Opportunities and Challenges
for Textile Reinforced
Composites
Christopher M. Pastore
Philadelphia University
Philadelphia, Pennsylvania, USA
Textile Reinforced Composites
Fiber reinforced composites whose repeating volume
element (RVE) is characterized by more than one
fiber orientation.
Formed with hierarchical textile processes that
manipulate individual fibers or yarn bundles to create
an integral structure.
It is possible to join various sub-assemblies together
to form even more complex structures.
Hierarchy of Textile Materials
Perceived Benefits
Textiles are considered to have significant cost
savings compared to tape lay-up.
Individual layer of fabric is much thicker than tape.
Fewer lay-up steps are necessary to create the final structure.
Formed from dry fiber and infiltrated with resin in a secondary
operation.
Handling and storage requirements of the material are reduced
compared to prepreg.
A single product is suitable for a variety of matrix materials,
reducing inventory and manufacturing costs.
2D and 3D Textiles
Textiles are frequently classified as either 2D or 3D.
Clearly all fabrics are 3D, but 2-D implies that the
fabric is fundamentally thin.
That is, the thickness of the fabric is formed by only 2 or 3 yarns in
the thickness direction.

A 3-D fabric can have substantial thickness, limited
only by the machine, not some fundamental physical
phenomenon.
Types of Textiles
Direct-formed fabrics are those made directly from
fibers.
Woven, knitted, and braided fabrics are made from
manipulation of yarns.
These four classes represent the vast majority of
fabrics used in composite materials.
woven fabrics are formed by inter-lacing yarns,
knitted by inter-looping yarns,
braided by inter-twining yarns, and
direct formed fabrics by inter-locking fibers.
Direct Formed Fabrics
Created directly from fibers without a yarn processing
step involved.
No interlacing, intertwining, or interlooping of fibers
within the structure.
These fabrics are called nonwovens in much of the
literature, despite the obvious inadequacy of this
term.
Direct Formed Fabrics
Generally there are 2 steps
First a web is constructed of fibers. This sets the distribution of inplane fiber orientation.
Next the web is densified. This typically involves through thickness
entanglement or bonding.
Web formation
Opening process: mechanically separates the fibers.
Deposit fiber mass onto a belt, creating a continuous roll of lowdensity material
width of roughly 1-meter and a thickness 10-20 cm called a picker lap.

The fibers have a virtually uniform, random orientation in the plane,
with substantial out of plane orientation.
To thin the picker lap, it may be passed through a card.
Individual fibers are mostly oriented in the direction of material flow
through the machine.
This orientation allows the fibers to pack closer than previously resulting in a
thickness reduction, increased density, and a preferred distribution of fiber
orientations in the machine direction.
The resulting material is called a carded web.
Densification of web
The carded web may be used as input to the needle
punch, or it may be cross-lapped first.
The cross-lapper places carded web transverse to the machine
direction allowing the preferred fiber orientation to be in the cross
direction.

