SlideShare a Scribd company logo
1 of 14
Download to read offline
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022
DOI : 10.5121/mathsj.2022.9301 1
A PROBABILISTIC ALGORITHM FOR
COMPUTATION OF POLYNOMIAL GREATEST
COMMON WITH SMALLER FACTORS
Yang Zhang1,2
, Xin Qian1, 2
, Qidi You1,2
, Xuan Zhou1,2
,
Xiyong Zhang1, 2
and Yang Wang1, 2
1
Space star technology co., LTD
2
State Key Laboratory of Space-Ground Integrated Information Technology
ABSTRACT
In the earlier work, Knuth present an algorithm to decrease the coefficient growth in the Euclidean
algorithm of polynomials called subresultant algorithm. However, the output polynomials may have a
small factor which can be removed. Then later, Brown of Bell Telephone Laboratories showed the
subresultant in another way by adding a variant called๐œ and gave a way to compute the variant.
Nevertheless, the way failed to determine every๐œ correctly.
In this paper, we will give a probabilistic algorithm to determine the variant ๐œ correctly in most cases by
adding a few steps instead of computing ๐‘ก(๐‘ฅ) when given ๐‘“(๐‘ฅ) and๐‘”(๐‘ฅ) โˆˆ โ„ค[๐‘ฅ], where ๐‘ก(๐‘ฅ) satisfies that
๐‘ (๐‘ฅ)๐‘“(๐‘ฅ) + ๐‘ก(๐‘ฅ)๐‘”(๐‘ฅ) = ๐‘Ÿ(๐‘ฅ), here ๐‘ก(๐‘ฅ), ๐‘ (๐‘ฅ) โˆˆ โ„ค[๐‘ฅ]
KEYWORDS
Euclidean Algorithm, Subresultant, Primitive Remainder Sequences,
1. INTRODUCTION
The Euclidean algorithm and the extended Euclidean algorithm of polynomials is an important
research object in polynomial computer algebra. Using this algorithm, one can get the g.c.d. of
two polynomials (denoted as gcd(๐‘“, ๐‘”) when given polynomials ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ)) and decides
whether these polynomials are coprime or not. Specifically, if the degree of gcd(๐‘“, ๐‘”) is larger
than 0, ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) are not coprime, otherwise, ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) are coprime. Being coprime
between two polynomials means there exist common roots between these two polynomials.
To quantify the indicator whether there exists a common root between ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ), Sylvester
gave a matrix in 1840 called Sylvester matrix with entries simply being the coefficients of ๐‘“(๐‘ฅ)
and ๐‘”(๐‘ฅ). The determinant of Sylvester matrix is called resultant. Whether the resultant of ๐‘“(๐‘ฅ)
and ๐‘”(๐‘ฅ) is nonzero corresponds to the case where ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) are coprime or not
respectively. Moreover, Sylvester generalized his definition and introduced the concept of
subresultant. They are nonzero if and only if the corresponding degree appears as a degree of a
remainder of the Euclidean algorithm.
However, the early Euclidean algorithm of polynomials works for polynomials in๐”ฝ[๐‘ฅ], here ๐”ฝ is
a field. In 1836 Jacobi introduced pseudo-division over polynomials and extended the Euclidean
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022
2
algorithm of polynomials in field to a domain by multiplying ๐‘“(๐‘ฅ) with a certain power of the
leading coefficient of ๐‘”(๐‘ฅ) before starting the division.
Using pseudo-division, there are a lot of results about polynomials even the ideal lattice used in
cryptography. From 1960, researchers built early computer algebra systems and G.C.D.
computations were an important test problem. Nevertheless, using pseudo-division in Euclidean
algorithm causes exponential coefficients growth. In 1967, Collins [1] explained that the ๐‘–-th
intermediate coefficients are approximately longer by a factor of (1 + โˆš2)
๐‘–
than the input
coefficients. There are many ways to decrease the size of coefficients, most of them are quite
inefficient, however. In this paper, we mainly focus on the subresultant algorithm and its variant.
In [2], Knuth present the early subresultant algorithm and gave an elegant proof of its correctness.
In [3], Brown showed the variant of subresultant algorithm and gave a way to remove the small
factor of each remainder. However, the method he present didn't work always.
Recently, in [4], they show an algorithm to triangularize the basis of an ideal lattice which is
often used to construct ideal lattice-based cryptosystems. In their algorithm, they need to compute
all the PPRSoL (the definition given in Sec.2.4) of ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ). However, to obtain the
PPRSoL, we need to compute each content of ๐‘ก๐‘–(๐‘ฅ) satisfying ๐‘ ๐‘–(๐‘ฅ)๐‘“(๐‘ฅ) + ๐‘ก๐‘–(๐‘ฅ)๐‘”(๐‘ฅ) = ๐‘Ÿ๐‘–(๐‘ฅ) to
remove the extra factor in each original remaindes ๐‘Ÿ๐‘–(๐‘ฅ). However, in this paper, we find a new
way to obtain PPRSoL without computing ๐‘ก๐‘–(๐‘ฅ) by applying the variant of subresultant
algorithm.
In this paper, we give some results about the extended Euclidean algorithm. Using these results,
we propose a new algorithm that outputting the PPRSoL of ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) which works for most
cases.
2. PRELIMINARIES
2.1. Notations
In this paper, a matrix is denoted as uppercase bold letter and a vector is denoted as lowercase
bold letter. For a matrix๐‘จ โˆˆ โ„๐‘šร—๐‘›
, the element in the ๐‘–-th row and the ๐‘—-th column of ๐‘จ is
expressed as ๐‘Ž๐‘–,๐‘— . For a polynomial ๐‘“(๐‘ฅ) with degree ๐‘›, we use ๐‘™๐‘(๐‘“) to present the leading
coefficient of ๐‘“(๐‘ฅ) and use๐‘‘๐‘’๐‘”(๐‘“) to present the degree. The degree of a constant polynomial is
defined as 0 and the degree of a zero polynomial is defined as โˆ’โˆž. The greatest common divisor
is abbreviated to g.c.d.. Let ๐œ[๐‘ฅ] denote the domain of polynomials in x with coefficients in ๐œ.
Unless otherwise specified, we only consider the polynomials in โ„ค[๐‘ฅ].
2.2. Some Definitions
Definition 1: [Hermite Normal Form] Given a square matrix ๐‘ฏ โˆˆ โ„ค๐‘›ร—๐‘›
. Then ๐‘ฏ is Hermite
Normal Form(HNF) if and only if it satisfies:
1) โ„Ž๐‘–,๐‘– โ‰ฅ 1, for1 โ‰ค ๐‘– โ‰ค ๐‘›;
2) โ„Ž๐‘–,๐‘— = 0, for 1 โ‰ค ๐‘— โ‰ค ๐‘– โ‰ค ๐‘›;
3) โ„Ž๐‘—,๐‘– < โ„Ž๐‘–,๐‘–, for 1 โ‰ค ๐‘— < ๐‘– โ‰ค ๐‘›.
We need to emphasize that the definition given above is only one way to define HNF. According
to row or column transformation and upper or lower triangularization, there are other different
definitions of HNF.
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022
3
Definition 2: [Primitive Polynomial] A polynomial ๐‘Ž(๐‘ฅ) โˆˆ โ„ค[๐‘ฅ] is called a primitive polynomial
if for any integer |๐‘˜| > 1, ๐‘Ž(๐‘ฅ)/๐‘˜ โˆ‰ โ„ค[๐‘ฅ].
Definition 3: [Content] For a polynomial ๐‘Ž(๐‘ฅ) = ๐‘Ž๐‘›๐‘ฅ๐‘›
+ โ‹ฏ + ๐‘Ž1๐‘ฅ + ๐‘Ž0 โˆˆ โ„ค[๐‘ฅ], the content of
๐‘Ž(๐‘ฅ), denoted as๐‘๐‘œ๐‘›๐‘ก(๐‘Ž(๐‘ฅ)), is the g.c.d of (๐‘Ž๐‘›, โ‹ฏ , ๐‘Ž1, ๐‘Ž0).
Definition 3: [Resultant] Let ๐‘“(๐‘ฅ) = ๐‘“
๐‘›๐‘ฅ๐‘›
+ โ‹ฏ + ๐‘“1๐‘ฅ + ๐‘“0, ๐‘”(๐‘ฅ) = ๐‘”๐‘š๐‘ฅ๐‘š
+ โ‹ฏ + ๐‘”1๐‘ฅ + ๐‘”0 be
two polynomials with degree ๐‘› and ๐‘š respectively. Define the Sylvester matrix of ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ)
as
๐’๐ฒ๐ฅ๐ฏ(๐‘“, ๐‘”) =
[
๐‘ฅ๐‘šโˆ’1
๐‘“(๐‘ฅ)
๐‘ฅ๐‘šโˆ’2
๐‘“(๐‘ฅ)
โ‹ฎ
๐‘“(๐‘ฅ)
๐‘ฅ๐‘›โˆ’1
๐‘”(๐‘ฅ)
๐‘ฅ๐‘›โˆ’2
๐‘”(๐‘ฅ)
โ‹ฎ
๐‘”(๐‘ฅ) ]
=
[
๐‘“
๐‘› ๐‘“๐‘›โˆ’1 โ‹ฏ ๐‘“0
๐‘“
๐‘› ๐‘“๐‘›โˆ’1 โ‹ฏ ๐‘“0
โ‹ฑ โ‹ฑ
๐‘“
๐‘› ๐‘“๐‘›โˆ’1 โ‹ฏ ๐‘“0
๐‘”๐‘š ๐‘”๐‘šโˆ’1 โ‹ฏ ๐‘”1 ๐‘”0
๐‘”๐‘š ๐‘”๐‘šโˆ’1 โ‹ฏ ๐‘”1 ๐‘”0
โ‹ฑ โ‹ฑ
๐‘”๐‘š ๐‘”๐‘šโˆ’1 โ‹ฏ ๐‘”1 ๐‘”0](๐‘š+๐‘›)ร—(๐‘š+๐‘›)
Then the resultant of ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) , denoted as Res(๐‘“(๐‘ฅ), ๐‘”(๐‘ฅ)) , is the determinant of
๐’๐ฒ๐ฅ๐ฏ(๐‘“, ๐‘”).
Definition 3: [Subresultant] Let ๐‘“(๐‘ฅ) = ๐‘“
๐‘›๐‘ฅ๐‘›
+ โ‹ฏ + ๐‘“1๐‘ฅ + ๐‘“0 , ๐‘”(๐‘ฅ) = ๐‘”๐‘š๐‘ฅ๐‘š
+ โ‹ฏ + ๐‘”1๐‘ฅ + ๐‘”0
be two polynomials with degree ๐‘› and ๐‘š respectively.For 0 โ‰ค ๐‘˜ < ๐‘›, the ๐‘˜-th subresultant of
๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) is the determinant of ๐‘†๐‘˜(๐‘“, ๐‘”) defines as
๐‘†๐‘˜(๐‘“, ๐‘”) =
[
๐‘“
๐‘› ๐‘“๐‘›โˆ’1 โ‹ฏ ๐‘“๐‘›โˆ’๐‘š+๐‘˜+1 โ‹ฏ ๐‘“๐‘˜+1 โ‹ฏ ๐‘“2๐‘˜โˆ’๐‘š+1
๐‘“
๐‘› โ‹ฏ ๐‘“๐‘›โˆ’๐‘š+๐‘˜+2 โ‹ฏ ๐‘“๐‘˜+2 โ‹ฏ ๐‘“2๐‘˜โˆ’๐‘š+2
โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ
๐‘“
๐‘› โ‹ฏ ๐‘“
๐‘š โ‹ฏ ๐‘“๐‘˜
๐‘”๐‘š ๐‘”๐‘šโˆ’1 โ‹ฏ ๐‘”๐‘˜+1 โ‹ฏ ๐‘”๐‘šโˆ’๐‘›+๐‘˜+1 โ‹ฏ ๐‘”2๐‘˜โˆ’๐‘›+1
๐‘”๐‘š โ‹ฎ โ‹ฎ โ‹ฎ
โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ
๐‘”๐‘š โ‹ฎ โ‹ฎ
โ‹ฑ โ‹ฎ โ‹ฎ
๐‘”๐‘š โ‹ฏ ๐‘”๐‘˜ ](๐‘š+๐‘›โˆ’2๐‘˜)ร—(๐‘š+๐‘›โˆ’2๐‘˜)
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022
4
Remark 1. From the structure of ๐‘†๐‘˜(๐‘“, ๐‘”) and ๐’๐ฒ๐ฅ๐ฏ(๐‘“, ๐‘”), we can tell that indeed if we delete the
last 2๐‘˜ columns and the last ๐‘˜ rows of ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) respectively in ๐’๐ฒ๐ฅ๐ฏ(๐‘“, ๐‘”), we obtain
๐‘†๐‘˜(๐‘“, ๐‘”). Expecially, ๐‘†0(๐‘“, ๐‘”) = ๐’๐ฒ๐ฅ๐ฏ(๐‘“, ๐‘”).
Next we will give the conception of ideal lattice which takes an important role in the lattice-based
cryptography, and we mainly focus on the cases in which an ideal lattice can be derived from
๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ).
Ideal Lattice We define ideal lattice over a ring ๐‘… = โ„ค[๐‘ฅ]/โŒฉ๐‘“(๐‘ฅ)โŒช, where ๐‘“(๐‘ฅ) โˆˆ โ„ค[๐‘ฅ] is a monic
and irreducible polynomial of degree ๐‘› and โŒฉ๐‘“(๐‘ฅ)โŒช is the ideal generated by ๐‘“(๐‘ฅ) โˆˆ โ„ค[๐‘ฅ].
Consider the coefficient embedding
๐œŽ๏ผš๐‘… โ†ฆ โ„ค๐‘›
โˆ‘ ๐‘Ž๐‘–๐‘ฅ๐‘–
๐‘›โˆ’1
๐‘–=0
โ†ฆ (๐‘Ž๐‘›โˆ’1, ๐‘Ž๐‘›โˆ’2, โ‹ฏ , ๐‘Ž0)
From [5], we know that the ideal generated by ๐‘”(๐‘ฅ) forms a lattice under ๐œŽ and we call it the
ideal lattice โ„’ generated by ๐‘”(๐‘ฅ) . Moreover, ๐‘”(๐‘ฅ)mod๐‘“(๐‘ฅ) , ๐‘ฅ๐‘”(๐‘ฅ)mod๐‘“(๐‘ฅ) , โ‹ฏ ,
๐‘ฅ๐‘›โˆ’1
๐‘”(๐‘ฅ)mod๐‘“(๐‘ฅ) form a basis of โ„’. As we can see, the basis is closely related to the Sylvester
matrix of ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ). When ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) are coprime over โ„š[๐‘ฅ], the ideal lattice is full-
rank.
Then we present a lemma in [5] that we will use later.
Lemma 1. Let โ„’ be the ideal lattice generated by ๐‘”(๐‘ฅ) โˆˆ ๐‘… = โ„ค[๐‘ฅ]/โŒฉ๐‘“(๐‘ฅ)โŒช, where ๐‘“(๐‘ฅ) is a
monic polynomial of degree ๐‘› and is relatively prime to ๐‘”(๐‘ฅ). Then the Hermite Normal Form of
a basis of โ„’
๐ป =
[
โ„Ž1,1 โ„Ž1,2 โ‹ฏ โ„Ž1,๐‘›
โ„Ž2,2 โ‹ฏ โ„Ž2,๐‘›
โ‹ฑ โ‹ฎ
โ„Ž๐‘›,๐‘›]
satisfies โ„Ž๐‘–,๐‘–|โ„Ž๐‘™,๐‘—, for 1 โ‰ค ๐‘– โ‰ค ๐‘™ โ‰ค ๐‘— โ‰ค ๐‘›.
2.3. The Classical Euclidean Algorithm of Polynomials over A Field
Given a field ๐”ฝ. Let ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) โˆˆ ๐”ฝ[๐‘ฅ] with ๐‘‘๐‘’๐‘”(๐‘“) > ๐‘‘๐‘’๐‘”(๐‘”). Then the division of ๐‘“(๐‘ฅ)
and ๐‘”(๐‘ฅ) yields a unique quotient ๐‘„(๐‘ฅ) and remainder ๐‘…(๐‘ฅ) such that
๐‘“(๐‘ฅ) = ๐‘„(๐‘ฅ)๐‘”(๐‘ฅ) + ๐‘…(๐‘ฅ)
here ๐‘‘๐‘’๐‘”(๐‘”) > ๐‘‘๐‘’๐‘”(๐‘Ÿ), ๐‘‘๐‘’๐‘”(๐‘ž) = ๐‘‘๐‘’๐‘”(๐‘“) โˆ’ ๐‘‘๐‘’๐‘”(๐‘”).
If we repeat the step for each divisor polynomial and remainder, we will obtain a sequence of
remainders with decreasing degrees. Formally, a detailed procedure of the Euclidean algorithm of
polynomials over a field is present as following:
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022
5
{
๐‘“(๐‘ฅ) = ๐‘„1(๐‘ฅ)๐‘”(๐‘ฅ) + ๐‘…1(๐‘ฅ)
๐‘”(๐‘ฅ) = ๐‘„2(๐‘ฅ)๐‘…1(๐‘ฅ) + ๐‘…2(๐‘ฅ)
โ‹ฎ
๐‘…๐‘™โˆ’2(๐‘ฅ) = ๐‘„๐‘™(๐‘ฅ)๐‘…๐‘™โˆ’1(๐‘ฅ) + ๐‘…๐‘™(๐‘ฅ)
๐‘…๐‘™โˆ’1(๐‘ฅ) = ๐‘„๐‘™+1(๐‘ฅ)๐‘…๐‘™(๐‘ฅ)
where๐‘‘๐‘’๐‘”(๐‘”) > ๐‘‘๐‘’๐‘”(๐‘…1) > โ‹ฏ > ๐‘‘๐‘’๐‘”(๐‘…๐‘™) and all the coefficients are in the given field. Note
that if deg(๐‘…๐‘™) = 0, it shows that ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) are coprime in ๐”ฝ[๐‘ฅ], which means the resultant
of ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) is nonzero.
2.4. Polynomial Remainder Sequence
The procedure of the Euclidean algorithm of polynomials over a unique factorization domain
(UFD) is similar to the one over a field. The difference exits because the division between two
polynomials requires exact divisibility in the given domain, which is usually impossible to
realize. To solve the problem, the procedure of pseudo-division is proposed, which yields a
unique pseudo-quotient ๐‘ž(๐‘ฅ) and pseudo-remainder ๐‘Ÿ(๐‘ฅ) such that
(lc(๐‘”))
๐›ฟ+1
๐‘“(๐‘ฅ) = ๐‘ž(๐‘ฅ)๐‘”(๐‘ฅ) + ๐‘Ÿ(๐‘ฅ)
here ๐‘‘๐‘’๐‘”(๐‘”) > ๐‘‘๐‘’๐‘”(๐‘Ÿ), ๐›ฟ = ๐‘‘๐‘’๐‘”(๐‘“) โˆ’ ๐‘‘๐‘’๐‘”(๐‘”), ๐‘Ÿ(๐‘ฅ) is equivalent with prem(๐‘“, ๐‘”). Moreover,
the coefficients of ๐‘ž(๐‘ฅ) and ๐‘Ÿ(๐‘ฅ) are in the given domain.
For nonzero polynomials ๐‘Ž(๐‘ฅ), ๐‘(๐‘ฅ) โˆˆ ๐œ[๐‘ฅ], we say ๐‘Ž(๐‘ฅ) is similar to ๐‘(๐‘ฅ)(๐‘Ž(๐‘ฅ)~๐‘(๐‘ฅ)) if there
exist ๐‘1, ๐‘2 โˆˆ ๐œ such that ๐‘1๐‘Ž(๐‘ฅ) = ๐‘2๐‘(๐‘ฅ). So if we choose ๐‘Ÿโ€ฒ(๐‘ฅ) that is similar to ๐‘Ÿ(๐‘ฅ), we can
do the same step as above for ๐‘”(๐‘ฅ) and ๐‘Ÿโ€ฒ(๐‘ฅ). Thus, we can rewrite the procedure of pseudo-
division:
๐›ผ๐‘“(๐‘ฅ) = ๐‘ž(๐‘ฅ)๐‘”(๐‘ฅ) + ๐›ฝ๐‘Ÿ(๐‘ฅ).
Then the detailed procedure of pseudo-division is present as following:
{
๐›ผ1๐‘“(๐‘ฅ) = ๐‘ž1(๐‘ฅ)๐‘”(๐‘ฅ) + ๐›ฝ1๐‘Ÿ1(๐‘ฅ)
๐›ผ2๐‘”(๐‘ฅ) = ๐‘ž2(๐‘ฅ)๐‘Ÿ1(๐‘ฅ) + ๐›ฝ2๐‘Ÿ2(๐‘ฅ)
โ‹ฎ
๐›ผ๐‘™๐‘Ÿ๐‘™โˆ’2(๐‘ฅ) = ๐‘ž๐‘™(๐‘ฅ)๐‘Ÿ๐‘™โˆ’1(๐‘ฅ) + ๐›ฝ๐‘™๐‘Ÿ๐‘™(๐‘ฅ)
๐›ผ๐‘™+1๐‘Ÿ๐‘™โˆ’1(๐‘ฅ) = ๐‘ž๐‘™+1(๐‘ฅ)๐‘Ÿ๐‘™(๐‘ฅ)
here ๐‘‘๐‘’๐‘”(๐‘”) > ๐‘‘๐‘’๐‘”(๐‘Ÿ1) > โ‹ฏ > ๐‘‘๐‘’๐‘”(๐‘Ÿ๐‘™) and all the๐›ผ๐‘– and ๐›ฝ๐‘– are in the given domain.
Generally, we denote ๐‘“(๐‘ฅ) = ๐‘Ÿโˆ’1(๐‘ฅ) and ๐‘”(๐‘ฅ) = ๐‘Ÿ0(๐‘ฅ), then ๐›ผ๐‘– = (๐‘™๐‘(r๐‘–โˆ’1))
๐›ฟ๐‘–โˆ’2โˆ’1
, where ๐›ฟ๐‘– =
๐‘‘๐‘’๐‘”(๐‘Ÿ๐‘–) โˆ’ ๐‘‘๐‘’๐‘”(๐‘Ÿ๐‘–+1). Note that now prem(๐‘Ÿ๐‘–โˆ’2, ๐‘Ÿ๐‘–โˆ’1) = ๐›ฝ๐‘–๐‘Ÿ๐‘–(๐‘ฅ). Then ๐‘Ÿโˆ’1(๐‘ฅ), ๐‘Ÿ0(๐‘ฅ),โ‹ฏ,๐‘Ÿ๐‘™(๐‘ฅ)
form a sequence called polynomial remainder sequence(PRS).
From [5], if a remainder ๐‘Ÿ(๐‘ฅ) = ๐‘ (๐‘ฅ)๐‘“(๐‘ฅ) + ๐‘ก(๐‘ฅ)๐‘”(๐‘ฅ) can derive a basis of ideal lattice, ๐‘ก(๐‘ฅ)
must be primitive. In this paper, we also want to obtain such remainders and we call these
remainders as primitive PRS of lattice (PPRSoL). Next, we give a result about ๐‘ ๐‘–(๐‘ฅ) and ๐‘ก๐‘–(๐‘ฅ).
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022
6
Lemma 2. Let ๐‘“(๐‘ฅ), ๐‘”(๐‘ฅ) โˆˆ โ„ค[๐‘ฅ] be two polynomials with degree ๐‘› and ๐‘š respectively, where
