SlideShare a Scribd company logo
1 of 7
Download to read offline
IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org
ISSN (e): 2250-3021, ISSN (p): 2278-8719
Vol. 05, Issue 08 (August. 2015), ||V3|| PP 45-51
International organization of Scientific Research 45 | P a g e
Numerical Solution of a Linear Black-Scholes Models: A
Comparative Overview
Md. Kazi Salah Uddin, Md. Noor-A-Alam Siddiki, Md. Anowar Hossain
Department of Natural Science, Stamford University Bangladesh, Dhaka-1209, Bangladesh.
Abstract: - Black-Scholes equation is a well known partial differential equation in financial mathematics. In
this paper we try to solve the European options (Call and Put) using different numerical methods as well as
analytical methods. We approximate the model using a Finite Element Method (FEM) followed by weighted
average method using different weights for numerical approximations. We present the numerical result of semi-
discrete and full discrete schemes for European Call option and Put option by Finite Difference Method and
Finite Element Method. We also present the difference of these two methods. Finally, we investigate some
linear algebra solvers to verify the superiority of the solvers.
Keywords: Black-Scholes model; call and put options; exact solution; finite difference schemes, Finite Element
Methods.
I. INTRODUCTION
A powerful tool for valuation of equity options is the Black-Scholes model[12,15]. This model is used for
finding the prices of stocks.
R. Company, A.L. Gonzalez, L. Jodar [14] solved the modified Black-Scholes equation pricing option with
discrete dividend.
A delta-defining sequence of generalized Dirac-Delta function and the Mellin transformation are used toobtain
an integral formula. Finally numerical quadrature approximation is used to approximate the solution.
In some papers like [13] Mellin transformation is used. They were required neither variable transformation nor
solving diffusion equation.
R. Company, L. Jodar, G. Rubio, R.J. Villanueva [13] found the solution of BS equation with a wide class of
payoff functions that contains not only the Dirac delta type functions but also the ordinary payoff functions with
discontinuities of their derivatives.
Julia Ankudiova, Matthias Ehrhardt [20] solved non linear Black-Scholes equations numerically. They focused
on various models relevant with the Black-Scholes equations with volatility depending on several factors.
They also worked on the European Call option and American Call option analytically using transformation into
a convection -diffusion equation with non-linear term and the free boundary problem respectively.
In our previous paper [7] we discussed about the analytical solution of Black-Scholes equation using Fourier
Transformation method for European options. We formulated the Finite Difference Scheme and found the
solutions of them.
In this paper we discuss the solution with Finite Element Method and compare the result with the result obtained
by Finite Difference Schemes.
II. MODEL EQUATION
The linear Black-Scholes equation [12,15] developed by Fischer Black and Myron Scholes in 1973 is
๐‘‰๐‘ก + ๐‘Ÿ๐‘†๐‘‰๐‘† +
1
2
๐œŽ2
๐‘†2
๐‘‰๐‘†๐‘† โˆ’ ๐‘Ÿ๐‘‰ = 0 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (1)
where
๐‘‰ = ๐‘‰ ๐‘†, ๐‘ก , ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ฆ โˆ’ ๐‘œ๐‘“๐‘“ ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›
๐‘† = ๐‘†(๐‘ก), ๐‘กโ„Ž๐‘’ ๐‘ ๐‘ก๐‘œ๐‘๐‘˜ ๐‘๐‘Ÿ๐‘–๐‘๐‘’, ๐‘ค๐‘–๐‘กโ„Ž ๐‘† = ๐‘†(๐‘ก) โ‰ฅ 0,
๐‘ก = ๐‘ก๐‘–๐‘š๐‘’,
๐‘Ÿ = ๐‘…๐‘–๐‘ ๐‘˜ โˆ’ ๐น๐‘Ÿ๐‘’๐‘’ ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘’๐‘ ๐‘ก ๐‘Ÿ๐‘Ž๐‘ก๐‘’,
๐œŽ = ๐‘‰๐‘œ๐‘™๐‘Ž๐‘ก๐‘–๐‘™๐‘–๐‘ก๐‘ฆ ๐ถ๐‘œ๐‘›๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘›
and also ๐‘ก โˆˆ (0, ๐‘‡).
where T is time of maturity.
The terminal and boundary conditions [16] for both the European Call and Put options stated below.
Numerical Solution of a Linear Black-Scholes Models: A Comparative Overview
International organization of Scientific Research 46 | P a g e
European Call Option [16]
The solution to the Black-Scholes equation (1) is the value ๐‘‰(๐‘†, ๐‘ก) of the European Call option on $0 โ‰ค ๐‘† <
โˆž, 0 โ‰ค ๐‘ก โ‰ค ๐‘‡. The boundary and terminal conditions are as follows
๐‘‰ 0, ๐‘ก = 0 ๐‘“๐‘œ๐‘Ÿ 0 โ‰ค ๐‘ก โ‰ค ๐‘‡,
๐‘‰ ๐‘†, ๐‘ก โˆผ ๐‘† โˆ’ ๐พ๐‘’โˆ’๐‘Ÿ ๐‘‡โˆ’๐‘ก
๐‘Ž๐‘  ๐‘† โ†’ โˆž, โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (2)
๐‘‰ ๐‘†, ๐‘‡ = ๐‘† โˆ’ ๐พ +
๐‘“๐‘œ๐‘Ÿ 0 โ‰ค ๐‘† < โˆž.
European Put Option[16]
European Put option is the reciprocal of the European Call option and the boundary and terminal conditions are
๐‘‰ 0, ๐‘ก = ๐พ๐‘’โˆ’๐‘Ÿ ๐‘‡โˆ’๐‘ก
๐‘“๐‘œ๐‘Ÿ 0 โ‰ค ๐‘ก โ‰ค ๐‘‡,
๐‘‰ ๐‘†, ๐‘ก โ†’ 0 ๐‘Ž๐‘  ๐‘† โ†’ โˆž, โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (3)
๐‘‰ ๐‘†, ๐‘‡ = ๐พ โˆ’ ๐‘† +
๐‘“๐‘œ๐‘Ÿ 0 โ‰ค ๐‘† < โˆž.
III. TRANSFORMATION
The model problem stated in (1) is a backward type. This type is little bit difficult to solve. To solve the problem
in (1) with the conditions stated in (2) and (3) we need to make the model in forward type. In this regard, we
have the following transformations.
Let
๐‘† = ๐พ๐‘’ ๐‘ฅ
๐‘ก = ๐‘‡ โˆ’
๐œ
๐œŽ2 /2
And
๐‘ฃ(๐‘ฅ, ๐œ) =
1
๐พ
๐‘‰(๐‘†, ๐‘ก)
๐œ•๐‘‰
๐œ• ๐‘ก
=
๐œ•๐‘‰
๐œ•๐œ
๐œ•๐œ
๐œ•๐‘ก
+
๐œ•๐‘‰
๐œ•๐‘†
๐œ•๐‘†
๐œ•๐‘ก
= โˆ’
๐œŽ2
2
๐พ
๐œ•๐‘ฃ
๐œ•๐œ
๐œ•๐‘‰
๐œ•๐‘†
= ๐พ
๐œ•๐‘ฃ
๐œ•๐‘†
=
๐พ
๐‘†
๐œ•๐‘ฃ
๐œ•๐‘ฅ
๐œ•2
๐‘‰
๐œ•๐‘†2
= ๐พ
๐œ•2
๐‘ฃ
๐œ•๐‘†2
=
๐พ
๐‘†2
๐œ•2
๐‘ฃ
๐œ•๐‘ฅ2
โˆ’
๐œ•๐‘ฃ
๐œ•๐‘ฅ
inserting these derivatives in equation (1) we have
โˆ’
๐œŽ2
2
๐พ
๐œ•๐‘ฃ
๐œ•๐œ
+
๐œŽ2
2
๐พ
๐œ•2
๐‘ฃ
๐œ•๐‘ฅ2
โˆ’
๐œ•๐‘ฃ
๐œ•๐‘ฅ
+ ๐‘Ÿ๐พ
๐œ•๐‘ฃ
๐œ•๐‘ฅ
โˆ’ ๐‘Ÿ๐พ๐‘ฃ = 0.
implies
๐œ•๐‘ฃ
๐œ•๐œ
=
๐œ•2
๐‘ฃ
๐œ•๐‘ฅ2
+
๐‘Ÿ
๐œŽ2
2
โˆ’ 1
๐œ•๐‘ฃ
๐œ•๐‘ฅ
โˆ’
๐‘Ÿ
๐œŽ2
2
๐‘ฃ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (4)
Let
๐‘Ÿ
๐œŽ2
2
= ๐œƒ
โˆด (4) implies
๐œ•๐‘ฃ
๐œ•๐œ
=
๐œ•2
๐‘ฃ
๐œ•๐‘ฅ2
+ ๐œƒ โˆ’ 1
๐œ•๐‘ฃ
๐œ•๐‘ฅ
โˆ’ ๐œƒ๐‘ฃ. โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . (5)
Now let
๐œ† =
1
2
(๐œƒ โˆ’ 1), ๐œˆ =
1
2
(๐œƒ + 1) = ๐œ† + 1
so that
๐œˆ2
= ๐œ†2
+ ๐œƒ
๐‘ฃ(๐‘ฅ, ๐œ) = ๐‘’โˆ’๐œ†๐‘ฅ โˆ’๐œˆ2 ๐œ
๐‘ข(๐‘ฅ, ๐œ).
๐œ•๐‘ฃ
๐œ•๐œ
= ๐‘’โˆ’๐œ†๐‘ฅ โˆ’๐œˆ2 ๐œ
โˆ’๐œˆ2
๐‘ข ๐‘ฅ, ๐œ +
๐œ•๐‘ข
๐œ•๐œ
๐‘’โˆ’๐œ†๐‘ฅ โˆ’๐œˆ2 ๐œ
= ๐‘’โˆ’๐œ†๐‘ฅ โˆ’๐œˆ2 ๐œ
[โˆ’๐œˆ2
๐‘ข +
๐œ•๐‘ข
๐œ•๐œ
],
๐œ•๐‘ฃ
๐œ•๐‘ฅ
= ๐‘’โˆ’๐œ†๐‘ฅ โˆ’๐œˆ2 ๐œ
[โˆ’๐œ†๐‘ข +
๐œ•๐‘ข
๐œ•๐‘ฅ
],
Numerical Solution of a Linear Black-Scholes Models: A Comparative Overview
International organization of Scientific Research 47 | P a g e
๐œ•2
๐‘ฃ
๐œ•๐‘ฅ2
= ๐‘’โˆ’๐œ†๐‘ฅ โˆ’๐œˆ2 ๐œ
[๐œ†2
๐‘ข โˆ’ 2๐œ†
๐œ•๐‘ข
๐œ•๐‘ฅ
+
๐œ•2
๐‘ข
๐œ•๐‘ฅ2
].
inserting these into equation(5) and dividing by ๐‘’โˆ’๐œ†๐‘ฅ โˆ’๐œˆ2 ๐œ
we get
โˆ’๐œˆ2
๐‘ข +
๐œ•๐‘ข
๐œ•๐œ
= [๐œ†2
๐‘ข โˆ’ 2๐œ†
๐œ•๐‘ข
๐œ•๐‘ฅ
+ (๐œ•2
๐‘ข)/(๐œ•๐‘ฅ2
)] + (๐œƒ โˆ’ 1)[โˆ’๐œ†๐‘ข +
๐œ•๐‘ข
๐œ•๐‘ฅ
] โˆ’ ๐œƒ๐‘ข
implies
๐‘ข ๐œ = ๐‘ข ๐‘ฅ๐‘ฅ + โˆ’2๐œ† + ๐œƒ โˆ’ 1 ๐‘ข ๐‘ฅ + (๐œ†2
+ ๐œˆ2
โˆ’ ๐œ†(๐œƒ โˆ’ 1))๐‘ข
= ๐‘ข ๐‘ฅ๐‘ฅ .
โˆด ๐‘ข ๐œ = ๐‘ข ๐‘ฅ๐‘ฅ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (6)
And the initial & boundary conditions for the European Call and Put options are respectively
๐‘ข ๐‘ฅ, 0 = ๐‘’ ๐œ†+1 ๐‘ฅ
โˆ’ ๐‘’ ๐œ†๐‘ฅ +
๐‘Ž๐‘  ๐‘ฅ โˆˆ โ„
๐‘ข ๐‘ฅ, ๐œ = 0 ๐‘Ž๐‘  ๐‘ฅ โ†’ โˆ’โˆž
๐‘ข ๐‘ฅ, ๐œ = ๐‘’ ๐œ†+1 ๐‘ฅ+๐œˆ2 ๐œ
โˆ’ ๐‘’ ๐œ†๐‘ฅ+๐œ†2 ๐œ
๐‘Ž๐‘  ๐‘ฅ โ†’ โˆž
โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (7)
and
๐‘ข ๐‘ฅ, 0 = ๐‘’ ๐œ†๐‘ฅ
โˆ’ ๐‘’ ๐œ†+1 ๐‘ฅ +
๐‘Ž๐‘  ๐‘ฅ โˆˆ โ„
๐‘ข ๐‘ฅ, ๐œ = ๐‘’ ๐œ†๐‘ฅ +๐œ†2 ๐œ
๐‘Ž๐‘  ๐‘ฅ โ†’ โˆ’โˆž โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (8)
๐‘ข ๐‘ฅ, ๐œ = 0 ๐‘Ž๐‘  ๐‘ฅ โ†’ โˆž
Thus the Black-Scholes equation reduced to a heat diffusion equation.
IV. NUMERICAL APPROXIMATION OF TRANSFORMED LINEAR BLACK-
SCHOLES MODEL
Now we solve the problems numerically. We use the Finite Element Method (FEM) to solve the problems
related to the differential equation (6). Finally back substitution of the coordinate transformation gives the
solution of the problems related to the differential equation (1).
We have the model
๐‘ข ๐œ = ๐‘ข ๐‘ฅ๐‘ฅ , ๐‘ฅ โˆˆ โ„, 0 โ‰ค ๐œ โ‰ค ๐‘‡. โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (9)
and the initial and boundary conditions for call option are
๐‘ข ๐‘ฅ, 0 = ๐‘’ ๐œ†+1 ๐‘ฅ
โˆ’ ๐‘’ ๐œ†๐‘ฅ +
๐‘Ž๐‘  ๐‘ฅ โˆˆ โ„,
๐‘ข ๐‘ฅ, ๐œ = 0 ๐‘Ž๐‘  ๐‘ฅ โ†’ โˆ’โˆž โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . (10)
๐‘ข ๐‘ฅ, ๐œ = ๐‘’ ๐œ†+1 ๐‘ฅ+๐œˆ2 ๐œ
โˆ’ ๐‘’ ๐œ†๐‘ฅ+๐œ†2 ๐œ
๐‘Ž๐‘  ๐‘ฅ โ†’ โˆž
The weak form of the governing equation is
๐œ•๐‘ข
๐œ•๐œโ„
๐‘ฃ(๐‘ฅ)๐‘‘๐‘ฅ +
๐œ•๐‘ข
๐œ•๐‘ฅ
๐œ•๐‘ฃ
๐œ•๐‘ฅ
๐‘‘๐‘ฅโ„
= 0 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (11)
Since ๐‘ฃ ๐‘ฅ โ†’ 0 as ๐‘ฅ โ†’ ยฑโˆž.
Discretizing ๐‘ข(๐‘ฅ, ๐œ) spatially, we have
๐‘ข ๐‘ฅ, ๐œ = ๐œ™๐‘– ๐œ ๐‘๐‘– ๐‘ฅ
๐‘›
โˆ’๐‘›
โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (12)
where ๐‘๐‘–(๐‘ฅ) are given shape functions, and ๐œ™๐‘–(๐œ) are unknown, and ๐‘› is the ordinal number of nodes.
Substituting (12) into (11), we get the weak semidiscretized equation
๐œ™๐‘–
โ€ฒ
๐œ ๐‘๐‘– ๐‘ฅ ๐‘๐‘— (๐‘ฅ)๐‘‘๐‘ฅ
1
0
๐‘›
โˆ’๐‘›
+ ๐œ™๐‘– ๐œ ๐‘โ€ฒ๐‘– ๐‘ฅ ๐‘โ€ฒ๐‘— (๐‘ฅ)๐‘‘๐‘ฅ
1
0
๐‘›
โˆ’๐‘›
= 0 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . (13)
Let ๐‘„, ๐‘€ โˆˆ โ„ 2๐‘›โˆ’1 ร— 2๐‘›โˆ’1
denote the so-called mass and stiffness matrices, respectively, defined by:
๐‘€๐‘–๐‘— = ๐‘โ€ฒ๐‘– ๐‘ฅ ๐‘โ€ฒ๐‘— (๐‘ฅ)๐‘‘๐‘ฅ
1
0
โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . (14)
๐‘„๐‘–๐‘— = ๐‘๐‘– ๐‘ฅ ๐‘๐‘— (๐‘ฅ)๐‘‘๐‘ฅ
1
0
โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . โ€ฆ โ€ฆ . . (15)
