SlideShare a Scribd company logo
1 of 10
Dr. Y. S. THAKARE
M.Sc. (CHE) Ph D, NET, SET
Assistant Professor in Chemistry,
Shri Shivaji Science College, Amravati
Email: yogitathakare_2007@rediffmail.com
B Sc- II Year
SEM-III
PAPER-III
PHYSICAL CHEMISTRY
UNIT- V -THERMODYNAMICS AND EQUILIBRIUM
Topic- Gibbs-Helmholtz equation and partial molar
free energy
31-August -20 1
VARIATION OF HELMHOLTZ FUNCTION / WORK FUNCTION WITH TEMPERATURE AND VOLUME
๐ด = ๐ธ โˆ’ ๐‘‡๐‘† โ€ฆ (1)
๐‘‘๐ด = โˆ’๐‘ƒ๐‘‘๐‘‰ โˆ’ ๐‘†๐‘‘๐‘‡ โ€ฆ . . (8)
(a) If temperature is constant dT = 0. Then (8) becomes
(๐‘‘๐ด) ๐‘‡ = โˆ’(๐‘ƒ๐‘‘๐‘‰) ๐‘‡
๐œ•๐ด
๐œ•๐‘‰ ๐‘‡
= โˆ’๐‘ƒ โ€ฆ.(9)
(b) If volume is constant dV = 0. Then (8) becomes
(๐‘‘๐ด) ๐‘‰= (โˆ’๐‘†๐‘‘๐‘‡) ๐‘‰
๐œ•๐ด
๐œ•๐‘‡ ๐‘‰
= โˆ’๐‘† โ€ฆ (10)
Equation (9) and (10) gives the variations of work functions with temperature and volume.
VARIATION OF GIBBโ€™S FUNCTION / FREE ENERGY WITH TEMPERATURE AND PREESSURE
๐บ = ๐ป โˆ’ ๐‘‡๐‘† โ€ฆ (1)
๐‘‘๐บ = ๐‘‰๐‘‘๐‘ƒ โˆ’ ๐‘†๐‘‘๐‘‡ โ€ฆ (7)
(a) If temperature is constant dT = 0. Then (7) becomes
(๐‘‘๐บ) ๐‘‡ = (๐‘‰๐‘‘๐‘ƒ) ๐‘‡
๐œ•๐บ
๐œ•๐‘ƒ ๐‘‡
= ๐‘‰ โ€ฆ.(8)
(b) If pressure is constant dP = 0. Then (10) becomes
(๐‘‘๐บ) ๐‘ƒ= (โˆ’๐‘†๐‘‘๐‘‡) ๐‘ƒ
๐œ•๐บ
๐œ•๐‘‡ ๐‘ƒ
= โˆ’๐‘† โ€ฆ โ€ฆ (9)
Equation (8) and (9) gives the variations of work functions with temperature and pressure.17 -August -20
31-August -20
Dr. Yogita Sahebrao Thakare
SPONTANEITY IN TERMS OF FREE ENERGY
โˆ’๐‘‘๐บ โ‰ค ๐‘‰๐‘‘๐‘ƒ โˆ’ ๐‘†๐‘‘๐‘‡
At constant temperature and pressure, dT = 0 and dP = 0
๐‘‘๐บ โ‰ค 0 โ€ฆ (8)
The equation (8) represents that, if in a chemical reaction change if free energy is negative i.e.
less than zero then the reaction will be spontaneous or feasible. And at equilibrium, free
energy change will be zero.
GIBBโ€™S HELMHOLTZ EQUATION
The variation of free energy change with temperature at constant pressure is given by the
equation
๐œ•๐บ
๐œ•๐‘‡ ๐‘ƒ
= โˆ’๐‘† โ€ฆ 1
i.e. ๐‘‘๐บ = โˆ’๐‘†๐‘‘๐‘‡
โˆด ๐‘‘๐บ1= โˆ’๐‘†1 ๐‘‘๐‘‡ โ€ฆ . 2
๐‘‘๐บ2= โˆ’๐‘†2 ๐‘‘๐‘‡ โ€ฆ . 3
Consider equation (3) - (2) ๐‘‘๐บ2โˆ’ ๐‘‘๐บ1 = โˆ’(๐‘†2 โˆ’ ๐‘†1)๐‘‘๐‘‡
๐‘‘(โˆ†๐บ) = โˆ’โˆ†๐‘†๐‘‘๐‘‡
At constant pressure,
๐‘‘(โˆ†๐บ)
๐‘‘๐‘‡
= โˆ’โˆ†๐‘† โ€ฆ (4)
We know that โˆ†๐บ = โˆ†๐ป โˆ’ ๐‘‡โˆ†๐‘†
โˆ’๐‘‡โˆ†๐‘† = โˆ†๐บ โˆ’ โˆ†๐ป
โˆ’โˆ†๐‘† =
โˆ†๐บโˆ’โˆ†๐ป
๐‘‡
โ€ฆ (5)31-August -20 Dr. Yogita Sahebrao Thakare
Substituting the value of โˆ†S from equation (5) to (4)
โˆด
๐’…(โˆ†๐‘ฎ)
๐’…๐‘ป
=
โˆ†๐‘ฎ โˆ’ โˆ†๐‘ฏ
๐‘ป
๐‘ป
๐’…(โˆ†๐‘ฎ)
๐’…๐‘ป
= โˆ†๐‘ฎ โˆ’ โˆ†๐‘ฏ
i.e. โˆ†๐‘ฎ = โˆ†๐‘ฏ + ๐‘ป
๐’…(โˆ†๐‘ฎ)
๐’…๐‘ป ๐‘ท
โ€ฆ 6
This equation is known as Gibbโ€™sโ€“Helmholtz equation in terms of free energy and enthalpy.
By analogy Gibbโ€™s-Helmholtz equation in terms of work function and internal energy can be
derive at constant volume which can be derived at constant volume which can be given as
โˆ†๐‘จ = โˆ†๐‘ฌ + ๐‘ป
๐’…(โˆ†๐‘จ)
๐’…๐‘ป ๐‘ฝ
โ€ฆ 7
31-August -20 Dr. Yogita Sahebrao Thakare
APPLICATIONS OF GIBBโ€™S-HELMHOLTZโ€™S EQUATION
(a) Calculations of E.M.F. of a reversible cell:
The decrease in free energy produced by the passage of nF coulombs of electricity through a
reversible cell is given by
โˆ’โˆ†๐บ = ๐‘›๐ธ๐น
Where, n = number of electrons lost or gained
E=E.M.F. of the reversible cell
F= Faraday of electricity (96500 coulomb)
Putting the values of โˆ†๐บ in Gibbโ€™s Helmholtz equations, we get
โˆ’๐‘›๐ธ๐น = โˆ†๐ป + ๐‘‡
๐‘‘(โˆ’๐‘›๐ธ๐น)
๐‘‘๐‘‡ ๐‘ƒ
โˆ’๐‘›๐ธ๐น = โˆ†๐ป โˆ’ ๐‘›๐น ๐‘‡
๐‘‘๐ธ)
๐‘‘๐‘‡ ๐‘ƒ
๐ธ = โˆ’
โˆ†๐ป
๐‘›๐น
+ ๐‘‡
๐‘‘๐ธ
๐‘‘๐‘‡ ๐‘ƒ
Here E gives E.M.F. of a reversible cell
(b) Calculations of enthalpy change
The Gibbโ€™s-Helmholtz equation can be used for calculating the enthalpy changes
occurring in isothermal reaction.
31-August -20 Dr. Yogita Sahebrao Thakare
STANDRED FREE ENERGY (โˆ†๐†) ๐ŸŽ
It is defined as โ€œThe change in free energy when all the reactant are in their standard
state of unit pressure or unit concentration are converted at 250C in to the products, which are
also in their standard statesโ€.
The โˆ†๐บ0 for a reaction can be written as
โˆ†๐บ0
= โˆ†๐บ ๐‘๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก
0
โˆ’ โˆ†๐บ ๐‘Ÿ๐‘’๐‘Ž๐‘๐‘ก๐‘Ž๐‘›๐‘ก
0
โˆ†๐บ0
= โˆ†๐ป0
โˆ’ ๐‘‡โˆ†๐‘†0
Where, โˆ†๐ป0
and โˆ†๐‘†0
are the standard change in the enthalpy and standard change in entropy
