SlideShare a Scribd company logo
Prepared By: Prof. T.V.Rathod
MODE OF REPRODUCTION
• Mode of reproduction determines the genetic constitution of
crop plants, that is, whether the plants are normally
homozygous or heterozygous.
• A knowledge of the mode of reproduction of crop plants is
also important for making artificial hybrids.
• Production of hybrids between diverse and desirable parents
is the basis for almost all the modern breeding programmes.
• The modes of reproduction in crop plants may be broadly
grouped into two categories, asexual and sexual.
Asexual Reproduction
 Vegetative Reproduction
• In nature, a new plant
develops from a portion of
the plant body. This may
occur through following
modified forms,
1. Natural vegetative
• Underground stem
• Sub-aerial stems
• Bulbils
2. Artificial vegetative
• Stem cuttings
Asexual reproduction does not involve fusion of male and female
gametes. New plants may develop from vegetative parts of the
plant (vegetative reproduction) or may arise from embryos that
develop without fertilization (apomixis).
 Apomixis
• seeds are formed but the
embryos develop without
fertilization.
1. Parthenogenesis
2. Apospory
3. Apogamy
4. Adventive Embryony
Natural vegetative
• Underground Stems
• The underground modifications
of stem generally serve as
storage organs and contain many
buds. These buds develop into
shoots and produce plants after
rooting. Eg.,
 Tuber : Potato
 Bulb : Onion, Garlic
 Rhizome : Ginger, turmeric
 Corm : Bunda, arwi.
• Sub-aerial Stems
• These modifications include
runner, stolon, sucker etc.,.
• Sub-aerial stems are used for
the propagation of mint, date
plam etc.
• Bulbils
• Bulbils are modified flowers
that develop into plants directly
without formation of seeds.
• These are vegetative bodies;
their development does not
involve fertilization and seed
formation.
• The lower flowers in the
inflorescence of garlic naturally
develop into bulbils.
• Scientists are trying to induce
bulbil development in plantation
crops by culturing young
inflorescence on tissue culture
media ; it has been successfully
done in the case of cardamom.
Artificial vegetative
• It is commonly used for the propagation of many crop species,
although it may not occur naturally in those species.
• Stem cuttings are commercially used for the propagation of
sugarcane, grapes, roses, etc.
• Layering, budding, grafting and gootee are in common use for the
propagation of fruit trees and ornamental shrubs.
• Techniques are available for vegetative multiplication through tissue
culture in case of many plant species, and attempts are being made to
develop the techniques for many others.
• In many of these species sexual reproduction occurs naturally but for
certain reasons vegetative reproduction is more desirable.
Significance of Vegetative Reproduction
• Vegetatively reproducing species offer
unique possibilities in breeding.
• A desirable plant may be used as a variety
directly regardless of whether it is
homozygous or heterozygous.
• Further, mutant buds, branches or seedlings,
if desirable, can be multiplied and directly
used as varieties.
Apomixis
• In apomixis, seeds are formed but the embryos develop without
fertilization. (without the fusion of male & female gametes).
• Consequently, the plants resulting from them are identical in
genotype to the parent plant.
• In apomictic species, sexual reproduction is either suppressed or
absent.
• When sexual reproduction does occur, the apomixis is termed as
facultative. But when sexual reproduction is absent, it is
referred to as obligate.
• Many crop species show apomixis, but it is generally facultative.
• The details of apomictic reproduction vary so widely that a
confusing terminology has resulted.
• Parthenogenesis
• The embryo develops from embryo
sac without pollination. It is of two
types
 Gonial parthenogenesis – embryos
develop from egg cell,
 Somatic parthenogenesis –
embryos develop from any cell of
the embryo sac other than the egg
cell.
• Apospory
• The embryo may develop from egg
cell or some other cell of this
embryo sac.
• Apospory occurs in some species
of Hieraceum, Malus, Crepis,
Ranunculus, etc.
o Diplospory
• Embryo sac is produced from the
megaspore, which may be haploid
or, more generally, diploid.
• Apogamy
• In apogamy, synergids or
antipodal cells develop into an
embryo.
• Like parthenogenesis, apogamy
may be haploid or diploid
depending upon the haploid or
diploid state of the embryo sac.
• Diploid apogamy occurs in
Antennaria, Alchemilla, Allium
and many other plant species.
• Adventive Embryony
• In this case, embryos develop
directly from vegerative cells of
the ovule, such as nucellus,
integument, and chalaza.
• Development of embryo does not
involve production of embryo
sac.
• Adventive embryony occurs in
mango, citrus, etc.
Significance of Apomixis
• Apomixis is a nuisance when the breeder desires to obtain sexual
progeny, i.e., selfs or hybrids.
• It is of great help when the breeder desires to maintain varieties.
• The breeder has to avoid apomictic progeny when he is making crosses
or producing inbred lines.
• But once a desirable genotype has been selected, it can be multiplied and
maintained through apomictic progeny.
• Asexually reproducing crop species are highly heterozygous and show
severe inbreeding depression.
• Therefore, breeding methods in such species must avoid inbreeding.
SEXUAL REPRODUCTION
• Sexual reproduction involves fusion of male and female gametes
to form a zygote, which develops in to an embryo.
Significance of Sexual Reproduction
• Sexual reproduction makes it possible to combine genes from
two parents into a single hybrid plant.
• Recombination of these genes produces a large number of
genotypes.
• This is an essential step in creating variation thr ough
hybridization.
• Almost the entire plant breeding is based on sexual
reproduction.
• Even in asexually reproducing species, sexual reproduction, if it
occurs, is used to advantage, e.g., in sugarcane, potato, sweet
potato etc.
MODES OF POLLINATION
• Self-pollination
• Bisexuality
• Cleistogamy.
• Homogamy
• Chasmogamy
• Position of anthers in relation to
stigma.
• Genetic Consequences of Self-
Pollination
• Self-pollination leads to a very
rapid increase in homozygosity.
• Therefore, populations of self-
pollinated species are highly
homozygous.
• Self-pollinated species do not
show inbreeding depression, but
may exhibit considerable
heterosis.
• Therefore, the aim of breeding
methods generally is to develop
homozygous varieties.
• Cross-Pollination
• Unisexuality (Dicliny)
 monoecy
 dioecy
• Dichogamy
 protogyny
 Protandry
• Heterostyly
• Herkogamy
• Self incompatibility
• Male sterility
• Genetic Consequences of Cross-
Pollination.
• promotes heterozygosity in a
population.
• highly heterozygous and show
mild to severe inbreeding
depression and considerable
amount of heterosis.
• Usually, hybrid or synthetic
varieties are the aim of breeder
wherever the seed production of
such varieties is economically
feasible.
# Often Cross Pollination #
modes of reproduction in crops
modes of reproduction in crops

