SlideShare a Scribd company logo
Opportunities and Challenges
for Textile Reinforced
Composites
Christopher M. Pastore
Philadelphia University
Philadelphia, Pennsylvania, USA
Textile Reinforced Composites
Fiber reinforced composites whose repeating volume
element (RVE) is characterized by more than one
fiber orientation.
Formed with hierarchical textile processes that
manipulate individual fibers or yarn bundles to create
an integral structure.
It is possible to join various sub-assemblies together
to form even more complex structures.
Hierarchy of Textile Materials
Perceived Benefits
Textiles are considered to have significant cost
savings compared to tape lay-up.
Individual layer of fabric is much thicker than tape.
Fewer lay-up steps are necessary to create the final structure.
Formed from dry fiber and infiltrated with resin in a secondary
operation.
Handling and storage requirements of the material are reduced
compared to prepreg.
A single product is suitable for a variety of matrix materials,
reducing inventory and manufacturing costs.
2D and 3D Textiles
Textiles are frequently classified as either 2D or 3D.
Clearly all fabrics are 3D, but 2-D implies that the
fabric is fundamentally thin.
That is, the thickness of the fabric is formed by only 2 or 3 yarns in
the thickness direction.

A 3-D fabric can have substantial thickness, limited
only by the machine, not some fundamental physical
phenomenon.
Types of Textiles
Direct-formed fabrics are those made directly from
fibers.
Woven, knitted, and braided fabrics are made from
manipulation of yarns.
These four classes represent the vast majority of
fabrics used in composite materials.
woven fabrics are formed by inter-lacing yarns,
knitted by inter-looping yarns,
braided by inter-twining yarns, and
direct formed fabrics by inter-locking fibers.
Direct Formed Fabrics
Created directly from fibers without a yarn processing
step involved.
No interlacing, intertwining, or interlooping of fibers
within the structure.
These fabrics are called nonwovens in much of the
literature, despite the obvious inadequacy of this
term.
Direct Formed Fabrics
Generally there are 2 steps
First a web is constructed of fibers. This sets the distribution of inplane fiber orientation.
Next the web is densified. This typically involves through thickness
entanglement or bonding.
Web formation
Opening process: mechanically separates the fibers.
Deposit fiber mass onto a belt, creating a continuous roll of lowdensity material
width of roughly 1-meter and a thickness 10-20 cm called a picker lap.

The fibers have a virtually uniform, random orientation in the plane,
with substantial out of plane orientation.
To thin the picker lap, it may be passed through a card.
Individual fibers are mostly oriented in the direction of material flow
through the machine.
This orientation allows the fibers to pack closer than previously resulting in a
thickness reduction, increased density, and a preferred distribution of fiber
orientations in the machine direction.
The resulting material is called a carded web.
Densification of web
The carded web may be used as input to the needle
punch, or it may be cross-lapped first.
The cross-lapper places carded web transverse to the machine
direction allowing the preferred fiber orientation to be in the cross
direction.

