SlideShare a Scribd company logo
A seminar on
1
Moisture management and wicking
behaviour of textiles
Pratikhya Badanayak
and Dr. Jyoti V. Vastrad
Moisture management
• Moisture/sweat absorbing
• Transferring & evaporating
• Decides the clothing comfort
2
Introduction
Clothing comfort
The basic requirement of clothing is that it must not cause discomfort for the wearer.
Modern consumers are interested in clothing that does not only looks good, but also feel
good. Comfort as a pleasant state of physiological, psychological and physical harmony
between human being and the environment.
1. Physiological comfort is related to human body’s ability to maintain life, psychological
comfort is the mind’s ability to keep it functioning satisfactorily with external help and
physical comfort is the effect of external environment on the body.
• Aspects of physiological and psychological comfort
• Thermo physiological comfort
It is attainment of comfort through thermal and wetness state. It involves transport of
heat and moisture through a fabric.
• Sensorial comfort
It is the elicitation of various neutral sensations when a textile comes into contact with
skin.
• Body moment comfort
It is the ability of textile to allow freedom of movement, reduced burden and body
shaping as required.
• Aesthetic appeal
It is subjective perception of clothing to eye, hand, ear and nose which contributes to
the overall well being of the wearer. 3
Clothing comfort
4
Physiological
• Body ability
Psychological
• Mind ability
Physical
• Effect of
external
environme
nt
5
Thermo
physiologi
cal
comfort
Sensorial
comfort
Body
moment
comfort
Aesthetic
appeal
Psychological and physiological states
Thermo physiological
comfort
Heat
Conduction
Convection
Radiation
Wind penetration
Moisture
Diffusion, sorption &
desorption
Convection & condensation
Wetting & wicking
6
Conduction, convection and radiation
7
Forms of perspiration
8
Insensible Liquid
9
Moisture
Transmission
Water Vapour
Transmission
Diffusion
Absorption
Adsorption
Convection &
condensation
Liquid Water
Transmission
Wetting
Wicking
Diffusion
Water vapour can diffuse through a textile structure
in two ways:
10
Air spaces between
the fibres
Yarns and along the
fibre itself
Factors affect diffusion process-
1. Fibre volume fraction
2. Fibre cross section
3. Fabric thickness
4. Air permeability
Sorption-desorption Process
11
Factors affect Sorption-Desorption Process:
1. Humidity of Atmosphere
2. Effect of Heat
Absorption Adsorption
It is defined in two phenomenon
Convection and condensation
12
Convection
• Moving air
• Ventilation
Condensation (3 stages)
• Velocity, temp. and vapour
concentration field
• Liquid content increase
• Critical value
Wetting and wicking
13
Fluid spreading
Evaporation
Factors affect wetting-
1. Contact angle between the solid and
liquid
2. Surface tension between solid and
liquid
3. Liquid density, viscosity and surface
tension
4. Chemical nature of surface
Factors affect wicking process-
1. Capillary pressure
2. Cross sectional shape of fibre
3. Tortuosity of the pores
4. Twist of yarn
5. Texture of yarn
Equipments/methods to measures moisture
management through clothing
Vapour transmission
Gravimetric method
Moisture vapour transmission cell
Sweating Guarded Hot Plate
Permetest method
14
15
Moisture
transmission
Wetting
Tensiometry
Goniometry
Spray rating tester
Wicking
Moisture
management tester
Transverse wicking
apparatus
Vertical wicking
apparatus
Horizontal wicking
apparatus
Moisture management instruments and testing method
Vapour transmission
Gravimetric/Cup method
(ASTM E 96)
Inverted cup methodCup method
Sweating Guarded Hot Plate
(ASTM F1868 – 17)
 Take 30ml of distilled water in a cup and
weigh it
 Tie the fabric on the cup tightly
 Keep it for 24 hours and record the weight
of remaining water
 Cut the sample according to the tamplet
given
 Place the fabric on the hot plate
 The equipment is heated to skin surface
temperature of 33 to 36°C, through the
test sample
 Water reservoir acts as artificial sweating
 Rate of transfer of sweat is displayed on
the machine screen
Permetest- skin model
(ISO 11092)
Moisture vapour transmission cell
(ASTM E96)
Vapour transmission
Evaporative dish method
(BS 7209)
 Place the fabric inside the
disc
 Humidity will be generated
inside the instrument under
controlled condition at
certain time
 Note the change in humidity
at time intervals
 Mount the sample over the
open mouth of the test
dish in a airtight manner
 The dish contains
predetermined quantity of
water
 It gives the moisture
vapour transfer properties
of the mono and
multilayered fabric
 First cover the measuring
head by semi permeable foil
 Measure the heat flow value
without placing sample
 Place the test sample on the
wetted area of diameter
(80mm)
 The amount of evaporation
from the active porous surface
is measured
WettingOptical Tensiometre
(ASTM D 1331-11)
Spray rating tester
(AATCC 22, ISO 4920)
Goniometre
(ASTM D5946)
Moisture transmission
 Mount the fabric sample
on the clamp
 Using a burette drop water
(diameter- 30 to 50μm) on
the sample
 Optics and high speed
camera will take images of
the small droplet and the
contact angle that are
displayed on the screen
 Cut the sample according to
the tamplet
 Place sample on the circular
disc
 Fill distilled water on the
funnel
 Allow that water to be
sprayed through a nozzle
onto the test specimen at
45° and 150mm below the
nozzle
 Mount the fabric sample on
the clamp
 Using a burette drop water
on the sample
 The drop diameter is higher
than Tensiometre
 Measure the contact angle
through image processing
Wicking
Moisture management
tester (AATCC 195) Vertical wicking
apparatus
(AATCC TM 197)
Transverse wicking
apparatus
(AATCC 198 [9])
Horizontal wicking
apparatus
(AATCC TM 198)
Moisture transmission
 Clamp 10 cm X 10 cm of
sample on the stand.
 Drop 40 µL of distilled water
slowly from the burette on the
fabric for 2 sec.
 After saturation level, excess
water drops will fall down
through fabric.
 Note down the time taken
from starting to saturation level
 Trace the water spread area
using a trace paper (MM2)
 Take a fabric sample of
3.5cm x 33cm
 Take 30ml of water in the
container
 Mount the fabric on the
horizontal clamp and dip
one end of the fabric on
water
 Distance travelled by
water and the time taken is
recorded
Cut the fabric samples as
per the tamplet
 Place 0.2gm of artificial
sweat inside the container
 Insert the sample between
the two sensors in the
machine
 Introduce the artificial
sweat on the top surface of
the fabric
 Change in electrical
resistance of fabrics is
recorded
 Take a fabric sample of
3.5cm x 33cm
 Take 30ml of water in
the container
 Mount the fabric on the
vertical clamp and dip one
end of the fabric on water
 Distance travelled by
water and the time taken is
recorded
Moisture management tester indices
• Top wetting time WTt and bottom wetting time WTb
• Top absorption rate (ARt) and bottom absorption rate (ARb)
• Top max wetted radius (MWRt) and bottom max wetted radius
(MWRb)
• Top spreading speed (SSt) and bottom spreading speed (SSb)
• Accumulative one-way transport (AOWT) index (AOTI)
• Overall moisture management capacity (OMMC)
20
Concepts in moisture management
• Combinations of hydrophobic and outer
hydrophilic layers
• Micro fibres
• Special fibres
• Wicking windows
21
Combinations of hydrophobic and outer
hydrophilic layers
DRI-LEX®
• Developed by Faytex Corp
• Hydrophobic polyester and hydrophilic nylon
• Breathable and quick-drying
22
Micro fibres
MERYL MICRO FIBER
• Made- Nylstar, an Italian
company: largest
manufacturers of Nylon
• Nylon micro fibre
• High capacity for moisture
absorption & balances
humidity of ambient air and
body
TREVIRA FINESSE
• Launched -German
company Hoechst High
Chem in 1987
• Polyester micro fiber
• Ideal water transmission
and short drying time
23
Special fibres
TRIACTOR
• Toyoba Co Ltd- polyester
filament
• Cross- section is Y-shaped
• A perspiration
absorbing/quick drying
KILLAT N
• Kanebo Ltd
• Bi-component filament yarn
with polyester-core and
nylon- skin portion
• Hollow portion-33% of the
cross section of each
filament
24
HYGRA
• Launched- Unitika limited
• A sheath core type filament yarn- water absorbing
polymer and nylon.
• Absorbs 35 times its own weight of water and offer
quick releasing property.
25
26
Wicking WindowsTM
Introduced- Cotton Incorporated, USA
A moisture management technology for cotton-
transfers moisture away from the body, reduces
absorbent capacity for faster drying and reduces fabric
cling.
Discontinuous water repellent treatment on the
surface of the cotton are applied on the side of the
fabric that will worn next to the skin.
Fluropolymers , silicones, waxes etc are used
Moisture Management Fabric
27
Coolmax
 Lightweight hydrophilic fabric made from four- or six channel
polyester fibres
 Designed by DuPont company
28
Field Sensor Fabric
 High-performance knitted
polyester fabric with a
multilayer structure
 Registered trademark of
Toray Industries.
Polartec Power Dry
Fabrics
 100% polyester, highly
breathable, and ideal for
base layer for sports fabrics
 Manufactured by Maden
mills
 Lightweight, composite fabric
consisting of a layer of superfine
Merino wool next to the skin and
a layer of tough, easy-care
polyester on the outside
 Trade mark- Woolmark Company
29
 Lightweight polyester fabric
made with hollow-core
which combines insulation
with moisture wicking
properties
 Designed by DuPont
Company
Thermolite Fabric Sportwool fabric
30
Gore-Tex
Fabric used in skiwear, hiking jackets etc.
 Durably waterproof
 Very breathable
 Highly cold resistant
 Extremely light
 Resistant to flexing
31
 Developed by Oel Company in USA
 Utilizes phase change materials (PCM) that absorb, store
and release heat and moisture for optimal comfort
 Warm condition the Outlast technology will absorb and
store excess heat radiating from the skin to reduce
overheating and help prevent perspiration
 Cold condition the stored heat is released, reducing
chilling
Outlast fabric
32
Application of moisture management fabric
Sportswear
Active outer wear
Industrial work wear
Fire fighter apparel and protective clothing
Military apparel
Swim wear
Multi layerMono layer
33
WICKING BEHAVIOUR
WICKING BEHAVIOUR AND ANTIBACTERIAL PROPERTIES OF
MULTIFUNCTIONAL KNITTED FABRICS MADE FROM METAL
COMMINGLED YARNS
 To design a multifunctional commingled yarns
with liquid transporting capacity and antibacterial
activity.
Yu et al. (2014)
Study 1
34
• Stainless steel wire-core(SSW)
• Crisscross section polyester filament(CSP)- Z
• Antibacterial nylon filament(AN)- S
(Quaternary ammonium salt & acid dye)
• Warping density- C-8, C-9.5, C-11, C-12.5, C-14
Yarn
production=5
• Metal composite knitted fabrics
• KC-8, KC-9.5, KC-11, KC-12.5, KC-14
• circular knitting machine
Fabric
production
• Drying capacity test= Drying rate apparatus
• Horizontal wicking test= Horizontal wicking
apparatus
• Tensile property- ASTM D2256-1997
• Antibacterial activity (S. aureus, E. coli- AATCC
90-2111
Test methods
35
Methodology
36
Fig. 2 : illustration of metal
composite knitted fabric
Fig. 3: Horizontal wicking apparatus
Fig. 4 : Drying rate apparatus
Fig. 1: Schematic of the commingled yarns (a) and
products (b)
37
Yarn
type
Linear
Density (D)
Diameter
(mm)
Tenacity
(cN/dtex)
Elongation
(%)
CSP 75 0.154 3.572 16.1
AN 150 0.286 3.851 26.9
SSW 139 0.05 0.985 33.7
Table 1 : Properties of filament used to produce commingled yarns
Commingled yarn
code
Structure Composition
(wt %)
Linear
Density (D)
C-8.0 AN/CSP/SS
W
41.9/22.9/35.2 363
C-9.5 AN/CSP/SS
W
42.3/23.4/34.3 360
C-11.0 AN/CSP/SS
W
42.6/23.8/33.6 383
C-12.5 AN/CSP/SS 42.9/24.4/32.7 397
Table 2 : Characteristics of metal commingled yarns