respectively.
31-August -20 Dr. Yogita Sahebrao Thakare
CHEMICAL POTENTIAL OR PARTIAL MOLAR FREE ENERGY OR THERMODYNAMICS OF OPEN
SYSTEM
The thermodynamics properties U, H, S, A and G are extensive properties because their values
depends on the number of moles of the system.
Consider the extensive property, free energy. Let it be
๐บ = ๐‘“(๐‘‡, ๐‘ƒ, ๐‘›1, ๐‘›2, ๐‘›3, โ€ฆ . . ) โ€ฆ.(i)
๐‘‘๐บ =
๐œ•๐บ
๐‘‘๐‘‡ ๐‘ƒ,๐‘›1,๐‘›2,๐‘›3 ,
๐‘‘๐‘‡ +
๐œ•๐บ
๐‘‘๐‘ƒ ๐‘‡,๐‘›1,๐‘›2,๐‘›3 ,
๐‘‘๐‘ƒ +
๐œ•๐บ
๐‘‘๐‘›1 ๐‘‡,๐‘ƒ,๐‘›2,๐‘›3 ,
๐‘‘๐‘›1 +
๐œ•๐บ
๐‘‘๐‘›2 ๐‘‡,๐‘ƒ,๐‘›1,๐‘›3 ,
๐‘‘๐‘›2+ . . . . (๐‘–๐‘–)
If the temperature and pressure of the system kept constant, then dT = 0 and dP = 0
(๐‘‘๐บ) ๐‘‡,๐‘ƒ=
๐œ•๐บ
๐‘‘๐‘›1 ๐‘‡,๐‘ƒ,๐‘›2,๐‘›3 ,
๐‘‘๐‘›1 +
๐œ•๐บ
๐‘‘๐‘›2 ๐‘‡,๐‘ƒ,๐‘›1,๐‘›3 ,
๐‘‘๐‘›2 + โ‹ฏ (๐‘–๐‘–๐‘–)
Each derivative on the right hand side is called partial molar property and it is represented by
putting the bar over the symbol of that particular property i.e ๐บ1, ๐บ2, ๐บ3, for the 1st , 2nd, 3rd,
etc. respectively. Thus,
๐œ•๐บ
๐‘‘๐‘›1 ๐‘‡,๐‘ƒ,๐‘›2,๐‘›3 ,
= ๐บ1
๐œ•๐บ
๐‘‘๐‘›2 ๐‘‡,๐‘ƒ,๐‘›1,๐‘›3 ,
= ๐บ2 , etc. In general ith component
๐œ•๐บ
๐‘‘๐‘›๐‘– ๐‘‡,๐‘ƒ,๐‘›1,๐‘›2,๐‘›3 ,โ€ฆ.
= Gi โ€ฆ . (๐‘–๐‘ฃ)
31-August -20 Dr. Yogita Sahebrao Thakare
This quantity called as partial molar free energy or chemical potential and is usually represented
by symbol ยต. Thus
ยตi
= Gi =
๐œ•๐บ
๐‘‘๐‘›๐‘– ๐‘‡,๐‘ƒ,๐‘›1,๐‘›2,๐‘›3 ,โ€ฆ.
โ€ฆ(๐‘ฃ)
If dni = 1 mole, Then, ยต = ( ๐‘‘๐บ) ๐‘‡,๐‘,๐‘›1,๐‘›2,๐‘›3 ,โ€ฆ.
The chemical potential of a constituents in a mixture is the increase in free energy which takes
place at constant temperature and pressure when one mole of that constituent is added to the
system, keeping the amount of all other constituent constant.
Equation (iii) can be written as
( ๐‘‘๐บ) ๐‘‡,๐‘ƒ= ยต1
dn1 + ยต2
dn2 + ยต3
dn3 + โ‹ฏ โ€ฆ(๐‘ฃ๐‘–)
By the definition of definite composition represented by the number of moles ๐‘›1, ๐‘›2, ๐‘›3, etc.
equation (iv) on integration gives
๐บ ๐‘‡,๐‘ƒ,๐‘ = n1ยต1
+ n2ยต2
+ n3ยต3
+ โ‹ฏ โ€ฆ.(vii)
The chemical potential of a constituents in a mixture is its contribution per mole to the total free
energy of the system of a constant composition at constant temperature and pressure. It may be
noted that whereas free energy is an extensive property the chemical potential is an intensive
property because it refers to one mole of substance.
Where, subscript N stands for constant composition.
31-August -20 Dr. Yogita Sahebrao Thakare
GIBBโ€™S DUHEM EQUATION
We know that for an open system,
๐บ = ๐‘“(๐‘‡, ๐‘ƒ, ๐‘›1, ๐‘›2, ๐‘›3, โ€ฆ . . ) โ€ฆ.(i)
Now, if there is small change in the temperature, pressure and the amounts of the constituents,
then the change in the property G is given by,
๐‘‘๐บ =
๐œ•๐บ
๐‘‘๐‘‡ ๐‘ƒ,๐‘›1,๐‘›2,๐‘›3 ,
๐‘‘๐‘‡ +
๐œ•๐บ
๐‘‘๐‘ƒ ๐‘‡,๐‘›1,๐‘›2,๐‘›3 ,
๐‘‘๐‘ƒ +
๐œ•๐บ
๐‘‘๐‘›1 ๐‘‡,๐‘ƒ,๐‘›2,๐‘›3 ,
๐‘‘๐‘›1 +
๐œ•๐บ
๐‘‘๐‘›2 ๐‘‡,๐‘ƒ,๐‘›1,๐‘›3 ,
๐‘‘๐‘›2+. . . . (๐‘–๐‘–)
If the temperature and pressure of the system kept constant, then dT = 0 and dP = 0, so that
equation (ii) becomes
(๐‘‘๐บ) ๐‘‡,๐‘ƒ =
๐œ•๐บ
๐‘‘๐‘›1 ๐‘‡,๐‘ƒ,๐‘›2,๐‘›3 ,
๐‘‘๐‘›1 +
๐œ•๐บ
๐‘‘๐‘›2 ๐‘‡,๐‘ƒ,๐‘›1,๐‘›3 ,
๐‘‘๐‘›2 + โ‹ฏ (๐‘–๐‘–๐‘–)
Putting
๐œ•๐บ
๐‘‘๐‘›1 ๐‘‡,๐‘ƒ,๐‘›2,๐‘›3 ,โ€ฆ.
= ยต1
and
๐œ•๐บ
๐‘‘๐‘›2 ๐‘‡,๐‘ƒ,๐‘›1,๐‘›3 ,โ€ฆ.
= ยต2
and so on in equation (iii), we get
(๐‘‘๐บ) ๐‘‡,๐‘ƒ
= ยต1
๐‘‘๐‘›1 + ยต2
๐‘‘๐‘›2 + โ‹ฏ โ€ฆ (๐‘–๐‘ฃ)
By the definition of definite composition represented by the number of moles ๐‘›1, ๐‘›2, ๐‘›3, etc.
equation (iv) on integration gives
๐บ ๐‘‡,๐‘ƒ,๐‘ = n1ยต1
+ n2ยต2
+ n3ยต3
+ โ‹ฏ
Differentiating this equation under the condition of constant temperature and pressure but
varying composition, we get,
31-August -20 Dr. Yogita Sahebrao Thakare
( ๐‘‘๐บ) ๐‘‡,๐‘ƒ = n1dยต1
+ ยต1
๐‘‘๐‘›1 + n2dยต2
+ ยต2
๐‘‘๐‘›2 + n3dยต3
+ ยต3
๐‘‘๐‘›3 + โ‹ฏ
(๐‘‘๐บ) ๐‘‡,๐‘ƒ = (n1dยต1
+ n2dยต2
+n3dยต3
+ โ‹ฏ ) + (ยต
1
๐‘‘๐‘›1 + ยต2
๐‘‘๐‘›2 + ยต3
๐‘‘๐‘›3 + โ‹ฏ ) โ€ฆ...(v)
Substituting the value of (iv) in (v), we get
(๐‘‘๐บ) ๐‘‡,๐‘ƒ = (n1dยต1
+ n2dยต2
+ n3dยต3
+ โ‹ฏ) + (๐‘‘๐บ) ๐‘‡,๐‘ƒ
OR n1dยต1
+ n2dยต2
+ n3dยต3
+ โ‹ฏ = 0
OR ni ๐‘‘ยต๐‘–
= 0
This equation which is applicable to a system under constant temperature and pressure is called
Gibbโ€™s-Duhem equation.
31-August -20 Dr. Yogita Sahebrao Thakare