Needle punch creates mechanical interlocking
through barbed needles
Bonding can be done to chemically adhere the fibers
Adhesive application
Thermal bonding (sacrificial low melt fibers are pre-included in the
web)
XYZ Orthogonal Nonwoven
Knitted Fabrics
There are two basic types of knitting - weft knitting
and warp knitting.
They are distinguished by the direction in which the
loops are formed.
Weft knitting, the most common type of knitting in the apparel
industry, forms loops when yarns are moving in the weft direction,
or perpendicular to the direction of fabric formation.
Warp knitting differs from weft knitting in that multiple yarns are
interlooped simultaneously. A set of yarns are supplied from a
creel or warp beam and interlooped in the cross (course) direction.
Jersey Knits
The simplest weft knit structure is
the jersey.
Inherently bulky due to curvature
of the yarn.
The “natural” thickness of a jersey
knit fabric is roughly three times
the thickness of the yarns,
resulting in maximum yarn
packing factors of 20-25%, and
thus Vf around 15%.
High extensibility (up to 100%
strain to failure) which allows
complex shape formation
capabilities.
Rib Knits
In a rib knit structure it is possible to incorporate large yarns in the weft
to create a weft inserted rib knit.
In such a way a “unidirectional” preform can be constructed. However
it is difficult to achieve fiber volume fractions greater than 30% in these
structures due to the inherent bulkiness of the fabric.
Conformable Rib Knit
Warp Knits
In the WIWK, the load bearing yarns are locked into
the structure through the knitting process
Braiding
Biaxial braided fabrics may incorporate a longitudinal
yarn creating a triaxial braid.
The braided fabric is characterized mainly by the
braid angle, θ, (10° - 80° ).
Braids are tubular and frequently compared with
filament winding. They have been shown to be cost
competitive.
The braided fabric is flexible before formation, and
thus the fabric can conform to various shapes. The
braided fabric may be formed around a mandrel, and
rather complex shapes can be formed.
Braiding
Braids are formed by a circular “maypole” pattern of
yarn carrier motions
Types of 2D Braids
3D Braiding Machine
Woven Fabrics
Generally characterized by two sets of perpendicular
yarns systems
One set is raised and lowered to make “sheds” (these
are warp yarns)
The other set is passed through these sheds,
perpendicular to the warp yarns (these are fill, or pick
or weft yarns)
Elements of a loom
Woven Fabrics
The structure of the woven fabric is the pattern of
interlacing between the warp and weft yarns
Yarns can “float”, or not interlace for some distance
within a woven fabric
Basic weave structures
Crimp in Weaves
The crimp is defined as one less than the ratio of the
yarn's actual length to the length of fabric it traverses.
Crimp levels influence fiber volume fraction, thickness
of fabric, and mechanical performance of fabric.
High crimp leads to
Reduced tensile and compressive properties
Increased shear modulus in the dry fabric and the resulting
composite
Fewer regions for localized delamination between individual yarns.
Applications of Weaves
Weaves can be formed into composites with fiber
volume fractions as high as 65%.
High harness count satins – 8 and 12 –serve the role
previously held by 0/90 tape lay-ups.
There is a significant cost benefit to using the fabrics
in that much fewer layers need be applied because
the woven fabric is usually many times thicker than
the tape (depending on the yarns used in the fabric).
3D Weaves

Layer-to-layer

XYZ

Through thickness
Doubly Stiffened Woven Panel
Variations in Weave Design
If large yarns are used in the warp direction and small
yarns are infrequently spaced in the weft direction,
the resulting fabric resembles a unidirectional
material.
Weaves can be formed with gradients in a single or
double axis by changing yarn size across the width or
length
Complex shapes can be achieved through “floating”
and cutting yarns to reduce total number of yarns in
some section of the part
Gradations through yarn size
Shape through floats
Issues with shaping woven fabrics
Tailoring the cross-section of a woven fabric will
generally result in
a change in weave angle,
a change in the distribution of longitudinal, weaver, and fill, and
a change in fiber volume fraction in consequence to the change in
thickness.

Some fiber volume fraction effects can be controlled
by tooling. The tailoring occurs in a discrete manner,
using individual yarns, whereas most tooling will be
approximately continuous.
Example of single taper weave
Consider a tapered panel where gradation in
thickness is achieved by changing yarn size/count
across the width
Design of tapered woven panel
Pick count is constant,
warps and wefts per
dent are modified to 18
17
16
taper
15
Z yarn path changes 14
13
to accommodate the 12
11
10
weave.
Number

Pick Columns per inch

Picks per column

Warp per dent

9
8
7
6
5
4
3
2
1

1

3

5

7

9

11 13

15
Dent

17 19

21

23 25

27

29 31
Variation in Fiber Volume Fraction
60%

This variation in
yarn packing results
in variations in Vf for
the resulting
composite.