Then (13) can be expressed as:
๐‘„๐›ทโ€ฒ
+ ๐‘€๐›ท = 0 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (16)
where ฮฆ โˆˆ โ„2๐‘›โˆ’1
is a vector function with the components ๐œ™๐‘–.
After performing the integral in (14) and (15) for the linear shape functions, the mass and the stiffness matrices
have the following form
Numerical Solution of a Linear Black-Scholes Models: A Comparative Overview
International organization of Scientific Research 48 | P a g e
๐‘€ =
1
โ„Ž
โˆ’1 2 โˆ’1 โ€ฆ 0
โ‹ฎ โ‹ฑ โ‹ฑ โ‹ฑ โ‹ฎ
0
0
โ€ฆ
โ€ฆ
โˆ’1
0
2 โˆ’1
โˆ’1 1
; ๐‘„ =
6
โ„Ž
1 4 1 โ€ฆ 0
โ‹ฎ โ‹ฑ โ‹ฑ โ‹ฑ โ‹ฎ
0
0
โ€ฆ
โ€ฆ
1
0
4 1
1 2
where โ„Ž is the length of the spatial approximation.
Now we would like to discrete the equation (16) with respect to time. One may start with a simple scheme.
One of the trivial choice is to use the forward Euler scheme. Firstly we discrete (16) explicitly and we have
๐‘„ฮฆโ€ฒ + ๐‘€ฮฆ = 0,
ฮฆโ€ฒ + ๐‘„โˆ’1
๐‘€ฮฆ = 0,
ฮฆ ๐‘š+1 โˆ’ ฮฆ ๐‘š
ฮ”๐œ
+ ๐‘„โˆ’1
๐‘€ฮฆ ๐‘š = 0,
ฮฆ ๐‘š+1 โˆ’ ฮฆ ๐‘š + ฮ”๐œ๐‘„โˆ’1
๐‘€ฮฆ ๐‘š = 0,
ฮฆ ๐‘š+1 โˆ’ ๐ผ โˆ’ ฮ”๐œ๐‘„โˆ’1
๐‘€ ฮฆ ๐‘š = 0,
ฮฆ ๐‘š+1 = ๐ผ โˆ’ ฮ”๐œ๐‘„โˆ’1
๐‘€ ฮฆ ๐‘š . โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (17)
The difficulty of using the scheme is that it needs very little step size to converge , as a result the scheme is a
slow one, and is not of interest in this advance study.
We want a fast and efficient scheme, so we want larger time stepping, and interested in using implicit
techniques. We discrete (16) implicitly and have
ฮฆ ๐‘š+1 โˆ’ ฮฆ ๐‘š
ฮ”๐œ
+ ๐‘„โˆ’1
๐‘€ฮฆ ๐‘š+1 = 0,
ฮฆ ๐‘š+1 โˆ’ ฮฆ ๐‘š + ฮ”๐œ๐‘„โˆ’1
๐‘€ฮฆ_(๐‘š + 1) = 0,
๐ผ + ฮ”๐œ๐‘„โˆ’1
๐‘€ ฮฆ ๐‘š+1 = ฮฆ ๐‘š ,
ฮฆ ๐‘š+1 = ๐ผ + ฮ”๐œ๐‘„โˆ’1
๐‘€ โˆ’1
ฮฆ ๐‘š . โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (18)
which is a system of linear equations with unknowns ฮฆ ๐‘š+1. The advantage of using (18)
is that the scheme is unconditionally stable . Equation (18) accuracy of order ๐‘‚(๐‘˜). It is faster than the explicit
Euler scheme since (18) allows us to use large time steps.
We use an weighted average method to discrete (16) with weight ๐›ฟ and we have
ฮฆ ๐‘š+1 โˆ’ ฮฆ ๐‘š
ฮ”๐œ
+ ๐‘„โˆ’1
๐‘€(๐›ฟฮฆ ๐‘š+1 + 1 โˆ’ ๐›ฟ ฮฆ ๐‘š ) = 0,
ฮฆ ๐‘š+1 โˆ’ ฮฆ ๐‘š + ฮ”๐œ๐‘„โˆ’1
๐‘€(๐›ฟฮฆ ๐‘š+1 + 1 โˆ’ ๐›ฟ ฮฆ ๐‘š ) = 0,
๐ผ + ฮ”๐œ๐‘„โˆ’1
๐‘€๐›ฟ ฮฆ ๐‘š+1 = ๐ผ โˆ’ ฮ”๐œ๐‘„โˆ’1
๐‘€ 1 โˆ’ ๐›ฟ ฮฆ ๐‘š ,
ฮฆ ๐‘š+1 = ๐ผ + ฮ”๐œ๐‘„โˆ’1
๐‘€๐›ฟ โˆ’1
๐ผ โˆ’ ฮ”๐œ๐‘„โˆ’1
๐‘€ 1 โˆ’ ๐›ฟ ฮฆ ๐‘š . โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . (19)
This system is also a linear one with unknowns ฮฆ ๐‘š+1, where ๐›ฟ varies from 0 to 1. This
method turns to the explicit method when ๐›ฟ = 0 i.e., equations (17) and (19) are same and implicit method
when ๐›ฟ = 1, i.e., equations (18) and (19)are same. For 0 โ‰ค ๐›ฟ โ‰ค
1
2
, the scheme is conditionally stable and
unconditionally stable for
1
2
โ‰ค ๐›ฟ โ‰ค 1.
The order of the accuracy of the scheme is ๐‘‚(๐‘˜).
V. RESULTS, DISCUSSION AND CONCLSTION
In this section we have presented the results by various methods. We have solved the model
analytically [7] by the method of Fourier Transformation. In Figure fig. 1 we placed the analytic solution of two
options (Call Option and Put Option). To solve the model numerically we have applied [7] Finite difference
methods (FDM) and have shown the result of the two options in Figure 2. Our interest in this paper was in the
methods of Finite Elements (FEM) [1]. Firstly, we have discretized the model (6) spatially in the section (4).
Then we have used various one step Eulerโ€™s time integrations to discretize the system of linear equations
obtained by semi-discretization. The results have been presented in the Figure 3. We have tried to show
comparison between the methods (FDM and FEM) in Figure 4.
Numerical Solution of a Linear Black-Scholes Models: A Comparative Overview
International organization of Scientific Research 49 | P a g e
(a) Call Optin (b) Put Option
Figure 1: Analytic solutions
(a) Call Option (b) Put Option
Figure 2: Numerical Solutions by Finite Difference Method
(a) Call Option (b) Put Option
Figure 3: Numerical Solutions by Finite Element Method
Numerical Solution of a Linear Black-Scholes Models: A Comparative Overview
International organization of Scientific Research 50 | P a g e
Figure 4: Comparison of Finite Difference Method and Finite Element Method
The system of linear equations (19) generated by the discretization of the Black-Scholes model can be
solved by many conventional processes. For a large scale linear system, scientists rarely use direct methods as
they are computationally costly. Here, in this section, it is our motivation to solve the system of equation (19)
using various iterative techniques. Here we first investigate which linear solver converges swiftly. To that end,
we consider Jacobi iterative method, Gauss-Seidel iterative method and successive over relaxation method to
start with. In terms of matrices, the Jacobi method can be expressed as
x(k)
= Dโˆ’1
L + U x(kโˆ’1)
+ Dโˆ’1
b,
Gauss-Seidel method
x(k)
= D โˆ’ L โˆ’1
(Ux kโˆ’1
+ b),
and the SOR algorithm can be written as
x k
= D โˆ’ ฯ‰L โˆ’1
ฯ‰U + 1 โˆ’ ฯ‰ D x kโˆ’1
+ ฯ‰ D โˆ’ ฯ‰L โˆ’1
b,
where in each case the matrices D, โˆ’L, and โˆ’U represent the diagonal, strictly lower triangular, and strictly
upper triangular parts of A, respectively.
Figure 5: Time comparison of different linear algebra solvers
We investigate Preconditioned Conjugate Gradient (PCG) Method and Generalized Minimal Residual
(GMRES) Method with a diagonal preconditioning [6]. Here for all computations we consider ๐พ = 100, ๐œŽ =
.2, ๐‘Ÿ = .1, ๐‘‡ = 1๐‘ฆ๐‘’๐‘Ž๐‘Ÿ, ฮ”๐‘ก = 0.001. The results are presented with different weights ๐›ฟ. Observing Figure (5),
we notice that Preconditioned Conjugate Gradient (PCG) Method performs the best.
Numerical Solution of a Linear Black-Scholes Models: A Comparative Overview
International organization of Scientific Research 51 | P a g e
REFERENCES
[1] P. E. Lewis and J. P. Ward, The Finite Element Method: Principles and Applications,
ADDISONWESLEY PUBLISHING COMPANY, 1991.
[2] M. Bakker, One-dimensional Galerkin methods and super convergence at interior nodal points, SIAM
Journal on Numerical Analysis, 21(1):101โ€“110, Feb 1984.
[3] S. K. Bhowmik, Stable numerical schemes for a partly convolutional partial integrodifferential equation,
Applied Mathematics and Computation, 217(8):4217โ€“4226,2010.
[4] S. K. Bhowmik,Numerical approximation of a convolution model of dot theta-neuron networks, Applied
Numerical Mathematics, 61:581โ€“592, 2011.
[5] S. K. Bhowmik, Stability and convergence analysis of a one step approximation of a linear partial
integro- differential equation, Numerical Methods for Partial Differential Equation, 27(5):11791200,
September 2011.
[6] S. K. Bhowmik, Fast and efficient numerical methods for an extended Black-Scholes
model,arXiv:1205.6265, 2013.
[7] Md. Kazi Salah Uddin, Mostak Ahmed and Samir Kumar Bhowmik, A Note On Numerical Solution Of A
Linear Black-Scholes Model, GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694), Vol. 33 (2013) 103-
115.
[8] Cristina Ballester, Rafael Company*, Lucas Jodar, An efficient method for option pricing with discrete
dividend payment, Computers and Mathematics with Applications, 2008, Vol.56, pp. 822-835.
[9] A.H.M. Abdelrazec, Adomain Decomposition Method: Convergency Analysis and Numerical Approxima-
tion, McMaster University, 2008.
[10] Koh Wei Sin, Jumat Sulaiman and Rasid Mail, Numerical Solution for 2D European Option Pricing
Using Quarter-Sweep Modified Gauss-Seidel Method, Journal of Mathematics and Statistics8 (2012), no.
1, 129-135.
[11] H.W. Choi and S.K. Chung, Adaptive Numerical Solutions For The Black-Scholes Equation, J. Appl.
Math. & Computing (Series A), Vol. 12, No. 1โ€“2, pp.335โ€“349, 2003.
[12] R.C. Merton, Theory of rational option pricing, Bell J. Econ., Vol. 4, No. 1, pp.141โ€“183, 1973.
[13] L. Jodar, R Sevilla-Peris, J.C. Cortos*, R. Sala, A new direct method for solving the Black-Scholes
equation, Applied Mathematics Letters, Vol. 18, pp.29โ€“32, 2005.
[14] R. Company*, A.L. Gonzalez, L. Jodar, Numerical solution of modified Blackโ€“Scholes equation pricing
stock options with discrete dividend, Mathematical and Computer Modelling, Vol. 44, pp.1058โ€“1068,
2006.
[15] F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Pol. Econ, Vol. 81, pp.637โ€“659,
1973.
[16] P.D.M. Ehrhardt and A. Unterreiter, The numerical solution of nonlinear Blackโ€“Scholes equations,
Technische Universitat Berlin, Vol. 28, 2008.
[17] M. Bohner and Y. Zheng, On analytical solutions of the Black-Scholes equation, Applied Mathematics
Letters, Vol. 22, pp.309โ€“313, 2009.
[18] John C.Strikwerda, Finite Difference Schemes and Partial Differential Equations, SIAM,University of
Wisconsin-Madison Madison, Wisconsin, 2004.
[19] Julia Ankudinova*, Matthias Ehrhardt, On the numerical solution of nonlinear Blackโ€“Scholes equations,
Computers and Mathematics with Applications, Vol. 56, pp.799-812, 2004.
[20] D.J. Duffy, Finite Difference Methods in Financial Engineering (A Partial Differential Equation Ap-
proach), John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ,
England, 2000.
[21] P. Wilmot, S. Howison, J. Dewyne, The Mathematics of Financial Derivatives, Cambridge University
Press, Cambridge, 1995.