๐‘› > ๐‘š . Let ๐‘Ÿโˆ’1(๐‘ฅ), ๐‘Ÿ0(๐‘ฅ), โ‹ฏ , ๐‘Ÿ๐‘™(๐‘ฅ) be the remainders in procedure of pseudo-division. If
๐‘‘๐‘’๐‘”(๐‘Ÿ๐‘–) = ๐‘›๐‘–, then ๐‘Ÿ๐‘–(๐‘ฅ) = ๐‘ ๐‘–(๐‘ฅ)๐‘“(๐‘ฅ) + ๐‘ก๐‘–(๐‘ฅ)๐‘”(๐‘ฅ) satisfies ๐‘‘๐‘’๐‘”(๐‘ ๐‘–) < ๐‘š, ๐‘‘๐‘’๐‘”(๐‘ก๐‘–) < ๐‘› and:
1) ๐‘ ๐‘–(๐‘ฅ) = (๐›ผ๐‘–๐‘ ๐‘–โˆ’2(๐‘ฅ) โˆ’ ๐‘ž๐‘–(๐‘ฅ)๐‘ ๐‘–โˆ’1(๐‘ฅ))/๐›ฝ๐‘–, ๐‘ก๐‘–(๐‘ฅ) = (๐›ผ๐‘–๐‘ก๐‘–โˆ’2(๐‘ฅ) โˆ’ ๐‘ž๐‘–(๐‘ฅ)๐‘ก๐‘–โˆ’1(๐‘ฅ))/๐›ฝ๐‘–
2) ๐‘‘๐‘’๐‘”(๐‘ ๐‘–) = ๐‘š โˆ’ ๐‘‘๐‘’๐‘”(๐‘Ÿ๐‘–โˆ’1),๐‘‘๐‘’๐‘”(๐‘ก๐‘–) = ๐‘› โˆ’ ๐‘‘๐‘’๐‘”(๐‘Ÿ๐‘–โˆ’1)
If we represent ๐‘Ÿ๐‘–(๐‘ฅ) = ๐‘ ๐‘–(๐‘ฅ)๐‘“(๐‘ฅ) + ๐‘ก๐‘–(๐‘ฅ)๐‘”(๐‘ฅ) under the embedding ฯƒ, for ๐‘– = โˆ’1, 0, โ‹ฏ , ๐‘™, then
we can denote ๐‘Ÿ๐‘–(๐‘ฅ) as a sequence of vectors and we use a matrix ๐‘น to represent ๐‘Ÿ๐‘–(๐‘ฅ) as
following:
[
๐‘“๐‘› โ‹ฏ ๐‘“๐‘›โˆ’๐‘š+1 ๐‘“๐‘›โˆ’๐‘š โ‹ฏ ๐‘“0
โ‹ฑ โ‹ฑ
๐‘“๐‘› ๐‘“๐‘›โˆ’1 โ‹ฏ ๐‘“๐‘šโˆ’1 ๐‘“๐‘šโˆ’2 โ‹ฏ ๐‘“1 ๐‘“0
๐‘Ÿ0,๐‘›0
โ‹ฏ ๐‘Ÿ0,0
โ‹ฑ
โ‹ฎ ๐‘Ÿ0,๐‘›0
โ‹ฏ ๐‘Ÿ0,0
๐‘Ÿ1,๐‘›0
โ‹ฏ ๐‘Ÿ1,0
๐ŸŽ โ‹ฑ
๐‘Ÿ1,๐‘›1
โ‹ฏ ๐‘Ÿ1,0
โ‹ฑ
โ‹ฎ ๐‘Ÿ๐‘™,๐‘›๐‘™
โ‹ฑ
๐‘Ÿ๐‘™,๐‘›๐‘™](๐‘š+๐‘›)ร—(๐‘š+๐‘›)
Also, we use ๐‘บ and ๐‘ป to represent the matrice denoting ๐‘ ๐‘–(๐‘ฅ) and ๐‘ก๐‘–(๐‘ฅ) respectively.
๐‘ป =
[
1
โ‹ฑ
1
๐‘ก1,๐‘›โˆ’๐‘›0
โ‹ฏ ๐‘ก1,0
โ‹ฑ โ‹ฑ
๐‘ก1,๐‘›โˆ’๐‘›0
โ‹ฏ ๐‘ก1,0
โ‹ฑ
๐‘ก๐‘™,๐‘›โˆ’๐‘›๐‘™โˆ’1
โ‹ฏ ๐‘ก๐‘™,0
โ‹ฑ โ‹ฑ
๐‘ก๐‘™,๐‘›โˆ’๐‘›๐‘™โˆ’1
โ‹ฏ ๐‘ก๐‘™,0 ]๐‘›ร—๐‘›
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022
7
๐‘บ =
[
0
โ‹ฑ
0
๐‘ 1,๐‘šโˆ’๐‘›0
โ‹ฏ ๐‘ 1,0
โ‹ฑ โ‹ฑ
๐‘ 1,๐‘šโˆ’๐‘›0
โ‹ฏ ๐‘ 1,0
โ‹ฑ
๐‘ ๐‘™,๐‘šโˆ’๐‘›๐‘™โˆ’1
โ‹ฏ ๐‘ ๐‘™,0
โ‹ฑ โ‹ฑ
๐‘ ๐‘™,๐‘šโˆ’๐‘›๐‘™โˆ’1
โ‹ฏ ๐‘ ๐‘™,0 ]๐‘›ร—๐‘š
So if we give a matrix named ๐‘บ๐‘ป, then procedure of pseudo-division can be represent as a matrix
multiplication.
๐‘บ๐‘ป = [
1
โ‹ฑ ๐ŸŽ
1
๐‘บ ๐‘ป
]
(๐‘š+๐‘›)ร—(๐‘š+๐‘›)
๐‘บ๐‘ป โˆ™ ๐’๐ฒ๐ฅ๐ฏ(๐‘“, ๐‘”) = ๐‘น
Here we need to show that by elementary row transformation, ๐‘บ๐‘ป can be transformed into
๐‘บ๐‘ป = [
1
โ‹ฑ ๐ŸŽ
1
๐ŸŽ ๐‘ป
]
(๐‘š+๐‘›)ร—(๐‘š+๐‘›)
which means that the determinant of ๐‘บ๐‘ป equals to the determinant of ๐‘ป. Also according to lemma
2, it turns out that after appropriate row switching, ๐‘ป is actually an upper triangular matrix, thus
the determinant of ๐‘ป is |โˆ lc(๐‘ก๐‘–)๐‘›๐‘–โˆ’1โˆ’๐‘›๐‘–
๐‘™
๐‘–=0 |.
In the following part, we introduce some typical PRSs which differs from each other by choosing
different ๐›ฝ๐‘–.
2.4.1. Euclidean Polynomial Remainder Sequences
When choosing ๐›ฝ๐‘– = 1 for all ๐‘– in PRS, we obtain Euclidean PRS. This is a generalization of the
Euclidean algorithm over integers. However, the algorithm is quite inefficient because with the
proceeding of the sequence, the coefficients of the remainders grow exponentially. To be
specific, we need to calculate each ๐‘ก๐‘–(๐‘ฅ) and cont(๐‘ก๐‘–(๐‘ฅ)) to get a eligible PPRSoL, which costs
too much. So we need to determine certain ๐›ฝ๐‘– to ensure the efficiency.
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022
8
2.4.2. Primitive Polynomial Remainder Sequences
When choosing ๐›ฝ๐‘– = cont(prem(๐‘Ÿ๐‘–โˆ’2, ๐‘Ÿ๐‘–โˆ’1)) for all ๐‘– in PRS, we obtain primitive PRS. Although
the algorithm stops the coefficients growing exponentially in every step of the pseudo-division,
however, when proceeding primitive PRS, the coefficients of ๐‘ ๐‘–(๐‘ฅ) and ๐‘ก๐‘–(๐‘ฅ) may be not in the
given domain, which means that the PRS we obtain is not PPRSoL. So primitive PRS doesn't
satisfy our requirement.
2.4.3. Subresultant Polynomial Remainder Sequences
When ๐›ฝ๐‘– is related to the subresultant, we obtain subresultant PRS. The equation set as following
depicts the procedure of the subresultant PRS algorithm in [2].
{
๐›ผโ€ฒ1๐‘“(๐‘ฅ) = ๐‘žโ€ฒ1(๐‘ฅ)๐‘”(๐‘ฅ) + ๐›ฝโ€ฒ1๐‘Ÿโ€ฒ1(๐‘ฅ)
๐›ผโ€ฒ2๐‘”(๐‘ฅ) = ๐‘žโ€ฒ2(๐‘ฅ)๐‘Ÿ1(๐‘ฅ) + ๐›ฝโ€ฒ2๐‘Ÿโ€ฒ2(๐‘ฅ)
โ‹ฎ
๐›ผโ€ฒ๐‘™๐‘Ÿโ€ฒ๐‘™โˆ’2(๐‘ฅ) = ๐‘žโ€ฒ๐‘™(๐‘ฅ)๐‘Ÿ๐‘™โˆ’1(๐‘ฅ) + ๐›ฝโ€ฒ๐‘™๐‘Ÿโ€ฒ๐‘™(๐‘ฅ)
where ๐‘Ÿโˆ’1(๐‘ฅ) = ๐‘“(๐‘ฅ), ๐‘Ÿ0(๐‘ฅ) = ๐‘”(๐‘ฅ), ๐‘›๐‘– = ๐‘‘๐‘’๐‘”(๐‘Ÿโ€ฒ๐‘–), ๐›ฟ๐‘– = ๐‘›๐‘– โˆ’ ๐‘›๐‘–+1 , ๐›ผโ€ฒ๐‘– = (lc(๐‘Ÿโ€ฒ๐‘–โˆ’1))
๐›ฟ๐‘–โˆ’2+1
,
๐›ฝโ€ฒ๐‘– = lc(๐‘Ÿโ€ฒ๐‘–โˆ’2)โ„Ž๐‘–
๐›ฟ๐‘–โˆ’2
, โ„Ž1 = 1, โ„Ž๐‘– = (๐‘™๐‘(๐‘Ÿโ€ฒ๐‘–โˆ’2))๐›ฟ๐‘–โˆ’3โ„Ž๐‘–โˆ’1
1โˆ’๐›ฟ๐‘–โˆ’3
, for 2 โ‰ค ๐‘– โ‰ค ๐‘™ + 1.
Intuitively, the intact subresultant algorithm can be present in Algorithm 1. We point out that
because we want to get PPRSoL, the input of every PRS algorithm in the paper contains a monic
and irreducible polynomial.
Algorithm 1 Subresultant PRS Algorithm
Input: two polynomials ๐‘“(๐‘ฅ), ๐‘”(๐‘ฅ) โˆˆ โ„ค[๐‘ฅ] with degree ๐‘› and ๐‘š respectively and ๐‘“(๐‘ฅ) is monic and
irreducible
Output: Subresultant PRS, ๐‘Ÿโ€ฒ0(๐‘ฅ), ๐‘Ÿโ€ฒ1(๐‘ฅ), โ‹ฏ
1.[Initialize] ๐‘™ โ† โ„Ž โ† 1, ๐‘Ÿโ€ฒ0(๐‘ฅ) = ๐‘”(๐‘ฅ),๐‘– โ† 1
2.[Pseudo-division]
2.1 Set ฮด = ๐‘‘๐‘’๐‘”(๐‘“) โˆ’ ๐‘‘๐‘’๐‘”(๐‘”)
2.2 Calculate ๐‘Ÿ(๐‘ฅ) such that ๐‘Ÿ(๐‘ฅ) = ๐‘ (๐‘ฅ)๐‘“(๐‘ฅ) + ๐‘ก(๐‘ฅ)๐‘”(๐‘ฅ)
3.[Adjust remainder]
3.1 ๐‘ข(๐‘ฅ) โ† ๐‘”(๐‘ฅ), ๐‘Ÿโ€ฒ๐‘–(๐‘ฅ) โ† ๐‘”(๐‘ฅ) โ† ๐‘Ÿ(๐‘ฅ)/๐‘™โ„Ž๐›ฟ
3.2 ๐‘™ โ† ๐‘™๐‘(๐‘“),โ„Ž โ† โ„Ž1โˆ’๐›ฟ
๐‘™๐›ฟ
3.3 If ๐‘‘๐‘’๐‘”(๐‘Ÿ) = 0, go to Step 4
3.4 ๐‘– โ† ๐‘– + 1, go to Step 2
4.[Return] ๐‘Ÿโ€ฒ0(๐‘ฅ), ๐‘Ÿโ€ฒ1(๐‘ฅ), โ‹ฏ
Notice that for ๐‘Ÿโ€ฒ๐‘–(๐‘ฅ) = ๐‘ โ€ฒ๐‘–(๐‘ฅ)๐‘“(๐‘ฅ) + ๐‘กโ€ฒ๐‘–(๐‘ฅ)๐‘”(๐‘ฅ) , ๐‘กโ€ฒ๐‘–(๐‘ฅ) maybe not primitive in the given
domain, which means that we can still decrease the coefficients of ๐‘Ÿโ€ฒ๐‘–(๐‘ฅ) by removing a factor.
In [6], the author shows that the โ„Ž๐‘– is indeed the ๐‘›๐‘–โˆ’1-th subresultant of ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ), that is
โ„Ž๐‘– = ๐‘†๐‘›๐‘–โˆ’1
(๐‘“, ๐‘”). Also, in [3], the author shows that every โ„Ž๐‘– is an integer and ๐‘Ÿโ€ฒ๐‘–(๐‘ฅ) โˆˆ โ„ค[๐‘ฅ] and
gives an elegant proof.
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022
9
2.4.4. Improvements of Subresultant Polynomial Remainder Sequences
This is another expression of subresultant PRS. As stated above, for the output of Algorithm 1,
๐‘Ÿโ€ฒ๐‘–(๐‘ฅ) = ๐‘ โ€ฒ๐‘–(๐‘ฅ)๐‘“(๐‘ฅ) + ๐‘กโ€ฒ๐‘–(๐‘ฅ)๐‘”(๐‘ฅ), ๐‘กโ€ฒ๐‘–(๐‘ฅ) maybe not primitive and there might exist a divisor ๐œ๐‘–
such that ๐‘ก๐‘–(๐‘ฅ) = ๐‘กโ€ฒ๐‘–(๐‘ฅ)/๐œ๐‘– is primitive. So in the improvement version, the author transforms the
procedure of the subresultant PRS algorithm as following,
{
๐›ผ1๐‘“(๐‘ฅ) = ๐‘ž1(๐‘ฅ)๐‘”(๐‘ฅ) + ๐›ฝ1๐‘Ÿ1(๐‘ฅ)
๐›ผ2๐‘”(๐‘ฅ) = ๐‘ž2(๐‘ฅ)๐‘Ÿ1(๐‘ฅ) + ๐›ฝ2๐‘Ÿ2(๐‘ฅ)
โ‹ฎ
๐›ผ๐‘™๐‘Ÿ๐‘™โˆ’2(๐‘ฅ) = ๐‘ž๐‘™(๐‘ฅ)๐‘Ÿ๐‘™โˆ’1(๐‘ฅ) + ๐›ฝ๐‘™๐‘Ÿ๐‘™(๐‘ฅ)
where ๐‘Ÿโˆ’1(๐‘ฅ) = ๐‘“(๐‘ฅ) , ๐‘Ÿ0(๐‘ฅ) = ๐‘”(๐‘ฅ) , โ„Ž1 = 1 , ๐‘›๐‘– = ๐‘‘๐‘’๐‘”(๐‘Ÿ๐‘–) , ๐›ฟ๐‘– = ๐‘›๐‘– โˆ’ ๐‘›๐‘–+1 , ๐›ผ๐‘– =
(๐‘™๐‘(๐‘Ÿ๐‘–โˆ’1))
๐›ฟ๐‘–โˆ’2+1
, ๐›ฝ๐‘– = ๐‘™๐‘(๐‘Ÿ๐‘–โˆ’2)โ„Ž๐‘–
๐›ฟ๐‘–โˆ’2
๐œ๐‘–โˆ’1
โˆ’๐›ฟ๐‘–โˆ’2โˆ’1
๐œ๐‘– , โ„Ž๐‘– = (๐œ๐‘–โˆ’2๐‘™๐‘(๐‘Ÿ๐‘–โˆ’2))๐›ฟ๐‘–โˆ’3โ„Ž๐‘–โˆ’1
1โˆ’๐›ฟ๐‘–โˆ’3
, for 2 โ‰ค
๐‘– โ‰ค ๐‘™ + 1. ๐œ๐‘– is an integer such that ๐‘กโ€ฒ๐‘–(๐‘ฅ)/๐œ๐‘–is a primitive polynomial. Clearly, ๐œ0 = 1. In [3], the
author chose ๐œ๐‘– = lc(๐‘Ÿ๐‘–โˆ’1) if lc(๐‘Ÿ๐‘–โˆ’1)|๐‘Ÿโ€ฒ๐‘–(๐‘ฅ), otherwise ๐œ๐‘– = 1. However, the method to choose ๐œ๐‘–
doesn't work for every ๐œ๐‘–.
Comparing the two subresultant algorithms, we need to emphasis that all the โ„Ž๐‘–s are equal in the
two algorithms.
3. SOME PROPERTIES OF THE SUB RESULTANT POLYNOMIAL REMAINDER
SEQUENCE
Before presenting our algorithm, we give some results about the subresultant PRS.
Proposition 1. Given two polynomials ๐‘Ž(๐‘ฅ) = ๐‘Ž๐‘›๐‘ฅ๐‘›
+ โ‹ฏ + ๐‘Ž1๐‘ฅ + ๐‘Ž0 and ๐‘(๐‘ฅ) = ๐‘๐‘š๐‘ฅ๐‘š
+ โ‹ฏ +
๐‘1๐‘ฅ + ๐‘0 โˆˆ โ„ค[๐‘ฅ], where ๐‘› > ๐‘š. Write ๐‘๐‘š
๐‘›โˆ’๐‘š+1
๐‘Ž(๐‘ฅ) = ๐‘ž(๐‘ฅ)๐‘(๐‘ฅ) + ๐‘Ÿ(๐‘ฅ). Define the matrix
If the determinant of the matrix ๐‘ด๐‘– is denoted as โˆ†๐‘– , where ๐‘ด๐‘– is the ๐‘– ร— ๐‘– submatrix of ๐‘ด
obtained by deleting the last (๐‘› โˆ’ ๐‘š + 2 โˆ’ ๐‘–) rows and the last (๐‘› + 1 โˆ’ ๐‘–) columns from ๐‘ด, ๐‘– =
0, โ€ฆ , ๐‘› โˆ’ ๐‘š + 1 . Then ๐‘ž(๐‘ฅ) = โˆ‘ โˆ†๐‘›โˆ’๐‘š+1โˆ’๐‘–๐‘๐‘š
๐‘–
๐‘ฅ๐‘–
๐‘›โˆ’๐‘š
๐‘–=0 . Moreover, we have
(๐‘๐‘œ๐‘›๐‘ก(๐‘Ž(๐‘ฅ))๐‘๐‘œ๐‘›๐‘ก(๐‘(๐‘ฅ))
๐‘›โˆ’๐‘š
)|๐‘ž(๐‘ฅ).
Proof. We first give the detail of the pseudo-division procedure,
{
๐‘๐‘š๐‘Ž(๐‘ฅ) = ๐‘Ž๐‘›๐‘ฅ๐‘›โˆ’๐‘š
๐‘(๐‘ฅ) + ๐‘…1(๐‘ฅ)
๐‘๐‘š๐‘…1(๐‘ฅ) = ๐‘™๐‘(๐‘…1)๐‘ฅ๐‘›โˆ’๐‘šโˆ’1
๐‘(๐‘ฅ) + ๐‘…2(๐‘ฅ)
โ‹ฎ
๐‘๐‘š๐‘…๐‘›โˆ’๐‘šโˆ’1(๐‘ฅ) = ๐‘™๐‘(๐‘…๐‘›โˆ’๐‘šโˆ’1)๐‘ฅ๐‘(๐‘ฅ) + ๐‘…๐‘›โˆ’๐‘š(๐‘ฅ)
๐‘๐‘š๐‘…๐‘›โˆ’๐‘š(๐‘ฅ) = ๐‘™๐‘(๐‘…๐‘›โˆ’๐‘š)๐‘ฅ๐‘(๐‘ฅ) + ๐‘Ÿ(๐‘ฅ)
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022
10
We denote ๐‘…0(๐‘ฅ) = ๐‘Ž(๐‘ฅ) and ๐‘…๐‘›โˆ’๐‘š+1(๐‘ฅ) = ๐‘Ÿ(๐‘ฅ), then we claim that ๐‘…๐‘–(๐‘ฅ) = โˆ‘ โˆ†
ฬ…๐‘–,๐‘—๐‘ฅ๐‘—
๐‘›โˆ’๐‘–
๐‘—=0 ,
where โˆ†
ฬ…๐‘–,๐‘— is the determinant of the (๐‘– + 1) ร— (๐‘– + 1) matrix ๐‘€๐‘–,๐‘— obtained by deleting the last
(๐‘› โˆ’ ๐‘š + 1 โˆ’ ๐‘–) rows and the last (๐‘› + 1 โˆ’ ๐‘–) columns except column (๐‘› + 1 โˆ’ ๐‘—) from ๐‘€, ๐‘– =
0, โ€ฆ , ๐‘› โˆ’ ๐‘š + 1, ๐‘— = 0, โ€ฆ , ๐‘› โˆ’ ๐‘–. Clearly, โˆ†๐‘–+1= โˆ†
ฬ…๐‘–,๐‘›โˆ’๐‘–.
Then we explain the claim by induction on ๐‘–, ๐‘– = 0, โ€ฆ , ๐‘› โˆ’ ๐‘š + 1.
For ๐‘– = 0, we have ๐‘…0(๐‘ฅ) = ๐‘Ž(๐‘ฅ) and it's obvious that ๐‘Ž๐‘— = โˆ†
ฬ…0,๐‘— for ๐‘— = 0, โ€ฆ , ๐‘›.
Next we assume that the claim holds for ๐‘– = ๐‘˜ โˆ’ 1. Then we denote ๐‘๐‘š๐‘…๐‘˜โˆ’1(๐‘ฅ) and ๐‘(๐‘ฅ) as
following,
[
๐‘๐‘šโˆ†
ฬ…๐‘˜โˆ’1,๐‘›+1โˆ’๐‘˜ ๐‘๐‘šโˆ†
ฬ…๐‘˜โˆ’1,๐‘›โˆ’๐‘˜ โ‹ฏ ๐‘๐‘šโˆ†
ฬ…๐‘˜โˆ’1,๐‘›โˆ’๐‘š+1โˆ’๐‘˜ โ‹ฏ โ‹ฏ ๐‘๐‘šโˆ†
ฬ…๐‘˜โˆ’1,1 ๐‘๐‘šโˆ†
ฬ…๐‘˜โˆ’1,0
๐‘๐‘š ๐‘๐‘šโˆ’1 โ‹ฏ ๐‘0 0 โ‹ฏ 0 0
]
Then the coefficient of ๐‘ฅ๐‘›โˆ’๐‘˜+1โˆ’๐‘–
in ๐‘…๐‘˜(๐‘ฅ) is ๐‘๐‘šโˆ†
ฬ…๐‘˜โˆ’1,๐‘›+1โˆ’๐‘˜โˆ’๐‘– โˆ’ ๐‘๐‘šโˆ’๐‘–โˆ†
ฬ…๐‘˜โˆ’1,๐‘›+1โˆ’๐‘˜ if 1 โ‰ค ๐‘– โ‰ค ๐‘š
and ๐‘๐‘šโˆ†
ฬ…๐‘˜โˆ’1,๐‘›+1โˆ’๐‘˜โˆ’๐‘– otherwise. According to the structure of ๐‘€ we know that the coefficient of
๐‘ฅ๐‘›โˆ’๐‘˜+1โˆ’๐‘–
is exactly โˆ†
ฬ…๐‘˜,๐‘›โˆ’๐‘˜+1โˆ’๐‘–. So the claim holds.
From the claim we have ๐‘™๐‘(๐‘…๐‘–) = โˆ†
ฬ…๐‘–,๐‘›โˆ’๐‘–= โˆ†๐‘–+1 , so ๐‘ž(๐‘ฅ) = โˆ‘ ๐‘™๐‘(๐‘…๐‘›โˆ’๐‘šโˆ’๐‘–)๐‘๐‘š
๐‘–
๐‘ฅ๐‘–
๐‘›โˆ’๐‘š
๐‘–=0 =
โˆ‘ โˆ†๐‘›โˆ’๐‘š+1โˆ’๐‘–๐‘๐‘š
๐‘–
๐‘ฅ๐‘–
๐‘›โˆ’๐‘š
๐‘–=0 .
Then from the structure of ๐‘€๐‘– , we know (๐‘๐‘œ๐‘›๐‘ก(๐‘Ž(๐‘ฅ))๐‘๐‘œ๐‘›๐‘ก(๐‘(๐‘ฅ))
๐‘›โˆ’๐‘šโˆ’๐‘–
)|โˆ†๐‘›โˆ’๐‘š+1โˆ’๐‘– . So
(๐‘๐‘œ๐‘›๐‘ก(๐‘Ž(๐‘ฅ))๐‘๐‘œ๐‘›๐‘ก(๐‘(๐‘ฅ))
๐‘›โˆ’๐‘š
)|โˆ†๐‘›โˆ’๐‘š+1โˆ’๐‘–๐‘๐‘š
๐‘–
, which means (๐‘๐‘œ๐‘›๐‘ก(๐‘Ž(๐‘ฅ))๐‘๐‘œ๐‘›๐‘ก(๐‘(๐‘ฅ))
๐‘›โˆ’๐‘š
)|๐‘ž(๐‘ฅ).
Proposition 2. Let ๐‘Ÿ1(๐‘ฅ), โ‹ฏ , ๐‘Ÿ๐‘™(๐‘ฅ) be the remainders obtained in improved subresultant algorithm.
Present ๐‘Ÿ๐‘–(๐‘ฅ) = ๐‘ ๐‘–(๐‘ฅ)๐‘“(๐‘ฅ) + ๐‘ก๐‘–(๐‘ฅ)๐‘”(๐‘ฅ), for ๐‘– = 1, โ‹ฏ, ๐‘™. Then we have ๐‘™๐‘(๐‘ก๐‘–) =
โ„Ž๐‘–+1
๐œ๐‘–
.
Proof. According to Lemma 2, ๐‘ก๐‘–(๐‘ฅ) =
1
๐›ฝ๐‘–
(๐›ผ๐‘–๐‘ก๐‘–โˆ’2(๐‘ฅ) โˆ’ ๐‘ž๐‘–(๐‘ฅ)๐‘ก๐‘–โˆ’1(๐‘ฅ)) and ๐‘‘๐‘’๐‘”(๐‘ก๐‘–) = ๐‘› โˆ’ ๐‘›๐‘–โˆ’1.
Also ๐‘‘๐‘’๐‘”(๐‘ž๐‘–) = ๐›ฟ๐‘–โˆ’2 , so ๐‘‘๐‘’๐‘”(๐‘ก๐‘–) = ๐‘› โˆ’ ๐‘›๐‘–โˆ’3 < ๐‘‘๐‘’๐‘”(๐‘ž๐‘–๐‘ก๐‘–โˆ’1) = ๐‘› โˆ’ ๐‘›๐‘–โˆ’1 . Then ๐‘™๐‘(๐‘ก๐‘–) =
1
๐›ฝ๐‘–
๐‘™๐‘(๐‘ž๐‘–) ๐‘™๐‘(๐‘ก๐‘–โˆ’1), so ๐‘™๐‘(๐‘ž๐‘–) =
๐‘™๐‘(๐‘Ÿ๐‘–โˆ’2)
๐‘™๐‘(๐‘Ÿ๐‘–โˆ’1)
๐›ผ๐‘–. Then ๐‘™๐‘(๐‘ก๐‘–) =
๐‘™๐‘(๐‘Ÿ๐‘–โˆ’2)๐›ผ๐‘–
๐‘™๐‘(๐‘Ÿ๐‘–โˆ’1)๐›ฝ๐‘–
๐‘™๐‘(๐‘ก๐‘–โˆ’1) =
๐›ผ1โ€ฆ๐›ผ๐‘–
๐›ฝ1โ€ฆ๐›ฝ๐‘–๐‘™๐‘(๐‘Ÿ๐‘–โˆ’1)
.
Because ๐›ผ๐‘– = (๐‘™๐‘(๐‘Ÿ๐‘–โˆ’1))
๐›ฟ๐‘–โˆ’2+1
, ๐›ฝ๐‘– = ๐‘™๐‘(๐‘Ÿ๐‘–โˆ’1)โ„Ž๐‘–
๐›ฟ๐‘–โˆ’2
๐œ๐‘–โˆ’1
โˆ’๐›ฟ๐‘–โˆ’2โˆ’1
๐œ๐‘–, then we have
๐‘™๐‘(๐‘ก๐‘–) =
1
๐‘™๐‘(๐‘Ÿ๐‘–โˆ’1)
(๐œ๐‘–โˆ’1 ๐‘™๐‘(๐‘Ÿ๐‘–โˆ’1))๐›ฟ๐‘–โˆ’2+1
๐‘™๐‘(๐‘Ÿ๐‘–โˆ’2) โ„Ž๐‘–
๐›ฟ๐‘–โˆ’2
๐œ๐‘–
(๐œ๐‘–โˆ’2 ๐‘™๐‘(๐‘Ÿ๐‘–โˆ’2))๐›ฟ๐‘–โˆ’3+1
๐‘™๐‘(๐‘Ÿ๐‘–โˆ’3) โ„Ž๐‘–โˆ’1
๐›ฟ๐‘–โˆ’3
๐œ๐‘–โˆ’1
โ€ฆ
(๐œ0 ๐‘™๐‘(๐‘Ÿ0))๐›ฟโˆ’1+1
๐‘™๐‘(๐‘Ÿโˆ’1) โ„Ž1
๐›ฟโˆ’1
๐œ1
=
1
๐œ๐‘–
(๐œ๐‘–โˆ’1 ๐‘™๐‘(๐‘Ÿ๐‘–โˆ’1))๐›ฟ๐‘–โˆ’2
โ„Ž๐‘–
๐›ฟ๐‘–โˆ’2
(๐œ๐‘–โˆ’2 ๐‘™๐‘(๐‘Ÿ๐‘–โˆ’2))๐›ฟ๐‘–โˆ’3
โ„Ž๐‘–โˆ’1
๐›ฟ๐‘–โˆ’3
โ€ฆ
(๐œ0 ๐‘™๐‘(๐‘Ÿ0))๐›ฟโˆ’1
โ„Ž1
๐›ฟโˆ’1
=
1
๐œ๐‘–
(๐œ๐‘–โˆ’1 ๐‘™๐‘(๐‘Ÿ๐‘–โˆ’1))๐›ฟ๐‘–โˆ’2
โ„Ž๐‘–
๐›ฟ๐‘–โˆ’2
(๐œ๐‘–โˆ’2 ๐‘™๐‘(๐‘Ÿ๐‘–โˆ’2))๐›ฟ๐‘–โˆ’3
โ„Ž๐‘–โˆ’1
๐›ฟ๐‘–โˆ’3
โ€ฆ
(๐œ0 ๐‘™๐‘(๐‘Ÿ1))๐›ฟ0
โ„Ž1
๐›ฟโˆ’1
โ„Ž2
= โ‹ฏ =
โ„Ž๐‘–+1
๐œ๐‘–
Remark 2. If we do similar steps for ๐‘Ÿโ€ฒ0(๐‘ฅ), ๐‘Ÿโ€ฒ1(๐‘ฅ), โ‹ฏ , ๐‘Ÿโ€ฒ๐‘™(๐‘ฅ) in Algorithm 1 and present each
๐‘Ÿโ€ฒ๐‘–(๐‘ฅ) = ๐‘ โ€ฒ๐‘–(๐‘ฅ)๐‘“(๐‘ฅ) + ๐‘กโ€ฒ๐‘–(๐‘ฅ)๐‘”(๐‘ฅ), then we obtain ๐‘™๐‘(๐‘กโ€ฒ๐‘–) = โ„Ž๐‘–+1.
Before giving next lemmas, we first present a useful algorithm from [5]. We use the same
symbols in [5], {๐‘› โˆ’ ๐‘›๐‘–โˆ’1 + 1, โ‹ฏ , ๐‘› โˆ’ ๐‘›๐‘–} = ๐ผ๐‘–, then {1,2, โ‹ฏ, ๐‘›} = โ‹ƒ ๐ผ๐‘–
๐‘™
๐‘–+1 .
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022
11
Algorithm 2 A Useful Algorithm
Input:๐‘Ÿ0(๐‘ฅ), ๐‘Ÿ1(๐‘ฅ), โ‹ฏ , ๐‘Ÿ๐‘™(๐‘ฅ)from improved subresultant algorithm
Output: ๐‘Ÿฬ…0(๐‘ฅ), ๐‘Ÿฬ…1(๐‘ฅ), โ‹ฏ , ๐‘Ÿฬ…๐‘™(๐‘ฅ)
1.When๐‘˜ โˆˆ ๐ผ๐‘™, ๐‘Ÿโ€ฒ๐‘˜(๐‘ฅ) = ๐‘Ÿ๐‘™(๐‘ฅ)๐‘ฅ๐‘›โˆ’๐‘˜
,๐‘– โ† ๐‘™ โˆ’ 1
2.When ๐‘˜ โˆˆ ๐ผ๐‘–
2.1 Set Compute ๐œ™ and ๐œ“, such that ๐œ“๐‘™๐‘(๐‘Ÿ๐‘–) + ๐œ™๐‘™๐‘(๐‘Ÿฬ…๐‘–+1) = gcd(๐‘™๐‘(๐‘Ÿ๐‘–), ๐‘™๐‘(๐‘Ÿฬ…๐‘–+1))
2.2 Set ๐‘Ÿฬ…๐‘–(๐‘ฅ) = ๐œ“๐‘Ÿ๐‘–(๐‘ฅ) + ๐œ™๐‘Ÿฬ…๐‘–+1(๐‘ฅ)๐‘ฅ๐›ฟ๐‘–
2.3 If ๐‘™๐‘(๐‘Ÿฬ…๐‘›โˆ’๐‘›๐‘–
) = 1, set ๐‘Ÿฬ…๐‘—(๐‘ฅ) = ๐‘Ÿฬ…๐‘›โˆ’๐‘›๐‘–
(๐‘ฅ)๐‘ฅ๐‘›โˆ’๐‘›๐‘–โˆ’๐‘—
, ๐‘— = 1, โ‹ฏ , ๐‘› โˆ’ ๐‘›๐‘–, go to Step 3; otherwise
๐‘Ÿฬ…๐‘˜(๐‘ฅ) = ๐‘Ÿฬ…๐‘›โˆ’๐‘›๐‘–
(๐‘ฅ)๐‘ฅ๐‘›โˆ’๐‘›๐‘–โˆ’๐‘˜
, ๐‘– โ† ๐‘™ โˆ’ 1
2.4If ๐‘– > 0, go to Step 2, otherwise go to Step 3
4.Return๐‘Ÿฬ…0(๐‘ฅ), ๐‘Ÿฬ…1(๐‘ฅ), โ‹ฏ , ๐‘Ÿฬ…๐‘™(๐‘ฅ)
We need to explain that Algorithm 2 is equivalent to the corresponding algorithm in [4] and we
just use polynomials to express the output instead of a matrix in [4].
Then we will present some results of ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ))and ๐‘™๐‘(๐‘Ÿฬ…๐‘–).
Lemma 3. Let ๐‘Ÿ1(๐‘ฅ), โ‹ฏ, ๐‘Ÿ๐‘™(๐‘ฅ) be the polynomial remainder sequence obtained in improved
subresultant algorithm. Then ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ))|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–โˆ’1(๐‘ฅ)) for 0 โ‰ค ๐‘– โ‰ค ๐‘™ โˆ’ 1.
Proof. We prove this lemma by induction on ๐‘–, ๐‘– = 0, โ€ฆ , ๐‘™ โˆ’ 1.
Suppose that ๐ป is the Hermite Normal Form over the ideal lattice โ„’ generated by ๐‘”(๐‘ฅ) โˆˆ
โ„ค[๐‘ฅ]/โŒฉ๐‘“(๐‘ฅ)โŒช, and ๐‘Ÿ๐‘–(๐‘ฅ) belongs to โ„’. When ๐‘– = 0, because ๐‘Ÿ0(๐‘ฅ) generates the ideal lattice โ„’ ,
then all the vectors in โ„’ can be divided exactly by ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ0(๐‘ฅ)).