More Related Content

What's hot

Photochemistry
PhotochemistryPhotochemistry
PhotochemistryGajananRawate
ย 
Kinetic isotope effects
Kinetic isotope effectsKinetic isotope effects
Kinetic isotope effectssumathiasir
ย 
Rotational partition function
Rotational partition functionRotational partition function
Rotational partition functionHariBhaktaoli
ย 
Metal Cluster Higher Boranes
Metal Cluster Higher BoranesMetal Cluster Higher Boranes
Metal Cluster Higher BoranesSPCGC AJMER
ย 
Flash photolysis and Shock tube method
Flash photolysis and Shock tube method Flash photolysis and Shock tube method
Flash photolysis and Shock tube method PRUTHVIRAJ K
ย 
Fugacity & fugacity coefficient
Fugacity & fugacity coefficientFugacity & fugacity coefficient
Fugacity & fugacity coefficientKarnav Rana
ย 
Trans effect
Trans effectTrans effect
Trans effectAteeqa Amjad
ย 
Photo fries rearrangement & Barton reaction
Photo fries rearrangement & Barton reactionPhoto fries rearrangement & Barton reaction
Photo fries rearrangement & Barton reactionKeshav Singh
ย 
Quantum Chemistry
Quantum ChemistryQuantum Chemistry
Quantum Chemistrybaoilleach
ย 
Ionic strength principle
Ionic strength principleIonic strength principle
Ionic strength principleMayurMarvaniya1
ย 
APPLICATIONS OF ESR SPECTROSCOPY TO METAL COMPLEXES
APPLICATIONS OF ESR SPECTROSCOPY TO METAL COMPLEXESAPPLICATIONS OF ESR SPECTROSCOPY TO METAL COMPLEXES
APPLICATIONS OF ESR SPECTROSCOPY TO METAL COMPLEXESSANTHANAM V
ย 
Electrochemistry lecture
Electrochemistry lectureElectrochemistry lecture
Electrochemistry lectureSubheg Singh
ย 
Zero field splitting
Zero field splittingZero field splitting
Zero field splittingNaveed Bashir
ย 

What's hot (20)