More Related Content

What's hot

Apomixis in plants
Apomixis in plantsApomixis in plants
Self incompatibility in plants
Self incompatibility in plantsSelf incompatibility in plants
Self incompatibility in plants
ShekhAlisha
 
Self incompatibility in Plants
Self incompatibility in PlantsSelf incompatibility in Plants
Self incompatibility in Plants
Dhanya AJ
 
Genetical and physiological basis of heterosis and inbreeding
Genetical and physiological basis of heterosis and inbreedingGenetical and physiological basis of heterosis and inbreeding
Genetical and physiological basis of heterosis and inbreeding
Dev Hingra
 
17. Heterosis breeding
17. Heterosis breeding17. Heterosis breeding
17. Heterosis breeding
Naveen Kumar
 
Plant genetic resources their utilization and conservation in crop improvement
Plant genetic resources their utilization and conservation in crop improvementPlant genetic resources their utilization and conservation in crop improvement
Plant genetic resources their utilization and conservation in crop improvement
Naveen Kumar
 
Male sterility
Male sterilityMale sterility
Male sterility
Dev Hingra
 
Plant Breeding Methods
Plant Breeding MethodsPlant Breeding Methods
Plant Breeding MethodsTHILAKAR MANI
 
Intoduction to plant breeding
Intoduction to plant breedingIntoduction to plant breeding
Intoduction to plant breeding
Roshan Parihar
 
Apomixis and its application for crop improvement.
Apomixis and its application for crop improvement.Apomixis and its application for crop improvement.
Apomixis and its application for crop improvement.
Pawan Nagar
 