Needle punch creates mechanical interlocking
through barbed needles
Bonding can be done to chemically adhere the fibers
Adhesive application
Thermal bonding (sacrificial low melt fibers are pre-included in the
web)
XYZ Orthogonal Nonwoven
Knitted Fabrics
There are two basic types of knitting - weft knitting
and warp knitting.
They are distinguished by the direction in which the
loops are formed.
Weft knitting, the most common type of knitting in the apparel
industry, forms loops when yarns are moving in the weft direction,
or perpendicular to the direction of fabric formation.
Warp knitting differs from weft knitting in that multiple yarns are
interlooped simultaneously. A set of yarns are supplied from a
creel or warp beam and interlooped in the cross (course) direction.
Jersey Knits
The simplest weft knit structure is
the jersey.
Inherently bulky due to curvature
of the yarn.
The “natural” thickness of a jersey
knit fabric is roughly three times
the thickness of the yarns,
resulting in maximum yarn
packing factors of 20-25%, and
thus Vf around 15%.
High extensibility (up to 100%
strain to failure) which allows
complex shape formation
capabilities.
Rib Knits
In a rib knit structure it is possible to incorporate large yarns in the weft
to create a weft inserted rib knit.
In such a way a “unidirectional” preform can be constructed. However
it is difficult to achieve fiber volume fractions greater than 30% in these
structures due to the inherent bulkiness of the fabric.
Conformable Rib Knit
Warp Knits
In the WIWK, the load bearing yarns are locked into
the structure through the knitting process
Braiding
Biaxial braided fabrics may incorporate a longitudinal
yarn creating a triaxial braid.
The braided fabric is characterized mainly by the
braid angle, θ, (10° - 80° ).
Braids are tubular and frequently compared with
filament winding. They have been shown to be cost
competitive.
The braided fabric is flexible before formation, and
thus the fabric can conform to various shapes. The
braided fabric may be formed around a mandrel, and
rather complex shapes can be formed.
Braiding
Braids are formed by a circular “maypole” pattern of
yarn carrier motions
Types of 2D Braids
3D Braiding Machine
Woven Fabrics
Generally characterized by two sets of perpendicular
yarns systems
One set is raised and lowered to make “sheds” (these
are warp yarns)
The other set is passed through these sheds,
perpendicular to the warp yarns (these are fill, or pick
or weft yarns)
Elements of a loom
Woven Fabrics
The structure of the woven fabric is the pattern of
interlacing between the warp and weft yarns
Yarns can “float”, or not interlace for some distance
within a woven fabric
Basic weave structures
Crimp in Weaves
The crimp is defined as one less than the ratio of the
yarn's actual length to the length of fabric it traverses.
Crimp levels influence fiber volume fraction, thickness
of fabric, and mechanical performance of fabric.
High crimp leads to
Reduced tensile and compressive properties
Increased shear modulus in the dry fabric and the resulting
composite
Fewer regions for localized delamination between individual yarns.
Applications of Weaves
Weaves can be formed into composites with fiber
volume fractions as high as 65%.
High harness count satins – 8 and 12 –serve the role
previously held by 0/90 tape lay-ups.
There is a significant cost benefit to using the fabrics
in that much fewer layers need be applied because
the woven fabric is usually many times thicker than
the tape (depending on the yarns used in the fabric).
3D Weaves

Layer-to-layer

XYZ

Through thickness
Doubly Stiffened Woven Panel
Variations in Weave Design
If large yarns are used in the warp direction and small
yarns are infrequently spaced in the weft direction,
the resulting fabric resembles a unidirectional
material.
Weaves can be formed with gradients in a single or
double axis by changing yarn size across the width or
length
Complex shapes can be achieved through “floating”
and cutting yarns to reduce total number of yarns in
some section of the part
Gradations through yarn size
Shape through floats
Issues with shaping woven fabrics
Tailoring the cross-section of a woven fabric will
generally result in
a change in weave angle,
a change in the distribution of longitudinal, weaver, and fill, and
a change in fiber volume fraction in consequence to the change in
thickness.

Some fiber volume fraction effects can be controlled
by tooling. The tailoring occurs in a discrete manner,
using individual yarns, whereas most tooling will be
approximately continuous.
Example of single taper weave
Consider a tapered panel where gradation in
thickness is achieved by changing yarn size/count
across the width
Design of tapered woven panel
Pick count is constant,
warps and wefts per
dent are modified to 18
17
16
taper
15
Z yarn path changes 14
13
to accommodate the 12
11
10
weave.
Number

Pick Columns per inch

Picks per column

Warp per dent

9
8
7
6
5
4
3
2
1

1

3

5

7

9

11 13

15
Dent

17 19

21

23 25

27

29 31
Variation in Fiber Volume Fraction
60%

This variation in
yarn packing results
in variations in Vf for
the resulting
composite.

Fiber
Volume
Fraction

58%
56%
54%
52%
50%
48%

Calculated
Target

46%
44%
42%
40%
0.000

0.500

1.000

1.500

Distance from Thin Edge (in)

2.000

2.500
Variation in weave angle
The weave angle will
55 °
also change throughout
the width of the part due 50 °
to varying warp yarn
count and part thickness.
45 °

Weave
Angle 40 °
35 °

Calculated

30 °

Target
25 °
0.0

0.5

1.0

1.5

Distance from Thin Edge (in)

2.0

2.5
Yarn Distributions
The distribution of warp,
weft, and Z yarn will also
vary throughout the part.

60%
55%
50%
45%

40%
Yarn
Distribution
35%

%Z

% Warp

% Fill

30%
25%
20%
15%
0.0

0.5

1.0
1.5
Distance from Thin Edge (in)

2.0

2.5
Variations in Modulus
All mechanical properties will vary throughout the part
14
12
10
E11
Tensile
Modulus
(Msi)

E22

E33

8
6
4
2
0
0.0

0.5

1.0

1.5

Distance from Thin Edge (in)