CSP:- Crisscross polyester
AN:- Antibacterial nylon
SSW:- Stainless steel wire
38
0
2
4
6
8
10
12
0 1 2 3 4 5 6 7 8 9 10
Waterabsorption(%)
Time (min)
KC-8
KC-9.5
KC-11
KC-12.5
KC-14
Fig. 5 : Horizontal wicking curves for fabrics
Result and Discussion
Fig. 7 : Effect of layer number on air permeability39
26 27 29 27
24
0
5
10
15
20
25
30
35
WER(%)at12min
Fabric code
WER %
KC-8
KC-9.5
KC-11
KC-12.5
KC-14
Fig. 6 : WER (Water evaporating
rates) of the metal composite
knitted fabrics at 12min
Then they select KC-11
450
290
210 190 180 150
0
100
200
300
400
500
1 2 3 4 5 6
Airpermeability
(cm3/cm2)
Layer number
Air permiability Air permiability
40
Fig. 7 : Zone of inhibition for KW-11 fabric
• KC-11= highest horizontal wicking behaviour &
drying rate
• KW-X lamination density, inversely
proportional to air permeability
• Antimicrobial properties
41
Conclusion
A STUDY OF WICKING PROPERTIES OF
COTTON-ACRYLIC YARNS AND KNITTED FABRICS
• To know the wicking behaviour of acrylic fibers and their blends with
cotton
• To know the influence of fiber type and yarn count on wicking of
yarns as well as the influence of yarn wicking on knitted fabric
wicking
Ozturk et al. (2015)
Study 2
42
43
Methodology
Fiber
100% acrylic
50/50
cotton/acrylic
85/15
cotton/acrylic
100% cotton
Single jersey fabric samples - Ne 20
and Ne 30
Wicking -DIN 53924
Atmospheric conditions
=20±°C relative
humidity= 65±% , two
weeks
44
Yarn type 100%
acrylic
Ne 20
50/50%
cotton/
acrylic
Ne 20
85/15%
cotton/
acrylic
Ne 20
100%
cotton
Ne 20
100%
acrylic
Ne 30
50/50%
cotton/
acrylic
Ne 30
85/15%
cotton/
acrylic
Ne 30
100%
cotton
Ne 30
Yarn
property
Yarn
count
(Ne)
19.2 19.5 19.3 19.7 29.0 29.2 29.4 29.4
Hairiness
(H)
7.10 5.91 5.83 5.16 6.65 5.86 5.71 4.85
Table 3. Tested properties of the yarns
Result and Discussion
45
Table 4: Wicking height of the yarn (mm)
Time (min) 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Fabric code
100A-20 21 28 33 37 40 42 42 43 44 44
50/50C/A-20 7 12 16 19 21 23 24 27 30 30
85/15C/A-20 17 22 25 30 31 33 34 35 36 36
100C-20 1 1 2 2 2 3 3 3 3 3
100A-30 17 22 25 29 29 30 30 30 31 31
50/50C/A-30 7 11 13 19 19 22 23 24 27 29
85/15C/A-30 2 3 3 4 4 5 7 7 7 8
100C-30 1 2 3 6 6 6 6 7 7 8
46
Fig. 9. Yarn wicking
47
Table 5. Properties of the fabrics
Fabric property Fabric weight
(g/m2)
Fabric thickness
(mm)
Fabric porosity
(%)Fabric code
100A-20 177.8 0.58 72
50/50C/A-20 189.6 0.69 79
85/15C/A-20 185.8 0.67 79
100C-20 183 0.68 81
100A-30 126.1 0.52 76
50/50C/A-30 134.3 0.58 82
85/15C/A-30 132.6 0.60 82
100C-30 131.2 0.59 83
48
Table 6. Wicking height (mm) and weight (g) of the fabrics in wale and course
direction
Fabric code Wicking height (mm) Wicking weight (g)
Wale Course Wale Course
100A-20 40 40 0.275 0.229
50/50C/A-20 16 19 0.220 0.275
85/15C/A-20 32 45 0.354 0.415
100C-20 8 9 0.149 0.158
100A-30 38 38 0.222 0.277
50/50C/A-30 9 12 0.145 0.166
85/15C/A-30 6 7 0.124 0.129
100C-30 2 6 0.106 0.127
• Acrylic fiber and yarn count- wicking
performance of single jersey knitted fabrics
• Yarn wicking- fabric wicking
• Fabric wicking in the course direction- higher
49
Conclusion
ABSORPTION, WICKING AND DRYING CHARACTERISTICS
OF COMPRESSION GARMENTS
• To investigates the comfort characteristics of the compression
garments and the fabrics
Saricam (2015)
Study 3
50
Knitted fabrics-Santoni knitting
machine (SM8-TOP2)
Nylon-6.6 & Elastane
51
Fig. 10. Full plaiting technique , and the photo of specimen
Table 7. The production properties of the fabric specimens
Methodology
Fabric
Code
Yarn Count
(Dtex)
Elastane Count
(Denier)
Tension
(gr)
Elastane
composition(%)
1 78(39X2) 20 1 5.73
2 78(39X2) 40 1 15.46
3 78(39X2) 70 1 26.16
4 78(39X2) 140 1 39.73
5 78(39X2) 20 2.5 4.03
6 78(39X2) 40 2.5 12.56
7 78(39X2) 70 2.5 21.07
8 78(39X2) 140 2.5 35.08
52
Air
• Air Permeability
• TS 391 EN ISO 9237
Water
• Water absorbency
Moisture
• Wicking properties(Course and wale direction)
• Drying behaviour
Standard atmospheric conditions 20±2°C
and 65%±5 relative humidity
53
Result and Discussion
Table 8. The structural properties of the fabric specimens
Fabric
Code
Course
Density
(course / cm)
Wales
density
(wales /cm)
Stitch
density
(stitch /cm2)
Fabric
weight
(g/cm2)
Thickness
(mm)
Air
Permeabili
ty (lt/min)
1 26 16 416 273 0.59 276.67
2 32 16.5 528 279.7 0.65 61.67
3 34 16 544 267.7 0.67 31
4 35 18 630 321.1 0.68 9.67
5 29 16 464 329.1 0.64 342.33
6 33 17 561 347.9 0.69 143.33
7 36 18 648 322.2 0.71 58
8 37 18.5 684.5 341.2 0.74 33.33
54
Figure 11. The relationship between Absorption ratio and Elastane Composition
(a) Fabrics Produced at Lower Tension, (b) Fabric produced with higher tension
55
Fig. 12. Transfer wicking for wet and
dry fabric (a) The amount of water
for wet fabric, (b) The amount of
water for dry fabric.
8C
56
Fig.13. Vertical wicking in
Wale Direction
Fig. 14. Vertical wicking in Course
Direction.
57
(a)
(b)
Fig. 15. The relation between drying
time, thickness and initial water amount
and the tension (a) Fabrics produced at
Lower Tension, (b) Fabric produced with
higher tension.
• Absorption and wicking- related with the
porosity of the fabrics
• Drying- related with the thickness and initial
water content of the fabric.
• Comfort characteristic- changing the tension
and elastane composition
58
Conclusion
59
MOISTURE MANAGEMENT IN TEXTILES
MOISTURE MANAGEMENT PERFORMANCE OF MULTIFUNCTIONAL
YARNS BASED ON WOOL FIBERS
 To develop and optimise the functional yarn based on wool fibers
for different application
 To study the liquid transfer behaviour of the developed textile
material
Fangueiro et al.
(2010)
Study 4
60
61
Methodology
Wool (19µ)
Finecool
(2.4 dtex)
Coolmax
(2.4 dtex)
Polyester
(2.4 dtex)
Yarns
Blends
linear density of
20 tex with 630
turns/m of twist
Single jersey
knitted
Vertical
wicking test
Horizontal
wicking test
Drying rate
testing
Fibers
Yarns
Fabrics &
tests
62
Fig. 18. Vertical wicking apparatus
Fig. 17. Horizontal wicking apparatus
Drying rate
Remained water ratio equation
Where,
Dry weight= wf (g)
Wet weight= wo (g)
Change in weight= wi (g)
63
Result and Discussion
Table 9 : Dimensional properties of the knitted fabrics
Fabric
Cover Factor
[K]
Aerial mass
[g/m2]
Density
[(wales x courses)/cm]
Thickness
[mm]
Wool 15.68 155.23 16 x 20 0.68
Polyester 16.86 168.73 14 x 22 0.67
Wool/Polyester
(50:50)
16.28 147.67 14 x 20 0.64
Finecool 16.24 158.91 14 x 21 0.71
Wool/Finecool
(50:50)
15.79 164.11 15 x 19 0.66
Wool/Finecool
(75:25)
17.12 161.53 16 x 19 0.68
Coolmax 16.40 163.49 15 x 19 0.63
Wool/Coolmax
(50:50)
16.18 154.68 14 x 20 0.61
Wool/Coolmax 16.76 160.89 16 x 20 0.71
64
Fig. 19: Horizontal wicking curves
65
Fig. 20. Vertical wicking curves
66
Fig. 21. Drying rate (a) at standard
condition (b) at 33°C temperature
a) Wool
b) Wool + Finecool
• Coolmax- best capillary performance
• Wool- Low wicking performance, but good
drying rate
• Finecool- high drying rate
67
Conclusion
MOISTURE MANAGEMENT PROPERTIES OF PLATED KNIT
STRUCTURES WITH VARYING FIBER TYPES
• To assess suitability of designed fabrics in providing wearer comfort
for next-to-skin applications
Jhanji et al. (2014)
Study 5
68
69
Methodology
6-Single jersey plated
fabrics
Cotton yarns
(Ne 20/1)
Polyester
yarns (235D)
Polypropylene
(220D)
Nylon
(210D)
70
Physical
characteristics
Thickness
(Alambeta)
Fabric images
(SMZ1500 digital
microscope)
Comfort
characteristics
Moisture
management
properties
Moisture
management
indices
71
Result and Discussion
Fig. 21. Microscopic view of plated fabrics (a) and (b) bottom and top of
PES/Co fabric, (c) and (d) bottom and top of PP/Co fabric
72
Table 10 : Moisture management properties of plated fabrics
Sample
code
Thick
ness
(mm)
WT (s) AR (%/s) MWR (mm) SS (mm/s) AOWT OMM
CTop Botto
m
Top Botto
m
Top Botto
m
Top Botto
m
Co/PES 1.23 7.4 50.3 81.1 42.2 20 15 2.7 0.9 231.8 0.04
PES/Co 1.20 8.1 4.0 22.0 68.0 15 30 1.8 4.2 1137.0 2.00
Co/PP 1.23 6.1 120.0 30.0 0.0 5 0 0.7 0.0 289.3 0.40
PP/Co 1.24 44.5 2.3 7.1 33.0 5 25 0.1 10.0 392.5 0.90
Co/PA 1.31 12.0 18.0 123.0 40.0 10 10 0.6 0.5 100.2 0.30
PA/Co 1.30 19.0 8.0 26.0 83.0 15 15 0.7 1.0 447.9 0.80
Note:
WT: wetting time;
AR: absorption rate;
MWR: maximum wetted radius;
SS: spreading speed;
AOWT : Accumulative one-way transport capacity;
OMMC: overall moisture management capacity.
73
10 13 10
40
18
22
56
7
120
7
20
10
70
20
30
9
110
20
40
60
0
35
40
60
0
20
40
60
80
100
120
140
0
20
40
60
80
100
120
140
Co/PES PES/Co Co/PP PP/Co Co/PA PA/Co
Absorptionrate(%/s)
Wettingtime(s)
Fiber composition
WTt
WTb
ARt
ARb
Fig. 22. Wetting time and absorption rate of plated fabrics
Note: WTt – top wetting time, WTb – bottom wetting time,
ARt – top absorption rate, ARb – bottom absorption rate.
74
3 2.8
1.3 1.3 1.51.5
4
10
1.2
1.8
6 5.6
2.4 2.3
3
44
9
7
3
4
0
10
20
30
40
0.1
3.1
6.1
9.1
12.1
Co/PES PES/Co Co/PP PP/Co Co/PA PA/Co
Maximumwettedradius(mm)
Spreadingspeed(mm/s)
Fiber composition
SSt
SSb
MWRt
MWRb
Fig. 23. Spreading speed and maximum wetted radius of plated fabrics
Note: SSt – top spreading speed, SSb – bottom spreading speed,
MWRt – top maximum wetted radius, MWRb – bottom
maximum wetted radius.
75
0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
OMMC
Fiber composition
OMMC
OMMC
Fig. 24. Overall moisture management capacity of plated fabrics
• Hydrophobic fibers - top (next to skin) layer
• Hydrophilic fiber- bottom layer
• PP/Co fabric showed better properties
76
Conclusion
MOISTURE MANAGEMENT OF UNDERWEAR FABRICS AND LINING
OF FIRE-FIGHTER PROTECTIVE CLOTHING ASSEMBLIES
 To know the vapour and liquid transfer properties of various
types of individual fire-fighter UW as well as their bi-layer
combination with linings of fire-fighter intervention jacket.
Petrusic et al. (2014)
Study 6
77
78
Methodology
UW Fabric
Aramid/Viscose
Cotton
Cotton/protex
Knitted
Interlock
Pique
Linings
3- woven
Testing
Thickness- ISO 5084
Fabric surface weight –
Gravimetrically
Air permeability-
ISO 9237
Cover factor
Moisture management
tester- AATCC 195
79
Fabric name
code
Function Structure Composition
AV_P
Underwe
ar
Knitted jersey
pique
Aramid/Viscose
C_P Cotton
CP_P Cotton /Protex
AV_I Knitted
interlock
Aramid/Viscose
C_I Cotton
CP_I Cotton /Protex
L1
Lining
Woven-
honeycomb
Aramid
L2 Woven- ripstop
plain
Aramid/antistatic P140
Table 11 : General description of tested fabric types
80
Result and Discussion
Table 12 : Physical properties of tested fabric types
Sample Thickness,
mm
Surface
weight,
g m−2
Cover
factor
Air permeability
l m−² s−1
Moisture
regain
(%)
AV_P 1.34 260 1.71 1898 7.2
AV_I 1.18 248 1.24 1481 6.5
C_P 1.22 262 1.58 888 6.6
C_I 1.18 276 1.37 354 6.2
CP_P 0.90 254 1.85 687 2.7
CP_I 0.88 220 1.28 948 2.7
L1 0.48 150 99.0% 282 5.5
L2 0.33 109 84.8% 1367 4.7
L3 0.40 127 76.6% 1163 7.6
81
Fig. 25. Selected MMT indices of individual UW fabrics: wetting time (a),
maximum wetted radius (b), absorption rate (c), and spreading speed (d)
82
0.33
0.39
0.18
0.33
0.37
0.39
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
AV_P AV_I C_P C_I CP_P CP_I
Overallmoisturemanagement
capacity
Fabric name
OMMC
OMMC
Fig. 26 : Overall moisture management capacity of individual UW fabrics
83
Sam
ple
Wetting
time (s)
Absorption
rate (%/s)
Max wetted
radius (mm)
Spreading
speed (mm/s)
AOWT
(%)
OMMC
Top Bott
om
Top Bott
om
Top Bot
to
m
Top Bott
om
L1 4.10 4.53 50.50 62.48 26 25 4.27 4.05 47.28 0.50
L2 6.46 6.22 8.42 67.14 12.5 12.5 1.43 1.40 687.21 0.69
L3 10.73 9.33 6.47 80.42 10 10 0.74 0.81 759.81 0.70
Table 13. MMT indices of individual L fabrics
84
Fig. 27. Water vapour permeability indices of UW/L bi-layers
86
88
90
92
94
96
98
100
AV_P/L1
AV_P/L2
AV_P/L3
AV_I/L1
AV_I/L2
AV_I/L3
C_P/L1
C_P/L2
C_P/L3
C_I/L1
C_I/L2
C_I/L3
CP_P/L1
CP_P/L2
CP_P/L3
CP_I/L1
CP_I/L2
CP_I/L3
Watervapourpermeabilityindex,%
Bi-layer code