Fiber
Volume
Fraction

58%
56%
54%
52%
50%
48%

Calculated
Target

46%
44%
42%
40%
0.000

0.500

1.000

1.500

Distance from Thin Edge (in)

2.000

2.500
Variation in weave angle
The weave angle will
55 °
also change throughout
the width of the part due 50 °
to varying warp yarn
count and part thickness.
45 °

Weave
Angle 40 °
35 °

Calculated

30 °

Target
25 °
0.0

0.5

1.0

1.5

Distance from Thin Edge (in)

2.0

2.5
Yarn Distributions
The distribution of warp,
weft, and Z yarn will also
vary throughout the part.

60%
55%
50%
45%

40%
Yarn
Distribution
35%

%Z

% Warp

% Fill

30%
25%
20%
15%
0.0

0.5

1.0
1.5
Distance from Thin Edge (in)

2.0

2.5
Variations in Modulus
All mechanical properties will vary throughout the part
14
12
10
E11
Tensile
Modulus
(Msi)

E22

E33

8
6
4
2
0
0.0

0.5

1.0

1.5

Distance from Thin Edge (in)

2.0

2.5

More Related Content

What's hot

reinforcement of composite
reinforcement of compositereinforcement of composite
reinforcement of composite
Student
 
Fibre and fabric reinforced composites
Fibre and fabric reinforced compositesFibre and fabric reinforced composites
Fibre and fabric reinforced compositesttkbal
 
Polymer matrix composites
Polymer matrix compositesPolymer matrix composites
Polymer matrix composites
Dr. Ramesh B
 
Natural Fiber Based Composite Materials
Natural Fiber Based Composite MaterialsNatural Fiber Based Composite Materials
Natural Fiber Based Composite Materials
Srinjoy
 
Polymer matrix composites [pmc]
Polymer matrix composites [pmc]Polymer matrix composites [pmc]
Polymer matrix composites [pmc]
Hafis Puzhakkal
 
composite materials- fundamentals of manufacturing processes
composite materials- fundamentals of manufacturing processescomposite materials- fundamentals of manufacturing processes
composite materials- fundamentals of manufacturing processes
puneet8589
 
Production of composites
Production of compositesProduction of composites
Production of compositesGulfam Hussain
 
Micromechanics of Composite Materials
Micromechanics of Composite MaterialsMicromechanics of Composite Materials
Micromechanics of Composite Materials
Mohammad Tawfik
 
Polymer matrix composite
Polymer matrix compositePolymer matrix composite
Polymer matrix composite
Syed Minhazur Rahman
 
Fibre reinforced composites 3
Fibre reinforced composites 3Fibre reinforced composites 3
Fibre reinforced composites 3
Naga Muruga
 
Pultrusion process
Pultrusion  processPultrusion  process
Pultrusion process
ROLWYN CARDOZA
 
Composites
CompositesComposites
Composites
Hershit Garg
 
Composite material
Composite materialComposite material
Composite material
vivek chandravanshi
 
Types of Fiber
Types of FiberTypes of Fiber
Types of Fiber
Md. Azizul Haque Juel
 
Resin Transfer Molding (RTM)
Resin Transfer Molding (RTM)Resin Transfer Molding (RTM)
Resin Transfer Molding (RTM)
Kamlesh Jakhar
 
Composite Materials
Composite MaterialsComposite Materials
Glass Fibre
Glass FibreGlass Fibre
Composite Failure Presentation
Composite Failure PresentationComposite Failure Presentation
Composite Failure Presentation
jwaldr01
 
Fiber and manufacture of fibers
Fiber and manufacture of fibersFiber and manufacture of fibers
Fiber and manufacture of fibers
Yadav Khagendra Kumar
 

What's hot (20)

reinforcement of composite
reinforcement of compositereinforcement of composite
reinforcement of composite
 
Fibre and fabric reinforced composites
Fibre and fabric reinforced compositesFibre and fabric reinforced composites
Fibre and fabric reinforced composites
 