Next we suppose that when ๐‘– โ‰ค ๐‘˜ โˆ’ 1, ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–โˆ’1(๐‘ฅ))|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)), then we need to show that
๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ))|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜+1(๐‘ฅ)).
Consider the (๐‘˜ + 1)-th equation in improved subresultant algorithm,
๐›ผ๐‘˜+1๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ) = ๐‘ž๐‘˜+1(๐‘ฅ)๐‘Ÿ๐‘˜(๐‘ฅ) + ๐›ฝ๐‘˜+1(๐‘ฅ)๐‘Ÿ๐‘˜+1(๐‘ฅ),
then we know ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ))
๐›ฟ๐‘˜โˆ’1+1
|๐›ฝ๐‘˜+1๐‘Ÿ๐‘˜+1(๐‘ฅ). Because
๐‘ก๐‘˜+1(๐‘ฅ) = (๐›ผ๐‘˜+1๐‘ก๐‘˜โˆ’1(๐‘ฅ) โˆ’ ๐‘ž๐‘˜+1(๐‘ฅ)๐‘ก๐‘˜(๐‘ฅ)) ๐›ฝ๐‘˜+1
โ„ ,
๐›ฝ๐‘˜+1 must contain a factor as the content of ๐›ผ๐‘˜+1๐‘ก๐‘˜โˆ’1(๐‘ฅ) โˆ’ ๐‘ž๐‘˜+1(๐‘ฅ)๐‘ก๐‘˜(๐‘ฅ) . Also ๐›ผ๐‘˜+1 =
๐‘™๐‘(๐‘Ÿ๐‘˜)๐›ฟ๐‘˜โˆ’1+1
, (๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ))
๐›ฟ๐‘˜โˆ’1
)|๐‘ž๐‘˜+1(๐‘ฅ) due to Proposition 1. Based on the
assumption(๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ)), so (๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ))
๐›ฟ๐‘˜โˆ’1
) |๐›ฝ๐‘˜+1.
If (๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ)) โˆค ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜+1(๐‘ฅ)) , then there exists a prime ๐‘Ž such that ๐‘Ž|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ)) and
(๐‘Ž โˆ™ ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ))
๐›ฟ๐‘˜โˆ’1
) |๐›ฝ๐‘˜+1. We give 2 cases as following:
1) ๐‘Ž โˆ™ ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ)) โˆค ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ)) , which means that ๐‘Ž โˆค ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ)) and ๐‘Ž โˆค
๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ))
๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))
. According to Proposition 1, we know ๐‘Ÿ๐‘˜+1(๐‘ฅ) = โˆ‘ โˆ†
ฬ…๐‘›๐‘˜โˆ’1,๐‘— ๐‘ฅ๐‘—
๐›ฝ๐‘˜+1
โ„
๐‘›๐‘˜โˆ’1
๐‘—=0 , here
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022
12
โˆ†
ฬ…๐‘›๐‘˜โˆ’1,๐‘— is the determinant of the (๐›ฟ๐‘˜โˆ’1 + 2) ร— (๐›ฟ๐‘˜โˆ’1 + 2) matrix obtained by deleting the
last ๐‘›๐‘˜ columns except column ๐‘›๐‘˜โˆ’1 + 1 โˆ’ ๐‘— from ๐‘€ , ๐‘— = 0, โ€ฆ , ๐‘›๐‘˜ โˆ’ 1 . Because ๐‘Ž โˆค
๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ)
๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))
, there exits a ๐‘— > 1 such that ๐‘Ž|๐‘€๐‘—(๐‘ฅ), which means ๐‘Ž|
๐‘™๐‘(๐‘Ÿ๐‘˜)
๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ))
. Thus we
obtan (๐‘Ž โˆ™ ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ))
๐›ฟ๐‘˜โˆ’1
) |๐›ผ๐‘˜+1 . According to equation ๐‘ก๐‘˜+1(๐‘ฅ) =
(๐›ผ๐‘˜+1๐‘ก๐‘˜โˆ’1(๐‘ฅ) โˆ’ ๐‘ž๐‘˜+1(๐‘ฅ)๐‘ก๐‘˜(๐‘ฅ)) ๐›ฝ๐‘˜+1
โ„ ,we have that
(๐‘Ž โˆ™ ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ))
๐›ฟ๐‘˜โˆ’1
) |๐‘ž๐‘˜+1(๐‘ฅ).
(๐‘Ž โˆ™ ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ))
๐›ฟ๐‘˜โˆ’1
) |๐›ฝ๐‘˜+1๐‘Ÿ๐‘˜+1(๐‘ฅ), which means we have get
๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ))|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜+1(๐‘ฅ)).
2) ๐‘Ž โˆ™ ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ)). Because ๐›ผ๐‘˜+1 = ๐‘™๐‘(๐‘Ÿ๐‘˜)๐›ฟ๐‘˜โˆ’1+1
, then we have result that
๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ))๐›ฟ๐‘˜โˆ’1+1
|๐›ผ๐‘˜+1 , thus (๐‘Ž โˆ™ ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ))
๐›ฟ๐‘˜โˆ’1
) |๐›ผ๐‘˜+1 . As the same
step in case 1, we still get ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ))|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜+1(๐‘ฅ)).
So in conclusion we obtain ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ))|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜+1(๐‘ฅ)). The proof is completed.
Lemma 4. Let ๐‘Ÿ1(๐‘ฅ), โ‹ฏ, ๐‘Ÿ๐‘™(๐‘ฅ) be the polynomial remainder sequence obtained in improved
resultant algorithm and ๐‘Ÿ1
ฬ…(๐‘ฅ), โ‹ฏ , ๐‘Ÿ๐‘™
ฬ…(๐‘ฅ) be the output of Algorithm 2. If
gcd(๐‘™๐‘(๐‘Ÿ๐‘–),๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–+1(๐‘ฅ))) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)) for ๐‘– โ‰ค ๐‘™ โˆ’ 1 , then ๐‘™๐‘(๐‘Ÿฬ…๐‘–) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)) .
Moreover, ๐‘™๐‘(๐‘Ÿฬ…๐‘–)|๐‘Ÿ๐‘–
ฬ…(๐‘ฅ).
Proof. We notice that from Algorithm 2, ๐‘Ÿฬ…๐‘–(๐‘ฅ) = ๐œ“๐‘Ÿ๐‘–(๐‘ฅ) + ๐œ™๐‘Ÿฬ…๐‘–+1(๐‘ฅ)๐‘ฅ๐›ฟ๐‘– , where ๐œ“ and ๐œ™
satisfy ๐œ“๐‘™๐‘(๐‘Ÿ๐‘–) + ๐œ™๐‘™๐‘(๐‘Ÿฬ…๐‘–+1) = gcd(๐‘™๐‘(๐‘Ÿ๐‘–),๐‘™๐‘(๐‘Ÿฬ…๐‘–+1)) = ๐‘™๐‘(๐‘Ÿฬ…๐‘–) . If we already have
gcd(๐‘™๐‘(๐‘Ÿ๐‘–),๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–+1(๐‘ฅ))) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)) and ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–+1(๐‘ฅ)) = ๐‘™๐‘(๐‘Ÿฬ…๐‘–+1), then we have ๐‘™๐‘(๐‘Ÿฬ…๐‘–) =
๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)).
When ๐‘– = ๐‘™, this is a trivial result because ๐‘™๐‘(๐‘Ÿฬ…๐‘™) = ๐‘Ÿฬ…๐‘™(๐‘ฅ) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘™(๐‘ฅ)). So we know ๐‘™๐‘(๐‘Ÿฬ…๐‘™โˆ’1) =
๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘™โˆ’1(๐‘ฅ)),๐‘™๐‘(๐‘Ÿฬ…๐‘™โˆ’2) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘™โˆ’2(๐‘ฅ)), โ€ฆ,, and so on. Thus, if gcd(๐‘™๐‘(๐‘Ÿ๐‘–), ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–+1(๐‘ฅ))) =
๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)) for ๐‘– โ‰ค ๐‘™ โˆ’ 1, then ๐‘™๐‘(๐‘Ÿฬ…๐‘–) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)).
For the second part, according to the assumption, gcd(๐‘™๐‘(๐‘Ÿ๐‘–),๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–+1(๐‘ฅ))) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)),
then ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ))|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–+1(๐‘ฅ)) . Also ๐‘Ÿฬ…๐‘–(๐‘ฅ) = ๐œ“๐‘Ÿ๐‘–(๐‘ฅ) + ๐œ™๐‘Ÿฬ…๐‘–+1(๐‘ฅ)๐‘ฅ๐›ฟ๐‘– , so ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ))|๐‘Ÿฬ…๐‘–(๐‘ฅ) .
Due to ๐‘™๐‘(๐‘Ÿฬ…๐‘–) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)), we know that ๐‘™๐‘(๐‘Ÿฬ…๐‘–) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ))|๐‘Ÿฬ…๐‘–(๐‘ฅ), for 0 โ‰ค ๐‘– โ‰ค ๐‘™.
Lemma 5. Let ๐‘Ÿ1(๐‘ฅ), โ‹ฏ, ๐‘Ÿ๐‘™(๐‘ฅ) be the polynomial remainder sequence obtained in improved
resultant algorithm. Then gcd(๐‘™๐‘(๐‘Ÿ๐‘–),๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–+1(๐‘ฅ))) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)).
Proof. We prove this lemma by induction on ๐‘–, ๐‘– = 1, โ€ฆ , ๐‘™ โˆ’ 1.
First, suppose that ๐‘ฏ is the Hermite Normal Form of the ideal lattice โ„’ generated by ๐‘”(๐‘ฅ) โˆˆ
โ„ค[๐‘ฅ]/โŒฉ๐‘“(๐‘ฅ)โŒช, and ๐‘Ÿ๐‘–(๐‘ฅ) belongs to โ„’. Denote
๐‘™๐‘(๐‘Ÿ๐‘–)
๐‘™๐‘(๐ป๐‘›โˆ’๐‘›๐‘–
)
as ๐›พ๐‘– and ๐‘‘๐‘– = ๐‘› โˆ’ ๐‘›๐‘–, here ๐‘ฏ๐‘–(๐‘ฅ) is the
corresponding polynomial of the ๐‘– -th row, then ๐‘Ÿ๐‘–(๐‘ฅ) = ๐›พ๐‘–๐‘ฏ๐‘‘๐‘–
(๐‘ฅ) + โˆ‘ ๐ด๐‘–,๐‘—(๐‘ฅ)
๐‘™
๐‘—=๐‘–+1 ๐‘ฏ๐‘‘๐‘—
(๐‘ฅ) ,
where deg(๐ด๐‘–,๐‘—) < ๐‘›๐‘– โˆ’ ๐‘›๐‘—.
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022
13
From Lemma 4, ๐‘™๐‘ (๐‘ฏ๐‘‘๐‘—
) |๐‘ฏ๐‘‘๐‘—
(๐‘ฅ), for ๐‘– โ‰ค ๐‘— โ‰ค ๐‘™ . So ๐‘™๐‘(๐‘ฏ๐‘‘๐‘–
)|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)). Because ๐‘Ÿ๐‘–(๐‘ฅ) =
๐‘ก๐‘–(๐‘ฅ)๐‘”(๐‘ฅ)๐‘š๐‘œ๐‘‘๐‘“(๐‘ฅ) belongs to โ„’ and ๐‘ก๐‘–(๐‘ฅ) is primitive, then gcd(๐›พ๐‘–, ๐ด๐‘–,๐‘–+1(๐‘ฅ), โ€ฆ , ๐ด๐‘–,๐‘™(๐‘ฅ)) = 1,
thus there exists some ๐‘– < ๐‘˜ โ‰ค ๐‘™ , ๐‘๐‘œ๐‘›๐‘ก (
๐‘Ÿ๐‘–(๐‘ฅ)
๐‘™๐‘(๐ป๐‘‘๐‘–
)
) = gcd(๐›พ๐‘–,
๐‘™๐‘(๐ป๐‘‘๐‘˜
)
๐‘™๐‘(๐ป๐‘‘๐‘–
)
) , which means that
๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)) = gcd(๐‘™๐‘(๐‘Ÿ๐‘–),๐‘™๐‘(๐ป๐‘‘๐‘˜
)). So every content of ๐‘Ÿ๐‘–(๐‘ฅ) must be a factor of ๐‘ฏ๐‘›. Specially,
we have ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘™โˆ’1(๐‘ฅ)) = ๐‘™๐‘(๐‘Ÿฬ…๐‘™โˆ’1), which shows that the result holds for ๐‘– = ๐‘™ โˆ’ 1.
Now assume that for ๐‘– โ‰ฅ ๐‘˜ , we have gcd(๐‘™๐‘(๐‘Ÿ๐‘–),๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–+1(๐‘ฅ)) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)) . Then from
Lemma 3, we have ๐‘™๐‘(๐‘Ÿฬ…๐‘–) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)).
Next we consider ๐‘˜ โˆ’ 1, from the Algorithm 2, gcd(๐‘™๐‘(๐‘Ÿ๐‘˜โˆ’1), ๐‘™๐‘(๐‘Ÿฬ…๐‘˜)) = ๐‘™๐‘(๐‘Ÿฬ…๐‘˜โˆ’1). Then because
๐‘™๐‘(๐‘Ÿฬ…๐‘–) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)) for ๐‘– โ‰ฅ ๐‘˜, gcd(๐‘™๐‘(๐‘Ÿ๐‘˜โˆ’1), ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ))) = ๐‘™๐‘(๐‘Ÿฬ…๐‘˜โˆ’1). So we need to show
๐‘™๐‘(๐‘Ÿฬ…๐‘˜โˆ’1) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ)).
First, ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))|๐‘™๐‘(๐‘Ÿ๐‘˜โˆ’1) and according to the Lemma 3, ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿฬ…๐‘˜(๐‘ฅ)), so
๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))|gcd(๐‘™๐‘(๐‘Ÿ๐‘˜โˆ’1), ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ))) = ๐‘™๐‘(๐‘Ÿฬ…๐‘˜โˆ’1) . We suppose ๐‘™๐‘(๐‘Ÿฬ…๐‘˜โˆ’1) = ๐‘Ž โˆ™
๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ)) for a prime ๐‘Ž. According to Lemma 4, ๐‘™๐‘(๐‘Ÿฬ…๐‘–) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿฬ…๐‘–(๐‘ฅ)) for
๐‘– โ‰ฅ ๐‘˜ , so we have ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿฬ…๐‘˜โˆ’1(๐‘ฅ)) . Also the step diminishes the leading
coefficient and ๐‘™๐‘(๐‘Ÿฬ…๐‘˜โˆ’1)|๐‘™๐‘(๐‘Ÿ๐‘˜โˆ’1), then ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿฬ…๐‘˜โˆ’1(๐‘ฅ)) โ‰ค ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ)). So ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ)) =
๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿฬ…๐‘˜โˆ’1(๐‘ฅ)).
Consider the๐‘˜-th equation in improved subresultant algorithm,
๐›ผ๐‘˜๐‘Ÿ๐‘˜โˆ’2(๐‘ฅ) = ๐‘ž๐‘˜(๐‘ฅ)๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ) + ๐›ฝ๐‘˜๐‘Ÿ๐‘˜(๐‘ฅ)
here ๐›ผ๐‘˜ = ๐‘™๐‘(๐‘Ÿ๐‘˜โˆ’1)๐›ฟ๐‘˜โˆ’2+1
. Because ๐‘Ž โˆ™ ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))|๐‘™๐‘(๐‘Ÿ๐‘˜โˆ’1) and ๐‘Ž โˆ™
๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ)) , we know that ๐‘Ž โˆ™ (๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ)))
๐›ฟ๐‘˜โˆ’2+1
|๐›ผ๐‘˜ and ๐‘Ž โˆ™
๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))|๐‘Ÿ๐‘˜(๐‘ฅ) , which means, if we divide the equation above by ๐œ‡ = ๐‘Ž โˆ™
(๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ)))
๐›ฟ๐‘˜โˆ’2+1
๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’2(๐‘ฅ)), then
๐›ผ๐‘˜๐‘Ÿ๐‘˜โˆ’2(๐‘ฅ)
๐œ‡
and
๐›ฝ๐‘˜๐‘Ÿ๐‘˜(๐‘ฅ)
๐œ‡
both belong to โ„ค[๐‘ฅ], while
๐‘ž๐‘˜(๐‘ฅ)๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ)
๐œ‡
doesn't. This is a contradiction. So the proof is completed.
Using the results above, we realize that ๐‘™๐‘(๐‘ก๐‘–) is related to ๐œ๐‘– which is the unknown. We tried
some equations and found the following equation,
gcd(๐‘™๐‘(๐‘ก๐‘–), ๐‘™๐‘(๐‘Ÿฬ…๐‘–โˆ’1)) = ๐‘”๐‘๐‘‘ (
๐‘™๐‘(๐‘Ÿ๐‘–โˆ’1)
๐‘™๐‘(๐‘Ÿฬ…๐‘–โˆ’1)
, ๐‘™๐‘(๐‘Ÿฬ…๐‘–โˆ’1))
for ๐‘– = 0,1,2, โ‹ฏ, ๐‘™.Also in our experiments, the conjecture hold with extremely high probability.
4. A NEW ALGORITHM FOR COMPUTATION OF POLYNOMIAL GREATEST
COMMON
In this section, we give a probabilistic subresultant algorithm by applying the results in the last
section. We need to emphasis that the algorithm is not deterministic yet. The detail of the
algorithm is present as following.
Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022
14
Algorithm 3 Probabilistic Subresultant Algorithm
Input: two polynomials ๐‘“(๐‘ฅ), ๐‘”(๐‘ฅ) โˆˆ โ„ค[๐‘ฅ] with degree ๐‘› and ๐‘š respectively and ๐‘“(๐‘ฅ) is monic and
irreducible
Output: Probabilistic subresultant PRS, ๐‘Ÿ0(๐‘ฅ), ๐‘Ÿ1(๐‘ฅ), โ‹ฏ
1.[Initialize] ๐‘™ โ† โ„Ž โ† 1, ๐‘ข1(๐‘ฅ) โ† ๐‘“(๐‘ฅ),๐‘ข2(๐‘ฅ) โ† ๐‘”(๐‘ฅ),๐‘– โ† 1
2.Compute ๐‘™๐‘(๐‘ข2)๐›ฟ+1
๐‘ข1(๐‘ฅ) โˆ’ ๐‘ž(๐‘ฅ)๐‘ข2(๐‘ฅ) = ๐‘Ÿ(๐‘ฅ), here ๐‘‘๐‘’๐‘”(๐‘Ÿ) < ๐‘‘๐‘’๐‘”(๐‘ข2), ๐›ฟ = ๐‘‘๐‘’๐‘”(๐‘ข1) โˆ’ ๐‘‘๐‘’๐‘”(๐‘ข2)
3.๐‘ข(๐‘ฅ) โ† ๐‘ข1(๐‘ฅ), ๐‘ข1(๐‘ฅ) โ† ๐‘ข2(๐‘ฅ), ๐‘ข2(๐‘ฅ) โ† ๐‘Ÿ(๐‘ฅ)
4.When ๐‘‘๐‘’๐‘”(๐‘ข2) โ‰  0,
4.1 ๐‘™ โ† ๐‘™๐‘(๐‘ข2), โ„Ž โ† ๐‘™๐›ฟ
โ„Ž1โˆ’๐›ฟ
4.2 ๐œ โ† gcd(โ„Ž, ๐‘๐‘œ๐‘›๐‘ก(๐‘ข2(๐‘ฅ))), ๐œโ€ฒ โ† gcd(๐‘™๐‘(๐‘ข)/๐‘๐‘œ๐‘›๐‘ก(๐‘ข(๐‘ฅ)), ๐‘๐‘œ๐‘›๐‘ก(๐‘ข(๐‘ฅ)))
4.3 ๐œ โ†/๐œโ€ฒ, ๐‘Ÿ๐‘–(๐‘ฅ) โ† ๐‘Ÿ(๐‘ฅ)/(๐‘™โ„Ž๐›ฟ
๐œ)
4.4 ๐›ฟ = ๐‘‘๐‘’๐‘”(๐‘ข1) โˆ’ ๐‘‘๐‘’๐‘”(๐‘ข2)
4.5 Compute ๐‘™๐‘(๐‘ข2)๐›ฟ+1
๐‘ข1(๐‘ฅ) โˆ’ ๐‘ž(๐‘ฅ)๐‘ข2(๐‘ฅ) = ๐‘Ÿ(๐‘ฅ), ๐‘‘๐‘’๐‘”(๐‘Ÿ) < ๐‘‘๐‘’๐‘”(๐‘ข2), ๐›ฟ = ๐‘‘๐‘’๐‘”(๐‘ข1) โˆ’ ๐‘‘๐‘’๐‘”(๐‘ข2)
4.6 ๐‘ข(๐‘ฅ) โ† ๐‘ข1(๐‘ฅ), ๐‘ข1(๐‘ฅ) โ† ๐‘ข2(๐‘ฅ), ๐‘ข2(๐‘ฅ) โ† ๐‘Ÿ(๐‘ฅ)/(๐‘™โ„Ž๐›ฟ
)
4.7 ๐‘– โ† ๐‘– + 1
5.[Return] ๐‘Ÿ0(๐‘ฅ), ๐‘Ÿ1(๐‘ฅ), โ‹ฏ
For the often-used polynomials in ideal lattice-based cryptography ๐‘ฅ๐‘›
+ 1 and ๐‘ฅ๐‘›
โˆ’ ๐‘ฅ โˆ’ 1, here
๐‘› is a power of 2, we give the experiment results. For each polynomial, we sample 10000
examples randomly with coefficients in the range [-20,20] and the correctness is present below.
Polynomial ๐‘ฅ๐‘›
+ 1 ๐‘ฅ๐‘›
โˆ’ ๐‘ฅ โˆ’ 1
Correctness 97.88% 99.73%
5. CONCLUSIONS
In this paper, we give some results about the contents and small factors of remainders during
Euclidean algorithm of polynomials. By applying these results, we proposed a probabilistic
subresultant which can output correct remainders with high probability.
Due to the case of failure, the next research will be focus on the exact expression of each ๐œ๐‘– and
relation between ๐‘™๐‘(๐‘ก๐‘–) and cont(๐‘Ÿ๐‘—(๐‘ฅ)) to obtain a determinisitic improved subresultant
algorithm.
REFERENCES
[1] G.E. Collins. Subresultants and reduced polynomial remainder sequences. J. ACM, 14(1): 128--142
(1967)
[2] D.E. Knuth. The art of computer programming. Seminumerical Algorithms. vol. 2, 3rd Edition, 1998
(1st Edition, 1969)
[3] W.S. Brown. The subresultant PRS algorithm. ACM Trans. Math. Software, 4(3):237--249 (1978)
[4] Y. Zhang, R.Z. Liu, D.D. Lin. Fast Triangularization of Ideal Latttice Basis. Journal of Electronics
and Information Technology, 42(1): 98-104 (2020)
[5] Y. Zhang, R.Z. Liu, D.D. Lin. Improved Key Generation Algorithm for Gentry's Fully Homomorphic
Encryption Scheme. ICISC: 97-111 (2018)
[6] J Gathen, T Lรผcking. Subresultants Revisited. Latin American Symposium on Theoretical
Informatics, LNCS 1776: 318โ€“342