2.0

2.5

Mechanics of Composite Materials

  • 1.
    Opportunities and Challenges forTextile Reinforced Composites Christopher M. Pastore Philadelphia University Philadelphia, Pennsylvania, USA
  • 2.
    Textile Reinforced Composites Fiberreinforced composites whose repeating volume element (RVE) is characterized by more than one fiber orientation. Formed with hierarchical textile processes that manipulate individual fibers or yarn bundles to create an integral structure. It is possible to join various sub-assemblies together to form even more complex structures.
  • 3.
  • 4.
    Perceived Benefits Textiles areconsidered to have significant cost savings compared to tape lay-up. Individual layer of fabric is much thicker than tape. Fewer lay-up steps are necessary to create the final structure. Formed from dry fiber and infiltrated with resin in a secondary operation. Handling and storage requirements of the material are reduced compared to prepreg. A single product is suitable for a variety of matrix materials, reducing inventory and manufacturing costs.
  • 5.
    2D and 3DTextiles Textiles are frequently classified as either 2D or 3D. Clearly all fabrics are 3D, but 2-D implies that the fabric is fundamentally thin. That is, the thickness of the fabric is formed by only 2 or 3 yarns in the thickness direction. A 3-D fabric can have substantial thickness, limited only by the machine, not some fundamental physical phenomenon.
  • 6.
    Types of Textiles Direct-formedfabrics are those made directly from fibers. Woven, knitted, and braided fabrics are made from manipulation of yarns. These four classes represent the vast majority of fabrics used in composite materials. woven fabrics are formed by inter-lacing yarns, knitted by inter-looping yarns, braided by inter-twining yarns, and direct formed fabrics by inter-locking fibers.
  • 7.
    Direct Formed Fabrics Createddirectly from fibers without a yarn processing step involved. No interlacing, intertwining, or interlooping of fibers within the structure. These fabrics are called nonwovens in much of the literature, despite the obvious inadequacy of this term.
  • 8.
    Direct Formed Fabrics Generallythere are 2 steps First a web is constructed of fibers. This sets the distribution of inplane fiber orientation. Next the web is densified. This typically involves through thickness entanglement or bonding.
  • 9.
    Web formation Opening process:mechanically separates the fibers. Deposit fiber mass onto a belt, creating a continuous roll of lowdensity material width of roughly 1-meter and a thickness 10-20 cm called a picker lap. The fibers have a virtually uniform, random orientation in the plane, with substantial out of plane orientation. To thin the picker lap, it may be passed through a card. Individual fibers are mostly oriented in the direction of material flow through the machine. This orientation allows the fibers to pack closer than previously resulting in a thickness reduction, increased density, and a preferred distribution of fiber orientations in the machine direction. The resulting material is called a carded web.
  • 10.
    Densification of web Thecarded web may be used as input to the needle punch, or it may be cross-lapped first. The cross-lapper places carded web transverse to the machine direction allowing the preferred fiber orientation to be in the cross direction. Needle punch creates mechanical interlocking through barbed needles Bonding can be done to chemically adhere the fibers Adhesive application Thermal bonding (sacrificial low melt fibers are pre-included in the web)
  • 11.
  • 12.
    Knitted Fabrics There aretwo basic types of knitting - weft knitting and warp knitting. They are distinguished by the direction in which the loops are formed. Weft knitting, the most common type of knitting in the apparel industry, forms loops when yarns are moving in the weft direction, or perpendicular to the direction of fabric formation. Warp knitting differs from weft knitting in that multiple yarns are interlooped simultaneously. A set of yarns are supplied from a creel or warp beam and interlooped in the cross (course) direction.
  • 13.
    Jersey Knits The simplestweft knit structure is the jersey. Inherently bulky due to curvature of the yarn. The “natural” thickness of a jersey knit fabric is roughly three times the thickness of the yarns, resulting in maximum yarn packing factors of 20-25%, and thus Vf around 15%. High extensibility (up to 100% strain to failure) which allows complex shape formation capabilities.
  • 14.