Water vapour permiability AV_P/L1
AV_P/L2
AV_P/L3
AV_I/L1
AV_I/L2
AV_I/L3
C_P/L1
C_P/L2
C_P/L3
C_I/L1
C_I/L2
C_I/L3
CP_P/L1
CP_P/L2
CP_P/L3
CP_I/L1
CP_I/L2
CP_I/L3
• Fabric bi-layers (aramid/viscose) -absorption
and wicking abilities
• Management of moisture - affected by
construction variables but less by their
chemical composition
85
Conclusion
MOISTURE MANAGEMENT BEHAVIOUR OF KNITTED FABRIC
FROM STRUCTURALLY MODIFIED RING AND VORTEX SPUN
YARN
• To study the moisture transport behaviour by modifying the
structural arrangement in polyester/cotton blended vortex and
ring yarn and fabrics.
Sharma et al. (2015)
Study 7
86
87
Methodology
8-yarns produced from 100% polyester and blends of
cotton/polyester
Single jersey knitted fabrics - circular knitting machine
Scouring - Na2CO3
Vertical Wicking, Air permeability- BS 5636, Total
Absorbency, Water Vapour Permeability- cup method
88
Result and Discussion
Table .14: Properties of yarn
Tex Spinning
system
Samples Sample
code
U % Elongatio
n
(%)
Tenacity
(cN/Tex)
24.6 Ring 100 %PET A 8.20 9.2 24.8
80:20 P/C B 8.34 8.5 24.4
Vortex 100 %PET C 8.86 8.9 22.1
80:20 P/C D 8.66 7.8 23.5
19.7 Ring 100 %PET E 10.8 8.3 25.1
80:20 P/C F 9.23 8.6 18.9
Vortex 100 %PET G 9.58 8.0 22.9
80:20 P/C H 8.52 6.3 15.5
89
Table 15. Wicking in fabrics
Tex Spinnin
g
system
Fabric composition Sam
ple
code
Time (min)
1 5 10 20 30 40 50 60
24.6 Ring 100 %PET A 4.7 8.9 12.1 13.9 15.7 16.8 17.4 18.1
80:20 P/C B 4.3 7.6 10.1 12.6 14.5 15.9 16.6 17.2
80:20 P/C (Treated) B (T) 3.3 6.4 7.5 10.3 10.7 11.8 12.4 13.6
Vortex 100 %PET C 4.1 7.9 10.1 12.6 14.4 15.9 16.3 17.1
80:20 P/C D 3.6 6.9 8.8 11.5 13.6 14.7 15.7 16.2
80:20 P/C (Treated) D (T) 3.2 5.8 7.3 9.5 10.1 10.8 11.4 11.8
19.7 Ring 100 %PET E 5.8 8.9 12.1 14.8 17.1 17.1 18.2 18.9
80:20 P/C F 5.3 8.3 11.4 13.5 15.4 15.4 16.2 17.5
80:20 P/C (Treated) F (T) 2.9 5.4 7.1 8.9 10.4 10.4 10.8 10.9
Vortex 100 %PET G 4.8 7.6 10.8 12.9 15.1 15.1 15.9 17.1
80:20 P/C H 4.1 8.1 9.5 12.2 15.4 15.4 16.2 16.9
80:20 P/C (Treated) H (T) 2.7 5.3 6.7 8.9 10.7 10.7 11.3 11.4
90
Fig. 28. Variation in air permeability of fabrics
100 %PET A
80:20 P/C B
80:20 P/C (Treated) B (T)
100 %PET C
80:20 P/C D
80:20 P/C (Treated) D (T)
100 %PET E
80:20 P/C F
80:20 P/C (Treated) F (T)
100 %PET G
80:20 P/C H
80:20 P/C (Treated) H (T)
91
Fig. 29. Variation in total absorbency of fabrics
Fig. 30. Variation in water vapour permeability of fabrics
100 %PET A
80:20 P/C B
80:20 P/C
(Treated)
B (T)
100 %PET C
80:20 P/C D
80:20 P/C
(Treated)
D (T)
100 %PET E
80:20 P/C F
80:20 P/C
(Treated)
F (T)
100 %PET G
80:20 P/C H
80:20 P/C
(Treated)
H (T)
• Structural modification- increase in air
permeability, water vapour transmission and
total absorbency.
• Wicking- declined in the fabric from modified
yarn.
• Vortex yarn- poor wicking and total
absorbency.
92
Conclusion
93
Wicking in relation with moisture management
INFLUENCE OF FABRIC STRUCTURE AND FINISHING PATTERN ON
THE THERMAL AND MOISTURE MANAGEMENT PROPERTIES OF
UNIDIRECTIONAL WATER TRANSPORT KNITTED POLYESTER
FABRICS
• To analyze the influence of finishing patterns and fabric structure
parameters on the comfort performance of unidirectional water
transport knitted polyester fabrics
Yang et al., (2018)
Study 8
94
95
Methodology
100% polyester (hydrophilic based) filament (50D)
Double-knit circular knitting machine
Print- Hydrophobic finishing with flat screen
Auxiliary- fluorocarbons (thickening) =0.9%, Rudolf
GmbH=20% , isocyanate (cross linking)= 2 %
8 samples
Air permeability- SO 3801-1977 and EN ISO 5084-2002
Moisture management properties- MMT ASTM D1776-2008
Wicking height –vertical wicking test method
Thermal-physiological properties- sweat guarded hot plate
apparatus
96
Fig. 32. The structure appearance and knitting pattern of the fabric samples
Fig. 31. Hydrophobic printing pattern
97
Result and Discussion
Table 15. The description properties and air permeability of samples
Sampl
e
Numb
er
Finishin
g
pattern
Fabric
structu
re
Weight
(g/m2)15
1
Thickne
ss
(mm)
Wale
density
/cm
Course
density
/cm
Porosit
y
Air
permeab
ility
(L/m2/s)
F1 P1 S1
(RA)
151 0.6066 29/2
0
17/1
7
0.8196 1271.38
F2 P1 S2
(IL)
113 0.4352 24 25 0.8118 614.00
F3 P1 S3
(DT)
123 0.5262 24 16 0.8306 1740.00
F4 P2 S3(D
T)
125 0.5230 25 15 0.8268 1628.00
F5 P2 S2 109 0.4240 21 19 0.8137 915.26
98
Fig. 33. Wicking height versus time of eight samples
F1
F7 & F8
Sampl
e
Numb
er
Finishing
pattern
Fabric
structure
F1 P1 S1 (RA)
F2 P1 S2 (IL)
F3 P1 S3 (DT)
F4 P2 S3(DT)
F5 P2 S2 (IL)
F6 P2 S4 (DTS)
F7 P3 S2 (IL)
F8 P4 S2 (IL)
99
Table 17. Moisture management properties of various fabrics
Sample
Number
Wetting time Maximum wetted radius Accumulative
one-way
transport
capability (%)
Overall
moisture
management
capacity
Top (s) Bottom (s) Top (mm) Bottom (mm)
F1
(P1,S1)
5.16 4.72 19 28 620.73 0.9127
F2
(P1,S2)
6.76 7.14 20 30 526.87 0.9117
F3
(P1,S3)
9.54 11.60 13.75 23.75 603.21 0.6664
F4
(P2,S2)
5.64 5.23 20 25 626.81 0.9224
F5
(P2,S3)
6.52 5.72 20 25 544.88 0.9135
100
Sample
Number
Fabric
structure
Water vapour
resistance
(m2.Pa/W)
Moisture
permeability
(g/(m2hpa))
Thermal
resistance
(10–3m2.K/W)
Thermal
conductivity
(W/m2.K)
F1 S1 2.49 0.6405 15.79 63.34
F2 S2 1.94 0.8221 13.16 76.21
F3 S3 1.89 0.8439 15.78 63.39
F4 S3 2.27 0.7026 14.01 71.38
F5 S2 1.91 0.8350 12.96 77.16
F6 S4 2.38 0.6701 13.97 71.72
F7 S2 1.89 0.8439 14.16 70.63
F8 S2 1.92 0.8307 11.8 84.47
Table 18. Testing value of thermal-physiological properties
• The hydrophobic finishing-
– little effect on the fabric air permeability and the
vapour and thermal resistance
– greater influence on the wicking height and one-
way transport properties
• Fabric structures-
– significant effect on air permeability, wicking
height and thermal-physiological properties
101
Conclusion
Moisture management behaviours of high wicking
fabrics composed of profiled Fibres
• To investigate the fibre, yarn and fabric structural
parameters involved in production of high-wicking fabrics
• To measure dynamic liquid transfer in clothing materials
Study 9
102
Gorji & Bagherzadeh
(2015)
103
Methodology
• Coolmax/cotton
• 100% Coolmax staple fibre (linear density 30
NE)
• Coolplus multi microfilament (75 den/ 72
filaments, and 75 denier/48 filaments) with
plus crosssection
• Coolplus multi microfilament (75 den/ 72
filaments, 75 den/48 filaments and 150
denier/ 72 filaments) with five-leaf cross-
section
Yarns
• Moisture management testerTests
Fig: 38- Fibre cross-sections (a) 4 channels coolmax cross-section
(100% Coolmax staple yarn), (b) 4 channels coolmax cross-section
(50/50% Coolmax/cotton staple yarn), (c) 5-leafs cross-section of the
monofilaments in Coolplus yarns and (d) plus cross-section of the
monofilaments in Coolplus yarn
104
105
S.
no
.
Sample
code
WT,s AR, %/s MWR,mm SS, mm/s AOWT OMMC
Top Bottom Top Bottom Top Bottom Top Bottom
1 SS1,30Ne 2.27 2.25 35.78 38.88 30 30 8.30 8.23 2.42 0.38
2 SS2,30Ne 17.25 2.70 27.21 45.47 25 25.83 1.86 3.28 357.76 0.70
3 SS3, 75D48F 2.02 2.06 35.48 37.64 30 30 9.21 9.11 26.41 0.41
4 SS3, 75D72F 2.41 2.41 33.45 35.93 25 25 6.12 6.01 10.72 0.39
5 SS4, 75D48F 2.48 2.48 34.25 36.90 22.50 23.75 5.65 5.75 12.14 0.39
6 SS4, 75D72F 2.88 2.86 31.50 33.83 20 20 4.20 4.19 6.24 0.38
7 SS4,
150D72F
2.31 2.34 34.98 37.85 28.75 27.50 7.54 7.40 23.91 0.41
8 SS4,
150D144F
2.37 2.41 28.87 32.58 23.75 23.75 5.65 5.61 39.31 0.41
Table 19 : Properties of filament used to produce commingled yarns
First letter: S- single jersey and D double jersey.
Second letter: S small loop density and L- Large loop density.
First Number: 1- four channel coolmax, 2- coolmax/cotton, 3- pluss cross section and 4- five leaf
cross section. The last part is the yarn count and number of filament.
WT- Wetting time, AR- Absorption rate, SS- Spreading area, OWTC- One way transport capacity,
OMMC-Overall moisture management capacity.
Result and discussion
106
S.
no
.
Sample
code
WT,s AR, %/s MWR,mm SS, mm/s AOWT OMMC
Top Bottom Top Bottom Top Bottom Top Bottom
9 SL1,30Ne 2.30 2.37 33.74 36.42 30 30 7.89 7.72 6.38 0.39
10 SL2,30Ne 27.07 2.02 22.32 40.00 18.75 20 0.96 2.77 527.88 0.73
11 SL3, 75D48F 2.46 2.48 33.66 36.32 22.50 22.50 5.54 5.53 24.05 0.40
12 SL3, 75D72F 2.39 2.39 33.80 36.59 22.50 22.50 6.01 5.95 19.39 0.40
13 SL4, 75D48F 2.32 2.32 34.09 36.26 27.50 27.50 7.53 7.52 9.63 0.39
14 SL4, 75D72F 2.47 2.47 28.87 30.75 22.00 24 7.03 6.42 32.80 0.40
15 SL4,
150D72F
2.48 2.53 34.05 35.90 24.17 23.33 6.09 5.97 25.90 0.41
16 SL4,
150D144F
2.27 2.42 29.10 31.08 28.00 27 6.63 6.17 16.20 0.38
17 DS1, 30Ne 13.55 8.32 26.83 64.77 15.71 15.71 1.22 1.55 593.44 0.70
18 DS2, 30Ne 8.17 25.07 68.26 124.65 8.00 8.00 0.63 0.26 496.63 0.75
Table 20 : Properties of filament used to produce commingled yarns
First letter: S- single jersey and D double jersey.
Second letter: S small loop density and L- Large loop density.
First Number: 1- four channel coolmax, 2- coolmax/cotton, 3- pluss cross section and 4- five leaf
cross section. The last part is the yarn count and number of filament.
WT- Wetting time, AR- Absorption rate, SS- Spreading area, OWTC- One way transport capacity,
OMMC-Overall moisture management capacity.
107
S.
n
o.
Fibre
content
WT,s AR, %/s MWR,mm SS, mm/s AOW
T
OMM
CTop Botto
m
Top Botto
m
Top Botto
m
Top Botto
m
1 Coolmax 2.30 2.33 34.60 43.28 30.00 30.00 7.98 7.88 2.59 0.38
2 Coolmax/
Cotton
21.17 2.42 25.25 37.51 22.50 23.50 1.50 3.08 425.8
1
0.71
Table 21 : Effect of fibre content on MMP results of samples
S.
n
o.
Fibre
content
WT,s AR, %/s MWR,mm SS, mm/s AOW
T
OMM
CTop Botto
m
Top Botto
m
Top Botto
m
Top Botto
m
1 Coolmax 5.09 2.46 32.33 37.92 25.61 25.76 6.02 6.03 79.82 0.45
2 Coolmax/
Cotton
5.29 2.39 31.09 35.11 24.56 24.71 5.81 6.01 78.73 0.43
Table 22 : Effect of loop density on MMP of samples
108
Fig. 34—Water content vs. time for typical fabrics produced with
staple fibre (a) and filament fibre (b)
• Moisture management properties- plus cross-
section yarns
• Less monofilaments- better moisture
management
109
Conclusion
110
Moisture Wicking
Reference
111
1. Fangueiro, R., Goncalves, P., Soutinho, F. and Freitas, C., 2010, Moisture management performance
of multifunctional yarns based on wool fibers. Indian J. Fibre Text. Res., 34(2): 315-320.
2. Gorji, M. and Bagherzadeh R., 2015, Moisture management behaviours of high wicking fabrics
composed of profiled Fibres. Indian J. Fibre Text. Res., 41(3): 318-324.
3. Jhanji, Y., Gupta, D. and Kothari, V. K., 2014, Moisture management properties of plated knit
structures with varying fiber types. J. Tex. Institute, 106(6): 663-673.
4. Ozturk, M. K., Nergis, B. and Candan, C., 2015, A study of wicking properties of cotton-acrylic
yarns and knitted fabrics. Text. Res. J., 81(3): 324-328.
5. Petrusic, S., Onofrei, E., Bedek, G., Codau, C., Dupont, D. and Soulat, D., 2014, Moisture
management of underwear fabrics and linings of firefighter protective clothing assemblies. J. Tex.
Institute, 106(12): 1270-1281.
6. Saricam, C., 2015, Absorption, wicking and drying characteristics of compression garments. J. Eng.
Fibers Fabrics. 10(30): 146-154.
7. Sharma, N., Kumar, P., Bhatia, D. and Sinha, S. K., 2015, Moisture management behaviour of
knitted fabric from structurally modified ring and vortex spun yarn. J. Inst. Eng. India Ser., 88(4):
1078-1085.
8. Yang, Y., Chen, L., Naveed, T., Zhang, P. and Farooq, A., 2018, Influence of fabric structure and
finishing pattern on the thermal and moisture management properties of unidirectional water
transport knitted polyester fabrics. Text. Res. J.,89(10): 1983-1996.
9. Yu, Z. C., Zhang, J. F., Lou, C. W. and Lin, J. H., 2014, Wicking behaviour and antibacterial
properties of multifunctional knitted fabrics made from metal commingled yarns. J. Tex. Institute,
106(8): 862-871.
112