More Related Content

Similar to A Probabilistic Algorithm for Computation of Polynomial Greatest Common with Smaller Factors

Some Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric SpaceSome Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric SpaceIOSR Journals
ย 
A05330107
A05330107A05330107
A05330107IOSR-JEN
ย 
Some properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spacesSome properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spacesIOSR Journals
ย 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine LearningSEMINARGROOT
ย 
New Information on the Generalized Euler-Tricomi Equation
New Information on the Generalized Euler-Tricomi Equation New Information on the Generalized Euler-Tricomi Equation
New Information on the Generalized Euler-Tricomi Equation Lossian Barbosa Bacelar Miranda
ย 
2 borgs
2 borgs2 borgs
2 borgsYandex
ย 
Lecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typedLecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typedcairo university
ย 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...Lossian Barbosa Bacelar Miranda
ย 
Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Kevin Johnson
ย 
Fuzzy algebra
Fuzzy algebra Fuzzy algebra
Fuzzy algebra FatimaSuriyya
ย 
Symbolic Computation via Grรถbner Basis
Symbolic Computation via Grรถbner BasisSymbolic Computation via Grรถbner Basis
Symbolic Computation via Grรถbner BasisIJERA Editor
ย 
Lecture about interpolation
Lecture about interpolationLecture about interpolation
Lecture about interpolationRustam Pasennangi
ย 
A Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary ConditionA Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary ConditionIJMERJOURNAL
ย 
Matrix Transformations on Paranormed Sequence Spaces Related To De La Vallรฉe-...
Matrix Transformations on Paranormed Sequence Spaces Related To De La Vallรฉe-...Matrix Transformations on Paranormed Sequence Spaces Related To De La Vallรฉe-...
Matrix Transformations on Paranormed Sequence Spaces Related To De La Vallรฉe-...inventionjournals
ย 

Similar to A Probabilistic Algorithm for Computation of Polynomial Greatest Common with Smaller Factors (20)

Some Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric SpaceSome Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
Some Common Fixed Point Results for Expansive Mappings in a Cone Metric Space
ย 
A05330107
A05330107A05330107
A05330107
ย 
Some properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spacesSome properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spaces
ย 
Differential Geometry for Machine Learning
Differential Geometry for Machine LearningDifferential Geometry for Machine Learning
Differential Geometry for Machine Learning
ย 
A0280106
A0280106A0280106
A0280106
ย 
New Information on the Generalized Euler-Tricomi Equation
New Information on the Generalized Euler-Tricomi Equation New Information on the Generalized Euler-Tricomi Equation
New Information on the Generalized Euler-Tricomi Equation
ย 
2 borgs
2 borgs2 borgs
2 borgs
ย 
Lecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typedLecture 11 state observer-2020-typed
Lecture 11 state observer-2020-typed
ย 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
ย 
lec14.ppt
lec14.pptlec14.ppt
lec14.ppt
ย 
5. Rania.pdf
5. Rania.pdf5. Rania.pdf
5. Rania.pdf
ย 
5. Rania.pdf
5. Rania.pdf5. Rania.pdf
5. Rania.pdf
ย 
Lesson 3: Problem Set 4
Lesson 3: Problem Set 4Lesson 3: Problem Set 4
Lesson 3: Problem Set 4
ย 
Fuzzy algebra
Fuzzy algebra Fuzzy algebra
Fuzzy algebra
ย 
Math Analysis I
Math Analysis I Math Analysis I
Math Analysis I
ย 
Symbolic Computation via Grรถbner Basis
Symbolic Computation via Grรถbner BasisSymbolic Computation via Grรถbner Basis
Symbolic Computation via Grรถbner Basis
ย 
Lecture about interpolation
Lecture about interpolationLecture about interpolation
Lecture about interpolation
ย 
A Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary ConditionA Non Local Boundary Value Problem with Integral Boundary Condition
A Non Local Boundary Value Problem with Integral Boundary Condition
ย 
lec23.ppt
lec23.pptlec23.ppt
lec23.ppt
ย 
Matrix Transformations on Paranormed Sequence Spaces Related To De La Vallรฉe-...
Matrix Transformations on Paranormed Sequence Spaces Related To De La Vallรฉe-...Matrix Transformations on Paranormed Sequence Spaces Related To De La Vallรฉe-...
Matrix Transformations on Paranormed Sequence Spaces Related To De La Vallรฉe-...
ย 

More from mathsjournal

OPTIMIZING SIMILARITY THRESHOLD FOR ABSTRACT SIMILARITY METRIC IN SPEECH DIAR...
OPTIMIZING SIMILARITY THRESHOLD FOR ABSTRACT SIMILARITY METRIC IN SPEECH DIAR...OPTIMIZING SIMILARITY THRESHOLD FOR ABSTRACT SIMILARITY METRIC IN SPEECH DIAR...
OPTIMIZING SIMILARITY THRESHOLD FOR ABSTRACT SIMILARITY METRIC IN SPEECH DIAR...mathsjournal
ย 
A POSSIBLE RESOLUTION TO HILBERTโ€™S FIRST PROBLEM BY APPLYING CANTORโ€™S DIAGONA...
A POSSIBLE RESOLUTION TO HILBERTโ€™S FIRST PROBLEM BY APPLYING CANTORโ€™S DIAGONA...A POSSIBLE RESOLUTION TO HILBERTโ€™S FIRST PROBLEM BY APPLYING CANTORโ€™S DIAGONA...
A POSSIBLE RESOLUTION TO HILBERTโ€™S FIRST PROBLEM BY APPLYING CANTORโ€™S DIAGONA...mathsjournal
ย 
A Positive Integer ๐‘ต Such That ๐’‘๐’ + ๐’‘๐’+๐Ÿ‘ ~ ๐’‘๐’+๐Ÿ + ๐’‘๐’+๐Ÿ For All ๐’ โ‰ฅ ๐‘ต
A Positive Integer ๐‘ต Such That ๐’‘๐’ + ๐’‘๐’+๐Ÿ‘ ~ ๐’‘๐’+๐Ÿ + ๐’‘๐’+๐Ÿ For All ๐’ โ‰ฅ ๐‘ตA Positive Integer ๐‘ต Such That ๐’‘๐’ + ๐’‘๐’+๐Ÿ‘ ~ ๐’‘๐’+๐Ÿ + ๐’‘๐’+๐Ÿ For All ๐’ โ‰ฅ ๐‘ต
A Positive Integer ๐‘ต Such That ๐’‘๐’ + ๐’‘๐’+๐Ÿ‘ ~ ๐’‘๐’+๐Ÿ + ๐’‘๐’+๐Ÿ For All ๐’ โ‰ฅ ๐‘ตmathsjournal
ย 
A POSSIBLE RESOLUTION TO HILBERTโ€™S FIRST PROBLEM BY APPLYING CANTORโ€™S DIAGONA...
A POSSIBLE RESOLUTION TO HILBERTโ€™S FIRST PROBLEM BY APPLYING CANTORโ€™S DIAGONA...A POSSIBLE RESOLUTION TO HILBERTโ€™S FIRST PROBLEM BY APPLYING CANTORโ€™S DIAGONA...
A POSSIBLE RESOLUTION TO HILBERTโ€™S FIRST PROBLEM BY APPLYING CANTORโ€™S DIAGONA...mathsjournal
ย 
Moving Target Detection Using CA, SO and GO-CFAR detectors in Nonhomogeneous ...
Moving Target Detection Using CA, SO and GO-CFAR detectors in Nonhomogeneous ...Moving Target Detection Using CA, SO and GO-CFAR detectors in Nonhomogeneous ...
Moving Target Detection Using CA, SO and GO-CFAR detectors in Nonhomogeneous ...mathsjournal
ย 
OPTIMIZING SIMILARITY THRESHOLD FOR ABSTRACT SIMILARITY METRIC IN SPEECH DIAR...
OPTIMIZING SIMILARITY THRESHOLD FOR ABSTRACT SIMILARITY METRIC IN SPEECH DIAR...OPTIMIZING SIMILARITY THRESHOLD FOR ABSTRACT SIMILARITY METRIC IN SPEECH DIAR...
OPTIMIZING SIMILARITY THRESHOLD FOR ABSTRACT SIMILARITY METRIC IN SPEECH DIAR...mathsjournal
ย 
The Impact of Allee Effect on a Predator-Prey Model with Holling Type II Func...
The Impact of Allee Effect on a Predator-Prey Model with Holling Type II Func...The Impact of Allee Effect on a Predator-Prey Model with Holling Type II Func...
The Impact of Allee Effect on a Predator-Prey Model with Holling Type II Func...mathsjournal
ย 
A POSSIBLE RESOLUTION TO HILBERTโ€™S FIRST PROBLEM BY APPLYING CANTORโ€™S DIAGONA...
A POSSIBLE RESOLUTION TO HILBERTโ€™S FIRST PROBLEM BY APPLYING CANTORโ€™S DIAGONA...A POSSIBLE RESOLUTION TO HILBERTโ€™S FIRST PROBLEM BY APPLYING CANTORโ€™S DIAGONA...
A POSSIBLE RESOLUTION TO HILBERTโ€™S FIRST PROBLEM BY APPLYING CANTORโ€™S DIAGONA...mathsjournal
ย 
Moving Target Detection Using CA, SO and GO-CFAR detectors in Nonhomogeneous ...
Moving Target Detection Using CA, SO and GO-CFAR detectors in Nonhomogeneous ...Moving Target Detection Using CA, SO and GO-CFAR detectors in Nonhomogeneous ...
Moving Target Detection Using CA, SO and GO-CFAR detectors in Nonhomogeneous ...mathsjournal
ย 
OPTIMIZING SIMILARITY THRESHOLD FOR ABSTRACT SIMILARITY METRIC IN SPEECH DIAR...
OPTIMIZING SIMILARITY THRESHOLD FOR ABSTRACT SIMILARITY METRIC IN SPEECH DIAR...OPTIMIZING SIMILARITY THRESHOLD FOR ABSTRACT SIMILARITY METRIC IN SPEECH DIAR...
OPTIMIZING SIMILARITY THRESHOLD FOR ABSTRACT SIMILARITY METRIC IN SPEECH DIAR...mathsjournal
ย 
Modified Alpha-Rooting Color Image Enhancement Method on the Two Side 2-D Qua...
Modified Alpha-Rooting Color Image Enhancement Method on the Two Side 2-D Qua...Modified Alpha-Rooting Color Image Enhancement Method on the Two Side 2-D Qua...
Modified Alpha-Rooting Color Image Enhancement Method on the Two Side 2-D Qua...mathsjournal
ย 
A Study on L-Fuzzy Normal Subl-GROUP
A Study on L-Fuzzy Normal Subl-GROUPA Study on L-Fuzzy Normal Subl-GROUP
A Study on L-Fuzzy Normal Subl-GROUPmathsjournal
ย 
An Application of Assignment Problem in Laptop Selection Problem Using MATLAB
An Application of Assignment Problem in Laptop Selection Problem Using MATLABAn Application of Assignment Problem in Laptop Selection Problem Using MATLAB
An Application of Assignment Problem in Laptop Selection Problem Using MATLABmathsjournal
ย 
ON ฮฒ-Normal Spaces
ON ฮฒ-Normal SpacesON ฮฒ-Normal Spaces
ON ฮฒ-Normal Spacesmathsjournal
ย 
Cubic Response Surface Designs Using Bibd in Four Dimensions
Cubic Response Surface Designs Using Bibd in Four DimensionsCubic Response Surface Designs Using Bibd in Four Dimensions
Cubic Response Surface Designs Using Bibd in Four Dimensionsmathsjournal
ย 
Quantum Variation about Geodesics
Quantum Variation about GeodesicsQuantum Variation about Geodesics
Quantum Variation about Geodesicsmathsjournal
ย 
Approximate Analytical Solution of Non-Linear Boussinesq Equation for the Uns...
Approximate Analytical Solution of Non-Linear Boussinesq Equation for the Uns...Approximate Analytical Solution of Non-Linear Boussinesq Equation for the Uns...
Approximate Analytical Solution of Non-Linear Boussinesq Equation for the Uns...mathsjournal
ย 
Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...
Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...
Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...mathsjournal
ย 
Table of Contents - September 2022, Volume 9, Number 2/3
Table of Contents - September 2022, Volume 9, Number 2/3Table of Contents - September 2022, Volume 9, Number 2/3
Table of Contents - September 2022, Volume 9, Number 2/3mathsjournal
ย 
Code of the multidimensional fractional pseudo-Newton method using recursive ...
Code of the multidimensional fractional pseudo-Newton method using recursive ...Code of the multidimensional fractional pseudo-Newton method using recursive ...
Code of the multidimensional fractional pseudo-Newton method using recursive ...mathsjournal
ย 