Cleistogamy and Chasmogamy in plants
Cleistogamy and Chasmogamy in plantsCleistogamy and Chasmogamy in plants
Cleistogamy and Chasmogamy in plants
sukruthaa
 
$Self incompatibility
$Self incompatibility$Self incompatibility
$Self incompatibility
Indranil Bhattacharjee
 
Emasculation ,bagging and crossing
Emasculation ,bagging and crossingEmasculation ,bagging and crossing
Emasculation ,bagging and crossing
AmohamedmansuraliMan
 
$Male sterility
$Male sterility$Male sterility
$Male sterility
Indranil Bhattacharjee
 
Apomixis
ApomixisApomixis
Apomixis
Vikas Kashyap
 
Objectives of plant breeding
Objectives of plant breedingObjectives of plant breeding
Objectives of plant breeding
satyanandamtalamala
 
Heterosis breeding, it’s commercial exploitation
Heterosis breeding, it’s commercial exploitationHeterosis breeding, it’s commercial exploitation
Heterosis breeding, it’s commercial exploitation
Pawan Nagar
 
Synthetic and composite variety
Synthetic and composite varietySynthetic and composite variety
Synthetic and composite variety
Pawan Nagar
 
Pollination ppt
Pollination pptPollination ppt
Pollination ppt
USHA
 

What's hot (20)

Apomixis in plants
Apomixis in plantsApomixis in plants
Apomixis in plants
 
Self incompatibility in plants
Self incompatibility in plantsSelf incompatibility in plants
Self incompatibility in plants
 
Self incompatibility in Plants
Self incompatibility in PlantsSelf incompatibility in Plants
Self incompatibility in Plants
 
Genetical and physiological basis of heterosis and inbreeding
Genetical and physiological basis of heterosis and inbreedingGenetical and physiological basis of heterosis and inbreeding
Genetical and physiological basis of heterosis and inbreeding
 
17. Heterosis breeding
17. Heterosis breeding17. Heterosis breeding
17. Heterosis breeding
 
Plant genetic resources their utilization and conservation in crop improvement
Plant genetic resources their utilization and conservation in crop improvementPlant genetic resources their utilization and conservation in crop improvement
Plant genetic resources their utilization and conservation in crop improvement
 
Heterosis
Heterosis  Heterosis
Heterosis
 
Male sterility
Male sterilityMale sterility
Male sterility
 
Plant Breeding Methods
Plant Breeding MethodsPlant Breeding Methods
Plant Breeding Methods
 
Intoduction to plant breeding
Intoduction to plant breedingIntoduction to plant breeding
Intoduction to plant breeding
 
Apomixis and its application for crop improvement.
Apomixis and its application for crop improvement.Apomixis and its application for crop improvement.
Apomixis and its application for crop improvement.
 
Cleistogamy and Chasmogamy in plants
Cleistogamy and Chasmogamy in plantsCleistogamy and Chasmogamy in plants
Cleistogamy and Chasmogamy in plants
 
$Self incompatibility
$Self incompatibility$Self incompatibility
$Self incompatibility
 
Emasculation ,bagging and crossing
Emasculation ,bagging and crossingEmasculation ,bagging and crossing
Emasculation ,bagging and crossing
 
$Male sterility
$Male sterility$Male sterility
$Male sterility
 
Apomixis
ApomixisApomixis
Apomixis
 
Objectives of plant breeding
Objectives of plant breedingObjectives of plant breeding
Objectives of plant breeding
 
Heterosis breeding, it’s commercial exploitation
Heterosis breeding, it’s commercial exploitationHeterosis breeding, it’s commercial exploitation
Heterosis breeding, it’s commercial exploitation
 
Synthetic and composite variety
Synthetic and composite varietySynthetic and composite variety
Synthetic and composite variety
 
Pollination ppt
Pollination pptPollination ppt
Pollination ppt
 

Similar to modes of reproduction in crops

modes of reproduction in plants
modes of reproduction in plantsmodes of reproduction in plants
modes of reproduction in plants
Tulshiram Rathod
 
Asexual mode of reproduction in plants
Asexual mode of reproduction in plantsAsexual mode of reproduction in plants
Asexual mode of reproduction in plants
Roshan Parihar
 
