • •
  • 136. THERMODYNAMIC FUNCTIONS OF IDEAL SOLUTIONS • MIXING GIBBS FREE ENERGY CYCLOHEXANE-CYCLOPENTANE BENZENE-DEUTERATED BENZENE • MIXING ENTROPY
  • 137. CHEMICAL POTENTIAL OF IDEAL SOLUTIONS • AS NOTED EARLIER AND WE CAN WRITE SO THAT HOLDS ONLY IF • NOTE THAT ΜI INCREASES AS XI INCREASES • IN SUMMARY
  • 138. CHEMICAL POTENTIAL OF IDEAL SOLUTIONS • AS NOTED EARLIER AND WE CAN WRITE SO THAT HOLDS ONLY IF • NOTE THAT ΜI INCREASES AS XI INCREASES • IN SUMMARY
  • 139. VAPOR PRESSURE OF IDEAL SOLUTIONS (RAOULT’S LAW) • THE CONDITION OF PHASE EQUILIBRIUM IS: • SUPPOSING A PURE SUBSTANCE SYSTEM: • USING THE SECOND AND THIRD EQUATIONS: • REMEMBER THAT THE PROPERTIES OF A LIQUID VARY SLOWLY WITH PRESSURE, SO: • AND THE RAOULT’S LAW:
  • 140. VAPOR PRESSURE OF IDEAL SOLUTIONS (RAOULT’S LAW) • OTHER USEFUL FORM OF THE ROULT’S LAW IS: • AND FOR TWO COMPONENTS: • THE LAST FORM MEANS THAT THE TOTAL VAPOR PRESSURE OF AN IDEAL SOLUTION VARIES LINEARLY WITH THE MOLE FRACTION OF A COMPONENT IN A TWO COMPONENTS SYSTEM.
  • 141. VAPOR PRESSURE OF IDEAL SOLUTIONS (RAOULT’S LAW) • OTHER USEFUL FORM OF THE ROULT’S LAW IS: • AND FOR TWO COMPONENTS: • THE LAST FORM MEANS THAT THE TOTAL VAPOR PRESSURE OF AN IDEAL SOLUTION VARIES LINEARLY WITH THE MOLE FRACTION OF A COMPONENT IN A TWO COMPONENTS SYSTEM. Note that an ideal gas mixtu Is an ideal solution, so:
  • 142. IDEALLY DILUTE SOLUTIONS • IN AN IDEALLY DILUTE SOLUTIONS, SOLUTE MOLECULES INTERACT ESSENTIALLY ONLY WITH SOLVENT MOLECULES BECAUSE OF THE HIGH DILUTION OF SOLUTES At low concentrations
  • 143. VAPOR PRESSURE IN IDEALLY DILUTE SOLUTIONS (HENRY’S LAW) • IN AN IDEALLY DILUTE SOLUTIONS, SOLUTE MOLECULES INTERACT ESSENTIALLY ONLY WITH SOLVENT MOLECULES BECAUSE OF THE HIGH DILUTION OF SOLUTES
  • 144. VAPOR PRESSURE IN IDEALLY DILUTE SOLUTIONS (HENRY’S LAW) • SOLVENTS OBEY RAOULT’S LAW AND SOLUTES HENRY’S LAW
  • 145. SOLUBILITY OF GASES IN LIQUIDS • FOR GASES THAT ARE SOLUBLE IN A GIVEN LIQUID THE CONCENTRATION OF THE GAS IS LOW ENOUGH TO CONSIDER THE SOLUTION AS IDEALLY DILUTED. SO HENRY LAW HOLDS WELL At low concentrations
  • 146. SOLUBILITY OF GASES IN LIQUIDS • FOR GASES THAT ARE SOLUBLE IN A GIVEN LIQUID THE CONCENTRATION OF THE GAS IS LOW ENOUGH TO CONSIDER THE SOLUTION AS IDEALLY DILUTED. SO HENRY LAW HOLDS WELL At low concentrations
  • 147. SOLUBILITY OF GASES IN LIQUIDS • FOR GASES THAT ARE SOLUBLE IN A GIVEN LIQUID THE CONCENTRATION OF THE GAS IS LOW ENOUGH TO CONSIDER THE SOLUTION AS IDEALLY DILUTED. SO HENRY LAW HOLDS WELL At low concentrations
  • 148. VAPOR PRESSURE LOWERING • IT HOLDS IN SOLUTIONS WHERE THE SOLUTES ARE NON-VOLATILE (SOLID SOLUTES) Equal to 1 for ideally diluted solutions Elevation of boling point
  • 149. FREEZING POINT DEPRESSION • IT HOLDS IN SOLUTIONS WHERE THE SOLUTES ARE NON-VOLATILE (SOLID SOLUTES)
  • 150. OSMOTIC PRESSURE • CHEMICAL POTENTIAL IS LOWER IN THE SOLUTION SO SOLVENT TENDS TO FLOW THROUGH THE SEMIPERMEABLE MEMBRANE TO EQUATE THE CHEMICAL POTENTIALS
  • 151. OSMOTIC PRESSURE • CHEMICAL POTENTIAL IS LOWER IN THE SOLUTION SO SOLVENT TENDS TO FLOW THROUGH THE SEMIPERMEABLE MEMBRANE TO EQUATE THE CHEMICAL POTENTIALS