Photochemistry
PhotochemistryPhotochemistry
Photochemistry
ย 
Kinetic isotope effects
Kinetic isotope effectsKinetic isotope effects
Kinetic isotope effects
ย 
Rotational partition function
Rotational partition functionRotational partition function
Rotational partition function
ย 
Metal Cluster Higher Boranes
Metal Cluster Higher BoranesMetal Cluster Higher Boranes
Metal Cluster Higher Boranes
ย 
Flash photolysis and Shock tube method
Flash photolysis and Shock tube method Flash photolysis and Shock tube method
Flash photolysis and Shock tube method
ย 
Fugacity & fugacity coefficient
Fugacity & fugacity coefficientFugacity & fugacity coefficient
Fugacity & fugacity coefficient
ย 
Trans effect
Trans effectTrans effect
Trans effect
ย 
Fugacity
FugacityFugacity
Fugacity
ย 
Topicity
TopicityTopicity
Topicity
ย 
Photo fries rearrangement & Barton reaction
Photo fries rearrangement & Barton reactionPhoto fries rearrangement & Barton reaction
Photo fries rearrangement & Barton reaction
ย 
Thermodynamic
ThermodynamicThermodynamic
Thermodynamic
ย 
Quantum Chemistry
Quantum ChemistryQuantum Chemistry
Quantum Chemistry
ย 
Ionic strength principle
Ionic strength principleIonic strength principle
Ionic strength principle
ย 
APPLICATIONS OF ESR SPECTROSCOPY TO METAL COMPLEXES
APPLICATIONS OF ESR SPECTROSCOPY TO METAL COMPLEXESAPPLICATIONS OF ESR SPECTROSCOPY TO METAL COMPLEXES
APPLICATIONS OF ESR SPECTROSCOPY TO METAL COMPLEXES
ย 
Electrochemistry lecture
Electrochemistry lectureElectrochemistry lecture
Electrochemistry lecture
ย 
Introduction to group theory
Introduction to group theoryIntroduction to group theory
Introduction to group theory
ย 
Hinshel wood theory
Hinshel wood   theoryHinshel wood   theory
Hinshel wood theory
ย 
Zero field splitting
Zero field splittingZero field splitting
Zero field splitting
ย 
Lect. 5 quantum yield and photosensitize reaction
Lect. 5 quantum yield and photosensitize reactionLect. 5 quantum yield and photosensitize reaction
Lect. 5 quantum yield and photosensitize reaction
ย 
Linear free energy relationships
Linear free energy relationshipsLinear free energy relationships
Linear free energy relationships
ย 

Similar to Lect. 3 gibbs helmholtz equation, chemical potential, gibbs duhem equation

Lect. 4 chemical potential of an ideal gas vant hoff reaction isotherm,vant h...
Lect. 4 chemical potential of an ideal gas vant hoff reaction isotherm,vant h...Lect. 4 chemical potential of an ideal gas vant hoff reaction isotherm,vant h...
Lect. 4 chemical potential of an ideal gas vant hoff reaction isotherm,vant h...Shri Shivaji Science College Amravati
ย 
Entropy ok1294987599
Entropy    ok1294987599Entropy    ok1294987599
Entropy ok1294987599Navin Joshi
ย 
Thermochemistry, Hess law PPTxx 100L.pptx
Thermochemistry, Hess law PPTxx 100L.pptxThermochemistry, Hess law PPTxx 100L.pptx
Thermochemistry, Hess law PPTxx 100L.pptxabubakarshamsudeen20
ย 
KNUST Thermodynamics 2.pptx
KNUST Thermodynamics 2.pptxKNUST Thermodynamics 2.pptx
KNUST Thermodynamics 2.pptxParaDise11
ย 
Thermodynamics presentation.pptx
Thermodynamics presentation.pptxThermodynamics presentation.pptx
Thermodynamics presentation.pptxAnishaKazi
ย 
Introductory biological thermodynamics
Introductory biological thermodynamicsIntroductory biological thermodynamics
Introductory biological thermodynamicsJoe Ercolino
ย 
Thermodynamic ppt
Thermodynamic pptThermodynamic ppt
Thermodynamic pptShivshankarMore1
ย 
Non isothermal kinetics in phase transformations
Non isothermal kinetics in phase transformationsNon isothermal kinetics in phase transformations
Non isothermal kinetics in phase transformationsSum K
ย 
Thermodynamics 1
Thermodynamics 1Thermodynamics 1
Thermodynamics 1bapu thorat
ย 
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdfTHE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdfWasswaderrick3
ย 
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdfTHE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdfWasswaderrick3
ย 
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdfTHE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdfWasswaderrick3
ย 
Temperature Effect on Heat of Reaction
Temperature Effect on Heat of ReactionTemperature Effect on Heat of Reaction
Temperature Effect on Heat of ReactionMausam Patel
ย 
F y b. sc. chemical equilibria
F y b. sc. chemical equilibriaF y b. sc. chemical equilibria
F y b. sc. chemical equilibriaMithil Fal Desai
ย 
13271092 (2).ppt
13271092 (2).ppt13271092 (2).ppt
13271092 (2).pptprakash581021
ย 
Enthalpy diagram
Enthalpy diagramEnthalpy diagram
Enthalpy diagramK. Shahzad Baig
ย 

Similar to Lect. 3 gibbs helmholtz equation, chemical potential, gibbs duhem equation (20)

Lect. 4 chemical potential of an ideal gas vant hoff reaction isotherm,vant h...
Lect. 4 chemical potential of an ideal gas vant hoff reaction isotherm,vant h...Lect. 4 chemical potential of an ideal gas vant hoff reaction isotherm,vant h...
Lect. 4 chemical potential of an ideal gas vant hoff reaction isotherm,vant h...
ย 
methodsimp.pdf
methodsimp.pdfmethodsimp.pdf
methodsimp.pdf
ย 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
ย 
Entropy ok1294987599
Entropy    ok1294987599Entropy    ok1294987599
Entropy ok1294987599
ย 
Thermochemistry, Hess law PPTxx 100L.pptx
Thermochemistry, Hess law PPTxx 100L.pptxThermochemistry, Hess law PPTxx 100L.pptx
Thermochemistry, Hess law PPTxx 100L.pptx
ย 
KNUST Thermodynamics 2.pptx
KNUST Thermodynamics 2.pptxKNUST Thermodynamics 2.pptx
KNUST Thermodynamics 2.pptx
ย 
Thermodynamics presentation.pptx
Thermodynamics presentation.pptxThermodynamics presentation.pptx
Thermodynamics presentation.pptx
ย 
Introductory biological thermodynamics
Introductory biological thermodynamicsIntroductory biological thermodynamics
Introductory biological thermodynamics
ย 
Thermodynamic ppt
Thermodynamic pptThermodynamic ppt
Thermodynamic ppt
ย 
Laws of thermodynamics
Laws of thermodynamicsLaws of thermodynamics
Laws of thermodynamics
ย 
Non isothermal kinetics in phase transformations
Non isothermal kinetics in phase transformationsNon isothermal kinetics in phase transformations
Non isothermal kinetics in phase transformations
ย 
Thermodynamics 1
Thermodynamics 1Thermodynamics 1
Thermodynamics 1
ย 
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdfTHE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
THE TEMPERATURE PROFILE SOLUTION IN NATURAL CONVECTION SOLVED MATHEMATICALLY.pdf
ย 
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdfTHE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
THE RATE OF COOLING IN NATURAL CONVECTION EXPLAINED AND SOLVED.pdf
ย 
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdfTHE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
THE COOLING CURVE SOLUTION IN NATURAL CONVECTION EXPLAINED.pdf
ย 
Temperature Effect on Heat of Reaction
Temperature Effect on Heat of ReactionTemperature Effect on Heat of Reaction
Temperature Effect on Heat of Reaction
ย 
F y b. sc. chemical equilibria
F y b. sc. chemical equilibriaF y b. sc. chemical equilibria
F y b. sc. chemical equilibria
ย 
Fluid mechanics
Fluid mechanicsFluid mechanics
Fluid mechanics
ย 
13271092 (2).ppt
13271092 (2).ppt13271092 (2).ppt
13271092 (2).ppt
ย 
Enthalpy diagram
Enthalpy diagramEnthalpy diagram
Enthalpy diagram
ย 