More Related Content

What's hot

Square jammed fabric
Square jammed fabricSquare jammed fabric
Square jammed fabricSanjit Jana
 
Nonwoven web formation rajesh
Nonwoven web formation   rajeshNonwoven web formation   rajesh
Nonwoven web formation rajesh
Bannari Amman Institute of Technology
 
Dry laid nonwoven
Dry laid nonwovenDry laid nonwoven
Dry laid nonwoven
devisweety
 
Singeing and biopolishing
Singeing and biopolishingSingeing and biopolishing
Singeing and biopolishing
Rupam Paul
 
Principles of various fibre testing instruments
Principles of various fibre testing instrumentsPrinciples of various fibre testing instruments
Principles of various fibre testing instruments
K Kumar
 
FABRIC FLAMMABILITY
FABRIC FLAMMABILITYFABRIC FLAMMABILITY
FABRIC FLAMMABILITY
Mazbah Uddin
 
Advance spinning techniques
Advance spinning techniquesAdvance spinning techniques
Advance spinning techniques
Sohail AD
 
Spun Laid Process, Melt Blown Process, Differences between spun laid Process ...
Spun Laid Process, Melt Blown Process, Differences between spun laid Process ...Spun Laid Process, Melt Blown Process, Differences between spun laid Process ...
Spun Laid Process, Melt Blown Process, Differences between spun laid Process ...
MD. SAJJADUL KARIM BHUIYAN
 
LOW WET PICK UP
LOW WET PICK UP LOW WET PICK UP
LOW WET PICK UP
Mohammad Tanvir AL Fazal
 
Nonwoven Presentation
Nonwoven PresentationNonwoven Presentation
Nonwoven Presentation
alaminmasum1
 
Friction spinning System
Friction spinning System Friction spinning System
Friction spinning System
Abdullah Al Parvez
 
Pilling and abrasion Testing of fabrics
Pilling and abrasion Testing of fabricsPilling and abrasion Testing of fabrics
Pilling and abrasion Testing of fabrics
Chaitanya Chaudhary
 
Multiphase weaving
Multiphase weavingMultiphase weaving
Multiphase weaving
Fuad Ahmed
 
Non woven Process
Non woven ProcessNon woven Process
Non woven Process
MAHESH PRATAP DUBEY
 
FOAM DYEING TECHNOLOGY
FOAM  DYEING TECHNOLOGYFOAM  DYEING TECHNOLOGY
Shrinkage finishing for cellulosic fabrics
Shrinkage finishing for cellulosic fabricsShrinkage finishing for cellulosic fabrics
Shrinkage finishing for cellulosic fabricsRajeev Sharan
 
Yarn manufacturing Process : Carding
Yarn manufacturing Process : CardingYarn manufacturing Process : Carding
Yarn manufacturing Process : Carding
SVKMs, NMIMS, MPSTME, CTF, Shirpur, Dist. Dhule
 

What's hot (20)

Square jammed fabric
Square jammed fabricSquare jammed fabric
Square jammed fabric
 
Nonwoven web formation rajesh
Nonwoven web formation   rajeshNonwoven web formation   rajesh
Nonwoven web formation rajesh
 
Dry laid nonwoven
Dry laid nonwovenDry laid nonwoven
Dry laid nonwoven
 
Singeing and biopolishing
Singeing and biopolishingSingeing and biopolishing
Singeing and biopolishing
 
Principles of various fibre testing instruments
Principles of various fibre testing instrumentsPrinciples of various fibre testing instruments
Principles of various fibre testing instruments
 
Textile finishing
Textile finishingTextile finishing
Textile finishing
 
FABRIC FLAMMABILITY
FABRIC FLAMMABILITYFABRIC FLAMMABILITY
FABRIC FLAMMABILITY
 
Advance spinning techniques
Advance spinning techniquesAdvance spinning techniques
Advance spinning techniques
 
Spun Laid Process, Melt Blown Process, Differences between spun laid Process ...
Spun Laid Process, Melt Blown Process, Differences between spun laid Process ...Spun Laid Process, Melt Blown Process, Differences between spun laid Process ...
Spun Laid Process, Melt Blown Process, Differences between spun laid Process ...
 
LOW WET PICK UP
LOW WET PICK UP LOW WET PICK UP
LOW WET PICK UP
 
Nonwoven Presentation
Nonwoven PresentationNonwoven Presentation
Nonwoven Presentation
 
Friction spinning System
Friction spinning System Friction spinning System
Friction spinning System
 
Pilling and abrasion Testing of fabrics
Pilling and abrasion Testing of fabricsPilling and abrasion Testing of fabrics
Pilling and abrasion Testing of fabrics
 
Multiphase weaving
Multiphase weavingMultiphase weaving
Multiphase weaving
 
Air flow dyeing machine
Air flow dyeing machineAir flow dyeing machine
Air flow dyeing machine
 
Nonwoven
NonwovenNonwoven
Nonwoven
 
Non woven Process
Non woven ProcessNon woven Process
Non woven Process
 
FOAM DYEING TECHNOLOGY
FOAM  DYEING TECHNOLOGYFOAM  DYEING TECHNOLOGY
FOAM DYEING TECHNOLOGY
 
Shrinkage finishing for cellulosic fabrics
Shrinkage finishing for cellulosic fabricsShrinkage finishing for cellulosic fabrics
Shrinkage finishing for cellulosic fabrics
 
Yarn manufacturing Process : Carding
Yarn manufacturing Process : CardingYarn manufacturing Process : Carding
Yarn manufacturing Process : Carding
 

Similar to Moisture management and wicking behaviour of textiles

moisture control and breathable finish
moisture control and breathable finishmoisture control and breathable finish
moisture control and breathable finish
Avik kumar Dhar
 
Quest AQ
Quest AQQuest AQ
Quest AQ
Palan Madhukant
 
Breathable fabric
Breathable fabricBreathable fabric
Breathable fabric
Takbir Ahmed
 
Brethable fabric
Brethable fabricBrethable fabric
Brethable fabric
Rakibul Sourav
 
Quest Aq
Quest AqQuest Aq
Quest AQ
Quest AQQuest AQ
Quest AQ
Palan Madhukant
 
Fabric Shrinkage
Fabric ShrinkageFabric Shrinkage
Fabric Shrinkage
Md Rasel Haque
 
