This document proposes a method to estimate the integrated co-volatility of two asset prices using high-frequency data that contains both microstructure noise and jumps.
It considers two cases - when the jump processes of the two assets are independent, and when they are dependent. For the independent case, it proposes an estimator that is robust to jumps. For the dependent case, it proposes a threshold estimator that combines pre-averaging to remove noise with a threshold method to reduce the effect of jumps. It proves the estimators are consistent and establishes their central limit theorems. Simulation results are also presented to illustrate the performance of the proposed methods.