Ch09
Ch09Ch09
Ch09
 
Polymer matrix composites
Polymer matrix compositesPolymer matrix composites
Polymer matrix composites
 
Natural Fiber Based Composite Materials
Natural Fiber Based Composite MaterialsNatural Fiber Based Composite Materials
Natural Fiber Based Composite Materials
 
Polymer matrix composites [pmc]
Polymer matrix composites [pmc]Polymer matrix composites [pmc]
Polymer matrix composites [pmc]
 
composite materials- fundamentals of manufacturing processes
composite materials- fundamentals of manufacturing processescomposite materials- fundamentals of manufacturing processes
composite materials- fundamentals of manufacturing processes
 
Production of composites
Production of compositesProduction of composites
Production of composites
 
Micromechanics of Composite Materials
Micromechanics of Composite MaterialsMicromechanics of Composite Materials
Micromechanics of Composite Materials
 
Polymer matrix composite
Polymer matrix compositePolymer matrix composite
Polymer matrix composite
 
Fibre reinforced composites 3
Fibre reinforced composites 3Fibre reinforced composites 3
Fibre reinforced composites 3
 
Pultrusion process
Pultrusion  processPultrusion  process
Pultrusion process
 
Composites
CompositesComposites
Composites
 
Composite material
Composite materialComposite material
Composite material
 
Types of Fiber
Types of FiberTypes of Fiber
Types of Fiber
 
Resin Transfer Molding (RTM)
Resin Transfer Molding (RTM)Resin Transfer Molding (RTM)
Resin Transfer Molding (RTM)
 
Composite Materials
Composite MaterialsComposite Materials
Composite Materials
 
Glass Fibre
Glass FibreGlass Fibre
Glass Fibre
 
Composite Failure Presentation
Composite Failure PresentationComposite Failure Presentation
Composite Failure Presentation
 
Fiber and manufacture of fibers
Fiber and manufacture of fibersFiber and manufacture of fibers
Fiber and manufacture of fibers
 

Viewers also liked

Joining Of Advanced Composites
Joining Of Advanced CompositesJoining Of Advanced Composites
Joining Of Advanced Composites
thummalapalliv1
 
Composite materials
Composite materialsComposite materials
Composite materialsJokiYagit
 
Composite materials lecture
Composite materials lectureComposite materials lecture
Composite materials lecture
Padmanabhan Krishnan
 
International Conference Advances in Wind Turbine Rotor Blades
International Conference Advances in Wind Turbine Rotor BladesInternational Conference Advances in Wind Turbine Rotor Blades
International Conference Advances in Wind Turbine Rotor Blades
Torben Haagh
 
Composites glass & fiber
Composites  glass & fiberComposites  glass & fiber
Composites glass & fiber
Suvin
 
Textile composite i vps
Textile composite i   vpsTextile composite i   vps
Textile composite i vpsSRIKANTH2011
 
Better oral health in long term care: Best practice standards for saskatchewa...
Better oral health in long term care: Best practice standards for saskatchewa...Better oral health in long term care: Best practice standards for saskatchewa...
Better oral health in long term care: Best practice standards for saskatchewa...
saskohc
 
Advanced Composite Materials & Technologies for Defence
Advanced Composite  Materials & Technologies for  DefenceAdvanced Composite  Materials & Technologies for  Defence
Advanced Composite Materials & Technologies for Defence
Digitech Rathod
 
Sutp for middle sized cities in nekrtc
Sutp for middle sized cities in nekrtcSutp for middle sized cities in nekrtc
Sutp for middle sized cities in nekrtc
Basalingappa Beedi
 
Introduction to Fabric Composer
Introduction to Fabric ComposerIntroduction to Fabric Composer
Introduction to Fabric Composer
Hyperleger Tokyo Meetup
 