Breeding method for clonal propagation crops, apomixis and clonal selection
Breeding method for clonal propagation crops, apomixis and clonal selectionBreeding method for clonal propagation crops, apomixis and clonal selection
Breeding method for clonal propagation crops, apomixis and clonal selection
Hit Jasani
 
endospermcultureandsomaticembryogenesis-150823084254-lva1-app6891.pdf
endospermcultureandsomaticembryogenesis-150823084254-lva1-app6891.pdfendospermcultureandsomaticembryogenesis-150823084254-lva1-app6891.pdf
endospermcultureandsomaticembryogenesis-150823084254-lva1-app6891.pdf
KarishmaYadav84
 
Endosperm culture and somatic embryogenesis
Endosperm culture and somatic embryogenesisEndosperm culture and somatic embryogenesis
Endosperm culture and somatic embryogenesis
Zuby Gohar Ansari
 
Plant and Animal Reproduction
Plant and Animal ReproductionPlant and Animal Reproduction
Plant and Animal Reproduction
Lance Christian de Mesa
 
Presentation on sexual reproduction, classification and significance in plant...
Presentation on sexual reproduction, classification and significance in plant...Presentation on sexual reproduction, classification and significance in plant...
Presentation on sexual reproduction, classification and significance in plant...
Dr. Kaushik Kumar Panigrahi
 
Reproduction in plants(flowering)
Reproduction in plants(flowering)Reproduction in plants(flowering)
Reproduction in plants(flowering)
Suman Tiwari
 
Apomixis
Apomixis Apomixis
Floral biology, modes of reproduction and pollination
Floral biology, modes of reproduction and pollinationFloral biology, modes of reproduction and pollination
Floral biology, modes of reproduction and pollination
ANUSUYA RADHAKRISHNAN
 
Reproduction in organisms
Reproduction in organismsReproduction in organisms
Reproduction in organisms
pooja singh
 
Value of haploid in breeding.pdf
Value of haploid in breeding.pdfValue of haploid in breeding.pdf
Value of haploid in breeding.pdf
DeepeshBhatt6
 
Reproduction in palnt and organisams
Reproduction in palnt and organisamsReproduction in palnt and organisams
Reproduction in palnt and organisams
JASJEET SINGH KHALSA
 
methods_of_reproduction_ppt-2 (1).ppt
methods_of_reproduction_ppt-2 (1).pptmethods_of_reproduction_ppt-2 (1).ppt
methods_of_reproduction_ppt-2 (1).ppt
RonjimmuelDeborja
 
How Do Organisms Reproduce ? - Class 10 CBSE science (BIo)
How Do Organisms Reproduce ? - Class 10 CBSE  science (BIo)How Do Organisms Reproduce ? - Class 10 CBSE  science (BIo)
How Do Organisms Reproduce ? - Class 10 CBSE science (BIo)
Amit Choube
 
Modes of Reproduction in crop plant.pptx
Modes of Reproduction in crop plant.pptxModes of Reproduction in crop plant.pptx
Modes of Reproduction in crop plant.pptx
AKSHAYMAGAR17
 
Asexual vs Sexual Reproduction.pptx
Asexual vs Sexual Reproduction.pptxAsexual vs Sexual Reproduction.pptx
Asexual vs Sexual Reproduction.pptx
ntakirutimana valens
 
Haploid production and culture.pdf
Haploid production and culture.pdfHaploid production and culture.pdf
Haploid production and culture.pdf
DeepeshBhatt6
 

Similar to modes of reproduction in crops (20)

modes of reproduction in plants
modes of reproduction in plantsmodes of reproduction in plants
modes of reproduction in plants
 
Asexual mode of reproduction in plants
Asexual mode of reproduction in plantsAsexual mode of reproduction in plants
Asexual mode of reproduction in plants
 
Breeding method for clonal propagation crops, apomixis and clonal selection
Breeding method for clonal propagation crops, apomixis and clonal selectionBreeding method for clonal propagation crops, apomixis and clonal selection
Breeding method for clonal propagation crops, apomixis and clonal selection
 
endospermcultureandsomaticembryogenesis-150823084254-lva1-app6891.pdf
endospermcultureandsomaticembryogenesis-150823084254-lva1-app6891.pdfendospermcultureandsomaticembryogenesis-150823084254-lva1-app6891.pdf
endospermcultureandsomaticembryogenesis-150823084254-lva1-app6891.pdf
 