More from Shri Shivaji Science College Amravati

Lect. 8. application of nernst distribution law copy - copy
Lect. 8. application of nernst distribution law   copy - copyLect. 8. application of nernst distribution law   copy - copy
Lect. 8. application of nernst distribution law copy - copyShri Shivaji Science College Amravati
ย 

More from Shri Shivaji Science College Amravati (20)

Quantum chemistry-B SC III-SEM-VI
 Quantum chemistry-B SC III-SEM-VI Quantum chemistry-B SC III-SEM-VI
Quantum chemistry-B SC III-SEM-VI
ย 
Nuclear chemistry B Sc III-SEM-VI
 Nuclear chemistry B Sc III-SEM-VI Nuclear chemistry B Sc III-SEM-VI
Nuclear chemistry B Sc III-SEM-VI
ย 
Electrochemistry B Sc III-SEM-VI
Electrochemistry B Sc III-SEM-VIElectrochemistry B Sc III-SEM-VI
Electrochemistry B Sc III-SEM-VI
ย 
Lect. 6 method of quantitative analysis
Lect. 6 method of quantitative analysisLect. 6 method of quantitative analysis
Lect. 6 method of quantitative analysis
ย 
Lect. 5 polarographic maxima and its interpretation
Lect. 5 polarographic maxima and its interpretationLect. 5 polarographic maxima and its interpretation
Lect. 5 polarographic maxima and its interpretation
ย 
Lect. 23 rotational vibrational raman spectroscopy
Lect. 23 rotational   vibrational raman spectroscopyLect. 23 rotational   vibrational raman spectroscopy
Lect. 23 rotational vibrational raman spectroscopy
ย 
Lect. 21 raman spectroscopy introduction
Lect. 21 raman spectroscopy introductionLect. 21 raman spectroscopy introduction
Lect. 21 raman spectroscopy introduction
ย 
Lect. 20 force constant problems
Lect. 20 force constant  problemsLect. 20 force constant  problems
Lect. 20 force constant problems
ย 
Lect. 16 applications of rotational spectroscopy problems
Lect. 16 applications of rotational spectroscopy problemsLect. 16 applications of rotational spectroscopy problems
Lect. 16 applications of rotational spectroscopy problems
ย 
Lect. 13 expression for moment of inertia
Lect. 13 expression for moment of inertiaLect. 13 expression for moment of inertia
Lect. 13 expression for moment of inertia
ย 
Lect. 11 energy level diagram degree of freedom
Lect. 11 energy level diagram degree of freedomLect. 11 energy level diagram degree of freedom
Lect. 11 energy level diagram degree of freedom
ย 
Lect. 10. phase transition
Lect. 10. phase transitionLect. 10. phase transition
Lect. 10. phase transition
ย 
Lect. 9. solvent extraction
Lect. 9. solvent extractionLect. 9. solvent extraction
Lect. 9. solvent extraction
ย 
Lect. 8. conductometric titration
Lect. 8. conductometric titrationLect. 8. conductometric titration
Lect. 8. conductometric titration
ย 
Lect. 8. application of nernst distribution law copy - copy
Lect. 8. application of nernst distribution law   copy - copyLect. 8. application of nernst distribution law   copy - copy
Lect. 8. application of nernst distribution law copy - copy
ย 
Lect. 6. conductivity cell constant-problems
Lect. 6.  conductivity cell constant-problemsLect. 6.  conductivity cell constant-problems
Lect. 6. conductivity cell constant-problems
ย 
Lect. 2. viscosity
Lect. 2. viscosityLect. 2. viscosity
Lect. 2. viscosity
ย 
Lect. 1. surface tension
Lect. 1. surface tensionLect. 1. surface tension
Lect. 1. surface tension
ย 
Lect. 6. Problems on thermodynamics
Lect. 6. Problems on thermodynamicsLect. 6. Problems on thermodynamics
Lect. 6. Problems on thermodynamics
ย 
Lect. 2 DMG structure-uses-Advantages-limitation
Lect. 2 DMG  structure-uses-Advantages-limitationLect. 2 DMG  structure-uses-Advantages-limitation
Lect. 2 DMG structure-uses-Advantages-limitation
ย 

Recently uploaded

SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
ย 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
ย 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
ย 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
ย 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
ย 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
ย 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSรฉrgio Sacani
ย 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sรฉrgio Sacani
ย 
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaDashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaPraksha3
ย 
CALL ON โžฅ8923113531 ๐Ÿ”Call Girls Kesar Bagh Lucknow best Night Fun service ๐Ÿชก
CALL ON โžฅ8923113531 ๐Ÿ”Call Girls Kesar Bagh Lucknow best Night Fun service  ๐ŸชกCALL ON โžฅ8923113531 ๐Ÿ”Call Girls Kesar Bagh Lucknow best Night Fun service  ๐Ÿชก
CALL ON โžฅ8923113531 ๐Ÿ”Call Girls Kesar Bagh Lucknow best Night Fun service ๐Ÿชกanilsa9823
ย 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
ย 
Nanoparticles synthesis and characterizationโ€‹ โ€‹
Nanoparticles synthesis and characterizationโ€‹  โ€‹Nanoparticles synthesis and characterizationโ€‹  โ€‹
Nanoparticles synthesis and characterizationโ€‹ โ€‹kaibalyasahoo82800
ย 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
ย 
Module 4: Mendelian Genetics and Punnett Square
Module 4:  Mendelian Genetics and Punnett SquareModule 4:  Mendelian Genetics and Punnett Square
Module 4: Mendelian Genetics and Punnett SquareIsiahStephanRadaza
ย 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxUmerFayaz5
ย 
Call Girls in Mayapuri Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
Call Girls in Mayapuri Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.Call Girls in Mayapuri Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
Call Girls in Mayapuri Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.aasikanpl
ย 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
ย 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)DHURKADEVIBASKAR
ย 