Finite element procedures by k j bathe
Finite element procedures by k j batheFinite element procedures by k j bathe
Finite element procedures by k j bathe
Prof. C V Chandrashekara
 
Textile Testing & Quality Control
Textile Testing & Quality ControlTextile Testing & Quality Control
Textile Testing & Quality Control
Azmir Latif Beg
 
Economics for Engineers - Part I
Economics for Engineers - Part IEconomics for Engineers - Part I
Economics for Engineers - Part I
Mohammad Tawfik
 
Basic information about workshop
Basic information about workshopBasic information about workshop
Basic information about workshop
Dr. Ramesh B
 
Education: Why? How?
Education: Why? How?Education: Why? How?
Education: Why? How?
Mohammad Tawfik
 
Forming characterization and evaluation of hardness of nano carbon cast iron
Forming characterization and evaluation of hardness of  nano carbon cast ironForming characterization and evaluation of hardness of  nano carbon cast iron
Forming characterization and evaluation of hardness of nano carbon cast iron
Padmanabhan Krishnan
 

Viewers also liked (20)

Joining Of Advanced Composites
Joining Of Advanced CompositesJoining Of Advanced Composites
Joining Of Advanced Composites
 
Composite materials
Composite materialsComposite materials
Composite materials
 
Composite materials lecture
Composite materials lectureComposite materials lecture
Composite materials lecture
 
International Conference Advances in Wind Turbine Rotor Blades
International Conference Advances in Wind Turbine Rotor BladesInternational Conference Advances in Wind Turbine Rotor Blades
International Conference Advances in Wind Turbine Rotor Blades
 
Composites glass & fiber
Composites  glass & fiberComposites  glass & fiber
Composites glass & fiber
 
Textile composite i vps
Textile composite i   vpsTextile composite i   vps
Textile composite i vps
 
Biomaterials
BiomaterialsBiomaterials
Biomaterials
 
Better oral health in long term care: Best practice standards for saskatchewa...
Better oral health in long term care: Best practice standards for saskatchewa...Better oral health in long term care: Best practice standards for saskatchewa...
Better oral health in long term care: Best practice standards for saskatchewa...
 
Advanced Composite Materials & Technologies for Defence
Advanced Composite  Materials & Technologies for  DefenceAdvanced Composite  Materials & Technologies for  Defence
Advanced Composite Materials & Technologies for Defence
 
Sutp for middle sized cities in nekrtc
Sutp for middle sized cities in nekrtcSutp for middle sized cities in nekrtc
Sutp for middle sized cities in nekrtc
 
Introduction to Fabric Composer
Introduction to Fabric ComposerIntroduction to Fabric Composer
Introduction to Fabric Composer
 
Finite element procedures by k j bathe
Finite element procedures by k j batheFinite element procedures by k j bathe
Finite element procedures by k j bathe
 
Better Buildings From Better Fasteners
Better Buildings From Better FastenersBetter Buildings From Better Fasteners
Better Buildings From Better Fasteners
 
Textile Testing & Quality Control
Textile Testing & Quality ControlTextile Testing & Quality Control
Textile Testing & Quality Control
 
Economics for Engineers - Part I
Economics for Engineers - Part IEconomics for Engineers - Part I
Economics for Engineers - Part I
 
Basic information about workshop
Basic information about workshopBasic information about workshop
Basic information about workshop
 
Smart Structures
Smart StructuresSmart Structures
Smart Structures
 
Education: Why? How?
Education: Why? How?Education: Why? How?
Education: Why? How?
 