Endosperm culture and somatic embryogenesis
Endosperm culture and somatic embryogenesisEndosperm culture and somatic embryogenesis
Endosperm culture and somatic embryogenesis
 
Plant and Animal Reproduction
Plant and Animal ReproductionPlant and Animal Reproduction
Plant and Animal Reproduction
 
Presentation on sexual reproduction, classification and significance in plant...
Presentation on sexual reproduction, classification and significance in plant...Presentation on sexual reproduction, classification and significance in plant...
Presentation on sexual reproduction, classification and significance in plant...
 
Reproduction in plants(flowering)
Reproduction in plants(flowering)Reproduction in plants(flowering)
Reproduction in plants(flowering)
 
Apomixis
Apomixis Apomixis
Apomixis
 
Floral biology, modes of reproduction and pollination
Floral biology, modes of reproduction and pollinationFloral biology, modes of reproduction and pollination
Floral biology, modes of reproduction and pollination
 
Reproduction in organisms
Reproduction in organismsReproduction in organisms
Reproduction in organisms
 
Value of haploid in breeding.pdf
Value of haploid in breeding.pdfValue of haploid in breeding.pdf
Value of haploid in breeding.pdf
 
Reproduction in palnt and organisams
Reproduction in palnt and organisamsReproduction in palnt and organisams
Reproduction in palnt and organisams
 
methods_of_reproduction_ppt-2 (1).ppt
methods_of_reproduction_ppt-2 (1).pptmethods_of_reproduction_ppt-2 (1).ppt
methods_of_reproduction_ppt-2 (1).ppt
 
Reproduction-PUC_II
Reproduction-PUC_IIReproduction-PUC_II
Reproduction-PUC_II
 
How Do Organisms Reproduce ? - Class 10 CBSE science (BIo)
How Do Organisms Reproduce ? - Class 10 CBSE  science (BIo)How Do Organisms Reproduce ? - Class 10 CBSE  science (BIo)
How Do Organisms Reproduce ? - Class 10 CBSE science (BIo)
 
Modes of Reproduction in crop plant.pptx
Modes of Reproduction in crop plant.pptxModes of Reproduction in crop plant.pptx
Modes of Reproduction in crop plant.pptx
 
Asexual vs Sexual Reproduction.pptx
Asexual vs Sexual Reproduction.pptxAsexual vs Sexual Reproduction.pptx
Asexual vs Sexual Reproduction.pptx
 
Sexual and asexual
Sexual and asexualSexual and asexual
Sexual and asexual
 
Haploid production and culture.pdf
Haploid production and culture.pdfHaploid production and culture.pdf
Haploid production and culture.pdf
 

More from Tulshiram Rathod

Mutation
MutationMutation
DNA Structure & Function
DNA Structure & FunctionDNA Structure & Function
DNA Structure & Function
Tulshiram Rathod
 
Mendellian Inheritance and Gene Action
Mendellian Inheritance and Gene ActionMendellian Inheritance and Gene Action
Mendellian Inheritance and Gene Action
Tulshiram Rathod
 
Chromosome Structure & Function
Chromosome Structure & FunctionChromosome Structure & Function
Chromosome Structure & Function
Tulshiram Rathod
 
Floral biology of Chilli, Brinjal & Okra
Floral biology of Chilli, Brinjal & Okra Floral biology of Chilli, Brinjal & Okra
Floral biology of Chilli, Brinjal & Okra
Tulshiram Rathod
 
Heritability & components of genetic variance
Heritability & components of genetic varianceHeritability & components of genetic variance
Heritability & components of genetic variance
Tulshiram Rathod
 
cell division and cell cycle
cell division and cell cyclecell division and cell cycle
cell division and cell cycle
Tulshiram Rathod
 

More from Tulshiram Rathod (7)

Mutation
MutationMutation
Mutation
 
DNA Structure & Function
DNA Structure & FunctionDNA Structure & Function
DNA Structure & Function
 