Recently uploaded (20)

SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
ย 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
ย 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
ย 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
ย 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
ย 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
ย 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
ย 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
ย 
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tantaDashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
Dashanga agada a formulation of Agada tantra dealt in 3 Rd year bams agada tanta
ย 
CALL ON โžฅ8923113531 ๐Ÿ”Call Girls Kesar Bagh Lucknow best Night Fun service ๐Ÿชก
CALL ON โžฅ8923113531 ๐Ÿ”Call Girls Kesar Bagh Lucknow best Night Fun service  ๐ŸชกCALL ON โžฅ8923113531 ๐Ÿ”Call Girls Kesar Bagh Lucknow best Night Fun service  ๐Ÿชก
CALL ON โžฅ8923113531 ๐Ÿ”Call Girls Kesar Bagh Lucknow best Night Fun service ๐Ÿชก
ย 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
ย 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
ย 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
ย 
Nanoparticles synthesis and characterizationโ€‹ โ€‹
Nanoparticles synthesis and characterizationโ€‹  โ€‹Nanoparticles synthesis and characterizationโ€‹  โ€‹
Nanoparticles synthesis and characterizationโ€‹ โ€‹
ย 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
ย 
Module 4: Mendelian Genetics and Punnett Square
Module 4:  Mendelian Genetics and Punnett SquareModule 4:  Mendelian Genetics and Punnett Square
Module 4: Mendelian Genetics and Punnett Square
ย 
Animal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptxAnimal Communication- Auditory and Visual.pptx
Animal Communication- Auditory and Visual.pptx
ย 
Call Girls in Mayapuri Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
Call Girls in Mayapuri Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.Call Girls in Mayapuri Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
Call Girls in Mayapuri Delhi ๐Ÿ’ฏCall Us ๐Ÿ”9953322196๐Ÿ” ๐Ÿ’ฏEscort.
ย 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
ย 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)
ย 