More Related Content

What's hot

Introductory maths analysis chapter 14 official
Introductory maths analysis   chapter 14 officialIntroductory maths analysis   chapter 14 official
Introductory maths analysis chapter 14 officialEvert Sandye Taasiringan
ย 
Mathematics 2014 sample paper and blue print
Mathematics 2014 sample paper and blue printMathematics 2014 sample paper and blue print
Mathematics 2014 sample paper and blue printnitishguptamaps
ย 
Lecture 13 gram-schmidt inner product spaces - 6.4 6.7
Lecture 13   gram-schmidt  inner product spaces - 6.4 6.7Lecture 13   gram-schmidt  inner product spaces - 6.4 6.7
Lecture 13 gram-schmidt inner product spaces - 6.4 6.7njit-ronbrown
ย 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIRai University
ย 
Lecture 12 orhogonality - 6.1 6.2 6.3
Lecture 12   orhogonality - 6.1 6.2 6.3Lecture 12   orhogonality - 6.1 6.2 6.3
Lecture 12 orhogonality - 6.1 6.2 6.3njit-ronbrown
ย 
Derivation and Application of Six-Point Linear Multistep Numerical Method for...
Derivation and Application of Six-Point Linear Multistep Numerical Method for...Derivation and Application of Six-Point Linear Multistep Numerical Method for...
Derivation and Application of Six-Point Linear Multistep Numerical Method for...IOSR Journals
ย 
Cbse 12 Class Maths Sample Papers Model 4
Cbse 12 Class Maths Sample Papers Model 4 Cbse 12 Class Maths Sample Papers Model 4
Cbse 12 Class Maths Sample Papers Model 4 Sunaina Rawat
ย 
The Generalized Difference Operator of the ํง ํญํก Kind
The Generalized Difference Operator of the ํง ํญํก KindThe Generalized Difference Operator of the ํง ํญํก Kind
The Generalized Difference Operator of the ํง ํญํก KindDr. Amarjeet Singh
ย 
2.c1.3 algebra and functions 3
2.c1.3 algebra and functions 32.c1.3 algebra and functions 3
2.c1.3 algebra and functions 3Dreams4school
ย 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Rai University
ย 
Introductory maths analysis chapter 12 official
Introductory maths analysis   chapter 12 officialIntroductory maths analysis   chapter 12 official
Introductory maths analysis chapter 12 officialEvert Sandye Taasiringan
ย 
Introductory maths analysis chapter 02 official
Introductory maths analysis   chapter 02 officialIntroductory maths analysis   chapter 02 official
Introductory maths analysis chapter 02 officialEvert Sandye Taasiringan
ย 
Inner product
Inner productInner product
Inner productDhrupal Patel
ย 
Introductory maths analysis chapter 09 official
Introductory maths analysis   chapter 09 officialIntroductory maths analysis   chapter 09 official
Introductory maths analysis chapter 09 officialEvert Sandye Taasiringan
ย 
31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manualMahrukh Khalid
ย 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationRai University
ย 
Introductory maths analysis chapter 11 official
Introductory maths analysis   chapter 11 officialIntroductory maths analysis   chapter 11 official
Introductory maths analysis chapter 11 officialEvert Sandye Taasiringan
ย 