Waterproof breathable fabrics by Vignesh Dhanabalan
Waterproof breathable fabrics by Vignesh DhanabalanWaterproof breathable fabrics by Vignesh Dhanabalan
Waterproof breathable fabrics by Vignesh Dhanabalan
Vignesh Dhanabalan
 
Comfort testing
Comfort testingComfort testing
Comfort testingFarshid Sh
 
An Overview on Objective Evaluation of Wicking Property of the Textile Materi...
An Overview on Objective Evaluation of Wicking Property of the Textile Materi...An Overview on Objective Evaluation of Wicking Property of the Textile Materi...
An Overview on Objective Evaluation of Wicking Property of the Textile Materi...
CrimsonpublishersTTEFT
 
Fundamentals of Water Repellency Testing.ppsx
Fundamentals of Water Repellency Testing.ppsxFundamentals of Water Repellency Testing.ppsx
Fundamentals of Water Repellency Testing.ppsx
zahidur rahman
 
Waterproof breathable fabrics technologies and practices 2
Waterproof breathable fabrics  technologies and practices 2Waterproof breathable fabrics  technologies and practices 2
Waterproof breathable fabrics technologies and practices 2Vignesh Dhanabalan
 
Shrinkage Control
Shrinkage ControlShrinkage Control
Shrinkage Control
Shreya Anand
 
The comfort properties of two differential shrinkage
The comfort properties of two differential shrinkageThe comfort properties of two differential shrinkage
The comfort properties of two differential shrinkage
Fabia Ribeiro
 
breathability test of fabric
breathability test of fabricbreathability test of fabric
breathability test of fabric
anik john
 
Fabric filter/Bag House
Fabric filter/Bag HouseFabric filter/Bag House
Fabric filter/Bag House
JunaidKhan603
 
UNIT 3 DRYING.pptx
UNIT 3  DRYING.pptxUNIT 3  DRYING.pptx
UNIT 3 DRYING.pptx
poojawaware2
 
Water repellent finish
Water repellent finishWater repellent finish
Water repellent finish
Abu Naser Muntakim
 
Water repellency & waterproof & repellency test method
Water repellency & waterproof & repellency test methodWater repellency & waterproof & repellency test method
Water repellency & waterproof & repellency test method
srsujandiu
 

Similar to Moisture management and wicking behaviour of textiles (20)

moisture control and breathable finish
moisture control and breathable finishmoisture control and breathable finish
moisture control and breathable finish
 
Quest AQ
Quest AQQuest AQ
Quest AQ
 
Breathable fabric
Breathable fabricBreathable fabric
Breathable fabric
 
Brethable fabric
Brethable fabricBrethable fabric
Brethable fabric
 
Quest Aq
Quest AqQuest Aq
Quest Aq
 
Quest AQ
Quest AQQuest AQ
Quest AQ
 
Quest AQ.
Quest AQ.Quest AQ.
Quest AQ.
 
Fabric Shrinkage
Fabric ShrinkageFabric Shrinkage
Fabric Shrinkage
 
Waterproof breathable fabrics by Vignesh Dhanabalan
Waterproof breathable fabrics by Vignesh DhanabalanWaterproof breathable fabrics by Vignesh Dhanabalan
Waterproof breathable fabrics by Vignesh Dhanabalan
 
Comfort testing
Comfort testingComfort testing
Comfort testing
 
An Overview on Objective Evaluation of Wicking Property of the Textile Materi...
An Overview on Objective Evaluation of Wicking Property of the Textile Materi...An Overview on Objective Evaluation of Wicking Property of the Textile Materi...
An Overview on Objective Evaluation of Wicking Property of the Textile Materi...
 
Fundamentals of Water Repellency Testing.ppsx
Fundamentals of Water Repellency Testing.ppsxFundamentals of Water Repellency Testing.ppsx
Fundamentals of Water Repellency Testing.ppsx
 
Waterproof breathable fabrics technologies and practices 2
Waterproof breathable fabrics  technologies and practices 2Waterproof breathable fabrics  technologies and practices 2
Waterproof breathable fabrics technologies and practices 2
 
Shrinkage Control
Shrinkage ControlShrinkage Control
Shrinkage Control
 
The comfort properties of two differential shrinkage
The comfort properties of two differential shrinkageThe comfort properties of two differential shrinkage
The comfort properties of two differential shrinkage
 
breathability test of fabric
breathability test of fabricbreathability test of fabric
breathability test of fabric
 
Fabric filter/Bag House
Fabric filter/Bag HouseFabric filter/Bag House
Fabric filter/Bag House
 
UNIT 3 DRYING.pptx
UNIT 3  DRYING.pptxUNIT 3  DRYING.pptx
UNIT 3 DRYING.pptx
 
Water repellent finish
Water repellent finishWater repellent finish
Water repellent finish
 
Water repellency & waterproof & repellency test method
Water repellency & waterproof & repellency test methodWater repellency & waterproof & repellency test method
Water repellency & waterproof & repellency test method
 

Recently uploaded

NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
pablovgd
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Ana Luísa Pinho
 
role of pramana in research.pptx in science
role of pramana in research.pptx in sciencerole of pramana in research.pptx in science
role of pramana in research.pptx in science
sonaliswain16
 
platelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptxplatelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptx
muralinath2
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Sérgio Sacani
 
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
NathanBaughman3
 
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCINGRNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
AADYARAJPANDEY1
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
silvermistyshot
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
muralinath2
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
kumarmathi863
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
Columbia Weather Systems
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
Richard Gill
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
muralinath2
 
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
muralinath2
 
4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf
4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf
4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf
ssuserbfdca9
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
Richard Gill
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
University of Maribor
 
filosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptxfilosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptx
IvanMallco1
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
muralinath2
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Sérgio Sacani
 

Recently uploaded (20)

NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
 
role of pramana in research.pptx in science
role of pramana in research.pptx in sciencerole of pramana in research.pptx in science
role of pramana in research.pptx in science
 
platelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptxplatelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptx
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
 
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
Astronomy Update- Curiosity’s exploration of Mars _ Local Briefs _ leadertele...
 
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCINGRNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
 
Orion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWSOrion Air Quality Monitoring Systems - CWS
Orion Air Quality Monitoring Systems - CWS
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
 
erythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptxerythropoiesis-I_mechanism& clinical significance.pptx
erythropoiesis-I_mechanism& clinical significance.pptx
 
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
 
4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf
4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf
4. An Overview of Sugarcane White Leaf Disease in Vietnam.pdf
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
 
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
Comparing Evolved Extractive Text Summary Scores of Bidirectional Encoder Rep...
 
filosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptxfilosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptx
 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
 
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
Earliest Galaxies in the JADES Origins Field: Luminosity Function and Cosmic ...
 