    Rib Knits In arib knit structure it is possible to incorporate large yarns in the weft to create a weft inserted rib knit. In such a way a “unidirectional” preform can be constructed. However it is difficult to achieve fiber volume fractions greater than 30% in these structures due to the inherent bulkiness of the fabric.
  • 15.
  • 16.
    Warp Knits In theWIWK, the load bearing yarns are locked into the structure through the knitting process
  • 17.
    Braiding Biaxial braided fabricsmay incorporate a longitudinal yarn creating a triaxial braid. The braided fabric is characterized mainly by the braid angle, θ, (10° - 80° ). Braids are tubular and frequently compared with filament winding. They have been shown to be cost competitive. The braided fabric is flexible before formation, and thus the fabric can conform to various shapes. The braided fabric may be formed around a mandrel, and rather complex shapes can be formed.
  • 18.
    Braiding Braids are formedby a circular “maypole” pattern of yarn carrier motions
  • 19.
  • 20.
  • 21.
    Woven Fabrics Generally characterizedby two sets of perpendicular yarns systems One set is raised and lowered to make “sheds” (these are warp yarns) The other set is passed through these sheds, perpendicular to the warp yarns (these are fill, or pick or weft yarns)
  • 22.
  • 23.
    Woven Fabrics The structureof the woven fabric is the pattern of interlacing between the warp and weft yarns Yarns can “float”, or not interlace for some distance within a woven fabric
  • 24.
  • 25.
    Crimp in Weaves Thecrimp is defined as one less than the ratio of the yarn's actual length to the length of fabric it traverses. Crimp levels influence fiber volume fraction, thickness of fabric, and mechanical performance of fabric. High crimp leads to Reduced tensile and compressive properties Increased shear modulus in the dry fabric and the resulting composite Fewer regions for localized delamination between individual yarns.
  • 26.
    Applications of Weaves Weavescan be formed into composites with fiber volume fractions as high as 65%. High harness count satins – 8 and 12 –serve the role previously held by 0/90 tape lay-ups. There is a significant cost benefit to using the fabrics in that much fewer layers need be applied because the woven fabric is usually many times thicker than the tape (depending on the yarns used in the fabric).
  • 27.
  • 28.
  • 29.
    Variations in WeaveDesign If large yarns are used in the warp direction and small yarns are infrequently spaced in the weft direction, the resulting fabric resembles a unidirectional material. Weaves can be formed with gradients in a single or double axis by changing yarn size across the width or length Complex shapes can be achieved through “floating” and cutting yarns to reduce total number of yarns in some section of the part
  • 30.
  • 31.
  • 32.
    Issues with shapingwoven fabrics Tailoring the cross-section of a woven fabric will generally result in a change in weave angle, a change in the distribution of longitudinal, weaver, and fill, and a change in fiber volume fraction in consequence to the change in thickness. Some fiber volume fraction effects can be controlled by tooling. The tailoring occurs in a discrete manner, using individual yarns, whereas most tooling will be approximately continuous.
  • 33.
    Example of singletaper weave Consider a tapered panel where gradation in thickness is achieved by changing yarn size/count across the width
  • 34.
    Design of taperedwoven panel Pick count is constant, warps and wefts per dent are modified to 18 17 16 taper 15 Z yarn path changes 14 13 to accommodate the 12 11 10 weave. Number Pick Columns per inch Picks per column Warp per dent 9 8 7 6 5 4 3 2 1 1 3 5 7 9 11 13 15 Dent 17 19 21 23 25 27 29 31
  • 35.
    Variation in FiberVolume Fraction 60% This variation in yarn packing results in variations in Vf for the resulting composite. Fiber Volume Fraction 58% 56% 54% 52% 50% 48% Calculated Target 46% 44% 42% 40% 0.000 0.500 1.000 1.500 Distance from Thin Edge (in) 2.000 2.500
  • 36.
    Variation in weaveangle The weave angle will 55 ° also change throughout the width of the part due 50 ° to varying warp yarn count and part thickness. 45 ° Weave Angle 40 ° 35 ° Calculated 30 ° Target 25 ° 0.0 0.5 1.0 1.5 Distance from Thin Edge (in) 2.0 2.5
  • 37.
    Yarn Distributions The distributionof warp, weft, and Z yarn will also vary throughout the part. 60% 55% 50% 45% 40% Yarn Distribution 35% %Z % Warp % Fill 30% 25% 20% 15% 0.0 0.5 1.0 1.5 Distance from Thin Edge (in) 2.0 2.5
  • 38.
    Variations in Modulus Allmechanical properties will vary throughout the part 14 12 10 E11 Tensile Modulus (Msi) E22 E33 8 6 4 2 0 0.0 0.5 1.0 1.5 Distance from Thin Edge (in) 2.0 2.5