What's hot (18)

Introductory maths analysis chapter 14 official
Introductory maths analysis   chapter 14 officialIntroductory maths analysis   chapter 14 official
Introductory maths analysis chapter 14 official
ย 
Mathematics 2014 sample paper and blue print
Mathematics 2014 sample paper and blue printMathematics 2014 sample paper and blue print
Mathematics 2014 sample paper and blue print
ย 
Lecture 13 gram-schmidt inner product spaces - 6.4 6.7
Lecture 13   gram-schmidt  inner product spaces - 6.4 6.7Lecture 13   gram-schmidt  inner product spaces - 6.4 6.7
Lecture 13 gram-schmidt inner product spaces - 6.4 6.7
ย 
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-IIEngineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
Engineering Mathematics-IV_B.Tech_Semester-IV_Unit-II
ย 
Lecture 12 orhogonality - 6.1 6.2 6.3
Lecture 12   orhogonality - 6.1 6.2 6.3Lecture 12   orhogonality - 6.1 6.2 6.3
Lecture 12 orhogonality - 6.1 6.2 6.3
ย 
Derivation and Application of Six-Point Linear Multistep Numerical Method for...
Derivation and Application of Six-Point Linear Multistep Numerical Method for...Derivation and Application of Six-Point Linear Multistep Numerical Method for...
Derivation and Application of Six-Point Linear Multistep Numerical Method for...
ย 
Cbse 12 Class Maths Sample Papers Model 4
Cbse 12 Class Maths Sample Papers Model 4 Cbse 12 Class Maths Sample Papers Model 4
Cbse 12 Class Maths Sample Papers Model 4
ย 
The Generalized Difference Operator of the ํง ํญํก Kind
The Generalized Difference Operator of the ํง ํญํก KindThe Generalized Difference Operator of the ํง ํญํก Kind
The Generalized Difference Operator of the ํง ํญํก Kind
ย 
Lecture 02
Lecture 02Lecture 02
Lecture 02
ย 
2.c1.3 algebra and functions 3
2.c1.3 algebra and functions 32.c1.3 algebra and functions 3
2.c1.3 algebra and functions 3
ย 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5
ย 
Introductory maths analysis chapter 12 official
Introductory maths analysis   chapter 12 officialIntroductory maths analysis   chapter 12 official
Introductory maths analysis chapter 12 official
ย 
Introductory maths analysis chapter 02 official
Introductory maths analysis   chapter 02 officialIntroductory maths analysis   chapter 02 official
Introductory maths analysis chapter 02 official
ย 
Inner product
Inner productInner product
Inner product
ย 
Introductory maths analysis chapter 09 official
Introductory maths analysis   chapter 09 officialIntroductory maths analysis   chapter 09 official
Introductory maths analysis chapter 09 official
ย 
31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual31350052 introductory-mathematical-analysis-textbook-solution-manual
31350052 introductory-mathematical-analysis-textbook-solution-manual
ย 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
ย 
Introductory maths analysis chapter 11 official
Introductory maths analysis   chapter 11 officialIntroductory maths analysis   chapter 11 official
Introductory maths analysis chapter 11 official
ย 

Viewers also liked

Lec. 6 the explanation of tipitaka in brief by atthakathacariya
Lec. 6 the explanation of tipitaka in brief by atthakathacariyaLec. 6 the explanation of tipitaka in brief by atthakathacariya
Lec. 6 the explanation of tipitaka in brief by atthakathacariyaBhik Samฤdhipuรฑรฑo
ย 
Intervention to Promote Dual Method Use for Urban Teens
Intervention to Promote Dual Method Use for Urban TeensIntervention to Promote Dual Method Use for Urban Teens
Intervention to Promote Dual Method Use for Urban TeensNational Chlamydia Coalition
ย 
INTERROGATING THE IMPORTANCE AND RELEVANCE OF ARABIC LANGUAGE TO THE STUDY OF...
INTERROGATING THE IMPORTANCE AND RELEVANCE OF ARABIC LANGUAGE TO THE STUDY OF...INTERROGATING THE IMPORTANCE AND RELEVANCE OF ARABIC LANGUAGE TO THE STUDY OF...
INTERROGATING THE IMPORTANCE AND RELEVANCE OF ARABIC LANGUAGE TO THE STUDY OF...SCHOLEDGE R&D CENTER
ย 
Hypothesis example
Hypothesis exampleHypothesis example
Hypothesis exampleGauhar786
ย 
Week 8 Observation and Analysis
Week 8 Observation and AnalysisWeek 8 Observation and Analysis
Week 8 Observation and AnalysisJamie Davies
ย 
Chapter 6 the review of related literature and studies
Chapter 6 the review of related literature and studiesChapter 6 the review of related literature and studies
Chapter 6 the review of related literature and studiesMaria Theresa
ย 
APA bibliography ppt
APA bibliography pptAPA bibliography ppt
APA bibliography pptmrs-oc
ย 
51 ways to introduce learning objectives
51 ways to introduce learning objectives51 ways to introduce learning objectives
51 ways to introduce learning objectivesDavid Didau
ย 
List of mba project topics reports
List of  mba project topics  reportsList of  mba project topics  reports
List of mba project topics reportsBabasab Patil
ย 

Viewers also liked (9)

Lec. 6 the explanation of tipitaka in brief by atthakathacariya
Lec. 6 the explanation of tipitaka in brief by atthakathacariyaLec. 6 the explanation of tipitaka in brief by atthakathacariya
Lec. 6 the explanation of tipitaka in brief by atthakathacariya
ย 
Intervention to Promote Dual Method Use for Urban Teens
Intervention to Promote Dual Method Use for Urban TeensIntervention to Promote Dual Method Use for Urban Teens
Intervention to Promote Dual Method Use for Urban Teens
ย 
INTERROGATING THE IMPORTANCE AND RELEVANCE OF ARABIC LANGUAGE TO THE STUDY OF...
INTERROGATING THE IMPORTANCE AND RELEVANCE OF ARABIC LANGUAGE TO THE STUDY OF...INTERROGATING THE IMPORTANCE AND RELEVANCE OF ARABIC LANGUAGE TO THE STUDY OF...
INTERROGATING THE IMPORTANCE AND RELEVANCE OF ARABIC LANGUAGE TO THE STUDY OF...
ย 
Hypothesis example
Hypothesis exampleHypothesis example
Hypothesis example
ย 
Week 8 Observation and Analysis
Week 8 Observation and AnalysisWeek 8 Observation and Analysis
Week 8 Observation and Analysis
ย 
Chapter 6 the review of related literature and studies
Chapter 6 the review of related literature and studiesChapter 6 the review of related literature and studies
Chapter 6 the review of related literature and studies
ย 
APA bibliography ppt
APA bibliography pptAPA bibliography ppt
APA bibliography ppt
ย 
51 ways to introduce learning objectives
51 ways to introduce learning objectives51 ways to introduce learning objectives
51 ways to introduce learning objectives
ย 
List of mba project topics reports
List of  mba project topics  reportsList of  mba project topics  reports
List of mba project topics reports
ย 