Moisture management and wicking behaviour of textiles

  • 1. A seminar on 1 Moisture management and wicking behaviour of textiles Pratikhya Badanayak and Dr. Jyoti V. Vastrad
  • 2. Moisture management • Moisture/sweat absorbing • Transferring & evaporating • Decides the clothing comfort 2 Introduction
  • 3. Clothing comfort The basic requirement of clothing is that it must not cause discomfort for the wearer. Modern consumers are interested in clothing that does not only looks good, but also feel good. Comfort as a pleasant state of physiological, psychological and physical harmony between human being and the environment. 1. Physiological comfort is related to human body’s ability to maintain life, psychological comfort is the mind’s ability to keep it functioning satisfactorily with external help and physical comfort is the effect of external environment on the body. • Aspects of physiological and psychological comfort • Thermo physiological comfort It is attainment of comfort through thermal and wetness state. It involves transport of heat and moisture through a fabric. • Sensorial comfort It is the elicitation of various neutral sensations when a textile comes into contact with skin. • Body moment comfort It is the ability of textile to allow freedom of movement, reduced burden and body shaping as required. • Aesthetic appeal It is subjective perception of clothing to eye, hand, ear and nose which contributes to the overall well being of the wearer. 3
  • 4. Clothing comfort 4 Physiological • Body ability Psychological • Mind ability Physical • Effect of external environme nt
  • 6. Thermo physiological comfort Heat Conduction Convection Radiation Wind penetration Moisture Diffusion, sorption & desorption Convection & condensation Wetting & wicking 6
  • 10. Diffusion Water vapour can diffuse through a textile structure in two ways: 10 Air spaces between the fibres Yarns and along the fibre itself Factors affect diffusion process- 1. Fibre volume fraction 2. Fibre cross section 3. Fabric thickness 4. Air permeability
  • 11. Sorption-desorption Process 11 Factors affect Sorption-Desorption Process: 1. Humidity of Atmosphere 2. Effect of Heat Absorption Adsorption It is defined in two phenomenon
  • 12. Convection and condensation 12 Convection • Moving air • Ventilation Condensation (3 stages) • Velocity, temp. and vapour concentration field • Liquid content increase • Critical value
  • 13. Wetting and wicking 13 Fluid spreading Evaporation Factors affect wetting- 1. Contact angle between the solid and liquid 2. Surface tension between solid and liquid 3. Liquid density, viscosity and surface tension 4. Chemical nature of surface Factors affect wicking process- 1. Capillary pressure 2. Cross sectional shape of fibre 3. Tortuosity of the pores 4. Twist of yarn 5. Texture of yarn
  • 14. Equipments/methods to measures moisture management through clothing Vapour transmission Gravimetric method Moisture vapour transmission cell Sweating Guarded Hot Plate Permetest method 14
  • 15. 15 Moisture transmission Wetting Tensiometry Goniometry Spray rating tester Wicking Moisture management tester Transverse wicking apparatus Vertical wicking apparatus Horizontal wicking apparatus
  • 16. Moisture management instruments and testing method Vapour transmission Gravimetric/Cup method (ASTM E 96) Inverted cup methodCup method Sweating Guarded Hot Plate (ASTM F1868 – 17)  Take 30ml of distilled water in a cup and weigh it  Tie the fabric on the cup tightly  Keep it for 24 hours and record the weight of remaining water  Cut the sample according to the tamplet given  Place the fabric on the hot plate  The equipment is heated to skin surface temperature of 33 to 36°C, through the test sample  Water reservoir acts as artificial sweating  Rate of transfer of sweat is displayed on the machine screen
  • 17. Permetest- skin model (ISO 11092) Moisture vapour transmission cell (ASTM E96) Vapour transmission Evaporative dish method (BS 7209)  Place the fabric inside the disc  Humidity will be generated inside the instrument under controlled condition at certain time  Note the change in humidity at time intervals  Mount the sample over the open mouth of the test dish in a airtight manner  The dish contains predetermined quantity of water  It gives the moisture vapour transfer properties of the mono and multilayered fabric  First cover the measuring head by semi permeable foil  Measure the heat flow value without placing sample  Place the test sample on the wetted area of diameter (80mm)  The amount of evaporation from the active porous surface is measured
  • 18. WettingOptical Tensiometre (ASTM D 1331-11) Spray rating tester (AATCC 22, ISO 4920) Goniometre (ASTM D5946) Moisture transmission  Mount the fabric sample on the clamp  Using a burette drop water (diameter- 30 to 50μm) on the sample  Optics and high speed camera will take images of the small droplet and the contact angle that are displayed on the screen  Cut the sample according to the tamplet  Place sample on the circular disc  Fill distilled water on the funnel  Allow that water to be sprayed through a nozzle onto the test specimen at 45° and 150mm below the nozzle  Mount the fabric sample on the clamp  Using a burette drop water on the sample  The drop diameter is higher than Tensiometre  Measure the contact angle through image processing
  • 19. Wicking Moisture management tester (AATCC 195) Vertical wicking apparatus (AATCC TM 197) Transverse wicking apparatus (AATCC 198 [9]) Horizontal wicking apparatus (AATCC TM 198) Moisture transmission  Clamp 10 cm X 10 cm of sample on the stand.  Drop 40 µL of distilled water slowly from the burette on the fabric for 2 sec.  After saturation level, excess water drops will fall down through fabric.  Note down the time taken from starting to saturation level  Trace the water spread area using a trace paper (MM2)  Take a fabric sample of 3.5cm x 33cm  Take 30ml of water in the container  Mount the fabric on the horizontal clamp and dip one end of the fabric on water  Distance travelled by water and the time taken is recorded Cut the fabric samples as per the tamplet  Place 0.2gm of artificial sweat inside the container  Insert the sample between the two sensors in the machine  Introduce the artificial sweat on the top surface of the fabric  Change in electrical resistance of fabrics is recorded  Take a fabric sample of 3.5cm x 33cm  Take 30ml of water in the container  Mount the fabric on the vertical clamp and dip one end of the fabric on water  Distance travelled by water and the time taken is recorded
  • 20. Moisture management tester indices • Top wetting time WTt and bottom wetting time WTb • Top absorption rate (ARt) and bottom absorption rate (ARb) • Top max wetted radius (MWRt) and bottom max wetted radius (MWRb) • Top spreading speed (SSt) and bottom spreading speed (SSb) • Accumulative one-way transport (AOWT) index (AOTI) • Overall moisture management capacity (OMMC) 20
  • 21. Concepts in moisture management • Combinations of hydrophobic and outer hydrophilic layers • Micro fibres • Special fibres • Wicking windows 21
  • 22. Combinations of hydrophobic and outer hydrophilic layers DRI-LEX® • Developed by Faytex Corp • Hydrophobic polyester and hydrophilic nylon • Breathable and quick-drying 22
  • 23. Micro fibres MERYL MICRO FIBER • Made- Nylstar, an Italian company: largest manufacturers of Nylon • Nylon micro fibre • High capacity for moisture absorption & balances humidity of ambient air and body TREVIRA FINESSE • Launched -German company Hoechst High Chem in 1987 • Polyester micro fiber • Ideal water transmission and short drying time 23
  • 24. Special fibres TRIACTOR • Toyoba Co Ltd- polyester filament • Cross- section is Y-shaped • A perspiration absorbing/quick drying KILLAT N • Kanebo Ltd • Bi-component filament yarn with polyester-core and nylon- skin portion • Hollow portion-33% of the cross section of each filament 24
  • 25. HYGRA • Launched- Unitika limited • A sheath core type filament yarn- water absorbing polymer and nylon. • Absorbs 35 times its own weight of water and offer quick releasing property. 25
  • 26. 26 Wicking WindowsTM Introduced- Cotton Incorporated, USA A moisture management technology for cotton- transfers moisture away from the body, reduces absorbent capacity for faster drying and reduces fabric cling. Discontinuous water repellent treatment on the surface of the cotton are applied on the side of the fabric that will worn next to the skin. Fluropolymers , silicones, waxes etc are used
  • 27. Moisture Management Fabric 27 Coolmax  Lightweight hydrophilic fabric made from four- or six channel polyester fibres  Designed by DuPont company
  • 28. 28 Field Sensor Fabric  High-performance knitted polyester fabric with a multilayer structure  Registered trademark of Toray Industries. Polartec Power Dry Fabrics  100% polyester, highly breathable, and ideal for base layer for sports fabrics  Manufactured by Maden mills
  • 29.  Lightweight, composite fabric consisting of a layer of superfine Merino wool next to the skin and a layer of tough, easy-care polyester on the outside  Trade mark- Woolmark Company 29  Lightweight polyester fabric made with hollow-core which combines insulation with moisture wicking properties  Designed by DuPont Company Thermolite Fabric Sportwool fabric
  • 30. 30 Gore-Tex Fabric used in skiwear, hiking jackets etc.  Durably waterproof  Very breathable  Highly cold resistant  Extremely light  Resistant to flexing
  • 31. 31  Developed by Oel Company in USA  Utilizes phase change materials (PCM) that absorb, store and release heat and moisture for optimal comfort  Warm condition the Outlast technology will absorb and store excess heat radiating from the skin to reduce overheating and help prevent perspiration  Cold condition the stored heat is released, reducing chilling Outlast fabric
  • 32. 32 Application of moisture management fabric Sportswear Active outer wear Industrial work wear Fire fighter apparel and protective clothing Military apparel Swim wear Multi layerMono layer
  • 34. WICKING BEHAVIOUR AND ANTIBACTERIAL PROPERTIES OF MULTIFUNCTIONAL KNITTED FABRICS MADE FROM METAL COMMINGLED YARNS  To design a multifunctional commingled yarns with liquid transporting capacity and antibacterial activity. Yu et al. (2014) Study 1 34
  • 35. • Stainless steel wire-core(SSW) • Crisscross section polyester filament(CSP)- Z • Antibacterial nylon filament(AN)- S (Quaternary ammonium salt & acid dye) • Warping density- C-8, C-9.5, C-11, C-12.5, C-14 Yarn production=5 • Metal composite knitted fabrics • KC-8, KC-9.5, KC-11, KC-12.5, KC-14 • circular knitting machine Fabric production • Drying capacity test= Drying rate apparatus • Horizontal wicking test= Horizontal wicking apparatus • Tensile property- ASTM D2256-1997 • Antibacterial activity (S. aureus, E. coli- AATCC 90-2111 Test methods 35 Methodology
  • 36. 36 Fig. 2 : illustration of metal composite knitted fabric Fig. 3: Horizontal wicking apparatus Fig. 4 : Drying rate apparatus Fig. 1: Schematic of the commingled yarns (a) and products (b)
  • 37. 37 Yarn type Linear Density (D) Diameter (mm) Tenacity (cN/dtex) Elongation (%) CSP 75 0.154 3.572 16.1 AN 150 0.286 3.851 26.9 SSW 139 0.05 0.985 33.7 Table 1 : Properties of filament used to produce commingled yarns Commingled yarn code Structure Composition (wt %) Linear Density (D) C-8.0 AN/CSP/SS W 41.9/22.9/35.2 363 C-9.5 AN/CSP/SS W 42.3/23.4/34.3 360 C-11.0 AN/CSP/SS W 42.6/23.8/33.6 383 C-12.5 AN/CSP/SS 42.9/24.4/32.7 397 Table 2 : Characteristics of metal commingled yarns CSP:- Crisscross polyester AN:- Antibacterial nylon SSW:- Stainless steel wire
  • 38. 38 0 2 4 6 8 10 12 0 1 2 3 4 5 6 7 8 9 10 Waterabsorption(%) Time (min) KC-8 KC-9.5 KC-11 KC-12.5 KC-14 Fig. 5 : Horizontal wicking curves for fabrics Result and Discussion
  • 39. Fig. 7 : Effect of layer number on air permeability39 26 27 29 27 24 0 5 10 15 20 25 30 35 WER(%)at12min Fabric code WER % KC-8 KC-9.5 KC-11 KC-12.5 KC-14 Fig. 6 : WER (Water evaporating rates) of the metal composite knitted fabrics at 12min Then they select KC-11 450 290 210 190 180 150 0 100 200 300 400 500 1 2 3 4 5 6 Airpermeability (cm3/cm2) Layer number Air permiability Air permiability