More from mathsjournal (20)

OPTIMIZING SIMILARITY THRESHOLD FOR ABSTRACT SIMILARITY METRIC IN SPEECH DIAR...
OPTIMIZING SIMILARITY THRESHOLD FOR ABSTRACT SIMILARITY METRIC IN SPEECH DIAR...OPTIMIZING SIMILARITY THRESHOLD FOR ABSTRACT SIMILARITY METRIC IN SPEECH DIAR...
OPTIMIZING SIMILARITY THRESHOLD FOR ABSTRACT SIMILARITY METRIC IN SPEECH DIAR...
ย 
A POSSIBLE RESOLUTION TO HILBERTโ€™S FIRST PROBLEM BY APPLYING CANTORโ€™S DIAGONA...
A POSSIBLE RESOLUTION TO HILBERTโ€™S FIRST PROBLEM BY APPLYING CANTORโ€™S DIAGONA...A POSSIBLE RESOLUTION TO HILBERTโ€™S FIRST PROBLEM BY APPLYING CANTORโ€™S DIAGONA...
A POSSIBLE RESOLUTION TO HILBERTโ€™S FIRST PROBLEM BY APPLYING CANTORโ€™S DIAGONA...
ย 
A Positive Integer ๐‘ต Such That ๐’‘๐’ + ๐’‘๐’+๐Ÿ‘ ~ ๐’‘๐’+๐Ÿ + ๐’‘๐’+๐Ÿ For All ๐’ โ‰ฅ ๐‘ต
A Positive Integer ๐‘ต Such That ๐’‘๐’ + ๐’‘๐’+๐Ÿ‘ ~ ๐’‘๐’+๐Ÿ + ๐’‘๐’+๐Ÿ For All ๐’ โ‰ฅ ๐‘ตA Positive Integer ๐‘ต Such That ๐’‘๐’ + ๐’‘๐’+๐Ÿ‘ ~ ๐’‘๐’+๐Ÿ + ๐’‘๐’+๐Ÿ For All ๐’ โ‰ฅ ๐‘ต
A Positive Integer ๐‘ต Such That ๐’‘๐’ + ๐’‘๐’+๐Ÿ‘ ~ ๐’‘๐’+๐Ÿ + ๐’‘๐’+๐Ÿ For All ๐’ โ‰ฅ ๐‘ต
ย 
A POSSIBLE RESOLUTION TO HILBERTโ€™S FIRST PROBLEM BY APPLYING CANTORโ€™S DIAGONA...
A POSSIBLE RESOLUTION TO HILBERTโ€™S FIRST PROBLEM BY APPLYING CANTORโ€™S DIAGONA...A POSSIBLE RESOLUTION TO HILBERTโ€™S FIRST PROBLEM BY APPLYING CANTORโ€™S DIAGONA...
A POSSIBLE RESOLUTION TO HILBERTโ€™S FIRST PROBLEM BY APPLYING CANTORโ€™S DIAGONA...
ย 
Moving Target Detection Using CA, SO and GO-CFAR detectors in Nonhomogeneous ...
Moving Target Detection Using CA, SO and GO-CFAR detectors in Nonhomogeneous ...Moving Target Detection Using CA, SO and GO-CFAR detectors in Nonhomogeneous ...
Moving Target Detection Using CA, SO and GO-CFAR detectors in Nonhomogeneous ...
ย 
OPTIMIZING SIMILARITY THRESHOLD FOR ABSTRACT SIMILARITY METRIC IN SPEECH DIAR...
OPTIMIZING SIMILARITY THRESHOLD FOR ABSTRACT SIMILARITY METRIC IN SPEECH DIAR...OPTIMIZING SIMILARITY THRESHOLD FOR ABSTRACT SIMILARITY METRIC IN SPEECH DIAR...
OPTIMIZING SIMILARITY THRESHOLD FOR ABSTRACT SIMILARITY METRIC IN SPEECH DIAR...
ย 
The Impact of Allee Effect on a Predator-Prey Model with Holling Type II Func...
The Impact of Allee Effect on a Predator-Prey Model with Holling Type II Func...The Impact of Allee Effect on a Predator-Prey Model with Holling Type II Func...
The Impact of Allee Effect on a Predator-Prey Model with Holling Type II Func...
ย 
A POSSIBLE RESOLUTION TO HILBERTโ€™S FIRST PROBLEM BY APPLYING CANTORโ€™S DIAGONA...
A POSSIBLE RESOLUTION TO HILBERTโ€™S FIRST PROBLEM BY APPLYING CANTORโ€™S DIAGONA...A POSSIBLE RESOLUTION TO HILBERTโ€™S FIRST PROBLEM BY APPLYING CANTORโ€™S DIAGONA...
A POSSIBLE RESOLUTION TO HILBERTโ€™S FIRST PROBLEM BY APPLYING CANTORโ€™S DIAGONA...
ย 
Moving Target Detection Using CA, SO and GO-CFAR detectors in Nonhomogeneous ...
Moving Target Detection Using CA, SO and GO-CFAR detectors in Nonhomogeneous ...Moving Target Detection Using CA, SO and GO-CFAR detectors in Nonhomogeneous ...
Moving Target Detection Using CA, SO and GO-CFAR detectors in Nonhomogeneous ...
ย 
OPTIMIZING SIMILARITY THRESHOLD FOR ABSTRACT SIMILARITY METRIC IN SPEECH DIAR...
OPTIMIZING SIMILARITY THRESHOLD FOR ABSTRACT SIMILARITY METRIC IN SPEECH DIAR...OPTIMIZING SIMILARITY THRESHOLD FOR ABSTRACT SIMILARITY METRIC IN SPEECH DIAR...
OPTIMIZING SIMILARITY THRESHOLD FOR ABSTRACT SIMILARITY METRIC IN SPEECH DIAR...
ย 
Modified Alpha-Rooting Color Image Enhancement Method on the Two Side 2-D Qua...
Modified Alpha-Rooting Color Image Enhancement Method on the Two Side 2-D Qua...Modified Alpha-Rooting Color Image Enhancement Method on the Two Side 2-D Qua...
Modified Alpha-Rooting Color Image Enhancement Method on the Two Side 2-D Qua...
ย 
A Study on L-Fuzzy Normal Subl-GROUP
A Study on L-Fuzzy Normal Subl-GROUPA Study on L-Fuzzy Normal Subl-GROUP
A Study on L-Fuzzy Normal Subl-GROUP
ย 
An Application of Assignment Problem in Laptop Selection Problem Using MATLAB
An Application of Assignment Problem in Laptop Selection Problem Using MATLABAn Application of Assignment Problem in Laptop Selection Problem Using MATLAB
An Application of Assignment Problem in Laptop Selection Problem Using MATLAB
ย 
ON ฮฒ-Normal Spaces
ON ฮฒ-Normal SpacesON ฮฒ-Normal Spaces
ON ฮฒ-Normal Spaces
ย 
Cubic Response Surface Designs Using Bibd in Four Dimensions
Cubic Response Surface Designs Using Bibd in Four DimensionsCubic Response Surface Designs Using Bibd in Four Dimensions
Cubic Response Surface Designs Using Bibd in Four Dimensions
ย 
Quantum Variation about Geodesics
Quantum Variation about GeodesicsQuantum Variation about Geodesics
Quantum Variation about Geodesics
ย 
Approximate Analytical Solution of Non-Linear Boussinesq Equation for the Uns...
Approximate Analytical Solution of Non-Linear Boussinesq Equation for the Uns...Approximate Analytical Solution of Non-Linear Boussinesq Equation for the Uns...
Approximate Analytical Solution of Non-Linear Boussinesq Equation for the Uns...
ย 
Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...
Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...
Common Fixed Point Theorems in Compatible Mappings of Type (P*) of Generalize...
ย 
Table of Contents - September 2022, Volume 9, Number 2/3
Table of Contents - September 2022, Volume 9, Number 2/3Table of Contents - September 2022, Volume 9, Number 2/3
Table of Contents - September 2022, Volume 9, Number 2/3
ย 
Code of the multidimensional fractional pseudo-Newton method using recursive ...
Code of the multidimensional fractional pseudo-Newton method using recursive ...Code of the multidimensional fractional pseudo-Newton method using recursive ...
Code of the multidimensional fractional pseudo-Newton method using recursive ...
ย 

Recently uploaded

Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwaitjaanualu31
ย 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxSCMS School of Architecture
ย 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
ย 
Call Girls in South Ex (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7
Call Girls in South Ex (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7Call Girls in South Ex (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7
Call Girls in South Ex (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X79953056974 Low Rate Call Girls In Saket, Delhi NCR
ย 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTbhaskargani46
ย 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixNeometrix_Engineering_Pvt_Ltd
ย 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdfAldoGarca30
ย 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxJuliansyahHarahap1
ย 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...drmkjayanthikannan
ย 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdfKamal Acharya
ย 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
ย 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsArindam Chakraborty, Ph.D., P.E. (CA, TX)
ย 
Bhubaneswar๐ŸŒนCall Girls Bhubaneswar โคKomal 9777949614 ๐Ÿ’Ÿ Full Trusted CALL GIRL...
Bhubaneswar๐ŸŒนCall Girls Bhubaneswar โคKomal 9777949614 ๐Ÿ’Ÿ Full Trusted CALL GIRL...Bhubaneswar๐ŸŒนCall Girls Bhubaneswar โคKomal 9777949614 ๐Ÿ’Ÿ Full Trusted CALL GIRL...
Bhubaneswar๐ŸŒนCall Girls Bhubaneswar โคKomal 9777949614 ๐Ÿ’Ÿ Full Trusted CALL GIRL...Call Girls Mumbai
ย 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesMayuraD1
ย 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesRAJNEESHKUMAR341697
ย 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
ย 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsvanyagupta248
ย 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxchumtiyababu
ย 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
ย 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
ย 

Recently uploaded (20)

Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
ย 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
ย 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
ย 
Call Girls in South Ex (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7
Call Girls in South Ex (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7Call Girls in South Ex (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7
Call Girls in South Ex (delhi) call me [๐Ÿ”9953056974๐Ÿ”] escort service 24X7
ย 
Generative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPTGenerative AI or GenAI technology based PPT
Generative AI or GenAI technology based PPT
ย 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
ย 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
ย 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
ย 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
ย 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
ย 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
ย 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
ย 
Bhubaneswar๐ŸŒนCall Girls Bhubaneswar โคKomal 9777949614 ๐Ÿ’Ÿ Full Trusted CALL GIRL...
Bhubaneswar๐ŸŒนCall Girls Bhubaneswar โคKomal 9777949614 ๐Ÿ’Ÿ Full Trusted CALL GIRL...Bhubaneswar๐ŸŒนCall Girls Bhubaneswar โคKomal 9777949614 ๐Ÿ’Ÿ Full Trusted CALL GIRL...
Bhubaneswar๐ŸŒนCall Girls Bhubaneswar โคKomal 9777949614 ๐Ÿ’Ÿ Full Trusted CALL GIRL...
ย 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
ย 
Engineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planesEngineering Drawing focus on projection of planes
Engineering Drawing focus on projection of planes
ย 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
ย 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
ย 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
ย 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
ย 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
ย 

A Probabilistic Algorithm for Computation of Polynomial Greatest Common with Smaller Factors