Similar to G05834551

New Information on the Generalized Euler-Tricomi Equation
New Information on the Generalized Euler-Tricomi Equation New Information on the Generalized Euler-Tricomi Equation
New Information on the Generalized Euler-Tricomi Equation Lossian Barbosa Bacelar Miranda
ย 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...mathsjournal
ย 
vj kb kh o15085 17210-1-pb
vj kb kh o15085 17210-1-pbvj kb kh o15085 17210-1-pb
vj kb kh o15085 17210-1-pbEngr M Javaid
ย 
Lane_emden_equation_solved_by_HPM_final
Lane_emden_equation_solved_by_HPM_finalLane_emden_equation_solved_by_HPM_final
Lane_emden_equation_solved_by_HPM_finalSOUMYADAS230727
ย 
A high accuracy approximation for half - space problems with anisotropic scat...
A high accuracy approximation for half - space problems with anisotropic scat...A high accuracy approximation for half - space problems with anisotropic scat...
A high accuracy approximation for half - space problems with anisotropic scat...IOSR Journals
ย 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...Lossian Barbosa Bacelar Miranda
ย 
A Family Of Extragradient Methods For Solving Equilibrium Problems
A Family Of Extragradient Methods For Solving Equilibrium ProblemsA Family Of Extragradient Methods For Solving Equilibrium Problems
A Family Of Extragradient Methods For Solving Equilibrium ProblemsYasmine Anino
ย 
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...IJERA Editor
ย 
A Two Grid Discretization Method For Decoupling Time-Harmonic Maxwellโ€™s Equat...
A Two Grid Discretization Method For Decoupling Time-Harmonic Maxwellโ€™s Equat...A Two Grid Discretization Method For Decoupling Time-Harmonic Maxwellโ€™s Equat...
A Two Grid Discretization Method For Decoupling Time-Harmonic Maxwellโ€™s Equat...IOSR Journals
ย 
SUCCESSIVE LINEARIZATION SOLUTION OF A BOUNDARY LAYER CONVECTIVE HEAT TRANSFE...
SUCCESSIVE LINEARIZATION SOLUTION OF A BOUNDARY LAYER CONVECTIVE HEAT TRANSFE...SUCCESSIVE LINEARIZATION SOLUTION OF A BOUNDARY LAYER CONVECTIVE HEAT TRANSFE...
SUCCESSIVE LINEARIZATION SOLUTION OF A BOUNDARY LAYER CONVECTIVE HEAT TRANSFE...ijcsa
ย 
On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...IJERA Editor
ย 
Homotopy Perturbation Method
Homotopy Perturbation MethodHomotopy Perturbation Method
Homotopy Perturbation MethodSOUMYADAS835019
ย 
The Weak Solution of Black-Scholes Option Pricing Model with Transaction Cost
The Weak Solution of Black-Scholes Option Pricing Model with Transaction CostThe Weak Solution of Black-Scholes Option Pricing Model with Transaction Cost
The Weak Solution of Black-Scholes Option Pricing Model with Transaction Costmathsjournal
ย 
THE WEAK SOLUTION OF BLACK-SCHOLEโ€™S OPTION PRICING MODEL WITH TRANSACTION COST
THE WEAK SOLUTION OF BLACK-SCHOLEโ€™S OPTION PRICING MODEL WITH TRANSACTION COSTTHE WEAK SOLUTION OF BLACK-SCHOLEโ€™S OPTION PRICING MODEL WITH TRANSACTION COST
THE WEAK SOLUTION OF BLACK-SCHOLEโ€™S OPTION PRICING MODEL WITH TRANSACTION COSTmathsjournal
ย 
THE WEAK SOLUTION OF BLACK-SCHOLEโ€™S OPTION PRICING MODEL WITH TRANSACTION COST
THE WEAK SOLUTION OF BLACK-SCHOLEโ€™S OPTION PRICING MODEL WITH TRANSACTION COSTTHE WEAK SOLUTION OF BLACK-SCHOLEโ€™S OPTION PRICING MODEL WITH TRANSACTION COST
THE WEAK SOLUTION OF BLACK-SCHOLEโ€™S OPTION PRICING MODEL WITH TRANSACTION COSTmathsjournal
ย 

Similar to G05834551 (20)

New Information on the Generalized Euler-Tricomi Equation
New Information on the Generalized Euler-Tricomi Equation New Information on the Generalized Euler-Tricomi Equation
New Information on the Generalized Euler-Tricomi Equation
ย 
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
A Probabilistic Algorithm for Computation of Polynomial Greatest Common with ...
ย 
A0280106
A0280106A0280106
A0280106
ย 
Finite Difference Method for Nonlocal Singularly Perturbed Problem
Finite Difference Method for Nonlocal Singularly Perturbed ProblemFinite Difference Method for Nonlocal Singularly Perturbed Problem
Finite Difference Method for Nonlocal Singularly Perturbed Problem
ย 
vj kb kh o15085 17210-1-pb
vj kb kh o15085 17210-1-pbvj kb kh o15085 17210-1-pb
vj kb kh o15085 17210-1-pb
ย 
Lane_emden_equation_solved_by_HPM_final
Lane_emden_equation_solved_by_HPM_finalLane_emden_equation_solved_by_HPM_final
Lane_emden_equation_solved_by_HPM_final
ย 
AJMS_477_23.pdf
AJMS_477_23.pdfAJMS_477_23.pdf
AJMS_477_23.pdf
ย 
Numerical Solution of the Nonlocal Singularly Perturbed Problem
Numerical Solution of the Nonlocal Singularly Perturbed ProblemNumerical Solution of the Nonlocal Singularly Perturbed Problem
Numerical Solution of the Nonlocal Singularly Perturbed Problem
ย 
A high accuracy approximation for half - space problems with anisotropic scat...
A high accuracy approximation for half - space problems with anisotropic scat...A high accuracy approximation for half - space problems with anisotropic scat...
A high accuracy approximation for half - space problems with anisotropic scat...
ย 
One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...One solution for many linear partial differential equations with terms of equ...
One solution for many linear partial differential equations with terms of equ...
ย 
A Family Of Extragradient Methods For Solving Equilibrium Problems
A Family Of Extragradient Methods For Solving Equilibrium ProblemsA Family Of Extragradient Methods For Solving Equilibrium Problems
A Family Of Extragradient Methods For Solving Equilibrium Problems
ย 
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
Catalan Tau Collocation for Numerical Solution of 2-Dimentional Nonlinear Par...
ย 
A Two Grid Discretization Method For Decoupling Time-Harmonic Maxwellโ€™s Equat...
A Two Grid Discretization Method For Decoupling Time-Harmonic Maxwellโ€™s Equat...A Two Grid Discretization Method For Decoupling Time-Harmonic Maxwellโ€™s Equat...
A Two Grid Discretization Method For Decoupling Time-Harmonic Maxwellโ€™s Equat...
ย 
SUCCESSIVE LINEARIZATION SOLUTION OF A BOUNDARY LAYER CONVECTIVE HEAT TRANSFE...
SUCCESSIVE LINEARIZATION SOLUTION OF A BOUNDARY LAYER CONVECTIVE HEAT TRANSFE...SUCCESSIVE LINEARIZATION SOLUTION OF A BOUNDARY LAYER CONVECTIVE HEAT TRANSFE...
SUCCESSIVE LINEARIZATION SOLUTION OF A BOUNDARY LAYER CONVECTIVE HEAT TRANSFE...
ย 
NJD_87.pdf
NJD_87.pdfNJD_87.pdf
NJD_87.pdf
ย 
On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...
On The Distribution of Non - Zero Zeros of Generalized Mittag โ€“ Leffler Funct...
ย 
Homotopy Perturbation Method
Homotopy Perturbation MethodHomotopy Perturbation Method
Homotopy Perturbation Method
ย 
The Weak Solution of Black-Scholes Option Pricing Model with Transaction Cost
The Weak Solution of Black-Scholes Option Pricing Model with Transaction CostThe Weak Solution of Black-Scholes Option Pricing Model with Transaction Cost
The Weak Solution of Black-Scholes Option Pricing Model with Transaction Cost
ย 
THE WEAK SOLUTION OF BLACK-SCHOLEโ€™S OPTION PRICING MODEL WITH TRANSACTION COST
THE WEAK SOLUTION OF BLACK-SCHOLEโ€™S OPTION PRICING MODEL WITH TRANSACTION COSTTHE WEAK SOLUTION OF BLACK-SCHOLEโ€™S OPTION PRICING MODEL WITH TRANSACTION COST
THE WEAK SOLUTION OF BLACK-SCHOLEโ€™S OPTION PRICING MODEL WITH TRANSACTION COST
ย 
THE WEAK SOLUTION OF BLACK-SCHOLEโ€™S OPTION PRICING MODEL WITH TRANSACTION COST
THE WEAK SOLUTION OF BLACK-SCHOLEโ€™S OPTION PRICING MODEL WITH TRANSACTION COSTTHE WEAK SOLUTION OF BLACK-SCHOLEโ€™S OPTION PRICING MODEL WITH TRANSACTION COST
THE WEAK SOLUTION OF BLACK-SCHOLEโ€™S OPTION PRICING MODEL WITH TRANSACTION COST
ย 

More from IOSR-JEN

C05921721
C05921721C05921721
C05921721IOSR-JEN
ย 
B05921016
B05921016B05921016
B05921016IOSR-JEN
ย 
A05920109
A05920109A05920109
A05920109IOSR-JEN
ย 
J05915457
J05915457J05915457
J05915457IOSR-JEN
ย 
I05914153
I05914153I05914153
I05914153IOSR-JEN
ย 
H05913540
H05913540H05913540
H05913540IOSR-JEN
ย 
G05913234
G05913234G05913234
G05913234IOSR-JEN
ย 
F05912731
F05912731F05912731
F05912731IOSR-JEN
ย 
E05912226
E05912226E05912226
E05912226IOSR-JEN
ย 
D05911621
D05911621D05911621
D05911621IOSR-JEN
ย 
C05911315
C05911315C05911315
C05911315IOSR-JEN
ย 
B05910712
B05910712B05910712
B05910712IOSR-JEN
ย 
A05910106
A05910106A05910106
A05910106IOSR-JEN
ย 
B05840510
B05840510B05840510
B05840510IOSR-JEN
ย 
I05844759
I05844759I05844759
I05844759IOSR-JEN
ย 
H05844346
H05844346H05844346
H05844346IOSR-JEN
ย 
G05843942
G05843942G05843942
G05843942IOSR-JEN
ย 
F05843238
F05843238F05843238
F05843238IOSR-JEN
ย 
E05842831
E05842831E05842831
E05842831IOSR-JEN
ย 
D05842227
D05842227D05842227
D05842227IOSR-JEN
ย 

More from IOSR-JEN (20)

C05921721
C05921721C05921721
C05921721
ย 
B05921016
B05921016B05921016
B05921016
ย 
A05920109
A05920109A05920109
A05920109
ย 
J05915457
J05915457J05915457
J05915457
ย 
I05914153
I05914153I05914153
I05914153
ย 
H05913540
H05913540H05913540
H05913540
ย 
G05913234
G05913234G05913234
G05913234
ย 
F05912731
F05912731F05912731
F05912731
ย 
E05912226
E05912226E05912226
E05912226
ย 
D05911621
D05911621D05911621
D05911621
ย 
C05911315
C05911315C05911315
C05911315
ย 
B05910712
B05910712B05910712
B05910712
ย 
A05910106
A05910106A05910106
A05910106
ย 
B05840510
B05840510B05840510
B05840510
ย 
I05844759
I05844759I05844759
I05844759
ย 
H05844346
H05844346H05844346
H05844346
ย 
G05843942
G05843942G05843942
G05843942
ย 
F05843238
F05843238F05843238
F05843238
ย 
E05842831
E05842831E05842831
E05842831
ย 
D05842227
D05842227D05842227
D05842227
ย 