14 biomaterials
14 biomaterials14 biomaterials
14 biomaterials
 
Forming characterization and evaluation of hardness of nano carbon cast iron
Forming characterization and evaluation of hardness of  nano carbon cast ironForming characterization and evaluation of hardness of  nano carbon cast iron
Forming characterization and evaluation of hardness of nano carbon cast iron
 

Similar to Mechanics of Composite Materials

Yarn properties effecting comfort of the fabric
Yarn properties effecting comfort of the fabricYarn properties effecting comfort of the fabric
Yarn properties effecting comfort of the fabric
hema upadhayay
 
Cotton spun-yarns-for-knit-and-woven-fabrics
Cotton spun-yarns-for-knit-and-woven-fabricsCotton spun-yarns-for-knit-and-woven-fabrics
Cotton spun-yarns-for-knit-and-woven-fabrics
Samrat Dewan
 
Plain weave derivatives
Plain weave derivativesPlain weave derivatives
Plain weave derivatives
Azmir Latif Beg
 
Some lessons of Weaving
Some lessons of WeavingSome lessons of Weaving
Some lessons of Weaving
Deepanshu Singh Kushwaha
 
1.3 preparation of combing
1.3 preparation of combing1.3 preparation of combing
1.3 preparation of combing
Amit Biswas
 
Bdft ii, non-woven fabric, tmt, unit-iii
Bdft ii, non-woven fabric, tmt, unit-iiiBdft ii, non-woven fabric, tmt, unit-iii
Bdft ii, non-woven fabric, tmt, unit-iii
Rai University
 
Basic weaves
Basic weavesBasic weaves
Basic weaves
devisweety
 
Seamsandstitchingproblemsandcauses 12712558744237-phpapp01
Seamsandstitchingproblemsandcauses 12712558744237-phpapp01Seamsandstitchingproblemsandcauses 12712558744237-phpapp01
Seamsandstitchingproblemsandcauses 12712558744237-phpapp01Rajeev Sharan
 
Seams And Stitching Problems And Causes
Seams And Stitching Problems And CausesSeams And Stitching Problems And Causes
Seams And Stitching Problems And Causesg l
 
3D fabric
3D fabric3D fabric
3D fabric
shariful islam
 
Dry laid nonwoven
Dry laid nonwovenDry laid nonwoven
Dry laid nonwoven
devisweety
 
Guidelines for selection of yarn
Guidelines for selection of yarnGuidelines for selection of yarn
Guidelines for selection of yarn
Ravikeerthi Rao
 
Combing
CombingCombing
Class 3.pptx
Class 3.pptxClass 3.pptx
Class 3.pptx
dejene1234567
 
Assgnment biomaterial 1
Assgnment biomaterial 1Assgnment biomaterial 1
Assgnment biomaterial 1raihanaa
 
Woven and knit fabrics
Woven and knit fabricsWoven and knit fabrics
Woven and knit fabrics
Rocky Hossain
 

Similar to Mechanics of Composite Materials (20)

Fibre to yarn
Fibre to yarnFibre to yarn
Fibre to yarn
 
Yarn properties effecting comfort of the fabric
Yarn properties effecting comfort of the fabricYarn properties effecting comfort of the fabric
Yarn properties effecting comfort of the fabric
 
Cotton spun-yarns-for-knit-and-woven-fabrics
Cotton spun-yarns-for-knit-and-woven-fabricsCotton spun-yarns-for-knit-and-woven-fabrics
Cotton spun-yarns-for-knit-and-woven-fabrics
 
Plain weave derivatives
Plain weave derivativesPlain weave derivatives
Plain weave derivatives
 
Some lessons of Weaving
Some lessons of WeavingSome lessons of Weaving
Some lessons of Weaving
 
1.3 preparation of combing
1.3 preparation of combing1.3 preparation of combing
1.3 preparation of combing
 
Bdft ii, non-woven fabric, tmt, unit-iii
Bdft ii, non-woven fabric, tmt, unit-iiiBdft ii, non-woven fabric, tmt, unit-iii
Bdft ii, non-woven fabric, tmt, unit-iii
 