  • 1. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022 DOI : 10.5121/mathsj.2022.9301 1 A PROBABILISTIC ALGORITHM FOR COMPUTATION OF POLYNOMIAL GREATEST COMMON WITH SMALLER FACTORS Yang Zhang1,2 , Xin Qian1, 2 , Qidi You1,2 , Xuan Zhou1,2 , Xiyong Zhang1, 2 and Yang Wang1, 2 1 Space star technology co., LTD 2 State Key Laboratory of Space-Ground Integrated Information Technology ABSTRACT In the earlier work, Knuth present an algorithm to decrease the coefficient growth in the Euclidean algorithm of polynomials called subresultant algorithm. However, the output polynomials may have a small factor which can be removed. Then later, Brown of Bell Telephone Laboratories showed the subresultant in another way by adding a variant called๐œ and gave a way to compute the variant. Nevertheless, the way failed to determine every๐œ correctly. In this paper, we will give a probabilistic algorithm to determine the variant ๐œ correctly in most cases by adding a few steps instead of computing ๐‘ก(๐‘ฅ) when given ๐‘“(๐‘ฅ) and๐‘”(๐‘ฅ) โˆˆ โ„ค[๐‘ฅ], where ๐‘ก(๐‘ฅ) satisfies that ๐‘ (๐‘ฅ)๐‘“(๐‘ฅ) + ๐‘ก(๐‘ฅ)๐‘”(๐‘ฅ) = ๐‘Ÿ(๐‘ฅ), here ๐‘ก(๐‘ฅ), ๐‘ (๐‘ฅ) โˆˆ โ„ค[๐‘ฅ] KEYWORDS Euclidean Algorithm, Subresultant, Primitive Remainder Sequences, 1. INTRODUCTION The Euclidean algorithm and the extended Euclidean algorithm of polynomials is an important research object in polynomial computer algebra. Using this algorithm, one can get the g.c.d. of two polynomials (denoted as gcd(๐‘“, ๐‘”) when given polynomials ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ)) and decides whether these polynomials are coprime or not. Specifically, if the degree of gcd(๐‘“, ๐‘”) is larger than 0, ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) are not coprime, otherwise, ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) are coprime. Being coprime between two polynomials means there exist common roots between these two polynomials. To quantify the indicator whether there exists a common root between ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ), Sylvester gave a matrix in 1840 called Sylvester matrix with entries simply being the coefficients of ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ). The determinant of Sylvester matrix is called resultant. Whether the resultant of ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) is nonzero corresponds to the case where ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) are coprime or not respectively. Moreover, Sylvester generalized his definition and introduced the concept of subresultant. They are nonzero if and only if the corresponding degree appears as a degree of a remainder of the Euclidean algorithm. However, the early Euclidean algorithm of polynomials works for polynomials in๐”ฝ[๐‘ฅ], here ๐”ฝ is a field. In 1836 Jacobi introduced pseudo-division over polynomials and extended the Euclidean
  • 2. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022 2 algorithm of polynomials in field to a domain by multiplying ๐‘“(๐‘ฅ) with a certain power of the leading coefficient of ๐‘”(๐‘ฅ) before starting the division. Using pseudo-division, there are a lot of results about polynomials even the ideal lattice used in cryptography. From 1960, researchers built early computer algebra systems and G.C.D. computations were an important test problem. Nevertheless, using pseudo-division in Euclidean algorithm causes exponential coefficients growth. In 1967, Collins [1] explained that the ๐‘–-th intermediate coefficients are approximately longer by a factor of (1 + โˆš2) ๐‘– than the input coefficients. There are many ways to decrease the size of coefficients, most of them are quite inefficient, however. In this paper, we mainly focus on the subresultant algorithm and its variant. In [2], Knuth present the early subresultant algorithm and gave an elegant proof of its correctness. In [3], Brown showed the variant of subresultant algorithm and gave a way to remove the small factor of each remainder. However, the method he present didn't work always. Recently, in [4], they show an algorithm to triangularize the basis of an ideal lattice which is often used to construct ideal lattice-based cryptosystems. In their algorithm, they need to compute all the PPRSoL (the definition given in Sec.2.4) of ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ). However, to obtain the PPRSoL, we need to compute each content of ๐‘ก๐‘–(๐‘ฅ) satisfying ๐‘ ๐‘–(๐‘ฅ)๐‘“(๐‘ฅ) + ๐‘ก๐‘–(๐‘ฅ)๐‘”(๐‘ฅ) = ๐‘Ÿ๐‘–(๐‘ฅ) to remove the extra factor in each original remaindes ๐‘Ÿ๐‘–(๐‘ฅ). However, in this paper, we find a new way to obtain PPRSoL without computing ๐‘ก๐‘–(๐‘ฅ) by applying the variant of subresultant algorithm. In this paper, we give some results about the extended Euclidean algorithm. Using these results, we propose a new algorithm that outputting the PPRSoL of ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) which works for most cases. 2. PRELIMINARIES 2.1. Notations In this paper, a matrix is denoted as uppercase bold letter and a vector is denoted as lowercase bold letter. For a matrix๐‘จ โˆˆ โ„๐‘šร—๐‘› , the element in the ๐‘–-th row and the ๐‘—-th column of ๐‘จ is expressed as ๐‘Ž๐‘–,๐‘— . For a polynomial ๐‘“(๐‘ฅ) with degree ๐‘›, we use ๐‘™๐‘(๐‘“) to present the leading coefficient of ๐‘“(๐‘ฅ) and use๐‘‘๐‘’๐‘”(๐‘“) to present the degree. The degree of a constant polynomial is defined as 0 and the degree of a zero polynomial is defined as โˆ’โˆž. The greatest common divisor is abbreviated to g.c.d.. Let ๐œ[๐‘ฅ] denote the domain of polynomials in x with coefficients in ๐œ. Unless otherwise specified, we only consider the polynomials in โ„ค[๐‘ฅ]. 2.2. Some Definitions Definition 1: [Hermite Normal Form] Given a square matrix ๐‘ฏ โˆˆ โ„ค๐‘›ร—๐‘› . Then ๐‘ฏ is Hermite Normal Form(HNF) if and only if it satisfies: 1) โ„Ž๐‘–,๐‘– โ‰ฅ 1, for1 โ‰ค ๐‘– โ‰ค ๐‘›; 2) โ„Ž๐‘–,๐‘— = 0, for 1 โ‰ค ๐‘— โ‰ค ๐‘– โ‰ค ๐‘›; 3) โ„Ž๐‘—,๐‘– < โ„Ž๐‘–,๐‘–, for 1 โ‰ค ๐‘— < ๐‘– โ‰ค ๐‘›. We need to emphasize that the definition given above is only one way to define HNF. According to row or column transformation and upper or lower triangularization, there are other different definitions of HNF.
  • 3. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022 3 Definition 2: [Primitive Polynomial] A polynomial ๐‘Ž(๐‘ฅ) โˆˆ โ„ค[๐‘ฅ] is called a primitive polynomial if for any integer |๐‘˜| > 1, ๐‘Ž(๐‘ฅ)/๐‘˜ โˆ‰ โ„ค[๐‘ฅ]. Definition 3: [Content] For a polynomial ๐‘Ž(๐‘ฅ) = ๐‘Ž๐‘›๐‘ฅ๐‘› + โ‹ฏ + ๐‘Ž1๐‘ฅ + ๐‘Ž0 โˆˆ โ„ค[๐‘ฅ], the content of ๐‘Ž(๐‘ฅ), denoted as๐‘๐‘œ๐‘›๐‘ก(๐‘Ž(๐‘ฅ)), is the g.c.d of (๐‘Ž๐‘›, โ‹ฏ , ๐‘Ž1, ๐‘Ž0). Definition 3: [Resultant] Let ๐‘“(๐‘ฅ) = ๐‘“ ๐‘›๐‘ฅ๐‘› + โ‹ฏ + ๐‘“1๐‘ฅ + ๐‘“0, ๐‘”(๐‘ฅ) = ๐‘”๐‘š๐‘ฅ๐‘š + โ‹ฏ + ๐‘”1๐‘ฅ + ๐‘”0 be two polynomials with degree ๐‘› and ๐‘š respectively. Define the Sylvester matrix of ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) as ๐’๐ฒ๐ฅ๐ฏ(๐‘“, ๐‘”) = [ ๐‘ฅ๐‘šโˆ’1 ๐‘“(๐‘ฅ) ๐‘ฅ๐‘šโˆ’2 ๐‘“(๐‘ฅ) โ‹ฎ ๐‘“(๐‘ฅ) ๐‘ฅ๐‘›โˆ’1 ๐‘”(๐‘ฅ) ๐‘ฅ๐‘›โˆ’2 ๐‘”(๐‘ฅ) โ‹ฎ ๐‘”(๐‘ฅ) ] = [ ๐‘“ ๐‘› ๐‘“๐‘›โˆ’1 โ‹ฏ ๐‘“0 ๐‘“ ๐‘› ๐‘“๐‘›โˆ’1 โ‹ฏ ๐‘“0 โ‹ฑ โ‹ฑ ๐‘“ ๐‘› ๐‘“๐‘›โˆ’1 โ‹ฏ ๐‘“0 ๐‘”๐‘š ๐‘”๐‘šโˆ’1 โ‹ฏ ๐‘”1 ๐‘”0 ๐‘”๐‘š ๐‘”๐‘šโˆ’1 โ‹ฏ ๐‘”1 ๐‘”0 โ‹ฑ โ‹ฑ ๐‘”๐‘š ๐‘”๐‘šโˆ’1 โ‹ฏ ๐‘”1 ๐‘”0](๐‘š+๐‘›)ร—(๐‘š+๐‘›) Then the resultant of ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) , denoted as Res(๐‘“(๐‘ฅ), ๐‘”(๐‘ฅ)) , is the determinant of ๐’๐ฒ๐ฅ๐ฏ(๐‘“, ๐‘”). Definition 3: [Subresultant] Let ๐‘“(๐‘ฅ) = ๐‘“ ๐‘›๐‘ฅ๐‘› + โ‹ฏ + ๐‘“1๐‘ฅ + ๐‘“0 , ๐‘”(๐‘ฅ) = ๐‘”๐‘š๐‘ฅ๐‘š + โ‹ฏ + ๐‘”1๐‘ฅ + ๐‘”0 be two polynomials with degree ๐‘› and ๐‘š respectively.For 0 โ‰ค ๐‘˜ < ๐‘›, the ๐‘˜-th subresultant of ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) is the determinant of ๐‘†๐‘˜(๐‘“, ๐‘”) defines as ๐‘†๐‘˜(๐‘“, ๐‘”) = [ ๐‘“ ๐‘› ๐‘“๐‘›โˆ’1 โ‹ฏ ๐‘“๐‘›โˆ’๐‘š+๐‘˜+1 โ‹ฏ ๐‘“๐‘˜+1 โ‹ฏ ๐‘“2๐‘˜โˆ’๐‘š+1 ๐‘“ ๐‘› โ‹ฏ ๐‘“๐‘›โˆ’๐‘š+๐‘˜+2 โ‹ฏ ๐‘“๐‘˜+2 โ‹ฏ ๐‘“2๐‘˜โˆ’๐‘š+2 โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘“ ๐‘› โ‹ฏ ๐‘“ ๐‘š โ‹ฏ ๐‘“๐‘˜ ๐‘”๐‘š ๐‘”๐‘šโˆ’1 โ‹ฏ ๐‘”๐‘˜+1 โ‹ฏ ๐‘”๐‘šโˆ’๐‘›+๐‘˜+1 โ‹ฏ ๐‘”2๐‘˜โˆ’๐‘›+1 ๐‘”๐‘š โ‹ฎ โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ โ‹ฎ ๐‘”๐‘š โ‹ฎ โ‹ฎ โ‹ฑ โ‹ฎ โ‹ฎ ๐‘”๐‘š โ‹ฏ ๐‘”๐‘˜ ](๐‘š+๐‘›โˆ’2๐‘˜)ร—(๐‘š+๐‘›โˆ’2๐‘˜)
  • 4. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022 4 Remark 1. From the structure of ๐‘†๐‘˜(๐‘“, ๐‘”) and ๐’๐ฒ๐ฅ๐ฏ(๐‘“, ๐‘”), we can tell that indeed if we delete the last 2๐‘˜ columns and the last ๐‘˜ rows of ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) respectively in ๐’๐ฒ๐ฅ๐ฏ(๐‘“, ๐‘”), we obtain ๐‘†๐‘˜(๐‘“, ๐‘”). Expecially, ๐‘†0(๐‘“, ๐‘”) = ๐’๐ฒ๐ฅ๐ฏ(๐‘“, ๐‘”). Next we will give the conception of ideal lattice which takes an important role in the lattice-based cryptography, and we mainly focus on the cases in which an ideal lattice can be derived from ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ). Ideal Lattice We define ideal lattice over a ring ๐‘… = โ„ค[๐‘ฅ]/โŒฉ๐‘“(๐‘ฅ)โŒช, where ๐‘“(๐‘ฅ) โˆˆ โ„ค[๐‘ฅ] is a monic and irreducible polynomial of degree ๐‘› and โŒฉ๐‘“(๐‘ฅ)โŒช is the ideal generated by ๐‘“(๐‘ฅ) โˆˆ โ„ค[๐‘ฅ]. Consider the coefficient embedding ๐œŽ๏ผš๐‘… โ†ฆ โ„ค๐‘› โˆ‘ ๐‘Ž๐‘–๐‘ฅ๐‘– ๐‘›โˆ’1 ๐‘–=0 โ†ฆ (๐‘Ž๐‘›โˆ’1, ๐‘Ž๐‘›โˆ’2, โ‹ฏ , ๐‘Ž0) From [5], we know that the ideal generated by ๐‘”(๐‘ฅ) forms a lattice under ๐œŽ and we call it the ideal lattice โ„’ generated by ๐‘”(๐‘ฅ) . Moreover, ๐‘”(๐‘ฅ)mod๐‘“(๐‘ฅ) , ๐‘ฅ๐‘”(๐‘ฅ)mod๐‘“(๐‘ฅ) , โ‹ฏ , ๐‘ฅ๐‘›โˆ’1 ๐‘”(๐‘ฅ)mod๐‘“(๐‘ฅ) form a basis of โ„’. As we can see, the basis is closely related to the Sylvester matrix of ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ). When ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) are coprime over โ„š[๐‘ฅ], the ideal lattice is full- rank. Then we present a lemma in [5] that we will use later. Lemma 1. Let โ„’ be the ideal lattice generated by ๐‘”(๐‘ฅ) โˆˆ ๐‘… = โ„ค[๐‘ฅ]/โŒฉ๐‘“(๐‘ฅ)โŒช, where ๐‘“(๐‘ฅ) is a monic polynomial of degree ๐‘› and is relatively prime to ๐‘”(๐‘ฅ). Then the Hermite Normal Form of a basis of โ„’ ๐ป = [ โ„Ž1,1 โ„Ž1,2 โ‹ฏ โ„Ž1,๐‘› โ„Ž2,2 โ‹ฏ โ„Ž2,๐‘› โ‹ฑ โ‹ฎ โ„Ž๐‘›,๐‘›] satisfies โ„Ž๐‘–,๐‘–|โ„Ž๐‘™,๐‘—, for 1 โ‰ค ๐‘– โ‰ค ๐‘™ โ‰ค ๐‘— โ‰ค ๐‘›. 2.3. The Classical Euclidean Algorithm of Polynomials over A Field Given a field ๐”ฝ. Let ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) โˆˆ ๐”ฝ[๐‘ฅ] with ๐‘‘๐‘’๐‘”(๐‘“) > ๐‘‘๐‘’๐‘”(๐‘”). Then the division of ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) yields a unique quotient ๐‘„(๐‘ฅ) and remainder ๐‘…(๐‘ฅ) such that ๐‘“(๐‘ฅ) = ๐‘„(๐‘ฅ)๐‘”(๐‘ฅ) + ๐‘…(๐‘ฅ) here ๐‘‘๐‘’๐‘”(๐‘”) > ๐‘‘๐‘’๐‘”(๐‘Ÿ), ๐‘‘๐‘’๐‘”(๐‘ž) = ๐‘‘๐‘’๐‘”(๐‘“) โˆ’ ๐‘‘๐‘’๐‘”(๐‘”). If we repeat the step for each divisor polynomial and remainder, we will obtain a sequence of remainders with decreasing degrees. Formally, a detailed procedure of the Euclidean algorithm of polynomials over a field is present as following:
  • 5. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022 5 { ๐‘“(๐‘ฅ) = ๐‘„1(๐‘ฅ)๐‘”(๐‘ฅ) + ๐‘…1(๐‘ฅ) ๐‘”(๐‘ฅ) = ๐‘„2(๐‘ฅ)๐‘…1(๐‘ฅ) + ๐‘…2(๐‘ฅ) โ‹ฎ ๐‘…๐‘™โˆ’2(๐‘ฅ) = ๐‘„๐‘™(๐‘ฅ)๐‘…๐‘™โˆ’1(๐‘ฅ) + ๐‘…๐‘™(๐‘ฅ) ๐‘…๐‘™โˆ’1(๐‘ฅ) = ๐‘„๐‘™+1(๐‘ฅ)๐‘…๐‘™(๐‘ฅ) where๐‘‘๐‘’๐‘”(๐‘”) > ๐‘‘๐‘’๐‘”(๐‘…1) > โ‹ฏ > ๐‘‘๐‘’๐‘”(๐‘…๐‘™) and all the coefficients are in the given field. Note that if deg(๐‘…๐‘™) = 0, it shows that ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) are coprime in ๐”ฝ[๐‘ฅ], which means the resultant of ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) is nonzero. 2.4. Polynomial Remainder Sequence The procedure of the Euclidean algorithm of polynomials over a unique factorization domain (UFD) is similar to the one over a field. The difference exits because the division between two polynomials requires exact divisibility in the given domain, which is usually impossible to realize. To solve the problem, the procedure of pseudo-division is proposed, which yields a unique pseudo-quotient ๐‘ž(๐‘ฅ) and pseudo-remainder ๐‘Ÿ(๐‘ฅ) such that (lc(๐‘”)) ๐›ฟ+1 ๐‘“(๐‘ฅ) = ๐‘ž(๐‘ฅ)๐‘”(๐‘ฅ) + ๐‘Ÿ(๐‘ฅ) here ๐‘‘๐‘’๐‘”(๐‘”) > ๐‘‘๐‘’๐‘”(๐‘Ÿ), ๐›ฟ = ๐‘‘๐‘’๐‘”(๐‘“) โˆ’ ๐‘‘๐‘’๐‘”(๐‘”), ๐‘Ÿ(๐‘ฅ) is equivalent with prem(๐‘“, ๐‘”). Moreover, the coefficients of ๐‘ž(๐‘ฅ) and ๐‘Ÿ(๐‘ฅ) are in the given domain. For nonzero polynomials ๐‘Ž(๐‘ฅ), ๐‘(๐‘ฅ) โˆˆ ๐œ[๐‘ฅ], we say ๐‘Ž(๐‘ฅ) is similar to ๐‘(๐‘ฅ)(๐‘Ž(๐‘ฅ)~๐‘(๐‘ฅ)) if there exist ๐‘1, ๐‘2 โˆˆ ๐œ such that ๐‘1๐‘Ž(๐‘ฅ) = ๐‘2๐‘(๐‘ฅ). So if we choose ๐‘Ÿโ€ฒ(๐‘ฅ) that is similar to ๐‘Ÿ(๐‘ฅ), we can do the same step as above for ๐‘”(๐‘ฅ) and ๐‘Ÿโ€ฒ(๐‘ฅ). Thus, we can rewrite the procedure of pseudo- division: ๐›ผ๐‘“(๐‘ฅ) = ๐‘ž(๐‘ฅ)๐‘”(๐‘ฅ) + ๐›ฝ๐‘Ÿ(๐‘ฅ). Then the detailed procedure of pseudo-division is present as following: { ๐›ผ1๐‘“(๐‘ฅ) = ๐‘ž1(๐‘ฅ)๐‘”(๐‘ฅ) + ๐›ฝ1๐‘Ÿ1(๐‘ฅ) ๐›ผ2๐‘”(๐‘ฅ) = ๐‘ž2(๐‘ฅ)๐‘Ÿ1(๐‘ฅ) + ๐›ฝ2๐‘Ÿ2(๐‘ฅ) โ‹ฎ ๐›ผ๐‘™๐‘Ÿ๐‘™โˆ’2(๐‘ฅ) = ๐‘ž๐‘™(๐‘ฅ)๐‘Ÿ๐‘™โˆ’1(๐‘ฅ) + ๐›ฝ๐‘™๐‘Ÿ๐‘™(๐‘ฅ) ๐›ผ๐‘™+1๐‘Ÿ๐‘™โˆ’1(๐‘ฅ) = ๐‘ž๐‘™+1(๐‘ฅ)๐‘Ÿ๐‘™(๐‘ฅ) here ๐‘‘๐‘’๐‘”(๐‘”) > ๐‘‘๐‘’๐‘”(๐‘Ÿ1) > โ‹ฏ > ๐‘‘๐‘’๐‘”(๐‘Ÿ๐‘™) and all the๐›ผ๐‘– and ๐›ฝ๐‘– are in the given domain. Generally, we denote ๐‘“(๐‘ฅ) = ๐‘Ÿโˆ’1(๐‘ฅ) and ๐‘”(๐‘ฅ) = ๐‘Ÿ0(๐‘ฅ), then ๐›ผ๐‘– = (๐‘™๐‘(r๐‘–โˆ’1)) ๐›ฟ๐‘–โˆ’2โˆ’1 , where ๐›ฟ๐‘– = ๐‘‘๐‘’๐‘”(๐‘Ÿ๐‘–) โˆ’ ๐‘‘๐‘’๐‘”(๐‘Ÿ๐‘–+1). Note that now prem(๐‘Ÿ๐‘–โˆ’2, ๐‘Ÿ๐‘–โˆ’1) = ๐›ฝ๐‘–๐‘Ÿ๐‘–(๐‘ฅ). Then ๐‘Ÿโˆ’1(๐‘ฅ), ๐‘Ÿ0(๐‘ฅ),โ‹ฏ,๐‘Ÿ๐‘™(๐‘ฅ) form a sequence called polynomial remainder sequence(PRS). From [5], if a remainder ๐‘Ÿ(๐‘ฅ) = ๐‘ (๐‘ฅ)๐‘“(๐‘ฅ) + ๐‘ก(๐‘ฅ)๐‘”(๐‘ฅ) can derive a basis of ideal lattice, ๐‘ก(๐‘ฅ) must be primitive. In this paper, we also want to obtain such remainders and we call these remainders as primitive PRS of lattice (PPRSoL). Next, we give a result about ๐‘ ๐‘–(๐‘ฅ) and ๐‘ก๐‘–(๐‘ฅ).