Recently uploaded

Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
ย 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)wesley chun
ย 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024The Digital Insurer
ย 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessPixlogix Infotech
ย 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
ย 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
ย 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEarley Information Science
ย 
๐Ÿฌ The future of MySQL is Postgres ๐Ÿ˜
๐Ÿฌ  The future of MySQL is Postgres   ๐Ÿ˜๐Ÿฌ  The future of MySQL is Postgres   ๐Ÿ˜
๐Ÿฌ The future of MySQL is Postgres ๐Ÿ˜RTylerCroy
ย 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsMaria Levchenko
ย 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
ย 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
ย 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
ย 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CVKhem
ย 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
ย 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
ย 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
ย 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
ย 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024The Digital Insurer
ย 
Finology Group โ€“ Insurtech Innovation Award 2024
Finology Group โ€“ Insurtech Innovation Award 2024Finology Group โ€“ Insurtech Innovation Award 2024
Finology Group โ€“ Insurtech Innovation Award 2024The Digital Insurer
ย 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
ย 

Recently uploaded (20)

Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
ย 
Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)Powerful Google developer tools for immediate impact! (2023-24 C)
Powerful Google developer tools for immediate impact! (2023-24 C)
ย 
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
Bajaj Allianz Life Insurance Company - Insurer Innovation Award 2024
ย 
Advantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your BusinessAdvantages of Hiring UIUX Design Service Providers for Your Business
Advantages of Hiring UIUX Design Service Providers for Your Business
ย 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
ย 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
ย 
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptxEIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
EIS-Webinar-Prompt-Knowledge-Eng-2024-04-08.pptx
ย 
๐Ÿฌ The future of MySQL is Postgres ๐Ÿ˜
๐Ÿฌ  The future of MySQL is Postgres   ๐Ÿ˜๐Ÿฌ  The future of MySQL is Postgres   ๐Ÿ˜
๐Ÿฌ The future of MySQL is Postgres ๐Ÿ˜
ย 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
ย 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
ย 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
ย 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
ย 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
ย 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
ย 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
ย 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
ย 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
ย 
Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024Tata AIG General Insurance Company - Insurer Innovation Award 2024
Tata AIG General Insurance Company - Insurer Innovation Award 2024
ย 
Finology Group โ€“ Insurtech Innovation Award 2024
Finology Group โ€“ Insurtech Innovation Award 2024Finology Group โ€“ Insurtech Innovation Award 2024
Finology Group โ€“ Insurtech Innovation Award 2024
ย 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
ย 