  • 40. 40 Fig. 7 : Zone of inhibition for KW-11 fabric
  • 41. • KC-11= highest horizontal wicking behaviour & drying rate • KW-X lamination density, inversely proportional to air permeability • Antimicrobial properties 41 Conclusion
  • 42. A STUDY OF WICKING PROPERTIES OF COTTON-ACRYLIC YARNS AND KNITTED FABRICS • To know the wicking behaviour of acrylic fibers and their blends with cotton • To know the influence of fiber type and yarn count on wicking of yarns as well as the influence of yarn wicking on knitted fabric wicking Ozturk et al. (2015) Study 2 42
  • 43. 43 Methodology Fiber 100% acrylic 50/50 cotton/acrylic 85/15 cotton/acrylic 100% cotton Single jersey fabric samples - Ne 20 and Ne 30 Wicking -DIN 53924 Atmospheric conditions =20±°C relative humidity= 65±% , two weeks
  • 44. 44 Yarn type 100% acrylic Ne 20 50/50% cotton/ acrylic Ne 20 85/15% cotton/ acrylic Ne 20 100% cotton Ne 20 100% acrylic Ne 30 50/50% cotton/ acrylic Ne 30 85/15% cotton/ acrylic Ne 30 100% cotton Ne 30 Yarn property Yarn count (Ne) 19.2 19.5 19.3 19.7 29.0 29.2 29.4 29.4 Hairiness (H) 7.10 5.91 5.83 5.16 6.65 5.86 5.71 4.85 Table 3. Tested properties of the yarns Result and Discussion
  • 45. 45 Table 4: Wicking height of the yarn (mm) Time (min) 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Fabric code 100A-20 21 28 33 37 40 42 42 43 44 44 50/50C/A-20 7 12 16 19 21 23 24 27 30 30 85/15C/A-20 17 22 25 30 31 33 34 35 36 36 100C-20 1 1 2 2 2 3 3 3 3 3 100A-30 17 22 25 29 29 30 30 30 31 31 50/50C/A-30 7 11 13 19 19 22 23 24 27 29 85/15C/A-30 2 3 3 4 4 5 7 7 7 8 100C-30 1 2 3 6 6 6 6 7 7 8
  • 46. 46 Fig. 9. Yarn wicking
  • 47. 47 Table 5. Properties of the fabrics Fabric property Fabric weight (g/m2) Fabric thickness (mm) Fabric porosity (%)Fabric code 100A-20 177.8 0.58 72 50/50C/A-20 189.6 0.69 79 85/15C/A-20 185.8 0.67 79 100C-20 183 0.68 81 100A-30 126.1 0.52 76 50/50C/A-30 134.3 0.58 82 85/15C/A-30 132.6 0.60 82 100C-30 131.2 0.59 83
  • 48. 48 Table 6. Wicking height (mm) and weight (g) of the fabrics in wale and course direction Fabric code Wicking height (mm) Wicking weight (g) Wale Course Wale Course 100A-20 40 40 0.275 0.229 50/50C/A-20 16 19 0.220 0.275 85/15C/A-20 32 45 0.354 0.415 100C-20 8 9 0.149 0.158 100A-30 38 38 0.222 0.277 50/50C/A-30 9 12 0.145 0.166 85/15C/A-30 6 7 0.124 0.129 100C-30 2 6 0.106 0.127
  • 49. • Acrylic fiber and yarn count- wicking performance of single jersey knitted fabrics • Yarn wicking- fabric wicking • Fabric wicking in the course direction- higher 49 Conclusion
  • 50. ABSORPTION, WICKING AND DRYING CHARACTERISTICS OF COMPRESSION GARMENTS • To investigates the comfort characteristics of the compression garments and the fabrics Saricam (2015) Study 3 50
  • 51. Knitted fabrics-Santoni knitting machine (SM8-TOP2) Nylon-6.6 & Elastane 51 Fig. 10. Full plaiting technique , and the photo of specimen Table 7. The production properties of the fabric specimens Methodology Fabric Code Yarn Count (Dtex) Elastane Count (Denier) Tension (gr) Elastane composition(%) 1 78(39X2) 20 1 5.73 2 78(39X2) 40 1 15.46 3 78(39X2) 70 1 26.16 4 78(39X2) 140 1 39.73 5 78(39X2) 20 2.5 4.03 6 78(39X2) 40 2.5 12.56 7 78(39X2) 70 2.5 21.07 8 78(39X2) 140 2.5 35.08
  • 52. 52 Air • Air Permeability • TS 391 EN ISO 9237 Water • Water absorbency Moisture • Wicking properties(Course and wale direction) • Drying behaviour Standard atmospheric conditions 20±2°C and 65%±5 relative humidity
  • 53. 53 Result and Discussion Table 8. The structural properties of the fabric specimens Fabric Code Course Density (course / cm) Wales density (wales /cm) Stitch density (stitch /cm2) Fabric weight (g/cm2) Thickness (mm) Air Permeabili ty (lt/min) 1 26 16 416 273 0.59 276.67 2 32 16.5 528 279.7 0.65 61.67 3 34 16 544 267.7 0.67 31 4 35 18 630 321.1 0.68 9.67 5 29 16 464 329.1 0.64 342.33 6 33 17 561 347.9 0.69 143.33 7 36 18 648 322.2 0.71 58 8 37 18.5 684.5 341.2 0.74 33.33
  • 54. 54 Figure 11. The relationship between Absorption ratio and Elastane Composition (a) Fabrics Produced at Lower Tension, (b) Fabric produced with higher tension
  • 55. 55 Fig. 12. Transfer wicking for wet and dry fabric (a) The amount of water for wet fabric, (b) The amount of water for dry fabric.
  • 56. 8C 56 Fig.13. Vertical wicking in Wale Direction Fig. 14. Vertical wicking in Course Direction.
  • 57. 57 (a) (b) Fig. 15. The relation between drying time, thickness and initial water amount and the tension (a) Fabrics produced at Lower Tension, (b) Fabric produced with higher tension.
  • 58. • Absorption and wicking- related with the porosity of the fabrics • Drying- related with the thickness and initial water content of the fabric. • Comfort characteristic- changing the tension and elastane composition 58 Conclusion
  • 60. MOISTURE MANAGEMENT PERFORMANCE OF MULTIFUNCTIONAL YARNS BASED ON WOOL FIBERS  To develop and optimise the functional yarn based on wool fibers for different application  To study the liquid transfer behaviour of the developed textile material Fangueiro et al. (2010) Study 4 60
  • 61. 61 Methodology Wool (19µ) Finecool (2.4 dtex) Coolmax (2.4 dtex) Polyester (2.4 dtex) Yarns Blends linear density of 20 tex with 630 turns/m of twist Single jersey knitted Vertical wicking test Horizontal wicking test Drying rate testing Fibers Yarns Fabrics & tests
  • 62. 62 Fig. 18. Vertical wicking apparatus Fig. 17. Horizontal wicking apparatus Drying rate Remained water ratio equation Where, Dry weight= wf (g) Wet weight= wo (g) Change in weight= wi (g)
  • 63. 63 Result and Discussion Table 9 : Dimensional properties of the knitted fabrics Fabric Cover Factor [K] Aerial mass [g/m2] Density [(wales x courses)/cm] Thickness [mm] Wool 15.68 155.23 16 x 20 0.68 Polyester 16.86 168.73 14 x 22 0.67 Wool/Polyester (50:50) 16.28 147.67 14 x 20 0.64 Finecool 16.24 158.91 14 x 21 0.71 Wool/Finecool (50:50) 15.79 164.11 15 x 19 0.66 Wool/Finecool (75:25) 17.12 161.53 16 x 19 0.68 Coolmax 16.40 163.49 15 x 19 0.63 Wool/Coolmax (50:50) 16.18 154.68 14 x 20 0.61 Wool/Coolmax 16.76 160.89 16 x 20 0.71
  • 64. 64 Fig. 19: Horizontal wicking curves
  • 65. 65 Fig. 20. Vertical wicking curves
  • 66. 66 Fig. 21. Drying rate (a) at standard condition (b) at 33°C temperature a) Wool b) Wool + Finecool
  • 67. • Coolmax- best capillary performance • Wool- Low wicking performance, but good drying rate • Finecool- high drying rate 67 Conclusion
  • 68. MOISTURE MANAGEMENT PROPERTIES OF PLATED KNIT STRUCTURES WITH VARYING FIBER TYPES • To assess suitability of designed fabrics in providing wearer comfort for next-to-skin applications Jhanji et al. (2014) Study 5 68
  • 69. 69 Methodology 6-Single jersey plated fabrics Cotton yarns (Ne 20/1) Polyester yarns (235D) Polypropylene (220D) Nylon (210D)
  • 71. 71 Result and Discussion Fig. 21. Microscopic view of plated fabrics (a) and (b) bottom and top of PES/Co fabric, (c) and (d) bottom and top of PP/Co fabric
  • 72. 72 Table 10 : Moisture management properties of plated fabrics Sample code Thick ness (mm) WT (s) AR (%/s) MWR (mm) SS (mm/s) AOWT OMM CTop Botto m Top Botto m Top Botto m Top Botto m Co/PES 1.23 7.4 50.3 81.1 42.2 20 15 2.7 0.9 231.8 0.04 PES/Co 1.20 8.1 4.0 22.0 68.0 15 30 1.8 4.2 1137.0 2.00 Co/PP 1.23 6.1 120.0 30.0 0.0 5 0 0.7 0.0 289.3 0.40 PP/Co 1.24 44.5 2.3 7.1 33.0 5 25 0.1 10.0 392.5 0.90 Co/PA 1.31 12.0 18.0 123.0 40.0 10 10 0.6 0.5 100.2 0.30 PA/Co 1.30 19.0 8.0 26.0 83.0 15 15 0.7 1.0 447.9 0.80 Note: WT: wetting time; AR: absorption rate; MWR: maximum wetted radius; SS: spreading speed; AOWT : Accumulative one-way transport capacity; OMMC: overall moisture management capacity.
  • 73. 73 10 13 10 40 18 22 56 7 120 7 20 10 70 20 30 9 110 20 40 60 0 35 40 60 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 Co/PES PES/Co Co/PP PP/Co Co/PA PA/Co Absorptionrate(%/s) Wettingtime(s) Fiber composition WTt WTb ARt ARb Fig. 22. Wetting time and absorption rate of plated fabrics Note: WTt – top wetting time, WTb – bottom wetting time, ARt – top absorption rate, ARb – bottom absorption rate.
  • 74. 74 3 2.8 1.3 1.3 1.51.5 4 10 1.2 1.8 6 5.6 2.4 2.3 3 44 9 7 3 4 0 10 20 30 40 0.1 3.1 6.1 9.1 12.1 Co/PES PES/Co Co/PP PP/Co Co/PA PA/Co Maximumwettedradius(mm) Spreadingspeed(mm/s) Fiber composition SSt SSb MWRt MWRb Fig. 23. Spreading speed and maximum wetted radius of plated fabrics Note: SSt – top spreading speed, SSb – bottom spreading speed, MWRt – top maximum wetted radius, MWRb – bottom maximum wetted radius.
  • 75. 75 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 OMMC Fiber composition OMMC OMMC Fig. 24. Overall moisture management capacity of plated fabrics
  • 76. • Hydrophobic fibers - top (next to skin) layer • Hydrophilic fiber- bottom layer • PP/Co fabric showed better properties 76 Conclusion
  • 77. MOISTURE MANAGEMENT OF UNDERWEAR FABRICS AND LINING OF FIRE-FIGHTER PROTECTIVE CLOTHING ASSEMBLIES  To know the vapour and liquid transfer properties of various types of individual fire-fighter UW as well as their bi-layer combination with linings of fire-fighter intervention jacket. Petrusic et al. (2014) Study 6 77
  • 78. 78 Methodology UW Fabric Aramid/Viscose Cotton Cotton/protex Knitted Interlock Pique Linings 3- woven Testing Thickness- ISO 5084 Fabric surface weight – Gravimetrically Air permeability- ISO 9237 Cover factor Moisture management tester- AATCC 195
  • 79. 79 Fabric name code Function Structure Composition AV_P Underwe ar Knitted jersey pique Aramid/Viscose C_P Cotton CP_P Cotton /Protex AV_I Knitted interlock Aramid/Viscose C_I Cotton CP_I Cotton /Protex L1 Lining Woven- honeycomb Aramid L2 Woven- ripstop plain Aramid/antistatic P140 Table 11 : General description of tested fabric types
  • 80. 80 Result and Discussion Table 12 : Physical properties of tested fabric types Sample Thickness, mm Surface weight, g m−2 Cover factor Air permeability l m−² s−1 Moisture regain (%) AV_P 1.34 260 1.71 1898 7.2 AV_I 1.18 248 1.24 1481 6.5 C_P 1.22 262 1.58 888 6.6 C_I 1.18 276 1.37 354 6.2 CP_P 0.90 254 1.85 687 2.7 CP_I 0.88 220 1.28 948 2.7 L1 0.48 150 99.0% 282 5.5 L2 0.33 109 84.8% 1367 4.7 L3 0.40 127 76.6% 1163 7.6
  • 81. 81 Fig. 25. Selected MMT indices of individual UW fabrics: wetting time (a), maximum wetted radius (b), absorption rate (c), and spreading speed (d)
  • 82. 82 0.33 0.39 0.18 0.33 0.37 0.39 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 AV_P AV_I C_P C_I CP_P CP_I Overallmoisturemanagement capacity Fabric name OMMC OMMC Fig. 26 : Overall moisture management capacity of individual UW fabrics
  • 83. 83 Sam ple Wetting time (s) Absorption rate (%/s) Max wetted radius (mm) Spreading speed (mm/s) AOWT (%) OMMC Top Bott om Top Bott om Top Bot to m Top Bott om L1 4.10 4.53 50.50 62.48 26 25 4.27 4.05 47.28 0.50 L2 6.46 6.22 8.42 67.14 12.5 12.5 1.43 1.40 687.21 0.69 L3 10.73 9.33 6.47 80.42 10 10 0.74 0.81 759.81 0.70 Table 13. MMT indices of individual L fabrics
  • 84. 84 Fig. 27. Water vapour permeability indices of UW/L bi-layers 86 88 90 92 94 96 98 100 AV_P/L1 AV_P/L2 AV_P/L3 AV_I/L1 AV_I/L2 AV_I/L3 C_P/L1 C_P/L2 C_P/L3 C_I/L1 C_I/L2 C_I/L3 CP_P/L1 CP_P/L2 CP_P/L3 CP_I/L1 CP_I/L2 CP_I/L3 Watervapourpermeabilityindex,% Bi-layer code Water vapour permiability AV_P/L1 AV_P/L2 AV_P/L3 AV_I/L1 AV_I/L2 AV_I/L3 C_P/L1 C_P/L2 C_P/L3 C_I/L1 C_I/L2 C_I/L3 CP_P/L1 CP_P/L2 CP_P/L3 CP_I/L1 CP_I/L2 CP_I/L3
  • 85. • Fabric bi-layers (aramid/viscose) -absorption and wicking abilities • Management of moisture - affected by construction variables but less by their chemical composition 85 Conclusion
  • 86. MOISTURE MANAGEMENT BEHAVIOUR OF KNITTED FABRIC FROM STRUCTURALLY MODIFIED RING AND VORTEX SPUN YARN • To study the moisture transport behaviour by modifying the structural arrangement in polyester/cotton blended vortex and ring yarn and fabrics. Sharma et al. (2015) Study 7 86
  • 87. 87 Methodology 8-yarns produced from 100% polyester and blends of cotton/polyester Single jersey knitted fabrics - circular knitting machine Scouring - Na2CO3 Vertical Wicking, Air permeability- BS 5636, Total Absorbency, Water Vapour Permeability- cup method