  • 6. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022 6 Lemma 2. Let ๐‘“(๐‘ฅ), ๐‘”(๐‘ฅ) โˆˆ โ„ค[๐‘ฅ] be two polynomials with degree ๐‘› and ๐‘š respectively, where ๐‘› > ๐‘š . Let ๐‘Ÿโˆ’1(๐‘ฅ), ๐‘Ÿ0(๐‘ฅ), โ‹ฏ , ๐‘Ÿ๐‘™(๐‘ฅ) be the remainders in procedure of pseudo-division. If ๐‘‘๐‘’๐‘”(๐‘Ÿ๐‘–) = ๐‘›๐‘–, then ๐‘Ÿ๐‘–(๐‘ฅ) = ๐‘ ๐‘–(๐‘ฅ)๐‘“(๐‘ฅ) + ๐‘ก๐‘–(๐‘ฅ)๐‘”(๐‘ฅ) satisfies ๐‘‘๐‘’๐‘”(๐‘ ๐‘–) < ๐‘š, ๐‘‘๐‘’๐‘”(๐‘ก๐‘–) < ๐‘› and: 1) ๐‘ ๐‘–(๐‘ฅ) = (๐›ผ๐‘–๐‘ ๐‘–โˆ’2(๐‘ฅ) โˆ’ ๐‘ž๐‘–(๐‘ฅ)๐‘ ๐‘–โˆ’1(๐‘ฅ))/๐›ฝ๐‘–, ๐‘ก๐‘–(๐‘ฅ) = (๐›ผ๐‘–๐‘ก๐‘–โˆ’2(๐‘ฅ) โˆ’ ๐‘ž๐‘–(๐‘ฅ)๐‘ก๐‘–โˆ’1(๐‘ฅ))/๐›ฝ๐‘– 2) ๐‘‘๐‘’๐‘”(๐‘ ๐‘–) = ๐‘š โˆ’ ๐‘‘๐‘’๐‘”(๐‘Ÿ๐‘–โˆ’1),๐‘‘๐‘’๐‘”(๐‘ก๐‘–) = ๐‘› โˆ’ ๐‘‘๐‘’๐‘”(๐‘Ÿ๐‘–โˆ’1) If we represent ๐‘Ÿ๐‘–(๐‘ฅ) = ๐‘ ๐‘–(๐‘ฅ)๐‘“(๐‘ฅ) + ๐‘ก๐‘–(๐‘ฅ)๐‘”(๐‘ฅ) under the embedding ฯƒ, for ๐‘– = โˆ’1, 0, โ‹ฏ , ๐‘™, then we can denote ๐‘Ÿ๐‘–(๐‘ฅ) as a sequence of vectors and we use a matrix ๐‘น to represent ๐‘Ÿ๐‘–(๐‘ฅ) as following: [ ๐‘“๐‘› โ‹ฏ ๐‘“๐‘›โˆ’๐‘š+1 ๐‘“๐‘›โˆ’๐‘š โ‹ฏ ๐‘“0 โ‹ฑ โ‹ฑ ๐‘“๐‘› ๐‘“๐‘›โˆ’1 โ‹ฏ ๐‘“๐‘šโˆ’1 ๐‘“๐‘šโˆ’2 โ‹ฏ ๐‘“1 ๐‘“0 ๐‘Ÿ0,๐‘›0 โ‹ฏ ๐‘Ÿ0,0 โ‹ฑ โ‹ฎ ๐‘Ÿ0,๐‘›0 โ‹ฏ ๐‘Ÿ0,0 ๐‘Ÿ1,๐‘›0 โ‹ฏ ๐‘Ÿ1,0 ๐ŸŽ โ‹ฑ ๐‘Ÿ1,๐‘›1 โ‹ฏ ๐‘Ÿ1,0 โ‹ฑ โ‹ฎ ๐‘Ÿ๐‘™,๐‘›๐‘™ โ‹ฑ ๐‘Ÿ๐‘™,๐‘›๐‘™](๐‘š+๐‘›)ร—(๐‘š+๐‘›) Also, we use ๐‘บ and ๐‘ป to represent the matrice denoting ๐‘ ๐‘–(๐‘ฅ) and ๐‘ก๐‘–(๐‘ฅ) respectively. ๐‘ป = [ 1 โ‹ฑ 1 ๐‘ก1,๐‘›โˆ’๐‘›0 โ‹ฏ ๐‘ก1,0 โ‹ฑ โ‹ฑ ๐‘ก1,๐‘›โˆ’๐‘›0 โ‹ฏ ๐‘ก1,0 โ‹ฑ ๐‘ก๐‘™,๐‘›โˆ’๐‘›๐‘™โˆ’1 โ‹ฏ ๐‘ก๐‘™,0 โ‹ฑ โ‹ฑ ๐‘ก๐‘™,๐‘›โˆ’๐‘›๐‘™โˆ’1 โ‹ฏ ๐‘ก๐‘™,0 ]๐‘›ร—๐‘›
  • 7. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022 7 ๐‘บ = [ 0 โ‹ฑ 0 ๐‘ 1,๐‘šโˆ’๐‘›0 โ‹ฏ ๐‘ 1,0 โ‹ฑ โ‹ฑ ๐‘ 1,๐‘šโˆ’๐‘›0 โ‹ฏ ๐‘ 1,0 โ‹ฑ ๐‘ ๐‘™,๐‘šโˆ’๐‘›๐‘™โˆ’1 โ‹ฏ ๐‘ ๐‘™,0 โ‹ฑ โ‹ฑ ๐‘ ๐‘™,๐‘šโˆ’๐‘›๐‘™โˆ’1 โ‹ฏ ๐‘ ๐‘™,0 ]๐‘›ร—๐‘š So if we give a matrix named ๐‘บ๐‘ป, then procedure of pseudo-division can be represent as a matrix multiplication. ๐‘บ๐‘ป = [ 1 โ‹ฑ ๐ŸŽ 1 ๐‘บ ๐‘ป ] (๐‘š+๐‘›)ร—(๐‘š+๐‘›) ๐‘บ๐‘ป โˆ™ ๐’๐ฒ๐ฅ๐ฏ(๐‘“, ๐‘”) = ๐‘น Here we need to show that by elementary row transformation, ๐‘บ๐‘ป can be transformed into ๐‘บ๐‘ป = [ 1 โ‹ฑ ๐ŸŽ 1 ๐ŸŽ ๐‘ป ] (๐‘š+๐‘›)ร—(๐‘š+๐‘›) which means that the determinant of ๐‘บ๐‘ป equals to the determinant of ๐‘ป. Also according to lemma 2, it turns out that after appropriate row switching, ๐‘ป is actually an upper triangular matrix, thus the determinant of ๐‘ป is |โˆ lc(๐‘ก๐‘–)๐‘›๐‘–โˆ’1โˆ’๐‘›๐‘– ๐‘™ ๐‘–=0 |. In the following part, we introduce some typical PRSs which differs from each other by choosing different ๐›ฝ๐‘–. 2.4.1. Euclidean Polynomial Remainder Sequences When choosing ๐›ฝ๐‘– = 1 for all ๐‘– in PRS, we obtain Euclidean PRS. This is a generalization of the Euclidean algorithm over integers. However, the algorithm is quite inefficient because with the proceeding of the sequence, the coefficients of the remainders grow exponentially. To be specific, we need to calculate each ๐‘ก๐‘–(๐‘ฅ) and cont(๐‘ก๐‘–(๐‘ฅ)) to get a eligible PPRSoL, which costs too much. So we need to determine certain ๐›ฝ๐‘– to ensure the efficiency.
  • 8. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022 8 2.4.2. Primitive Polynomial Remainder Sequences When choosing ๐›ฝ๐‘– = cont(prem(๐‘Ÿ๐‘–โˆ’2, ๐‘Ÿ๐‘–โˆ’1)) for all ๐‘– in PRS, we obtain primitive PRS. Although the algorithm stops the coefficients growing exponentially in every step of the pseudo-division, however, when proceeding primitive PRS, the coefficients of ๐‘ ๐‘–(๐‘ฅ) and ๐‘ก๐‘–(๐‘ฅ) may be not in the given domain, which means that the PRS we obtain is not PPRSoL. So primitive PRS doesn't satisfy our requirement. 2.4.3. Subresultant Polynomial Remainder Sequences When ๐›ฝ๐‘– is related to the subresultant, we obtain subresultant PRS. The equation set as following depicts the procedure of the subresultant PRS algorithm in [2]. { ๐›ผโ€ฒ1๐‘“(๐‘ฅ) = ๐‘žโ€ฒ1(๐‘ฅ)๐‘”(๐‘ฅ) + ๐›ฝโ€ฒ1๐‘Ÿโ€ฒ1(๐‘ฅ) ๐›ผโ€ฒ2๐‘”(๐‘ฅ) = ๐‘žโ€ฒ2(๐‘ฅ)๐‘Ÿ1(๐‘ฅ) + ๐›ฝโ€ฒ2๐‘Ÿโ€ฒ2(๐‘ฅ) โ‹ฎ ๐›ผโ€ฒ๐‘™๐‘Ÿโ€ฒ๐‘™โˆ’2(๐‘ฅ) = ๐‘žโ€ฒ๐‘™(๐‘ฅ)๐‘Ÿ๐‘™โˆ’1(๐‘ฅ) + ๐›ฝโ€ฒ๐‘™๐‘Ÿโ€ฒ๐‘™(๐‘ฅ) where ๐‘Ÿโˆ’1(๐‘ฅ) = ๐‘“(๐‘ฅ), ๐‘Ÿ0(๐‘ฅ) = ๐‘”(๐‘ฅ), ๐‘›๐‘– = ๐‘‘๐‘’๐‘”(๐‘Ÿโ€ฒ๐‘–), ๐›ฟ๐‘– = ๐‘›๐‘– โˆ’ ๐‘›๐‘–+1 , ๐›ผโ€ฒ๐‘– = (lc(๐‘Ÿโ€ฒ๐‘–โˆ’1)) ๐›ฟ๐‘–โˆ’2+1 , ๐›ฝโ€ฒ๐‘– = lc(๐‘Ÿโ€ฒ๐‘–โˆ’2)โ„Ž๐‘– ๐›ฟ๐‘–โˆ’2 , โ„Ž1 = 1, โ„Ž๐‘– = (๐‘™๐‘(๐‘Ÿโ€ฒ๐‘–โˆ’2))๐›ฟ๐‘–โˆ’3โ„Ž๐‘–โˆ’1 1โˆ’๐›ฟ๐‘–โˆ’3 , for 2 โ‰ค ๐‘– โ‰ค ๐‘™ + 1. Intuitively, the intact subresultant algorithm can be present in Algorithm 1. We point out that because we want to get PPRSoL, the input of every PRS algorithm in the paper contains a monic and irreducible polynomial. Algorithm 1 Subresultant PRS Algorithm Input: two polynomials ๐‘“(๐‘ฅ), ๐‘”(๐‘ฅ) โˆˆ โ„ค[๐‘ฅ] with degree ๐‘› and ๐‘š respectively and ๐‘“(๐‘ฅ) is monic and irreducible Output: Subresultant PRS, ๐‘Ÿโ€ฒ0(๐‘ฅ), ๐‘Ÿโ€ฒ1(๐‘ฅ), โ‹ฏ 1.[Initialize] ๐‘™ โ† โ„Ž โ† 1, ๐‘Ÿโ€ฒ0(๐‘ฅ) = ๐‘”(๐‘ฅ),๐‘– โ† 1 2.[Pseudo-division] 2.1 Set ฮด = ๐‘‘๐‘’๐‘”(๐‘“) โˆ’ ๐‘‘๐‘’๐‘”(๐‘”) 2.2 Calculate ๐‘Ÿ(๐‘ฅ) such that ๐‘Ÿ(๐‘ฅ) = ๐‘ (๐‘ฅ)๐‘“(๐‘ฅ) + ๐‘ก(๐‘ฅ)๐‘”(๐‘ฅ) 3.[Adjust remainder] 3.1 ๐‘ข(๐‘ฅ) โ† ๐‘”(๐‘ฅ), ๐‘Ÿโ€ฒ๐‘–(๐‘ฅ) โ† ๐‘”(๐‘ฅ) โ† ๐‘Ÿ(๐‘ฅ)/๐‘™โ„Ž๐›ฟ 3.2 ๐‘™ โ† ๐‘™๐‘(๐‘“),โ„Ž โ† โ„Ž1โˆ’๐›ฟ ๐‘™๐›ฟ 3.3 If ๐‘‘๐‘’๐‘”(๐‘Ÿ) = 0, go to Step 4 3.4 ๐‘– โ† ๐‘– + 1, go to Step 2 4.[Return] ๐‘Ÿโ€ฒ0(๐‘ฅ), ๐‘Ÿโ€ฒ1(๐‘ฅ), โ‹ฏ Notice that for ๐‘Ÿโ€ฒ๐‘–(๐‘ฅ) = ๐‘ โ€ฒ๐‘–(๐‘ฅ)๐‘“(๐‘ฅ) + ๐‘กโ€ฒ๐‘–(๐‘ฅ)๐‘”(๐‘ฅ) , ๐‘กโ€ฒ๐‘–(๐‘ฅ) maybe not primitive in the given domain, which means that we can still decrease the coefficients of ๐‘Ÿโ€ฒ๐‘–(๐‘ฅ) by removing a factor. In [6], the author shows that the โ„Ž๐‘– is indeed the ๐‘›๐‘–โˆ’1-th subresultant of ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ), that is โ„Ž๐‘– = ๐‘†๐‘›๐‘–โˆ’1 (๐‘“, ๐‘”). Also, in [3], the author shows that every โ„Ž๐‘– is an integer and ๐‘Ÿโ€ฒ๐‘–(๐‘ฅ) โˆˆ โ„ค[๐‘ฅ] and gives an elegant proof.
  • 9. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022 9 2.4.4. Improvements of Subresultant Polynomial Remainder Sequences This is another expression of subresultant PRS. As stated above, for the output of Algorithm 1, ๐‘Ÿโ€ฒ๐‘–(๐‘ฅ) = ๐‘ โ€ฒ๐‘–(๐‘ฅ)๐‘“(๐‘ฅ) + ๐‘กโ€ฒ๐‘–(๐‘ฅ)๐‘”(๐‘ฅ), ๐‘กโ€ฒ๐‘–(๐‘ฅ) maybe not primitive and there might exist a divisor ๐œ๐‘– such that ๐‘ก๐‘–(๐‘ฅ) = ๐‘กโ€ฒ๐‘–(๐‘ฅ)/๐œ๐‘– is primitive. So in the improvement version, the author transforms the procedure of the subresultant PRS algorithm as following, { ๐›ผ1๐‘“(๐‘ฅ) = ๐‘ž1(๐‘ฅ)๐‘”(๐‘ฅ) + ๐›ฝ1๐‘Ÿ1(๐‘ฅ) ๐›ผ2๐‘”(๐‘ฅ) = ๐‘ž2(๐‘ฅ)๐‘Ÿ1(๐‘ฅ) + ๐›ฝ2๐‘Ÿ2(๐‘ฅ) โ‹ฎ ๐›ผ๐‘™๐‘Ÿ๐‘™โˆ’2(๐‘ฅ) = ๐‘ž๐‘™(๐‘ฅ)๐‘Ÿ๐‘™โˆ’1(๐‘ฅ) + ๐›ฝ๐‘™๐‘Ÿ๐‘™(๐‘ฅ) where ๐‘Ÿโˆ’1(๐‘ฅ) = ๐‘“(๐‘ฅ) , ๐‘Ÿ0(๐‘ฅ) = ๐‘”(๐‘ฅ) , โ„Ž1 = 1 , ๐‘›๐‘– = ๐‘‘๐‘’๐‘”(๐‘Ÿ๐‘–) , ๐›ฟ๐‘– = ๐‘›๐‘– โˆ’ ๐‘›๐‘–+1 , ๐›ผ๐‘– = (๐‘™๐‘(๐‘Ÿ๐‘–โˆ’1)) ๐›ฟ๐‘–โˆ’2+1 , ๐›ฝ๐‘– = ๐‘™๐‘(๐‘Ÿ๐‘–โˆ’2)โ„Ž๐‘– ๐›ฟ๐‘–โˆ’2 ๐œ๐‘–โˆ’1 โˆ’๐›ฟ๐‘–โˆ’2โˆ’1 ๐œ๐‘– , โ„Ž๐‘– = (๐œ๐‘–โˆ’2๐‘™๐‘(๐‘Ÿ๐‘–โˆ’2))๐›ฟ๐‘–โˆ’3โ„Ž๐‘–โˆ’1 1โˆ’๐›ฟ๐‘–โˆ’3 , for 2 โ‰ค ๐‘– โ‰ค ๐‘™ + 1. ๐œ๐‘– is an integer such that ๐‘กโ€ฒ๐‘–(๐‘ฅ)/๐œ๐‘–is a primitive polynomial. Clearly, ๐œ0 = 1. In [3], the author chose ๐œ๐‘– = lc(๐‘Ÿ๐‘–โˆ’1) if lc(๐‘Ÿ๐‘–โˆ’1)|๐‘Ÿโ€ฒ๐‘–(๐‘ฅ), otherwise ๐œ๐‘– = 1. However, the method to choose ๐œ๐‘– doesn't work for every ๐œ๐‘–. Comparing the two subresultant algorithms, we need to emphasis that all the โ„Ž๐‘–s are equal in the two algorithms. 3. SOME PROPERTIES OF THE SUB RESULTANT POLYNOMIAL REMAINDER SEQUENCE Before presenting our algorithm, we give some results about the subresultant PRS. Proposition 1. Given two polynomials ๐‘Ž(๐‘ฅ) = ๐‘Ž๐‘›๐‘ฅ๐‘› + โ‹ฏ + ๐‘Ž1๐‘ฅ + ๐‘Ž0 and ๐‘(๐‘ฅ) = ๐‘๐‘š๐‘ฅ๐‘š + โ‹ฏ + ๐‘1๐‘ฅ + ๐‘0 โˆˆ โ„ค[๐‘ฅ], where ๐‘› > ๐‘š. Write ๐‘๐‘š ๐‘›โˆ’๐‘š+1 ๐‘Ž(๐‘ฅ) = ๐‘ž(๐‘ฅ)๐‘(๐‘ฅ) + ๐‘Ÿ(๐‘ฅ). Define the matrix If the determinant of the matrix ๐‘ด๐‘– is denoted as โˆ†๐‘– , where ๐‘ด๐‘– is the ๐‘– ร— ๐‘– submatrix of ๐‘ด obtained by deleting the last (๐‘› โˆ’ ๐‘š + 2 โˆ’ ๐‘–) rows and the last (๐‘› + 1 โˆ’ ๐‘–) columns from ๐‘ด, ๐‘– = 0, โ€ฆ , ๐‘› โˆ’ ๐‘š + 1 . Then ๐‘ž(๐‘ฅ) = โˆ‘ โˆ†๐‘›โˆ’๐‘š+1โˆ’๐‘–๐‘๐‘š ๐‘– ๐‘ฅ๐‘– ๐‘›โˆ’๐‘š ๐‘–=0 . Moreover, we have (๐‘๐‘œ๐‘›๐‘ก(๐‘Ž(๐‘ฅ))๐‘๐‘œ๐‘›๐‘ก(๐‘(๐‘ฅ)) ๐‘›โˆ’๐‘š )|๐‘ž(๐‘ฅ). Proof. We first give the detail of the pseudo-division procedure, { ๐‘๐‘š๐‘Ž(๐‘ฅ) = ๐‘Ž๐‘›๐‘ฅ๐‘›โˆ’๐‘š ๐‘(๐‘ฅ) + ๐‘…1(๐‘ฅ) ๐‘๐‘š๐‘…1(๐‘ฅ) = ๐‘™๐‘(๐‘…1)๐‘ฅ๐‘›โˆ’๐‘šโˆ’1 ๐‘(๐‘ฅ) + ๐‘…2(๐‘ฅ) โ‹ฎ ๐‘๐‘š๐‘…๐‘›โˆ’๐‘šโˆ’1(๐‘ฅ) = ๐‘™๐‘(๐‘…๐‘›โˆ’๐‘šโˆ’1)๐‘ฅ๐‘(๐‘ฅ) + ๐‘…๐‘›โˆ’๐‘š(๐‘ฅ) ๐‘๐‘š๐‘…๐‘›โˆ’๐‘š(๐‘ฅ) = ๐‘™๐‘(๐‘…๐‘›โˆ’๐‘š)๐‘ฅ๐‘(๐‘ฅ) + ๐‘Ÿ(๐‘ฅ)
  • 10. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022 10 We denote ๐‘…0(๐‘ฅ) = ๐‘Ž(๐‘ฅ) and ๐‘…๐‘›โˆ’๐‘š+1(๐‘ฅ) = ๐‘Ÿ(๐‘ฅ), then we claim that ๐‘…๐‘–(๐‘ฅ) = โˆ‘ โˆ† ฬ…๐‘–,๐‘—๐‘ฅ๐‘— ๐‘›โˆ’๐‘– ๐‘—=0 , where โˆ† ฬ…๐‘–,๐‘— is the determinant of the (๐‘– + 1) ร— (๐‘– + 1) matrix ๐‘€๐‘–,๐‘— obtained by deleting the last (๐‘› โˆ’ ๐‘š + 1 โˆ’ ๐‘–) rows and the last (๐‘› + 1 โˆ’ ๐‘–) columns except column (๐‘› + 1 โˆ’ ๐‘—) from ๐‘€, ๐‘– = 0, โ€ฆ , ๐‘› โˆ’ ๐‘š + 1, ๐‘— = 0, โ€ฆ , ๐‘› โˆ’ ๐‘–. Clearly, โˆ†๐‘–+1= โˆ† ฬ…๐‘–,๐‘›โˆ’๐‘–. Then we explain the claim by induction on ๐‘–, ๐‘– = 0, โ€ฆ , ๐‘› โˆ’ ๐‘š + 1. For ๐‘– = 0, we have ๐‘…0(๐‘ฅ) = ๐‘Ž(๐‘ฅ) and it's obvious that ๐‘Ž๐‘— = โˆ† ฬ…0,๐‘— for ๐‘— = 0, โ€ฆ , ๐‘›. Next we assume that the claim holds for ๐‘– = ๐‘˜ โˆ’ 1. Then we denote ๐‘๐‘š๐‘…๐‘˜โˆ’1(๐‘ฅ) and ๐‘(๐‘ฅ) as following, [ ๐‘๐‘šโˆ† ฬ…๐‘˜โˆ’1,๐‘›+1โˆ’๐‘˜ ๐‘๐‘šโˆ† ฬ…๐‘˜โˆ’1,๐‘›โˆ’๐‘˜ โ‹ฏ ๐‘๐‘šโˆ† ฬ…๐‘˜โˆ’1,๐‘›โˆ’๐‘š+1โˆ’๐‘˜ โ‹ฏ โ‹ฏ ๐‘๐‘šโˆ† ฬ…๐‘˜โˆ’1,1 ๐‘๐‘šโˆ† ฬ…๐‘˜โˆ’1,0 ๐‘๐‘š ๐‘๐‘šโˆ’1 โ‹ฏ ๐‘0 0 โ‹ฏ 0 0 ] Then the coefficient of ๐‘ฅ๐‘›โˆ’๐‘˜+1โˆ’๐‘– in ๐‘…๐‘˜(๐‘ฅ) is ๐‘๐‘šโˆ† ฬ…๐‘˜โˆ’1,๐‘›+1โˆ’๐‘˜โˆ’๐‘– โˆ’ ๐‘๐‘šโˆ’๐‘–โˆ† ฬ…๐‘˜โˆ’1,๐‘›+1โˆ’๐‘˜ if 1 โ‰ค ๐‘– โ‰ค ๐‘š and ๐‘๐‘šโˆ† ฬ…๐‘˜โˆ’1,๐‘›+1โˆ’๐‘˜โˆ’๐‘– otherwise. According to the structure of ๐‘€ we know that the coefficient of ๐‘ฅ๐‘›โˆ’๐‘˜+1โˆ’๐‘– is exactly โˆ† ฬ…๐‘˜,๐‘›โˆ’๐‘˜+1โˆ’๐‘–. So the claim holds. From the claim we have ๐‘™๐‘(๐‘…๐‘–) = โˆ† ฬ…๐‘–,๐‘›โˆ’๐‘–= โˆ†๐‘–+1 , so ๐‘ž(๐‘ฅ) = โˆ‘ ๐‘™๐‘(๐‘…๐‘›โˆ’๐‘šโˆ’๐‘–)๐‘๐‘š ๐‘– ๐‘ฅ๐‘– ๐‘›โˆ’๐‘š ๐‘–=0 = โˆ‘ โˆ†๐‘›โˆ’๐‘š+1โˆ’๐‘–๐‘๐‘š ๐‘– ๐‘ฅ๐‘– ๐‘›โˆ’๐‘š ๐‘–=0 . Then from the structure of ๐‘€๐‘– , we know (๐‘๐‘œ๐‘›๐‘ก(๐‘Ž(๐‘ฅ))๐‘๐‘œ๐‘›๐‘ก(๐‘(๐‘ฅ)) ๐‘›โˆ’๐‘šโˆ’๐‘– )|โˆ†๐‘›โˆ’๐‘š+1โˆ’๐‘– . So (๐‘๐‘œ๐‘›๐‘ก(๐‘Ž(๐‘ฅ))๐‘๐‘œ๐‘›๐‘ก(๐‘(๐‘ฅ)) ๐‘›โˆ’๐‘š )|โˆ†๐‘›โˆ’๐‘š+1โˆ’๐‘–๐‘๐‘š ๐‘– , which means (๐‘๐‘œ๐‘›๐‘ก(๐‘Ž(๐‘ฅ))๐‘๐‘œ๐‘›๐‘ก(๐‘(๐‘ฅ)) ๐‘›โˆ’๐‘š )|๐‘ž(๐‘ฅ). Proposition 2. Let ๐‘Ÿ1(๐‘ฅ), โ‹ฏ , ๐‘Ÿ๐‘™(๐‘ฅ) be the remainders obtained in improved subresultant algorithm. Present ๐‘Ÿ๐‘–(๐‘ฅ) = ๐‘ ๐‘–(๐‘ฅ)๐‘“(๐‘ฅ) + ๐‘ก๐‘–(๐‘ฅ)๐‘”(๐‘ฅ), for ๐‘– = 1, โ‹ฏ, ๐‘™. Then we have ๐‘™๐‘(๐‘ก๐‘–) = โ„Ž๐‘–+1 ๐œ๐‘– . Proof. According to Lemma 2, ๐‘ก๐‘–(๐‘ฅ) = 1 ๐›ฝ๐‘– (๐›ผ๐‘–๐‘ก๐‘–โˆ’2(๐‘ฅ) โˆ’ ๐‘ž๐‘–(๐‘ฅ)๐‘ก๐‘–โˆ’1(๐‘ฅ)) and ๐‘‘๐‘’๐‘”(๐‘ก๐‘–) = ๐‘› โˆ’ ๐‘›๐‘–โˆ’1. Also ๐‘‘๐‘’๐‘”(๐‘ž๐‘–) = ๐›ฟ๐‘–โˆ’2 , so ๐‘‘๐‘’๐‘”(๐‘ก๐‘–) = ๐‘› โˆ’ ๐‘›๐‘–โˆ’3 < ๐‘‘๐‘’๐‘”(๐‘ž๐‘–๐‘ก๐‘–โˆ’1) = ๐‘› โˆ’ ๐‘›๐‘–โˆ’1 . Then ๐‘™๐‘(๐‘ก๐‘–) = 1 ๐›ฝ๐‘– ๐‘™๐‘(๐‘ž๐‘–) ๐‘™๐‘(๐‘ก๐‘–โˆ’1), so ๐‘™๐‘(๐‘ž๐‘–) = ๐‘™๐‘(๐‘Ÿ๐‘–โˆ’2) ๐‘™๐‘(๐‘Ÿ๐‘–โˆ’1) ๐›ผ๐‘–. Then ๐‘™๐‘(๐‘ก๐‘–) = ๐‘™๐‘(๐‘Ÿ๐‘–โˆ’2)๐›ผ๐‘– ๐‘™๐‘(๐‘Ÿ๐‘–โˆ’1)๐›ฝ๐‘– ๐‘™๐‘(๐‘ก๐‘–โˆ’1) = ๐›ผ1โ€ฆ๐›ผ๐‘– ๐›ฝ1โ€ฆ๐›ฝ๐‘–๐‘™๐‘(๐‘Ÿ๐‘–โˆ’1) . Because ๐›ผ๐‘– = (๐‘™๐‘(๐‘Ÿ๐‘–โˆ’1)) ๐›ฟ๐‘–โˆ’2+1 , ๐›ฝ๐‘– = ๐‘™๐‘(๐‘Ÿ๐‘–โˆ’1)โ„Ž๐‘– ๐›ฟ๐‘–โˆ’2 ๐œ๐‘–โˆ’1 โˆ’๐›ฟ๐‘–โˆ’2โˆ’1 ๐œ๐‘–, then we have ๐‘™๐‘(๐‘ก๐‘–) = 1 ๐‘™๐‘(๐‘Ÿ๐‘–โˆ’1) (๐œ๐‘–โˆ’1 ๐‘™๐‘(๐‘Ÿ๐‘–โˆ’1))๐›ฟ๐‘–โˆ’2+1 ๐‘™๐‘(๐‘Ÿ๐‘–โˆ’2) โ„Ž๐‘– ๐›ฟ๐‘–โˆ’2 ๐œ๐‘– (๐œ๐‘–โˆ’2 ๐‘™๐‘(๐‘Ÿ๐‘–โˆ’2))๐›ฟ๐‘–โˆ’3+1 ๐‘™๐‘(๐‘Ÿ๐‘–โˆ’3) โ„Ž๐‘–โˆ’1 ๐›ฟ๐‘–โˆ’3 ๐œ๐‘–โˆ’1 โ€ฆ (๐œ0 ๐‘™๐‘(๐‘Ÿ0))๐›ฟโˆ’1+1 ๐‘™๐‘(๐‘Ÿโˆ’1) โ„Ž1 ๐›ฟโˆ’1 ๐œ1 = 1 ๐œ๐‘– (๐œ๐‘–โˆ’1 ๐‘™๐‘(๐‘Ÿ๐‘–โˆ’1))๐›ฟ๐‘–โˆ’2 โ„Ž๐‘– ๐›ฟ๐‘–โˆ’2 (๐œ๐‘–โˆ’2 ๐‘™๐‘(๐‘Ÿ๐‘–โˆ’2))๐›ฟ๐‘–โˆ’3 โ„Ž๐‘–โˆ’1 ๐›ฟ๐‘–โˆ’3 โ€ฆ (๐œ0 ๐‘™๐‘(๐‘Ÿ0))๐›ฟโˆ’1 โ„Ž1 ๐›ฟโˆ’1 = 1 ๐œ๐‘– (๐œ๐‘–โˆ’1 ๐‘™๐‘(๐‘Ÿ๐‘–โˆ’1))๐›ฟ๐‘–โˆ’2 โ„Ž๐‘– ๐›ฟ๐‘–โˆ’2 (๐œ๐‘–โˆ’2 ๐‘™๐‘(๐‘Ÿ๐‘–โˆ’2))๐›ฟ๐‘–โˆ’3 โ„Ž๐‘–โˆ’1 ๐›ฟ๐‘–โˆ’3 โ€ฆ (๐œ0 ๐‘™๐‘(๐‘Ÿ1))๐›ฟ0 โ„Ž1 ๐›ฟโˆ’1 โ„Ž2 = โ‹ฏ = โ„Ž๐‘–+1 ๐œ๐‘– Remark 2. If we do similar steps for ๐‘Ÿโ€ฒ0(๐‘ฅ), ๐‘Ÿโ€ฒ1(๐‘ฅ), โ‹ฏ , ๐‘Ÿโ€ฒ๐‘™(๐‘ฅ) in Algorithm 1 and present each ๐‘Ÿโ€ฒ๐‘–(๐‘ฅ) = ๐‘ โ€ฒ๐‘–(๐‘ฅ)๐‘“(๐‘ฅ) + ๐‘กโ€ฒ๐‘–(๐‘ฅ)๐‘”(๐‘ฅ), then we obtain ๐‘™๐‘(๐‘กโ€ฒ๐‘–) = โ„Ž๐‘–+1. Before giving next lemmas, we first present a useful algorithm from [5]. We use the same symbols in [5], {๐‘› โˆ’ ๐‘›๐‘–โˆ’1 + 1, โ‹ฏ , ๐‘› โˆ’ ๐‘›๐‘–} = ๐ผ๐‘–, then {1,2, โ‹ฏ, ๐‘›} = โ‹ƒ ๐ผ๐‘– ๐‘™ ๐‘–+1 .
