Block 2
More Compound Angle
Formulae
What is to be learned?
• Rules for sin
Sine Compound Angle Formulae
Sin(A – B) =
Sin(A + B) =
On Formula Sheet as
Sin(A B) =
SinA CosBSinA CosB – CosA SinBCosA SinB
SinA CosBSinA CosB + CosA SinB+ CosA SinB
SinA CosBSinA CosB CosA SinBCosA SinB++
– ++–
Ex Simplify sin(x + 90)
sin(x + 90) = sinx cos900
= sinx X 0 + cosx X 1
= cosx
+ cosx sin900
Applying to Common Questions
Cos P = 5
/13
Sin Q = 1
/√ 5
Sin(P + Q)?
=SinP CosQ + CosP SinQ
PP
OO
HH
AA
AA
HH
55
1313
??
??22
= 13= 1322
– 5522
??22
= 144= 144
? = 12? = 12
1212
Sin P =Sin P = 1212
//1313
√√ √√?? ??√√
Cos P = 5
/13
Sin Q = 1
/√ 5
Sin(P + Q)?
=SinP CosQ + CosP SinQ
PP
OO
HH
AA
55
1313
??22
= (= (√5)22
– 1122
??22
= 5= 5 – 11
??22
= 4= 4
1212
Cos Q =Cos Q = 22
//√5√5
√√ √√√√
Q
1
√5
? = 2
2
√√
Sin P =Sin P = 1212
//1313
??
Applying to Common Questions
Cos P = 5
/13
Sin Q = 1
/√ 5
Sin(P + Q)?
=SinP CosQ + CosP SinQ
= 12
/13 X 2
/√5 + 5
/13 X 1
/√5
= 24 + 5
Cos Q =Cos Q = 22
//√5√5
√√ √√√√√√
Sin P =Sin P = 1212
//1313
13√5 13√5
= 29
13√5
Applying to Common Questions
Sine Compound Angle Formulae
Sin(A - B) =
Sin(A + B) =
On Formula Sheet as
Sin(A B) =
SinA CosBSinA CosB – CosA SinBCosA SinB
SinA CosBSinA CosB + CosA SinB+ CosA SinB
SinA CosBSinA CosB CosA SinBCosA SinB++
– ++–
Ex Simplify sin(180 + x)
sin(180 + x) = sin180 cosx+ cos180 sinx
= 0 X cosx + (-1) X sinx
= -sinx
1800 1800
Simplify sin(x – 900
)
sin(x – 900
) = sinx cos900
= sinx X 0 – cosx X 1
= -cosx
– cosx sin900
Key Question
Simplify sin(x – 900
)
sin(x – 900
) = sinx cos900
= sinx X 0 – cosx X 1
= -cosx
– cosx sin900
Key Question

More compound angle formulae

  • 1.
    Block 2 More CompoundAngle Formulae
  • 2.
    What is tobe learned? • Rules for sin
  • 3.
    Sine Compound AngleFormulae Sin(A – B) = Sin(A + B) = On Formula Sheet as Sin(A B) = SinA CosBSinA CosB – CosA SinBCosA SinB SinA CosBSinA CosB + CosA SinB+ CosA SinB SinA CosBSinA CosB CosA SinBCosA SinB++ – ++– Ex Simplify sin(x + 90) sin(x + 90) = sinx cos900 = sinx X 0 + cosx X 1 = cosx + cosx sin900
  • 4.
    Applying to CommonQuestions Cos P = 5 /13 Sin Q = 1 /√ 5 Sin(P + Q)? =SinP CosQ + CosP SinQ PP OO HH AA AA HH 55 1313 ?? ??22 = 13= 1322 – 5522 ??22 = 144= 144 ? = 12? = 12 1212 Sin P =Sin P = 1212 //1313 √√ √√?? ??√√
  • 5.
    Cos P =5 /13 Sin Q = 1 /√ 5 Sin(P + Q)? =SinP CosQ + CosP SinQ PP OO HH AA 55 1313 ??22 = (= (√5)22 – 1122 ??22 = 5= 5 – 11 ??22 = 4= 4 1212 Cos Q =Cos Q = 22 //√5√5 √√ √√√√ Q 1 √5 ? = 2 2 √√ Sin P =Sin P = 1212 //1313 ?? Applying to Common Questions
  • 6.
    Cos P =5 /13 Sin Q = 1 /√ 5 Sin(P + Q)? =SinP CosQ + CosP SinQ = 12 /13 X 2 /√5 + 5 /13 X 1 /√5 = 24 + 5 Cos Q =Cos Q = 22 //√5√5 √√ √√√√√√ Sin P =Sin P = 1212 //1313 13√5 13√5 = 29 13√5 Applying to Common Questions
  • 7.
    Sine Compound AngleFormulae Sin(A - B) = Sin(A + B) = On Formula Sheet as Sin(A B) = SinA CosBSinA CosB – CosA SinBCosA SinB SinA CosBSinA CosB + CosA SinB+ CosA SinB SinA CosBSinA CosB CosA SinBCosA SinB++ – ++–
  • 8.
    Ex Simplify sin(180+ x) sin(180 + x) = sin180 cosx+ cos180 sinx = 0 X cosx + (-1) X sinx = -sinx 1800 1800
  • 9.
    Simplify sin(x –900 ) sin(x – 900 ) = sinx cos900 = sinx X 0 – cosx X 1 = -cosx – cosx sin900 Key Question
  • 10.
    Simplify sin(x –900 ) sin(x – 900 ) = sinx cos900 = sinx X 0 – cosx X 1 = -cosx – cosx sin900 Key Question