Mendellian Inheritance and Gene Action
Mendellian Inheritance and Gene ActionMendellian Inheritance and Gene Action
Mendellian Inheritance and Gene Action
 
Chromosome Structure & Function
Chromosome Structure & FunctionChromosome Structure & Function
Chromosome Structure & Function
 
Floral biology of Chilli, Brinjal & Okra
Floral biology of Chilli, Brinjal & Okra Floral biology of Chilli, Brinjal & Okra
Floral biology of Chilli, Brinjal & Okra
 
Heritability & components of genetic variance
Heritability & components of genetic varianceHeritability & components of genetic variance
Heritability & components of genetic variance
 
cell division and cell cycle
cell division and cell cyclecell division and cell cycle
cell division and cell cycle
 

Recently uploaded

2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
Tamralipta Mahavidyalaya
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
GeoBlogs
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
RaedMohamed3
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
PedroFerreira53928
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
TechSoup
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxMARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
bennyroshan06
 
Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdf
Vivekanand Anglo Vedic Academy
 
Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)
rosedainty
 
Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
ESC Beyond Borders _From EU to You_ InfoPack general.pdf
ESC Beyond Borders _From EU to You_ InfoPack general.pdfESC Beyond Borders _From EU to You_ InfoPack general.pdf
ESC Beyond Borders _From EU to You_ InfoPack general.pdf
Fundacja Rozwoju Społeczeństwa Przedsiębiorczego
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
Anna Sz.
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 

Recently uploaded (20)

2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxMARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
 
Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdf
 
Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)
 
Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......
 
ESC Beyond Borders _From EU to You_ InfoPack general.pdf
ESC Beyond Borders _From EU to You_ InfoPack general.pdfESC Beyond Borders _From EU to You_ InfoPack general.pdf
ESC Beyond Borders _From EU to You_ InfoPack general.pdf
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 