G05834551

  • 1. IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 05, Issue 08 (August. 2015), ||V3|| PP 45-51 International organization of Scientific Research 45 | P a g e Numerical Solution of a Linear Black-Scholes Models: A Comparative Overview Md. Kazi Salah Uddin, Md. Noor-A-Alam Siddiki, Md. Anowar Hossain Department of Natural Science, Stamford University Bangladesh, Dhaka-1209, Bangladesh. Abstract: - Black-Scholes equation is a well known partial differential equation in financial mathematics. In this paper we try to solve the European options (Call and Put) using different numerical methods as well as analytical methods. We approximate the model using a Finite Element Method (FEM) followed by weighted average method using different weights for numerical approximations. We present the numerical result of semi- discrete and full discrete schemes for European Call option and Put option by Finite Difference Method and Finite Element Method. We also present the difference of these two methods. Finally, we investigate some linear algebra solvers to verify the superiority of the solvers. Keywords: Black-Scholes model; call and put options; exact solution; finite difference schemes, Finite Element Methods. I. INTRODUCTION A powerful tool for valuation of equity options is the Black-Scholes model[12,15]. This model is used for finding the prices of stocks. R. Company, A.L. Gonzalez, L. Jodar [14] solved the modified Black-Scholes equation pricing option with discrete dividend. A delta-defining sequence of generalized Dirac-Delta function and the Mellin transformation are used toobtain an integral formula. Finally numerical quadrature approximation is used to approximate the solution. In some papers like [13] Mellin transformation is used. They were required neither variable transformation nor solving diffusion equation. R. Company, L. Jodar, G. Rubio, R.J. Villanueva [13] found the solution of BS equation with a wide class of payoff functions that contains not only the Dirac delta type functions but also the ordinary payoff functions with discontinuities of their derivatives. Julia Ankudiova, Matthias Ehrhardt [20] solved non linear Black-Scholes equations numerically. They focused on various models relevant with the Black-Scholes equations with volatility depending on several factors. They also worked on the European Call option and American Call option analytically using transformation into a convection -diffusion equation with non-linear term and the free boundary problem respectively. In our previous paper [7] we discussed about the analytical solution of Black-Scholes equation using Fourier Transformation method for European options. We formulated the Finite Difference Scheme and found the solutions of them. In this paper we discuss the solution with Finite Element Method and compare the result with the result obtained by Finite Difference Schemes. II. MODEL EQUATION The linear Black-Scholes equation [12,15] developed by Fischer Black and Myron Scholes in 1973 is ๐‘‰๐‘ก + ๐‘Ÿ๐‘†๐‘‰๐‘† + 1 2 ๐œŽ2 ๐‘†2 ๐‘‰๐‘†๐‘† โˆ’ ๐‘Ÿ๐‘‰ = 0 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (1) where ๐‘‰ = ๐‘‰ ๐‘†, ๐‘ก , ๐‘กโ„Ž๐‘’ ๐‘๐‘Ž๐‘ฆ โˆ’ ๐‘œ๐‘“๐‘“ ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘† = ๐‘†(๐‘ก), ๐‘กโ„Ž๐‘’ ๐‘ ๐‘ก๐‘œ๐‘๐‘˜ ๐‘๐‘Ÿ๐‘–๐‘๐‘’, ๐‘ค๐‘–๐‘กโ„Ž ๐‘† = ๐‘†(๐‘ก) โ‰ฅ 0, ๐‘ก = ๐‘ก๐‘–๐‘š๐‘’, ๐‘Ÿ = ๐‘…๐‘–๐‘ ๐‘˜ โˆ’ ๐น๐‘Ÿ๐‘’๐‘’ ๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘’๐‘ ๐‘ก ๐‘Ÿ๐‘Ž๐‘ก๐‘’, ๐œŽ = ๐‘‰๐‘œ๐‘™๐‘Ž๐‘ก๐‘–๐‘™๐‘–๐‘ก๐‘ฆ ๐ถ๐‘œ๐‘›๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘› and also ๐‘ก โˆˆ (0, ๐‘‡). where T is time of maturity. The terminal and boundary conditions [16] for both the European Call and Put options stated below.
  • 2. Numerical Solution of a Linear Black-Scholes Models: A Comparative Overview International organization of Scientific Research 46 | P a g e European Call Option [16] The solution to the Black-Scholes equation (1) is the value ๐‘‰(๐‘†, ๐‘ก) of the European Call option on $0 โ‰ค ๐‘† < โˆž, 0 โ‰ค ๐‘ก โ‰ค ๐‘‡. The boundary and terminal conditions are as follows ๐‘‰ 0, ๐‘ก = 0 ๐‘“๐‘œ๐‘Ÿ 0 โ‰ค ๐‘ก โ‰ค ๐‘‡, ๐‘‰ ๐‘†, ๐‘ก โˆผ ๐‘† โˆ’ ๐พ๐‘’โˆ’๐‘Ÿ ๐‘‡โˆ’๐‘ก ๐‘Ž๐‘  ๐‘† โ†’ โˆž, โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (2) ๐‘‰ ๐‘†, ๐‘‡ = ๐‘† โˆ’ ๐พ + ๐‘“๐‘œ๐‘Ÿ 0 โ‰ค ๐‘† < โˆž. European Put Option[16] European Put option is the reciprocal of the European Call option and the boundary and terminal conditions are ๐‘‰ 0, ๐‘ก = ๐พ๐‘’โˆ’๐‘Ÿ ๐‘‡โˆ’๐‘ก ๐‘“๐‘œ๐‘Ÿ 0 โ‰ค ๐‘ก โ‰ค ๐‘‡, ๐‘‰ ๐‘†, ๐‘ก โ†’ 0 ๐‘Ž๐‘  ๐‘† โ†’ โˆž, โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (3) ๐‘‰ ๐‘†, ๐‘‡ = ๐พ โˆ’ ๐‘† + ๐‘“๐‘œ๐‘Ÿ 0 โ‰ค ๐‘† < โˆž. III. TRANSFORMATION The model problem stated in (1) is a backward type. This type is little bit difficult to solve. To solve the problem in (1) with the conditions stated in (2) and (3) we need to make the model in forward type. In this regard, we have the following transformations. Let ๐‘† = ๐พ๐‘’ ๐‘ฅ ๐‘ก = ๐‘‡ โˆ’ ๐œ ๐œŽ2 /2 And ๐‘ฃ(๐‘ฅ, ๐œ) = 1 ๐พ ๐‘‰(๐‘†, ๐‘ก) ๐œ•๐‘‰ ๐œ• ๐‘ก = ๐œ•๐‘‰ ๐œ•๐œ ๐œ•๐œ ๐œ•๐‘ก + ๐œ•๐‘‰ ๐œ•๐‘† ๐œ•๐‘† ๐œ•๐‘ก = โˆ’ ๐œŽ2 2 ๐พ ๐œ•๐‘ฃ ๐œ•๐œ ๐œ•๐‘‰ ๐œ•๐‘† = ๐พ ๐œ•๐‘ฃ ๐œ•๐‘† = ๐พ ๐‘† ๐œ•๐‘ฃ ๐œ•๐‘ฅ ๐œ•2 ๐‘‰ ๐œ•๐‘†2 = ๐พ ๐œ•2 ๐‘ฃ ๐œ•๐‘†2 = ๐พ ๐‘†2 ๐œ•2 ๐‘ฃ ๐œ•๐‘ฅ2 โˆ’ ๐œ•๐‘ฃ ๐œ•๐‘ฅ inserting these derivatives in equation (1) we have โˆ’ ๐œŽ2 2 ๐พ ๐œ•๐‘ฃ ๐œ•๐œ + ๐œŽ2 2 ๐พ ๐œ•2 ๐‘ฃ ๐œ•๐‘ฅ2 โˆ’ ๐œ•๐‘ฃ ๐œ•๐‘ฅ + ๐‘Ÿ๐พ ๐œ•๐‘ฃ ๐œ•๐‘ฅ โˆ’ ๐‘Ÿ๐พ๐‘ฃ = 0. implies ๐œ•๐‘ฃ ๐œ•๐œ = ๐œ•2 ๐‘ฃ ๐œ•๐‘ฅ2 + ๐‘Ÿ ๐œŽ2 2 โˆ’ 1 ๐œ•๐‘ฃ ๐œ•๐‘ฅ โˆ’ ๐‘Ÿ ๐œŽ2 2 ๐‘ฃ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (4) Let ๐‘Ÿ ๐œŽ2 2 = ๐œƒ โˆด (4) implies ๐œ•๐‘ฃ ๐œ•๐œ = ๐œ•2 ๐‘ฃ ๐œ•๐‘ฅ2 + ๐œƒ โˆ’ 1 ๐œ•๐‘ฃ ๐œ•๐‘ฅ โˆ’ ๐œƒ๐‘ฃ. โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . (5) Now let ๐œ† = 1 2 (๐œƒ โˆ’ 1), ๐œˆ = 1 2 (๐œƒ + 1) = ๐œ† + 1 so that ๐œˆ2 = ๐œ†2 + ๐œƒ ๐‘ฃ(๐‘ฅ, ๐œ) = ๐‘’โˆ’๐œ†๐‘ฅ โˆ’๐œˆ2 ๐œ ๐‘ข(๐‘ฅ, ๐œ). ๐œ•๐‘ฃ ๐œ•๐œ = ๐‘’โˆ’๐œ†๐‘ฅ โˆ’๐œˆ2 ๐œ โˆ’๐œˆ2 ๐‘ข ๐‘ฅ, ๐œ + ๐œ•๐‘ข ๐œ•๐œ ๐‘’โˆ’๐œ†๐‘ฅ โˆ’๐œˆ2 ๐œ = ๐‘’โˆ’๐œ†๐‘ฅ โˆ’๐œˆ2 ๐œ [โˆ’๐œˆ2 ๐‘ข + ๐œ•๐‘ข ๐œ•๐œ ], ๐œ•๐‘ฃ ๐œ•๐‘ฅ = ๐‘’โˆ’๐œ†๐‘ฅ โˆ’๐œˆ2 ๐œ [โˆ’๐œ†๐‘ข + ๐œ•๐‘ข ๐œ•๐‘ฅ ],
  • 3. Numerical Solution of a Linear Black-Scholes Models: A Comparative Overview International organization of Scientific Research 47 | P a g e ๐œ•2 ๐‘ฃ ๐œ•๐‘ฅ2 = ๐‘’โˆ’๐œ†๐‘ฅ โˆ’๐œˆ2 ๐œ [๐œ†2 ๐‘ข โˆ’ 2๐œ† ๐œ•๐‘ข ๐œ•๐‘ฅ + ๐œ•2 ๐‘ข ๐œ•๐‘ฅ2 ]. inserting these into equation(5) and dividing by ๐‘’โˆ’๐œ†๐‘ฅ โˆ’๐œˆ2 ๐œ we get โˆ’๐œˆ2 ๐‘ข + ๐œ•๐‘ข ๐œ•๐œ = [๐œ†2 ๐‘ข โˆ’ 2๐œ† ๐œ•๐‘ข ๐œ•๐‘ฅ + (๐œ•2 ๐‘ข)/(๐œ•๐‘ฅ2 )] + (๐œƒ โˆ’ 1)[โˆ’๐œ†๐‘ข + ๐œ•๐‘ข ๐œ•๐‘ฅ ] โˆ’ ๐œƒ๐‘ข implies ๐‘ข ๐œ = ๐‘ข ๐‘ฅ๐‘ฅ + โˆ’2๐œ† + ๐œƒ โˆ’ 1 ๐‘ข ๐‘ฅ + (๐œ†2 + ๐œˆ2 โˆ’ ๐œ†(๐œƒ โˆ’ 1))๐‘ข = ๐‘ข ๐‘ฅ๐‘ฅ . โˆด ๐‘ข ๐œ = ๐‘ข ๐‘ฅ๐‘ฅ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (6) And the initial & boundary conditions for the European Call and Put options are respectively ๐‘ข ๐‘ฅ, 0 = ๐‘’ ๐œ†+1 ๐‘ฅ โˆ’ ๐‘’ ๐œ†๐‘ฅ + ๐‘Ž๐‘  ๐‘ฅ โˆˆ โ„ ๐‘ข ๐‘ฅ, ๐œ = 0 ๐‘Ž๐‘  ๐‘ฅ โ†’ โˆ’โˆž ๐‘ข ๐‘ฅ, ๐œ = ๐‘’ ๐œ†+1 ๐‘ฅ+๐œˆ2 ๐œ โˆ’ ๐‘’ ๐œ†๐‘ฅ+๐œ†2 ๐œ ๐‘Ž๐‘  ๐‘ฅ โ†’ โˆž โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (7) and ๐‘ข ๐‘ฅ, 0 = ๐‘’ ๐œ†๐‘ฅ โˆ’ ๐‘’ ๐œ†+1 ๐‘ฅ + ๐‘Ž๐‘  ๐‘ฅ โˆˆ โ„ ๐‘ข ๐‘ฅ, ๐œ = ๐‘’ ๐œ†๐‘ฅ +๐œ†2 ๐œ ๐‘Ž๐‘  ๐‘ฅ โ†’ โˆ’โˆž โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (8) ๐‘ข ๐‘ฅ, ๐œ = 0 ๐‘Ž๐‘  ๐‘ฅ โ†’ โˆž Thus the Black-Scholes equation reduced to a heat diffusion equation. IV. NUMERICAL APPROXIMATION OF TRANSFORMED LINEAR BLACK- SCHOLES MODEL Now we solve the problems numerically. We use the Finite Element Method (FEM) to solve the problems related to the differential equation (6). Finally back substitution of the coordinate transformation gives the solution of the problems related to the differential equation (1). We have the model ๐‘ข ๐œ = ๐‘ข ๐‘ฅ๐‘ฅ , ๐‘ฅ โˆˆ โ„, 0 โ‰ค ๐œ โ‰ค ๐‘‡. โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (9) and the initial and boundary conditions for call option are ๐‘ข ๐‘ฅ, 0 = ๐‘’ ๐œ†+1 ๐‘ฅ โˆ’ ๐‘’ ๐œ†๐‘ฅ + ๐‘Ž๐‘  ๐‘ฅ โˆˆ โ„, ๐‘ข ๐‘ฅ, ๐œ = 0 ๐‘Ž๐‘  ๐‘ฅ โ†’ โˆ’โˆž โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . (10) ๐‘ข ๐‘ฅ, ๐œ = ๐‘’ ๐œ†+1 ๐‘ฅ+๐œˆ2 ๐œ โˆ’ ๐‘’ ๐œ†๐‘ฅ+๐œ†2 ๐œ ๐‘Ž๐‘  ๐‘ฅ โ†’ โˆž The weak form of the governing equation is ๐œ•๐‘ข ๐œ•๐œโ„ ๐‘ฃ(๐‘ฅ)๐‘‘๐‘ฅ + ๐œ•๐‘ข ๐œ•๐‘ฅ ๐œ•๐‘ฃ ๐œ•๐‘ฅ ๐‘‘๐‘ฅโ„ = 0 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (11) Since ๐‘ฃ ๐‘ฅ โ†’ 0 as ๐‘ฅ โ†’ ยฑโˆž. Discretizing ๐‘ข(๐‘ฅ, ๐œ) spatially, we have ๐‘ข ๐‘ฅ, ๐œ = ๐œ™๐‘– ๐œ ๐‘๐‘– ๐‘ฅ ๐‘› โˆ’๐‘› โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (12) where ๐‘๐‘–(๐‘ฅ) are given shape functions, and ๐œ™๐‘–(๐œ) are unknown, and ๐‘› is the ordinal number of nodes. Substituting (12) into (11), we get the weak semidiscretized equation ๐œ™๐‘– โ€ฒ ๐œ ๐‘๐‘– ๐‘ฅ ๐‘๐‘— (๐‘ฅ)๐‘‘๐‘ฅ 1 0 ๐‘› โˆ’๐‘› + ๐œ™๐‘– ๐œ ๐‘โ€ฒ๐‘– ๐‘ฅ ๐‘โ€ฒ๐‘— (๐‘ฅ)๐‘‘๐‘ฅ 1 0 ๐‘› โˆ’๐‘› = 0 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . (13) Let ๐‘„, ๐‘€ โˆˆ โ„ 2๐‘›โˆ’1 ร— 2๐‘›โˆ’1 denote the so-called mass and stiffness matrices, respectively, defined by: ๐‘€๐‘–๐‘— = ๐‘โ€ฒ๐‘– ๐‘ฅ ๐‘โ€ฒ๐‘— (๐‘ฅ)๐‘‘๐‘ฅ 1 0 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . (14) ๐‘„๐‘–๐‘— = ๐‘๐‘– ๐‘ฅ ๐‘๐‘— (๐‘ฅ)๐‘‘๐‘ฅ 1 0 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . โ€ฆ โ€ฆ . . (15) Then (13) can be expressed as: ๐‘„๐›ทโ€ฒ + ๐‘€๐›ท = 0 โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (16) where ฮฆ โˆˆ โ„2๐‘›โˆ’1 is a vector function with the components ๐œ™๐‘–. After performing the integral in (14) and (15) for the linear shape functions, the mass and the stiffness matrices have the following form