  • 11. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022 11 Algorithm 2 A Useful Algorithm Input:๐‘Ÿ0(๐‘ฅ), ๐‘Ÿ1(๐‘ฅ), โ‹ฏ , ๐‘Ÿ๐‘™(๐‘ฅ)from improved subresultant algorithm Output: ๐‘Ÿฬ…0(๐‘ฅ), ๐‘Ÿฬ…1(๐‘ฅ), โ‹ฏ , ๐‘Ÿฬ…๐‘™(๐‘ฅ) 1.When๐‘˜ โˆˆ ๐ผ๐‘™, ๐‘Ÿโ€ฒ๐‘˜(๐‘ฅ) = ๐‘Ÿ๐‘™(๐‘ฅ)๐‘ฅ๐‘›โˆ’๐‘˜ ,๐‘– โ† ๐‘™ โˆ’ 1 2.When ๐‘˜ โˆˆ ๐ผ๐‘– 2.1 Set Compute ๐œ™ and ๐œ“, such that ๐œ“๐‘™๐‘(๐‘Ÿ๐‘–) + ๐œ™๐‘™๐‘(๐‘Ÿฬ…๐‘–+1) = gcd(๐‘™๐‘(๐‘Ÿ๐‘–), ๐‘™๐‘(๐‘Ÿฬ…๐‘–+1)) 2.2 Set ๐‘Ÿฬ…๐‘–(๐‘ฅ) = ๐œ“๐‘Ÿ๐‘–(๐‘ฅ) + ๐œ™๐‘Ÿฬ…๐‘–+1(๐‘ฅ)๐‘ฅ๐›ฟ๐‘– 2.3 If ๐‘™๐‘(๐‘Ÿฬ…๐‘›โˆ’๐‘›๐‘– ) = 1, set ๐‘Ÿฬ…๐‘—(๐‘ฅ) = ๐‘Ÿฬ…๐‘›โˆ’๐‘›๐‘– (๐‘ฅ)๐‘ฅ๐‘›โˆ’๐‘›๐‘–โˆ’๐‘— , ๐‘— = 1, โ‹ฏ , ๐‘› โˆ’ ๐‘›๐‘–, go to Step 3; otherwise ๐‘Ÿฬ…๐‘˜(๐‘ฅ) = ๐‘Ÿฬ…๐‘›โˆ’๐‘›๐‘– (๐‘ฅ)๐‘ฅ๐‘›โˆ’๐‘›๐‘–โˆ’๐‘˜ , ๐‘– โ† ๐‘™ โˆ’ 1 2.4If ๐‘– > 0, go to Step 2, otherwise go to Step 3 4.Return๐‘Ÿฬ…0(๐‘ฅ), ๐‘Ÿฬ…1(๐‘ฅ), โ‹ฏ , ๐‘Ÿฬ…๐‘™(๐‘ฅ) We need to explain that Algorithm 2 is equivalent to the corresponding algorithm in [4] and we just use polynomials to express the output instead of a matrix in [4]. Then we will present some results of ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ))and ๐‘™๐‘(๐‘Ÿฬ…๐‘–). Lemma 3. Let ๐‘Ÿ1(๐‘ฅ), โ‹ฏ, ๐‘Ÿ๐‘™(๐‘ฅ) be the polynomial remainder sequence obtained in improved subresultant algorithm. Then ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ))|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–โˆ’1(๐‘ฅ)) for 0 โ‰ค ๐‘– โ‰ค ๐‘™ โˆ’ 1. Proof. We prove this lemma by induction on ๐‘–, ๐‘– = 0, โ€ฆ , ๐‘™ โˆ’ 1. Suppose that ๐ป is the Hermite Normal Form over the ideal lattice โ„’ generated by ๐‘”(๐‘ฅ) โˆˆ โ„ค[๐‘ฅ]/โŒฉ๐‘“(๐‘ฅ)โŒช, and ๐‘Ÿ๐‘–(๐‘ฅ) belongs to โ„’. When ๐‘– = 0, because ๐‘Ÿ0(๐‘ฅ) generates the ideal lattice โ„’ , then all the vectors in โ„’ can be divided exactly by ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ0(๐‘ฅ)). Next we suppose that when ๐‘– โ‰ค ๐‘˜ โˆ’ 1, ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–โˆ’1(๐‘ฅ))|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)), then we need to show that ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ))|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜+1(๐‘ฅ)). Consider the (๐‘˜ + 1)-th equation in improved subresultant algorithm, ๐›ผ๐‘˜+1๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ) = ๐‘ž๐‘˜+1(๐‘ฅ)๐‘Ÿ๐‘˜(๐‘ฅ) + ๐›ฝ๐‘˜+1(๐‘ฅ)๐‘Ÿ๐‘˜+1(๐‘ฅ), then we know ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ)) ๐›ฟ๐‘˜โˆ’1+1 |๐›ฝ๐‘˜+1๐‘Ÿ๐‘˜+1(๐‘ฅ). Because ๐‘ก๐‘˜+1(๐‘ฅ) = (๐›ผ๐‘˜+1๐‘ก๐‘˜โˆ’1(๐‘ฅ) โˆ’ ๐‘ž๐‘˜+1(๐‘ฅ)๐‘ก๐‘˜(๐‘ฅ)) ๐›ฝ๐‘˜+1 โ„ , ๐›ฝ๐‘˜+1 must contain a factor as the content of ๐›ผ๐‘˜+1๐‘ก๐‘˜โˆ’1(๐‘ฅ) โˆ’ ๐‘ž๐‘˜+1(๐‘ฅ)๐‘ก๐‘˜(๐‘ฅ) . Also ๐›ผ๐‘˜+1 = ๐‘™๐‘(๐‘Ÿ๐‘˜)๐›ฟ๐‘˜โˆ’1+1 , (๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ)) ๐›ฟ๐‘˜โˆ’1 )|๐‘ž๐‘˜+1(๐‘ฅ) due to Proposition 1. Based on the assumption(๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ)), so (๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ)) ๐›ฟ๐‘˜โˆ’1 ) |๐›ฝ๐‘˜+1. If (๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ)) โˆค ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜+1(๐‘ฅ)) , then there exists a prime ๐‘Ž such that ๐‘Ž|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ)) and (๐‘Ž โˆ™ ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ)) ๐›ฟ๐‘˜โˆ’1 ) |๐›ฝ๐‘˜+1. We give 2 cases as following: 1) ๐‘Ž โˆ™ ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ)) โˆค ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ)) , which means that ๐‘Ž โˆค ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ)) and ๐‘Ž โˆค ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ)) ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ)) . According to Proposition 1, we know ๐‘Ÿ๐‘˜+1(๐‘ฅ) = โˆ‘ โˆ† ฬ…๐‘›๐‘˜โˆ’1,๐‘— ๐‘ฅ๐‘— ๐›ฝ๐‘˜+1 โ„ ๐‘›๐‘˜โˆ’1 ๐‘—=0 , here
  • 12. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022 12 โˆ† ฬ…๐‘›๐‘˜โˆ’1,๐‘— is the determinant of the (๐›ฟ๐‘˜โˆ’1 + 2) ร— (๐›ฟ๐‘˜โˆ’1 + 2) matrix obtained by deleting the last ๐‘›๐‘˜ columns except column ๐‘›๐‘˜โˆ’1 + 1 โˆ’ ๐‘— from ๐‘€ , ๐‘— = 0, โ€ฆ , ๐‘›๐‘˜ โˆ’ 1 . Because ๐‘Ž โˆค ๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ) ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ)) , there exits a ๐‘— > 1 such that ๐‘Ž|๐‘€๐‘—(๐‘ฅ), which means ๐‘Ž| ๐‘™๐‘(๐‘Ÿ๐‘˜) ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ)) . Thus we obtan (๐‘Ž โˆ™ ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ)) ๐›ฟ๐‘˜โˆ’1 ) |๐›ผ๐‘˜+1 . According to equation ๐‘ก๐‘˜+1(๐‘ฅ) = (๐›ผ๐‘˜+1๐‘ก๐‘˜โˆ’1(๐‘ฅ) โˆ’ ๐‘ž๐‘˜+1(๐‘ฅ)๐‘ก๐‘˜(๐‘ฅ)) ๐›ฝ๐‘˜+1 โ„ ,we have that (๐‘Ž โˆ™ ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ)) ๐›ฟ๐‘˜โˆ’1 ) |๐‘ž๐‘˜+1(๐‘ฅ). (๐‘Ž โˆ™ ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ)) ๐›ฟ๐‘˜โˆ’1 ) |๐›ฝ๐‘˜+1๐‘Ÿ๐‘˜+1(๐‘ฅ), which means we have get ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ))|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜+1(๐‘ฅ)). 2) ๐‘Ž โˆ™ ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ)). Because ๐›ผ๐‘˜+1 = ๐‘™๐‘(๐‘Ÿ๐‘˜)๐›ฟ๐‘˜โˆ’1+1 , then we have result that ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ))๐›ฟ๐‘˜โˆ’1+1 |๐›ผ๐‘˜+1 , thus (๐‘Ž โˆ™ ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ)) ๐›ฟ๐‘˜โˆ’1 ) |๐›ผ๐‘˜+1 . As the same step in case 1, we still get ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ))|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜+1(๐‘ฅ)). So in conclusion we obtain ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ))|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜+1(๐‘ฅ)). The proof is completed. Lemma 4. Let ๐‘Ÿ1(๐‘ฅ), โ‹ฏ, ๐‘Ÿ๐‘™(๐‘ฅ) be the polynomial remainder sequence obtained in improved resultant algorithm and ๐‘Ÿ1 ฬ…(๐‘ฅ), โ‹ฏ , ๐‘Ÿ๐‘™ ฬ…(๐‘ฅ) be the output of Algorithm 2. If gcd(๐‘™๐‘(๐‘Ÿ๐‘–),๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–+1(๐‘ฅ))) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)) for ๐‘– โ‰ค ๐‘™ โˆ’ 1 , then ๐‘™๐‘(๐‘Ÿฬ…๐‘–) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)) . Moreover, ๐‘™๐‘(๐‘Ÿฬ…๐‘–)|๐‘Ÿ๐‘– ฬ…(๐‘ฅ). Proof. We notice that from Algorithm 2, ๐‘Ÿฬ…๐‘–(๐‘ฅ) = ๐œ“๐‘Ÿ๐‘–(๐‘ฅ) + ๐œ™๐‘Ÿฬ…๐‘–+1(๐‘ฅ)๐‘ฅ๐›ฟ๐‘– , where ๐œ“ and ๐œ™ satisfy ๐œ“๐‘™๐‘(๐‘Ÿ๐‘–) + ๐œ™๐‘™๐‘(๐‘Ÿฬ…๐‘–+1) = gcd(๐‘™๐‘(๐‘Ÿ๐‘–),๐‘™๐‘(๐‘Ÿฬ…๐‘–+1)) = ๐‘™๐‘(๐‘Ÿฬ…๐‘–) . If we already have gcd(๐‘™๐‘(๐‘Ÿ๐‘–),๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–+1(๐‘ฅ))) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)) and ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–+1(๐‘ฅ)) = ๐‘™๐‘(๐‘Ÿฬ…๐‘–+1), then we have ๐‘™๐‘(๐‘Ÿฬ…๐‘–) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)). When ๐‘– = ๐‘™, this is a trivial result because ๐‘™๐‘(๐‘Ÿฬ…๐‘™) = ๐‘Ÿฬ…๐‘™(๐‘ฅ) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘™(๐‘ฅ)). So we know ๐‘™๐‘(๐‘Ÿฬ…๐‘™โˆ’1) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘™โˆ’1(๐‘ฅ)),๐‘™๐‘(๐‘Ÿฬ…๐‘™โˆ’2) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘™โˆ’2(๐‘ฅ)), โ€ฆ,, and so on. Thus, if gcd(๐‘™๐‘(๐‘Ÿ๐‘–), ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–+1(๐‘ฅ))) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)) for ๐‘– โ‰ค ๐‘™ โˆ’ 1, then ๐‘™๐‘(๐‘Ÿฬ…๐‘–) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)). For the second part, according to the assumption, gcd(๐‘™๐‘(๐‘Ÿ๐‘–),๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–+1(๐‘ฅ))) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)), then ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ))|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–+1(๐‘ฅ)) . Also ๐‘Ÿฬ…๐‘–(๐‘ฅ) = ๐œ“๐‘Ÿ๐‘–(๐‘ฅ) + ๐œ™๐‘Ÿฬ…๐‘–+1(๐‘ฅ)๐‘ฅ๐›ฟ๐‘– , so ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ))|๐‘Ÿฬ…๐‘–(๐‘ฅ) . Due to ๐‘™๐‘(๐‘Ÿฬ…๐‘–) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)), we know that ๐‘™๐‘(๐‘Ÿฬ…๐‘–) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ))|๐‘Ÿฬ…๐‘–(๐‘ฅ), for 0 โ‰ค ๐‘– โ‰ค ๐‘™. Lemma 5. Let ๐‘Ÿ1(๐‘ฅ), โ‹ฏ, ๐‘Ÿ๐‘™(๐‘ฅ) be the polynomial remainder sequence obtained in improved resultant algorithm. Then gcd(๐‘™๐‘(๐‘Ÿ๐‘–),๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–+1(๐‘ฅ))) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)). Proof. We prove this lemma by induction on ๐‘–, ๐‘– = 1, โ€ฆ , ๐‘™ โˆ’ 1. First, suppose that ๐‘ฏ is the Hermite Normal Form of the ideal lattice โ„’ generated by ๐‘”(๐‘ฅ) โˆˆ โ„ค[๐‘ฅ]/โŒฉ๐‘“(๐‘ฅ)โŒช, and ๐‘Ÿ๐‘–(๐‘ฅ) belongs to โ„’. Denote ๐‘™๐‘(๐‘Ÿ๐‘–) ๐‘™๐‘(๐ป๐‘›โˆ’๐‘›๐‘– ) as ๐›พ๐‘– and ๐‘‘๐‘– = ๐‘› โˆ’ ๐‘›๐‘–, here ๐‘ฏ๐‘–(๐‘ฅ) is the corresponding polynomial of the ๐‘– -th row, then ๐‘Ÿ๐‘–(๐‘ฅ) = ๐›พ๐‘–๐‘ฏ๐‘‘๐‘– (๐‘ฅ) + โˆ‘ ๐ด๐‘–,๐‘—(๐‘ฅ) ๐‘™ ๐‘—=๐‘–+1 ๐‘ฏ๐‘‘๐‘— (๐‘ฅ) , where deg(๐ด๐‘–,๐‘—) < ๐‘›๐‘– โˆ’ ๐‘›๐‘—.
  • 13. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022 13 From Lemma 4, ๐‘™๐‘ (๐‘ฏ๐‘‘๐‘— ) |๐‘ฏ๐‘‘๐‘— (๐‘ฅ), for ๐‘– โ‰ค ๐‘— โ‰ค ๐‘™ . So ๐‘™๐‘(๐‘ฏ๐‘‘๐‘– )|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)). Because ๐‘Ÿ๐‘–(๐‘ฅ) = ๐‘ก๐‘–(๐‘ฅ)๐‘”(๐‘ฅ)๐‘š๐‘œ๐‘‘๐‘“(๐‘ฅ) belongs to โ„’ and ๐‘ก๐‘–(๐‘ฅ) is primitive, then gcd(๐›พ๐‘–, ๐ด๐‘–,๐‘–+1(๐‘ฅ), โ€ฆ , ๐ด๐‘–,๐‘™(๐‘ฅ)) = 1, thus there exists some ๐‘– < ๐‘˜ โ‰ค ๐‘™ , ๐‘๐‘œ๐‘›๐‘ก ( ๐‘Ÿ๐‘–(๐‘ฅ) ๐‘™๐‘(๐ป๐‘‘๐‘– ) ) = gcd(๐›พ๐‘–, ๐‘™๐‘(๐ป๐‘‘๐‘˜ ) ๐‘™๐‘(๐ป๐‘‘๐‘– ) ) , which means that ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)) = gcd(๐‘™๐‘(๐‘Ÿ๐‘–),๐‘™๐‘(๐ป๐‘‘๐‘˜ )). So every content of ๐‘Ÿ๐‘–(๐‘ฅ) must be a factor of ๐‘ฏ๐‘›. Specially, we have ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘™โˆ’1(๐‘ฅ)) = ๐‘™๐‘(๐‘Ÿฬ…๐‘™โˆ’1), which shows that the result holds for ๐‘– = ๐‘™ โˆ’ 1. Now assume that for ๐‘– โ‰ฅ ๐‘˜ , we have gcd(๐‘™๐‘(๐‘Ÿ๐‘–),๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–+1(๐‘ฅ)) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)) . Then from Lemma 3, we have ๐‘™๐‘(๐‘Ÿฬ…๐‘–) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)). Next we consider ๐‘˜ โˆ’ 1, from the Algorithm 2, gcd(๐‘™๐‘(๐‘Ÿ๐‘˜โˆ’1), ๐‘™๐‘(๐‘Ÿฬ…๐‘˜)) = ๐‘™๐‘(๐‘Ÿฬ…๐‘˜โˆ’1). Then because ๐‘™๐‘(๐‘Ÿฬ…๐‘–) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)) for ๐‘– โ‰ฅ ๐‘˜, gcd(๐‘™๐‘(๐‘Ÿ๐‘˜โˆ’1), ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ))) = ๐‘™๐‘(๐‘Ÿฬ…๐‘˜โˆ’1). So we need to show ๐‘™๐‘(๐‘Ÿฬ…๐‘˜โˆ’1) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ)). First, ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))|๐‘™๐‘(๐‘Ÿ๐‘˜โˆ’1) and according to the Lemma 3, ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿฬ…๐‘˜(๐‘ฅ)), so ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))|gcd(๐‘™๐‘(๐‘Ÿ๐‘˜โˆ’1), ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ))) = ๐‘™๐‘(๐‘Ÿฬ…๐‘˜โˆ’1) . We suppose ๐‘™๐‘(๐‘Ÿฬ…๐‘˜โˆ’1) = ๐‘Ž โˆ™ ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ)) for a prime ๐‘Ž. According to Lemma 4, ๐‘™๐‘(๐‘Ÿฬ…๐‘–) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘–(๐‘ฅ)) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿฬ…๐‘–(๐‘ฅ)) for ๐‘– โ‰ฅ ๐‘˜ , so we have ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿฬ…๐‘˜โˆ’1(๐‘ฅ)) . Also the step diminishes the leading coefficient and ๐‘™๐‘(๐‘Ÿฬ…๐‘˜โˆ’1)|๐‘™๐‘(๐‘Ÿ๐‘˜โˆ’1), then ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿฬ…๐‘˜โˆ’1(๐‘ฅ)) โ‰ค ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ)). So ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ)) = ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿฬ…๐‘˜โˆ’1(๐‘ฅ)). Consider the๐‘˜-th equation in improved subresultant algorithm, ๐›ผ๐‘˜๐‘Ÿ๐‘˜โˆ’2(๐‘ฅ) = ๐‘ž๐‘˜(๐‘ฅ)๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ) + ๐›ฝ๐‘˜๐‘Ÿ๐‘˜(๐‘ฅ) here ๐›ผ๐‘˜ = ๐‘™๐‘(๐‘Ÿ๐‘˜โˆ’1)๐›ฟ๐‘˜โˆ’2+1 . Because ๐‘Ž โˆ™ ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))|๐‘™๐‘(๐‘Ÿ๐‘˜โˆ’1) and ๐‘Ž โˆ™ ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))|๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜(๐‘ฅ)) , we know that ๐‘Ž โˆ™ (๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))) ๐›ฟ๐‘˜โˆ’2+1 |๐›ผ๐‘˜ and ๐‘Ž โˆ™ ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))|๐‘Ÿ๐‘˜(๐‘ฅ) , which means, if we divide the equation above by ๐œ‡ = ๐‘Ž โˆ™ (๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ))) ๐›ฟ๐‘˜โˆ’2+1 ๐‘๐‘œ๐‘›๐‘ก(๐‘Ÿ๐‘˜โˆ’2(๐‘ฅ)), then ๐›ผ๐‘˜๐‘Ÿ๐‘˜โˆ’2(๐‘ฅ) ๐œ‡ and ๐›ฝ๐‘˜๐‘Ÿ๐‘˜(๐‘ฅ) ๐œ‡ both belong to โ„ค[๐‘ฅ], while ๐‘ž๐‘˜(๐‘ฅ)๐‘Ÿ๐‘˜โˆ’1(๐‘ฅ) ๐œ‡ doesn't. This is a contradiction. So the proof is completed. Using the results above, we realize that ๐‘™๐‘(๐‘ก๐‘–) is related to ๐œ๐‘– which is the unknown. We tried some equations and found the following equation, gcd(๐‘™๐‘(๐‘ก๐‘–), ๐‘™๐‘(๐‘Ÿฬ…๐‘–โˆ’1)) = ๐‘”๐‘๐‘‘ ( ๐‘™๐‘(๐‘Ÿ๐‘–โˆ’1) ๐‘™๐‘(๐‘Ÿฬ…๐‘–โˆ’1) , ๐‘™๐‘(๐‘Ÿฬ…๐‘–โˆ’1)) for ๐‘– = 0,1,2, โ‹ฏ, ๐‘™.Also in our experiments, the conjecture hold with extremely high probability. 4. A NEW ALGORITHM FOR COMPUTATION OF POLYNOMIAL GREATEST COMMON In this section, we give a probabilistic subresultant algorithm by applying the results in the last section. We need to emphasis that the algorithm is not deterministic yet. The detail of the algorithm is present as following.
  • 14. Applied Mathematics and Sciences: An International Journal (MathSJ) Vol.9, No.2/3, September 2022 14 Algorithm 3 Probabilistic Subresultant Algorithm Input: two polynomials ๐‘“(๐‘ฅ), ๐‘”(๐‘ฅ) โˆˆ โ„ค[๐‘ฅ] with degree ๐‘› and ๐‘š respectively and ๐‘“(๐‘ฅ) is monic and irreducible Output: Probabilistic subresultant PRS, ๐‘Ÿ0(๐‘ฅ), ๐‘Ÿ1(๐‘ฅ), โ‹ฏ 1.[Initialize] ๐‘™ โ† โ„Ž โ† 1, ๐‘ข1(๐‘ฅ) โ† ๐‘“(๐‘ฅ),๐‘ข2(๐‘ฅ) โ† ๐‘”(๐‘ฅ),๐‘– โ† 1 2.Compute ๐‘™๐‘(๐‘ข2)๐›ฟ+1 ๐‘ข1(๐‘ฅ) โˆ’ ๐‘ž(๐‘ฅ)๐‘ข2(๐‘ฅ) = ๐‘Ÿ(๐‘ฅ), here ๐‘‘๐‘’๐‘”(๐‘Ÿ) < ๐‘‘๐‘’๐‘”(๐‘ข2), ๐›ฟ = ๐‘‘๐‘’๐‘”(๐‘ข1) โˆ’ ๐‘‘๐‘’๐‘”(๐‘ข2) 3.๐‘ข(๐‘ฅ) โ† ๐‘ข1(๐‘ฅ), ๐‘ข1(๐‘ฅ) โ† ๐‘ข2(๐‘ฅ), ๐‘ข2(๐‘ฅ) โ† ๐‘Ÿ(๐‘ฅ) 4.When ๐‘‘๐‘’๐‘”(๐‘ข2) โ‰  0, 4.1 ๐‘™ โ† ๐‘™๐‘(๐‘ข2), โ„Ž โ† ๐‘™๐›ฟ โ„Ž1โˆ’๐›ฟ 4.2 ๐œ โ† gcd(โ„Ž, ๐‘๐‘œ๐‘›๐‘ก(๐‘ข2(๐‘ฅ))), ๐œโ€ฒ โ† gcd(๐‘™๐‘(๐‘ข)/๐‘๐‘œ๐‘›๐‘ก(๐‘ข(๐‘ฅ)), ๐‘๐‘œ๐‘›๐‘ก(๐‘ข(๐‘ฅ))) 4.3 ๐œ โ†/๐œโ€ฒ, ๐‘Ÿ๐‘–(๐‘ฅ) โ† ๐‘Ÿ(๐‘ฅ)/(๐‘™โ„Ž๐›ฟ ๐œ) 4.4 ๐›ฟ = ๐‘‘๐‘’๐‘”(๐‘ข1) โˆ’ ๐‘‘๐‘’๐‘”(๐‘ข2) 4.5 Compute ๐‘™๐‘(๐‘ข2)๐›ฟ+1 ๐‘ข1(๐‘ฅ) โˆ’ ๐‘ž(๐‘ฅ)๐‘ข2(๐‘ฅ) = ๐‘Ÿ(๐‘ฅ), ๐‘‘๐‘’๐‘”(๐‘Ÿ) < ๐‘‘๐‘’๐‘”(๐‘ข2), ๐›ฟ = ๐‘‘๐‘’๐‘”(๐‘ข1) โˆ’ ๐‘‘๐‘’๐‘”(๐‘ข2) 4.6 ๐‘ข(๐‘ฅ) โ† ๐‘ข1(๐‘ฅ), ๐‘ข1(๐‘ฅ) โ† ๐‘ข2(๐‘ฅ), ๐‘ข2(๐‘ฅ) โ† ๐‘Ÿ(๐‘ฅ)/(๐‘™โ„Ž๐›ฟ ) 4.7 ๐‘– โ† ๐‘– + 1 5.[Return] ๐‘Ÿ0(๐‘ฅ), ๐‘Ÿ1(๐‘ฅ), โ‹ฏ For the often-used polynomials in ideal lattice-based cryptography ๐‘ฅ๐‘› + 1 and ๐‘ฅ๐‘› โˆ’ ๐‘ฅ โˆ’ 1, here ๐‘› is a power of 2, we give the experiment results. For each polynomial, we sample 10000 examples randomly with coefficients in the range [-20,20] and the correctness is present below. Polynomial ๐‘ฅ๐‘› + 1 ๐‘ฅ๐‘› โˆ’ ๐‘ฅ โˆ’ 1 Correctness 97.88% 99.73% 5. CONCLUSIONS In this paper, we give some results about the contents and small factors of remainders during Euclidean algorithm of polynomials. By applying these results, we proposed a probabilistic subresultant which can output correct remainders with high probability. Due to the case of failure, the next research will be focus on the exact expression of each ๐œ๐‘– and relation between ๐‘™๐‘(๐‘ก๐‘–) and cont(๐‘Ÿ๐‘—(๐‘ฅ)) to obtain a determinisitic improved subresultant algorithm. REFERENCES [1] G.E. Collins. Subresultants and reduced polynomial remainder sequences. J. ACM, 14(1): 128--142 (1967) [2] D.E. Knuth. The art of computer programming. Seminumerical Algorithms. vol. 2, 3rd Edition, 1998 (1st Edition, 1969) [3] W.S. Brown. The subresultant PRS algorithm. ACM Trans. Math. Software, 4(3):237--249 (1978) [4] Y. Zhang, R.Z. Liu, D.D. Lin. Fast Triangularization of Ideal Latttice Basis. Journal of Electronics and Information Technology, 42(1): 98-104 (2020) [5] Y. Zhang, R.Z. Liu, D.D. Lin. Improved Key Generation Algorithm for Gentry's Fully Homomorphic Encryption Scheme. ICISC: 97-111 (2018) [6] J Gathen, T Lรผcking. Subresultants Revisited. Latin American Symposium on Theoretical Informatics, LNCS 1776: 318โ€“342