Lect. 3 gibbs helmholtz equation, chemical potential, gibbs duhem equation

  • 1. Dr. Y. S. THAKARE M.Sc. (CHE) Ph D, NET, SET Assistant Professor in Chemistry, Shri Shivaji Science College, Amravati Email: yogitathakare_2007@rediffmail.com B Sc- II Year SEM-III PAPER-III PHYSICAL CHEMISTRY UNIT- V -THERMODYNAMICS AND EQUILIBRIUM Topic- Gibbs-Helmholtz equation and partial molar free energy 31-August -20 1
  • 2. VARIATION OF HELMHOLTZ FUNCTION / WORK FUNCTION WITH TEMPERATURE AND VOLUME ๐ด = ๐ธ โˆ’ ๐‘‡๐‘† โ€ฆ (1) ๐‘‘๐ด = โˆ’๐‘ƒ๐‘‘๐‘‰ โˆ’ ๐‘†๐‘‘๐‘‡ โ€ฆ . . (8) (a) If temperature is constant dT = 0. Then (8) becomes (๐‘‘๐ด) ๐‘‡ = โˆ’(๐‘ƒ๐‘‘๐‘‰) ๐‘‡ ๐œ•๐ด ๐œ•๐‘‰ ๐‘‡ = โˆ’๐‘ƒ โ€ฆ.(9) (b) If volume is constant dV = 0. Then (8) becomes (๐‘‘๐ด) ๐‘‰= (โˆ’๐‘†๐‘‘๐‘‡) ๐‘‰ ๐œ•๐ด ๐œ•๐‘‡ ๐‘‰ = โˆ’๐‘† โ€ฆ (10) Equation (9) and (10) gives the variations of work functions with temperature and volume. VARIATION OF GIBBโ€™S FUNCTION / FREE ENERGY WITH TEMPERATURE AND PREESSURE ๐บ = ๐ป โˆ’ ๐‘‡๐‘† โ€ฆ (1) ๐‘‘๐บ = ๐‘‰๐‘‘๐‘ƒ โˆ’ ๐‘†๐‘‘๐‘‡ โ€ฆ (7) (a) If temperature is constant dT = 0. Then (7) becomes (๐‘‘๐บ) ๐‘‡ = (๐‘‰๐‘‘๐‘ƒ) ๐‘‡ ๐œ•๐บ ๐œ•๐‘ƒ ๐‘‡ = ๐‘‰ โ€ฆ.(8) (b) If pressure is constant dP = 0. Then (10) becomes (๐‘‘๐บ) ๐‘ƒ= (โˆ’๐‘†๐‘‘๐‘‡) ๐‘ƒ ๐œ•๐บ ๐œ•๐‘‡ ๐‘ƒ = โˆ’๐‘† โ€ฆ โ€ฆ (9) Equation (8) and (9) gives the variations of work functions with temperature and pressure.17 -August -20 31-August -20 Dr. Yogita Sahebrao Thakare
  • 3. SPONTANEITY IN TERMS OF FREE ENERGY โˆ’๐‘‘๐บ โ‰ค ๐‘‰๐‘‘๐‘ƒ โˆ’ ๐‘†๐‘‘๐‘‡ At constant temperature and pressure, dT = 0 and dP = 0 ๐‘‘๐บ โ‰ค 0 โ€ฆ (8) The equation (8) represents that, if in a chemical reaction change if free energy is negative i.e. less than zero then the reaction will be spontaneous or feasible. And at equilibrium, free energy change will be zero. GIBBโ€™S HELMHOLTZ EQUATION The variation of free energy change with temperature at constant pressure is given by the equation ๐œ•๐บ ๐œ•๐‘‡ ๐‘ƒ = โˆ’๐‘† โ€ฆ 1 i.e. ๐‘‘๐บ = โˆ’๐‘†๐‘‘๐‘‡ โˆด ๐‘‘๐บ1= โˆ’๐‘†1 ๐‘‘๐‘‡ โ€ฆ . 2 ๐‘‘๐บ2= โˆ’๐‘†2 ๐‘‘๐‘‡ โ€ฆ . 3 Consider equation (3) - (2) ๐‘‘๐บ2โˆ’ ๐‘‘๐บ1 = โˆ’(๐‘†2 โˆ’ ๐‘†1)๐‘‘๐‘‡ ๐‘‘(โˆ†๐บ) = โˆ’โˆ†๐‘†๐‘‘๐‘‡ At constant pressure, ๐‘‘(โˆ†๐บ) ๐‘‘๐‘‡ = โˆ’โˆ†๐‘† โ€ฆ (4) We know that โˆ†๐บ = โˆ†๐ป โˆ’ ๐‘‡โˆ†๐‘† โˆ’๐‘‡โˆ†๐‘† = โˆ†๐บ โˆ’ โˆ†๐ป โˆ’โˆ†๐‘† = โˆ†๐บโˆ’โˆ†๐ป ๐‘‡ โ€ฆ (5)31-August -20 Dr. Yogita Sahebrao Thakare
  • 4. Substituting the value of โˆ†S from equation (5) to (4) โˆด ๐’…(โˆ†๐‘ฎ) ๐’…๐‘ป = โˆ†๐‘ฎ โˆ’ โˆ†๐‘ฏ ๐‘ป ๐‘ป ๐’…(โˆ†๐‘ฎ) ๐’…๐‘ป = โˆ†๐‘ฎ โˆ’ โˆ†๐‘ฏ i.e. โˆ†๐‘ฎ = โˆ†๐‘ฏ + ๐‘ป ๐’…(โˆ†๐‘ฎ) ๐’…๐‘ป ๐‘ท โ€ฆ 6 This equation is known as Gibbโ€™sโ€“Helmholtz equation in terms of free energy and enthalpy. By analogy Gibbโ€™s-Helmholtz equation in terms of work function and internal energy can be derive at constant volume which can be derived at constant volume which can be given as โˆ†๐‘จ = โˆ†๐‘ฌ + ๐‘ป ๐’…(โˆ†๐‘จ) ๐’…๐‘ป ๐‘ฝ โ€ฆ 7 31-August -20 Dr. Yogita Sahebrao Thakare
  • 5. APPLICATIONS OF GIBBโ€™S-HELMHOLTZโ€™S EQUATION (a) Calculations of E.M.F. of a reversible cell: The decrease in free energy produced by the passage of nF coulombs of electricity through a reversible cell is given by โˆ’โˆ†๐บ = ๐‘›๐ธ๐น Where, n = number of electrons lost or gained E=E.M.F. of the reversible cell F= Faraday of electricity (96500 coulomb) Putting the values of โˆ†๐บ in Gibbโ€™s Helmholtz equations, we get โˆ’๐‘›๐ธ๐น = โˆ†๐ป + ๐‘‡ ๐‘‘(โˆ’๐‘›๐ธ๐น) ๐‘‘๐‘‡ ๐‘ƒ โˆ’๐‘›๐ธ๐น = โˆ†๐ป โˆ’ ๐‘›๐น ๐‘‡ ๐‘‘๐ธ) ๐‘‘๐‘‡ ๐‘ƒ ๐ธ = โˆ’ โˆ†๐ป ๐‘›๐น + ๐‘‡ ๐‘‘๐ธ ๐‘‘๐‘‡ ๐‘ƒ Here E gives E.M.F. of a reversible cell (b) Calculations of enthalpy change The Gibbโ€™s-Helmholtz equation can be used for calculating the enthalpy changes occurring in isothermal reaction. 31-August -20 Dr. Yogita Sahebrao Thakare
  • 6. STANDRED FREE ENERGY (โˆ†๐†) ๐ŸŽ It is defined as โ€œThe change in free energy when all the reactant are in their standard state of unit pressure or unit concentration are converted at 250C in to the products, which are also in their standard statesโ€. The โˆ†๐บ0 for a reaction can be written as โˆ†๐บ0 = โˆ†๐บ ๐‘๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก 0 โˆ’ โˆ†๐บ ๐‘Ÿ๐‘’๐‘Ž๐‘๐‘ก๐‘Ž๐‘›๐‘ก 0 โˆ†๐บ0 = โˆ†๐ป0 โˆ’ ๐‘‡โˆ†๐‘†0 Where, โˆ†๐ป0 and โˆ†๐‘†0 are the standard change in the enthalpy and standard change in entropy respectively. 31-August -20 Dr. Yogita Sahebrao Thakare