  • 88. 88 Result and Discussion Table .14: Properties of yarn Tex Spinning system Samples Sample code U % Elongatio n (%) Tenacity (cN/Tex) 24.6 Ring 100 %PET A 8.20 9.2 24.8 80:20 P/C B 8.34 8.5 24.4 Vortex 100 %PET C 8.86 8.9 22.1 80:20 P/C D 8.66 7.8 23.5 19.7 Ring 100 %PET E 10.8 8.3 25.1 80:20 P/C F 9.23 8.6 18.9 Vortex 100 %PET G 9.58 8.0 22.9 80:20 P/C H 8.52 6.3 15.5
  • 89. 89 Table 15. Wicking in fabrics Tex Spinnin g system Fabric composition Sam ple code Time (min) 1 5 10 20 30 40 50 60 24.6 Ring 100 %PET A 4.7 8.9 12.1 13.9 15.7 16.8 17.4 18.1 80:20 P/C B 4.3 7.6 10.1 12.6 14.5 15.9 16.6 17.2 80:20 P/C (Treated) B (T) 3.3 6.4 7.5 10.3 10.7 11.8 12.4 13.6 Vortex 100 %PET C 4.1 7.9 10.1 12.6 14.4 15.9 16.3 17.1 80:20 P/C D 3.6 6.9 8.8 11.5 13.6 14.7 15.7 16.2 80:20 P/C (Treated) D (T) 3.2 5.8 7.3 9.5 10.1 10.8 11.4 11.8 19.7 Ring 100 %PET E 5.8 8.9 12.1 14.8 17.1 17.1 18.2 18.9 80:20 P/C F 5.3 8.3 11.4 13.5 15.4 15.4 16.2 17.5 80:20 P/C (Treated) F (T) 2.9 5.4 7.1 8.9 10.4 10.4 10.8 10.9 Vortex 100 %PET G 4.8 7.6 10.8 12.9 15.1 15.1 15.9 17.1 80:20 P/C H 4.1 8.1 9.5 12.2 15.4 15.4 16.2 16.9 80:20 P/C (Treated) H (T) 2.7 5.3 6.7 8.9 10.7 10.7 11.3 11.4
  • 90. 90 Fig. 28. Variation in air permeability of fabrics 100 %PET A 80:20 P/C B 80:20 P/C (Treated) B (T) 100 %PET C 80:20 P/C D 80:20 P/C (Treated) D (T) 100 %PET E 80:20 P/C F 80:20 P/C (Treated) F (T) 100 %PET G 80:20 P/C H 80:20 P/C (Treated) H (T)
  • 91. 91 Fig. 29. Variation in total absorbency of fabrics Fig. 30. Variation in water vapour permeability of fabrics 100 %PET A 80:20 P/C B 80:20 P/C (Treated) B (T) 100 %PET C 80:20 P/C D 80:20 P/C (Treated) D (T) 100 %PET E 80:20 P/C F 80:20 P/C (Treated) F (T) 100 %PET G 80:20 P/C H 80:20 P/C (Treated) H (T)
  • 92. • Structural modification- increase in air permeability, water vapour transmission and total absorbency. • Wicking- declined in the fabric from modified yarn. • Vortex yarn- poor wicking and total absorbency. 92 Conclusion
  • 93. 93 Wicking in relation with moisture management
  • 94. INFLUENCE OF FABRIC STRUCTURE AND FINISHING PATTERN ON THE THERMAL AND MOISTURE MANAGEMENT PROPERTIES OF UNIDIRECTIONAL WATER TRANSPORT KNITTED POLYESTER FABRICS • To analyze the influence of finishing patterns and fabric structure parameters on the comfort performance of unidirectional water transport knitted polyester fabrics Yang et al., (2018) Study 8 94
  • 95. 95 Methodology 100% polyester (hydrophilic based) filament (50D) Double-knit circular knitting machine Print- Hydrophobic finishing with flat screen Auxiliary- fluorocarbons (thickening) =0.9%, Rudolf GmbH=20% , isocyanate (cross linking)= 2 % 8 samples Air permeability- SO 3801-1977 and EN ISO 5084-2002 Moisture management properties- MMT ASTM D1776-2008 Wicking height –vertical wicking test method Thermal-physiological properties- sweat guarded hot plate apparatus
  • 96. 96 Fig. 32. The structure appearance and knitting pattern of the fabric samples Fig. 31. Hydrophobic printing pattern
  • 97. 97 Result and Discussion Table 15. The description properties and air permeability of samples Sampl e Numb er Finishin g pattern Fabric structu re Weight (g/m2)15 1 Thickne ss (mm) Wale density /cm Course density /cm Porosit y Air permeab ility (L/m2/s) F1 P1 S1 (RA) 151 0.6066 29/2 0 17/1 7 0.8196 1271.38 F2 P1 S2 (IL) 113 0.4352 24 25 0.8118 614.00 F3 P1 S3 (DT) 123 0.5262 24 16 0.8306 1740.00 F4 P2 S3(D T) 125 0.5230 25 15 0.8268 1628.00 F5 P2 S2 109 0.4240 21 19 0.8137 915.26
  • 98. 98 Fig. 33. Wicking height versus time of eight samples F1 F7 & F8 Sampl e Numb er Finishing pattern Fabric structure F1 P1 S1 (RA) F2 P1 S2 (IL) F3 P1 S3 (DT) F4 P2 S3(DT) F5 P2 S2 (IL) F6 P2 S4 (DTS) F7 P3 S2 (IL) F8 P4 S2 (IL)
  • 99. 99 Table 17. Moisture management properties of various fabrics Sample Number Wetting time Maximum wetted radius Accumulative one-way transport capability (%) Overall moisture management capacity Top (s) Bottom (s) Top (mm) Bottom (mm) F1 (P1,S1) 5.16 4.72 19 28 620.73 0.9127 F2 (P1,S2) 6.76 7.14 20 30 526.87 0.9117 F3 (P1,S3) 9.54 11.60 13.75 23.75 603.21 0.6664 F4 (P2,S2) 5.64 5.23 20 25 626.81 0.9224 F5 (P2,S3) 6.52 5.72 20 25 544.88 0.9135
  • 100. 100 Sample Number Fabric structure Water vapour resistance (m2.Pa/W) Moisture permeability (g/(m2hpa)) Thermal resistance (10–3m2.K/W) Thermal conductivity (W/m2.K) F1 S1 2.49 0.6405 15.79 63.34 F2 S2 1.94 0.8221 13.16 76.21 F3 S3 1.89 0.8439 15.78 63.39 F4 S3 2.27 0.7026 14.01 71.38 F5 S2 1.91 0.8350 12.96 77.16 F6 S4 2.38 0.6701 13.97 71.72 F7 S2 1.89 0.8439 14.16 70.63 F8 S2 1.92 0.8307 11.8 84.47 Table 18. Testing value of thermal-physiological properties
  • 101. • The hydrophobic finishing- – little effect on the fabric air permeability and the vapour and thermal resistance – greater influence on the wicking height and one- way transport properties • Fabric structures- – significant effect on air permeability, wicking height and thermal-physiological properties 101 Conclusion
  • 102. Moisture management behaviours of high wicking fabrics composed of profiled Fibres • To investigate the fibre, yarn and fabric structural parameters involved in production of high-wicking fabrics • To measure dynamic liquid transfer in clothing materials Study 9 102 Gorji & Bagherzadeh (2015)
  • 103. 103 Methodology • Coolmax/cotton • 100% Coolmax staple fibre (linear density 30 NE) • Coolplus multi microfilament (75 den/ 72 filaments, and 75 denier/48 filaments) with plus crosssection • Coolplus multi microfilament (75 den/ 72 filaments, 75 den/48 filaments and 150 denier/ 72 filaments) with five-leaf cross- section Yarns • Moisture management testerTests
  • 104. Fig: 38- Fibre cross-sections (a) 4 channels coolmax cross-section (100% Coolmax staple yarn), (b) 4 channels coolmax cross-section (50/50% Coolmax/cotton staple yarn), (c) 5-leafs cross-section of the monofilaments in Coolplus yarns and (d) plus cross-section of the monofilaments in Coolplus yarn 104
  • 105. 105 S. no . Sample code WT,s AR, %/s MWR,mm SS, mm/s AOWT OMMC Top Bottom Top Bottom Top Bottom Top Bottom 1 SS1,30Ne 2.27 2.25 35.78 38.88 30 30 8.30 8.23 2.42 0.38 2 SS2,30Ne 17.25 2.70 27.21 45.47 25 25.83 1.86 3.28 357.76 0.70 3 SS3, 75D48F 2.02 2.06 35.48 37.64 30 30 9.21 9.11 26.41 0.41 4 SS3, 75D72F 2.41 2.41 33.45 35.93 25 25 6.12 6.01 10.72 0.39 5 SS4, 75D48F 2.48 2.48 34.25 36.90 22.50 23.75 5.65 5.75 12.14 0.39 6 SS4, 75D72F 2.88 2.86 31.50 33.83 20 20 4.20 4.19 6.24 0.38 7 SS4, 150D72F 2.31 2.34 34.98 37.85 28.75 27.50 7.54 7.40 23.91 0.41 8 SS4, 150D144F 2.37 2.41 28.87 32.58 23.75 23.75 5.65 5.61 39.31 0.41 Table 19 : Properties of filament used to produce commingled yarns First letter: S- single jersey and D double jersey. Second letter: S small loop density and L- Large loop density. First Number: 1- four channel coolmax, 2- coolmax/cotton, 3- pluss cross section and 4- five leaf cross section. The last part is the yarn count and number of filament. WT- Wetting time, AR- Absorption rate, SS- Spreading area, OWTC- One way transport capacity, OMMC-Overall moisture management capacity. Result and discussion
  • 106. 106 S. no . Sample code WT,s AR, %/s MWR,mm SS, mm/s AOWT OMMC Top Bottom Top Bottom Top Bottom Top Bottom 9 SL1,30Ne 2.30 2.37 33.74 36.42 30 30 7.89 7.72 6.38 0.39 10 SL2,30Ne 27.07 2.02 22.32 40.00 18.75 20 0.96 2.77 527.88 0.73 11 SL3, 75D48F 2.46 2.48 33.66 36.32 22.50 22.50 5.54 5.53 24.05 0.40 12 SL3, 75D72F 2.39 2.39 33.80 36.59 22.50 22.50 6.01 5.95 19.39 0.40 13 SL4, 75D48F 2.32 2.32 34.09 36.26 27.50 27.50 7.53 7.52 9.63 0.39 14 SL4, 75D72F 2.47 2.47 28.87 30.75 22.00 24 7.03 6.42 32.80 0.40 15 SL4, 150D72F 2.48 2.53 34.05 35.90 24.17 23.33 6.09 5.97 25.90 0.41 16 SL4, 150D144F 2.27 2.42 29.10 31.08 28.00 27 6.63 6.17 16.20 0.38 17 DS1, 30Ne 13.55 8.32 26.83 64.77 15.71 15.71 1.22 1.55 593.44 0.70 18 DS2, 30Ne 8.17 25.07 68.26 124.65 8.00 8.00 0.63 0.26 496.63 0.75 Table 20 : Properties of filament used to produce commingled yarns First letter: S- single jersey and D double jersey. Second letter: S small loop density and L- Large loop density. First Number: 1- four channel coolmax, 2- coolmax/cotton, 3- pluss cross section and 4- five leaf cross section. The last part is the yarn count and number of filament. WT- Wetting time, AR- Absorption rate, SS- Spreading area, OWTC- One way transport capacity, OMMC-Overall moisture management capacity.
  • 107. 107 S. n o. Fibre content WT,s AR, %/s MWR,mm SS, mm/s AOW T OMM CTop Botto m Top Botto m Top Botto m Top Botto m 1 Coolmax 2.30 2.33 34.60 43.28 30.00 30.00 7.98 7.88 2.59 0.38 2 Coolmax/ Cotton 21.17 2.42 25.25 37.51 22.50 23.50 1.50 3.08 425.8 1 0.71 Table 21 : Effect of fibre content on MMP results of samples S. n o. Fibre content WT,s AR, %/s MWR,mm SS, mm/s AOW T OMM CTop Botto m Top Botto m Top Botto m Top Botto m 1 Coolmax 5.09 2.46 32.33 37.92 25.61 25.76 6.02 6.03 79.82 0.45 2 Coolmax/ Cotton 5.29 2.39 31.09 35.11 24.56 24.71 5.81 6.01 78.73 0.43 Table 22 : Effect of loop density on MMP of samples
  • 108. 108 Fig. 34—Water content vs. time for typical fabrics produced with staple fibre (a) and filament fibre (b)
  • 109. • Moisture management properties- plus cross- section yarns • Less monofilaments- better moisture management 109 Conclusion
  • 111. Reference 111 1. Fangueiro, R., Goncalves, P., Soutinho, F. and Freitas, C., 2010, Moisture management performance of multifunctional yarns based on wool fibers. Indian J. Fibre Text. Res., 34(2): 315-320. 2. Gorji, M. and Bagherzadeh R., 2015, Moisture management behaviours of high wicking fabrics composed of profiled Fibres. Indian J. Fibre Text. Res., 41(3): 318-324. 3. Jhanji, Y., Gupta, D. and Kothari, V. K., 2014, Moisture management properties of plated knit structures with varying fiber types. J. Tex. Institute, 106(6): 663-673. 4. Ozturk, M. K., Nergis, B. and Candan, C., 2015, A study of wicking properties of cotton-acrylic yarns and knitted fabrics. Text. Res. J., 81(3): 324-328. 5. Petrusic, S., Onofrei, E., Bedek, G., Codau, C., Dupont, D. and Soulat, D., 2014, Moisture management of underwear fabrics and linings of firefighter protective clothing assemblies. J. Tex. Institute, 106(12): 1270-1281. 6. Saricam, C., 2015, Absorption, wicking and drying characteristics of compression garments. J. Eng. Fibers Fabrics. 10(30): 146-154. 7. Sharma, N., Kumar, P., Bhatia, D. and Sinha, S. K., 2015, Moisture management behaviour of knitted fabric from structurally modified ring and vortex spun yarn. J. Inst. Eng. India Ser., 88(4): 1078-1085. 8. Yang, Y., Chen, L., Naveed, T., Zhang, P. and Farooq, A., 2018, Influence of fabric structure and finishing pattern on the thermal and moisture management properties of unidirectional water transport knitted polyester fabrics. Text. Res. J.,89(10): 1983-1996. 9. Yu, Z. C., Zhang, J. F., Lou, C. W. and Lin, J. H., 2014, Wicking behaviour and antibacterial properties of multifunctional knitted fabrics made from metal commingled yarns. J. Tex. Institute, 106(8): 862-871.
  • 112. 112

Editor's Notes

  1. Absorption, transmission and desorption of the water vapour by the fibres.  Adsorption and migration of the water vapour along the fibre surface.
  2. nasa
  3. Grooves of suface and wraping density
  4. Quaternary ammonium salt & acid dye
  5. Deutsches institute for normung
  6. 3 8
  7. 6 9
  8. Elastane- polyurathane- streatchables
  9. Moisture transfer & quick drying- moisture absorbency and capillary action Wool- highly moisture absorbent- Keratin Wool absorb- 30% of its own weight water vapour
  10. 9 16
  11. 10 21
  12. 11 25 Intervention jacket- Outer cell Moisture barrier Thermal insulation Lining Moisture transform from UW to innermost layer.
  13. L1 thicker
  14. 17, 33
  15. 19 37
  16. high thickness high t.resistance Thermal con- ability to transfer heat
  17. High wicking fabrics composed of profiled fibers Outlast- warm, Coolmax- cold Coolplus- high wicking, quick dissipating
  18. Loop density, tourisity of stitch increse vacum space and equivalent distnce decrease