modes of reproduction in crops

  • 1. Prepared By: Prof. T.V.Rathod
  • 2. MODE OF REPRODUCTION • Mode of reproduction determines the genetic constitution of crop plants, that is, whether the plants are normally homozygous or heterozygous. • A knowledge of the mode of reproduction of crop plants is also important for making artificial hybrids. • Production of hybrids between diverse and desirable parents is the basis for almost all the modern breeding programmes. • The modes of reproduction in crop plants may be broadly grouped into two categories, asexual and sexual.
  • 3. Asexual Reproduction  Vegetative Reproduction • In nature, a new plant develops from a portion of the plant body. This may occur through following modified forms, 1. Natural vegetative • Underground stem • Sub-aerial stems • Bulbils 2. Artificial vegetative • Stem cuttings Asexual reproduction does not involve fusion of male and female gametes. New plants may develop from vegetative parts of the plant (vegetative reproduction) or may arise from embryos that develop without fertilization (apomixis).  Apomixis • seeds are formed but the embryos develop without fertilization. 1. Parthenogenesis 2. Apospory 3. Apogamy 4. Adventive Embryony
  • 4.
  • 5.
  • 6. Natural vegetative • Underground Stems • The underground modifications of stem generally serve as storage organs and contain many buds. These buds develop into shoots and produce plants after rooting. Eg.,  Tuber : Potato  Bulb : Onion, Garlic  Rhizome : Ginger, turmeric  Corm : Bunda, arwi. • Sub-aerial Stems • These modifications include runner, stolon, sucker etc.,. • Sub-aerial stems are used for the propagation of mint, date plam etc. • Bulbils • Bulbils are modified flowers that develop into plants directly without formation of seeds. • These are vegetative bodies; their development does not involve fertilization and seed formation. • The lower flowers in the inflorescence of garlic naturally develop into bulbils. • Scientists are trying to induce bulbil development in plantation crops by culturing young inflorescence on tissue culture media ; it has been successfully done in the case of cardamom.
  • 7. Artificial vegetative • It is commonly used for the propagation of many crop species, although it may not occur naturally in those species. • Stem cuttings are commercially used for the propagation of sugarcane, grapes, roses, etc. • Layering, budding, grafting and gootee are in common use for the propagation of fruit trees and ornamental shrubs. • Techniques are available for vegetative multiplication through tissue culture in case of many plant species, and attempts are being made to develop the techniques for many others. • In many of these species sexual reproduction occurs naturally but for certain reasons vegetative reproduction is more desirable.
  • 8. Significance of Vegetative Reproduction • Vegetatively reproducing species offer unique possibilities in breeding. • A desirable plant may be used as a variety directly regardless of whether it is homozygous or heterozygous. • Further, mutant buds, branches or seedlings, if desirable, can be multiplied and directly used as varieties.
  • 9. Apomixis • In apomixis, seeds are formed but the embryos develop without fertilization. (without the fusion of male & female gametes). • Consequently, the plants resulting from them are identical in genotype to the parent plant. • In apomictic species, sexual reproduction is either suppressed or absent. • When sexual reproduction does occur, the apomixis is termed as facultative. But when sexual reproduction is absent, it is referred to as obligate. • Many crop species show apomixis, but it is generally facultative. • The details of apomictic reproduction vary so widely that a confusing terminology has resulted.
  • 10.
  • 11.
  • 12. • Parthenogenesis • The embryo develops from embryo sac without pollination. It is of two types  Gonial parthenogenesis – embryos develop from egg cell,  Somatic parthenogenesis – embryos develop from any cell of the embryo sac other than the egg cell. • Apospory • The embryo may develop from egg cell or some other cell of this embryo sac. • Apospory occurs in some species of Hieraceum, Malus, Crepis, Ranunculus, etc. o Diplospory • Embryo sac is produced from the megaspore, which may be haploid or, more generally, diploid. • Apogamy • In apogamy, synergids or antipodal cells develop into an embryo. • Like parthenogenesis, apogamy may be haploid or diploid depending upon the haploid or diploid state of the embryo sac. • Diploid apogamy occurs in Antennaria, Alchemilla, Allium and many other plant species. • Adventive Embryony • In this case, embryos develop directly from vegerative cells of the ovule, such as nucellus, integument, and chalaza. • Development of embryo does not involve production of embryo sac. • Adventive embryony occurs in mango, citrus, etc.
  • 13.
  • 14.
  • 15. Significance of Apomixis • Apomixis is a nuisance when the breeder desires to obtain sexual progeny, i.e., selfs or hybrids. • It is of great help when the breeder desires to maintain varieties. • The breeder has to avoid apomictic progeny when he is making crosses or producing inbred lines. • But once a desirable genotype has been selected, it can be multiplied and maintained through apomictic progeny. • Asexually reproducing crop species are highly heterozygous and show severe inbreeding depression. • Therefore, breeding methods in such species must avoid inbreeding.
  • 16. SEXUAL REPRODUCTION • Sexual reproduction involves fusion of male and female gametes to form a zygote, which develops in to an embryo. Significance of Sexual Reproduction • Sexual reproduction makes it possible to combine genes from two parents into a single hybrid plant. • Recombination of these genes produces a large number of genotypes. • This is an essential step in creating variation thr ough hybridization. • Almost the entire plant breeding is based on sexual reproduction. • Even in asexually reproducing species, sexual reproduction, if it occurs, is used to advantage, e.g., in sugarcane, potato, sweet potato etc.
  • 17. MODES OF POLLINATION • Self-pollination • Bisexuality • Cleistogamy. • Homogamy • Chasmogamy • Position of anthers in relation to stigma. • Genetic Consequences of Self- Pollination • Self-pollination leads to a very rapid increase in homozygosity. • Therefore, populations of self- pollinated species are highly homozygous. • Self-pollinated species do not show inbreeding depression, but may exhibit considerable heterosis. • Therefore, the aim of breeding methods generally is to develop homozygous varieties.
  • 18.
  • 19. • Cross-Pollination • Unisexuality (Dicliny)  monoecy  dioecy • Dichogamy  protogyny  Protandry • Heterostyly • Herkogamy • Self incompatibility • Male sterility • Genetic Consequences of Cross- Pollination. • promotes heterozygosity in a population. • highly heterozygous and show mild to severe inbreeding depression and considerable amount of heterosis. • Usually, hybrid or synthetic varieties are the aim of breeder wherever the seed production of such varieties is economically feasible. # Often Cross Pollination #