  • 7. CHEMICAL POTENTIAL OR PARTIAL MOLAR FREE ENERGY OR THERMODYNAMICS OF OPEN SYSTEM The thermodynamics properties U, H, S, A and G are extensive properties because their values depends on the number of moles of the system. Consider the extensive property, free energy. Let it be ๐บ = ๐‘“(๐‘‡, ๐‘ƒ, ๐‘›1, ๐‘›2, ๐‘›3, โ€ฆ . . ) โ€ฆ.(i) ๐‘‘๐บ = ๐œ•๐บ ๐‘‘๐‘‡ ๐‘ƒ,๐‘›1,๐‘›2,๐‘›3 , ๐‘‘๐‘‡ + ๐œ•๐บ ๐‘‘๐‘ƒ ๐‘‡,๐‘›1,๐‘›2,๐‘›3 , ๐‘‘๐‘ƒ + ๐œ•๐บ ๐‘‘๐‘›1 ๐‘‡,๐‘ƒ,๐‘›2,๐‘›3 , ๐‘‘๐‘›1 + ๐œ•๐บ ๐‘‘๐‘›2 ๐‘‡,๐‘ƒ,๐‘›1,๐‘›3 , ๐‘‘๐‘›2+ . . . . (๐‘–๐‘–) If the temperature and pressure of the system kept constant, then dT = 0 and dP = 0 (๐‘‘๐บ) ๐‘‡,๐‘ƒ= ๐œ•๐บ ๐‘‘๐‘›1 ๐‘‡,๐‘ƒ,๐‘›2,๐‘›3 , ๐‘‘๐‘›1 + ๐œ•๐บ ๐‘‘๐‘›2 ๐‘‡,๐‘ƒ,๐‘›1,๐‘›3 , ๐‘‘๐‘›2 + โ‹ฏ (๐‘–๐‘–๐‘–) Each derivative on the right hand side is called partial molar property and it is represented by putting the bar over the symbol of that particular property i.e ๐บ1, ๐บ2, ๐บ3, for the 1st , 2nd, 3rd, etc. respectively. Thus, ๐œ•๐บ ๐‘‘๐‘›1 ๐‘‡,๐‘ƒ,๐‘›2,๐‘›3 , = ๐บ1 ๐œ•๐บ ๐‘‘๐‘›2 ๐‘‡,๐‘ƒ,๐‘›1,๐‘›3 , = ๐บ2 , etc. In general ith component ๐œ•๐บ ๐‘‘๐‘›๐‘– ๐‘‡,๐‘ƒ,๐‘›1,๐‘›2,๐‘›3 ,โ€ฆ. = Gi โ€ฆ . (๐‘–๐‘ฃ) 31-August -20 Dr. Yogita Sahebrao Thakare
  • 8. This quantity called as partial molar free energy or chemical potential and is usually represented by symbol ยต. Thus ยตi = Gi = ๐œ•๐บ ๐‘‘๐‘›๐‘– ๐‘‡,๐‘ƒ,๐‘›1,๐‘›2,๐‘›3 ,โ€ฆ. โ€ฆ(๐‘ฃ) If dni = 1 mole, Then, ยต = ( ๐‘‘๐บ) ๐‘‡,๐‘,๐‘›1,๐‘›2,๐‘›3 ,โ€ฆ. The chemical potential of a constituents in a mixture is the increase in free energy which takes place at constant temperature and pressure when one mole of that constituent is added to the system, keeping the amount of all other constituent constant. Equation (iii) can be written as ( ๐‘‘๐บ) ๐‘‡,๐‘ƒ= ยต1 dn1 + ยต2 dn2 + ยต3 dn3 + โ‹ฏ โ€ฆ(๐‘ฃ๐‘–) By the definition of definite composition represented by the number of moles ๐‘›1, ๐‘›2, ๐‘›3, etc. equation (iv) on integration gives ๐บ ๐‘‡,๐‘ƒ,๐‘ = n1ยต1 + n2ยต2 + n3ยต3 + โ‹ฏ โ€ฆ.(vii) The chemical potential of a constituents in a mixture is its contribution per mole to the total free energy of the system of a constant composition at constant temperature and pressure. It may be noted that whereas free energy is an extensive property the chemical potential is an intensive property because it refers to one mole of substance. Where, subscript N stands for constant composition. 31-August -20 Dr. Yogita Sahebrao Thakare
  • 9. GIBBโ€™S DUHEM EQUATION We know that for an open system, ๐บ = ๐‘“(๐‘‡, ๐‘ƒ, ๐‘›1, ๐‘›2, ๐‘›3, โ€ฆ . . ) โ€ฆ.(i) Now, if there is small change in the temperature, pressure and the amounts of the constituents, then the change in the property G is given by, ๐‘‘๐บ = ๐œ•๐บ ๐‘‘๐‘‡ ๐‘ƒ,๐‘›1,๐‘›2,๐‘›3 , ๐‘‘๐‘‡ + ๐œ•๐บ ๐‘‘๐‘ƒ ๐‘‡,๐‘›1,๐‘›2,๐‘›3 , ๐‘‘๐‘ƒ + ๐œ•๐บ ๐‘‘๐‘›1 ๐‘‡,๐‘ƒ,๐‘›2,๐‘›3 , ๐‘‘๐‘›1 + ๐œ•๐บ ๐‘‘๐‘›2 ๐‘‡,๐‘ƒ,๐‘›1,๐‘›3 , ๐‘‘๐‘›2+. . . . (๐‘–๐‘–) If the temperature and pressure of the system kept constant, then dT = 0 and dP = 0, so that equation (ii) becomes (๐‘‘๐บ) ๐‘‡,๐‘ƒ = ๐œ•๐บ ๐‘‘๐‘›1 ๐‘‡,๐‘ƒ,๐‘›2,๐‘›3 , ๐‘‘๐‘›1 + ๐œ•๐บ ๐‘‘๐‘›2 ๐‘‡,๐‘ƒ,๐‘›1,๐‘›3 , ๐‘‘๐‘›2 + โ‹ฏ (๐‘–๐‘–๐‘–) Putting ๐œ•๐บ ๐‘‘๐‘›1 ๐‘‡,๐‘ƒ,๐‘›2,๐‘›3 ,โ€ฆ. = ยต1 and ๐œ•๐บ ๐‘‘๐‘›2 ๐‘‡,๐‘ƒ,๐‘›1,๐‘›3 ,โ€ฆ. = ยต2 and so on in equation (iii), we get (๐‘‘๐บ) ๐‘‡,๐‘ƒ = ยต1 ๐‘‘๐‘›1 + ยต2 ๐‘‘๐‘›2 + โ‹ฏ โ€ฆ (๐‘–๐‘ฃ) By the definition of definite composition represented by the number of moles ๐‘›1, ๐‘›2, ๐‘›3, etc. equation (iv) on integration gives ๐บ ๐‘‡,๐‘ƒ,๐‘ = n1ยต1 + n2ยต2 + n3ยต3 + โ‹ฏ Differentiating this equation under the condition of constant temperature and pressure but varying composition, we get, 31-August -20 Dr. Yogita Sahebrao Thakare
  • 10. ( ๐‘‘๐บ) ๐‘‡,๐‘ƒ = n1dยต1 + ยต1 ๐‘‘๐‘›1 + n2dยต2 + ยต2 ๐‘‘๐‘›2 + n3dยต3 + ยต3 ๐‘‘๐‘›3 + โ‹ฏ (๐‘‘๐บ) ๐‘‡,๐‘ƒ = (n1dยต1 + n2dยต2 +n3dยต3 + โ‹ฏ ) + (ยต 1 ๐‘‘๐‘›1 + ยต2 ๐‘‘๐‘›2 + ยต3 ๐‘‘๐‘›3 + โ‹ฏ ) โ€ฆ...(v) Substituting the value of (iv) in (v), we get (๐‘‘๐บ) ๐‘‡,๐‘ƒ = (n1dยต1 + n2dยต2 + n3dยต3 + โ‹ฏ) + (๐‘‘๐บ) ๐‘‡,๐‘ƒ OR n1dยต1 + n2dยต2 + n3dยต3 + โ‹ฏ = 0 OR ni ๐‘‘ยต๐‘– = 0 This equation which is applicable to a system under constant temperature and pressure is called Gibbโ€™s-Duhem equation. 31-August -20 Dr. Yogita Sahebrao Thakare