  • 4. Numerical Solution of a Linear Black-Scholes Models: A Comparative Overview International organization of Scientific Research 48 | P a g e ๐‘€ = 1 โ„Ž โˆ’1 2 โˆ’1 โ€ฆ 0 โ‹ฎ โ‹ฑ โ‹ฑ โ‹ฑ โ‹ฎ 0 0 โ€ฆ โ€ฆ โˆ’1 0 2 โˆ’1 โˆ’1 1 ; ๐‘„ = 6 โ„Ž 1 4 1 โ€ฆ 0 โ‹ฎ โ‹ฑ โ‹ฑ โ‹ฑ โ‹ฎ 0 0 โ€ฆ โ€ฆ 1 0 4 1 1 2 where โ„Ž is the length of the spatial approximation. Now we would like to discrete the equation (16) with respect to time. One may start with a simple scheme. One of the trivial choice is to use the forward Euler scheme. Firstly we discrete (16) explicitly and we have ๐‘„ฮฆโ€ฒ + ๐‘€ฮฆ = 0, ฮฆโ€ฒ + ๐‘„โˆ’1 ๐‘€ฮฆ = 0, ฮฆ ๐‘š+1 โˆ’ ฮฆ ๐‘š ฮ”๐œ + ๐‘„โˆ’1 ๐‘€ฮฆ ๐‘š = 0, ฮฆ ๐‘š+1 โˆ’ ฮฆ ๐‘š + ฮ”๐œ๐‘„โˆ’1 ๐‘€ฮฆ ๐‘š = 0, ฮฆ ๐‘š+1 โˆ’ ๐ผ โˆ’ ฮ”๐œ๐‘„โˆ’1 ๐‘€ ฮฆ ๐‘š = 0, ฮฆ ๐‘š+1 = ๐ผ โˆ’ ฮ”๐œ๐‘„โˆ’1 ๐‘€ ฮฆ ๐‘š . โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . (17) The difficulty of using the scheme is that it needs very little step size to converge , as a result the scheme is a slow one, and is not of interest in this advance study. We want a fast and efficient scheme, so we want larger time stepping, and interested in using implicit techniques. We discrete (16) implicitly and have ฮฆ ๐‘š+1 โˆ’ ฮฆ ๐‘š ฮ”๐œ + ๐‘„โˆ’1 ๐‘€ฮฆ ๐‘š+1 = 0, ฮฆ ๐‘š+1 โˆ’ ฮฆ ๐‘š + ฮ”๐œ๐‘„โˆ’1 ๐‘€ฮฆ_(๐‘š + 1) = 0, ๐ผ + ฮ”๐œ๐‘„โˆ’1 ๐‘€ ฮฆ ๐‘š+1 = ฮฆ ๐‘š , ฮฆ ๐‘š+1 = ๐ผ + ฮ”๐œ๐‘„โˆ’1 ๐‘€ โˆ’1 ฮฆ ๐‘š . โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ (18) which is a system of linear equations with unknowns ฮฆ ๐‘š+1. The advantage of using (18) is that the scheme is unconditionally stable . Equation (18) accuracy of order ๐‘‚(๐‘˜). It is faster than the explicit Euler scheme since (18) allows us to use large time steps. We use an weighted average method to discrete (16) with weight ๐›ฟ and we have ฮฆ ๐‘š+1 โˆ’ ฮฆ ๐‘š ฮ”๐œ + ๐‘„โˆ’1 ๐‘€(๐›ฟฮฆ ๐‘š+1 + 1 โˆ’ ๐›ฟ ฮฆ ๐‘š ) = 0, ฮฆ ๐‘š+1 โˆ’ ฮฆ ๐‘š + ฮ”๐œ๐‘„โˆ’1 ๐‘€(๐›ฟฮฆ ๐‘š+1 + 1 โˆ’ ๐›ฟ ฮฆ ๐‘š ) = 0, ๐ผ + ฮ”๐œ๐‘„โˆ’1 ๐‘€๐›ฟ ฮฆ ๐‘š+1 = ๐ผ โˆ’ ฮ”๐œ๐‘„โˆ’1 ๐‘€ 1 โˆ’ ๐›ฟ ฮฆ ๐‘š , ฮฆ ๐‘š+1 = ๐ผ + ฮ”๐œ๐‘„โˆ’1 ๐‘€๐›ฟ โˆ’1 ๐ผ โˆ’ ฮ”๐œ๐‘„โˆ’1 ๐‘€ 1 โˆ’ ๐›ฟ ฮฆ ๐‘š . โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ โ€ฆ . . (19) This system is also a linear one with unknowns ฮฆ ๐‘š+1, where ๐›ฟ varies from 0 to 1. This method turns to the explicit method when ๐›ฟ = 0 i.e., equations (17) and (19) are same and implicit method when ๐›ฟ = 1, i.e., equations (18) and (19)are same. For 0 โ‰ค ๐›ฟ โ‰ค 1 2 , the scheme is conditionally stable and unconditionally stable for 1 2 โ‰ค ๐›ฟ โ‰ค 1. The order of the accuracy of the scheme is ๐‘‚(๐‘˜). V. RESULTS, DISCUSSION AND CONCLSTION In this section we have presented the results by various methods. We have solved the model analytically [7] by the method of Fourier Transformation. In Figure fig. 1 we placed the analytic solution of two options (Call Option and Put Option). To solve the model numerically we have applied [7] Finite difference methods (FDM) and have shown the result of the two options in Figure 2. Our interest in this paper was in the methods of Finite Elements (FEM) [1]. Firstly, we have discretized the model (6) spatially in the section (4). Then we have used various one step Eulerโ€™s time integrations to discretize the system of linear equations obtained by semi-discretization. The results have been presented in the Figure 3. We have tried to show comparison between the methods (FDM and FEM) in Figure 4.
  • 5. Numerical Solution of a Linear Black-Scholes Models: A Comparative Overview International organization of Scientific Research 49 | P a g e (a) Call Optin (b) Put Option Figure 1: Analytic solutions (a) Call Option (b) Put Option Figure 2: Numerical Solutions by Finite Difference Method (a) Call Option (b) Put Option Figure 3: Numerical Solutions by Finite Element Method
  • 6. Numerical Solution of a Linear Black-Scholes Models: A Comparative Overview International organization of Scientific Research 50 | P a g e Figure 4: Comparison of Finite Difference Method and Finite Element Method The system of linear equations (19) generated by the discretization of the Black-Scholes model can be solved by many conventional processes. For a large scale linear system, scientists rarely use direct methods as they are computationally costly. Here, in this section, it is our motivation to solve the system of equation (19) using various iterative techniques. Here we first investigate which linear solver converges swiftly. To that end, we consider Jacobi iterative method, Gauss-Seidel iterative method and successive over relaxation method to start with. In terms of matrices, the Jacobi method can be expressed as x(k) = Dโˆ’1 L + U x(kโˆ’1) + Dโˆ’1 b, Gauss-Seidel method x(k) = D โˆ’ L โˆ’1 (Ux kโˆ’1 + b), and the SOR algorithm can be written as x k = D โˆ’ ฯ‰L โˆ’1 ฯ‰U + 1 โˆ’ ฯ‰ D x kโˆ’1 + ฯ‰ D โˆ’ ฯ‰L โˆ’1 b, where in each case the matrices D, โˆ’L, and โˆ’U represent the diagonal, strictly lower triangular, and strictly upper triangular parts of A, respectively. Figure 5: Time comparison of different linear algebra solvers We investigate Preconditioned Conjugate Gradient (PCG) Method and Generalized Minimal Residual (GMRES) Method with a diagonal preconditioning [6]. Here for all computations we consider ๐พ = 100, ๐œŽ = .2, ๐‘Ÿ = .1, ๐‘‡ = 1๐‘ฆ๐‘’๐‘Ž๐‘Ÿ, ฮ”๐‘ก = 0.001. The results are presented with different weights ๐›ฟ. Observing Figure (5), we notice that Preconditioned Conjugate Gradient (PCG) Method performs the best.
  • 7. Numerical Solution of a Linear Black-Scholes Models: A Comparative Overview International organization of Scientific Research 51 | P a g e REFERENCES [1] P. E. Lewis and J. P. Ward, The Finite Element Method: Principles and Applications, ADDISONWESLEY PUBLISHING COMPANY, 1991. [2] M. Bakker, One-dimensional Galerkin methods and super convergence at interior nodal points, SIAM Journal on Numerical Analysis, 21(1):101โ€“110, Feb 1984. [3] S. K. Bhowmik, Stable numerical schemes for a partly convolutional partial integrodifferential equation, Applied Mathematics and Computation, 217(8):4217โ€“4226,2010. [4] S. K. Bhowmik,Numerical approximation of a convolution model of dot theta-neuron networks, Applied Numerical Mathematics, 61:581โ€“592, 2011. [5] S. K. Bhowmik, Stability and convergence analysis of a one step approximation of a linear partial integro- differential equation, Numerical Methods for Partial Differential Equation, 27(5):11791200, September 2011. [6] S. K. Bhowmik, Fast and efficient numerical methods for an extended Black-Scholes model,arXiv:1205.6265, 2013. [7] Md. Kazi Salah Uddin, Mostak Ahmed and Samir Kumar Bhowmik, A Note On Numerical Solution Of A Linear Black-Scholes Model, GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694), Vol. 33 (2013) 103- 115. [8] Cristina Ballester, Rafael Company*, Lucas Jodar, An efficient method for option pricing with discrete dividend payment, Computers and Mathematics with Applications, 2008, Vol.56, pp. 822-835. [9] A.H.M. Abdelrazec, Adomain Decomposition Method: Convergency Analysis and Numerical Approxima- tion, McMaster University, 2008. [10] Koh Wei Sin, Jumat Sulaiman and Rasid Mail, Numerical Solution for 2D European Option Pricing Using Quarter-Sweep Modified Gauss-Seidel Method, Journal of Mathematics and Statistics8 (2012), no. 1, 129-135. [11] H.W. Choi and S.K. Chung, Adaptive Numerical Solutions For The Black-Scholes Equation, J. Appl. Math. & Computing (Series A), Vol. 12, No. 1โ€“2, pp.335โ€“349, 2003. [12] R.C. Merton, Theory of rational option pricing, Bell J. Econ., Vol. 4, No. 1, pp.141โ€“183, 1973. [13] L. Jodar, R Sevilla-Peris, J.C. Cortos*, R. Sala, A new direct method for solving the Black-Scholes equation, Applied Mathematics Letters, Vol. 18, pp.29โ€“32, 2005. [14] R. Company*, A.L. Gonzalez, L. Jodar, Numerical solution of modified Blackโ€“Scholes equation pricing stock options with discrete dividend, Mathematical and Computer Modelling, Vol. 44, pp.1058โ€“1068, 2006. [15] F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Pol. Econ, Vol. 81, pp.637โ€“659, 1973. [16] P.D.M. Ehrhardt and A. Unterreiter, The numerical solution of nonlinear Blackโ€“Scholes equations, Technische Universitat Berlin, Vol. 28, 2008. [17] M. Bohner and Y. Zheng, On analytical solutions of the Black-Scholes equation, Applied Mathematics Letters, Vol. 22, pp.309โ€“313, 2009. [18] John C.Strikwerda, Finite Difference Schemes and Partial Differential Equations, SIAM,University of Wisconsin-Madison Madison, Wisconsin, 2004. [19] Julia Ankudinova*, Matthias Ehrhardt, On the numerical solution of nonlinear Blackโ€“Scholes equations, Computers and Mathematics with Applications, Vol. 56, pp.799-812, 2004. [20] D.J. Duffy, Finite Difference Methods in Financial Engineering (A Partial Differential Equation Ap- proach), John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, 2000. [21] P. Wilmot, S. Howison, J. Dewyne, The Mathematics of Financial Derivatives, Cambridge University Press, Cambridge, 1995.