Basic weaves
Basic weavesBasic weaves
Basic weaves
 
yarns
yarnsyarns
yarns
 
15571089 yarns
15571089 yarns15571089 yarns
15571089 yarns
 
Seamsandstitchingproblemsandcauses 12712558744237-phpapp01
Seamsandstitchingproblemsandcauses 12712558744237-phpapp01Seamsandstitchingproblemsandcauses 12712558744237-phpapp01
Seamsandstitchingproblemsandcauses 12712558744237-phpapp01
 
Seams And Stitching Problems And Causes
Seams And Stitching Problems And CausesSeams And Stitching Problems And Causes
Seams And Stitching Problems And Causes
 
3D fabric
3D fabric3D fabric
3D fabric
 
Dry laid nonwoven
Dry laid nonwovenDry laid nonwoven
Dry laid nonwoven
 
Guidelines for selection of yarn
Guidelines for selection of yarnGuidelines for selection of yarn
Guidelines for selection of yarn
 
Yarn Quality part 1
Yarn Quality part 1Yarn Quality part 1
Yarn Quality part 1
 
Combing
CombingCombing
Combing
 
Class 3.pptx
Class 3.pptxClass 3.pptx
Class 3.pptx
 
Assgnment biomaterial 1
Assgnment biomaterial 1Assgnment biomaterial 1
Assgnment biomaterial 1
 
Woven and knit fabrics
Woven and knit fabricsWoven and knit fabrics
Woven and knit fabrics
 

Recently uploaded

Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
EduSkills OECD
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
GeoBlogs
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
Nguyen Thanh Tu Collection
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 
Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdf
Vivekanand Anglo Vedic Academy
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
Col Mukteshwar Prasad
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)
rosedainty
 
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
AzmatAli747758
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
RaedMohamed3
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
TechSoup
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
GeoBlogs
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
beazzy04
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 

Recently uploaded (20)

Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 
Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdf
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)Template Jadual Bertugas Kelas (Boleh Edit)
Template Jadual Bertugas Kelas (Boleh Edit)
 
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 

Mechanics of Composite Materials

  • 1. Opportunities and Challenges for Textile Reinforced Composites Christopher M. Pastore Philadelphia University Philadelphia, Pennsylvania, USA
  • 2. Textile Reinforced Composites Fiber reinforced composites whose repeating volume element (RVE) is characterized by more than one fiber orientation. Formed with hierarchical textile processes that manipulate individual fibers or yarn bundles to create an integral structure. It is possible to join various sub-assemblies together to form even more complex structures.
  • 4. Perceived Benefits Textiles are considered to have significant cost savings compared to tape lay-up. Individual layer of fabric is much thicker than tape. Fewer lay-up steps are necessary to create the final structure. Formed from dry fiber and infiltrated with resin in a secondary operation. Handling and storage requirements of the material are reduced compared to prepreg. A single product is suitable for a variety of matrix materials, reducing inventory and manufacturing costs.
  • 5. 2D and 3D Textiles Textiles are frequently classified as either 2D or 3D. Clearly all fabrics are 3D, but 2-D implies that the fabric is fundamentally thin. That is, the thickness of the fabric is formed by only 2 or 3 yarns in the thickness direction. A 3-D fabric can have substantial thickness, limited only by the machine, not some fundamental physical phenomenon.
  • 6. Types of Textiles Direct-formed fabrics are those made directly from fibers. Woven, knitted, and braided fabrics are made from manipulation of yarns. These four classes represent the vast majority of fabrics used in composite materials. woven fabrics are formed by inter-lacing yarns, knitted by inter-looping yarns, braided by inter-twining yarns, and direct formed fabrics by inter-locking fibers.
  • 7. Direct Formed Fabrics Created directly from fibers without a yarn processing step involved. No interlacing, intertwining, or interlooping of fibers within the structure. These fabrics are called nonwovens in much of the literature, despite the obvious inadequacy of this term.
  • 8. Direct Formed Fabrics Generally there are 2 steps First a web is constructed of fibers. This sets the distribution of inplane fiber orientation. Next the web is densified. This typically involves through thickness entanglement or bonding.
  • 9. Web formation Opening process: mechanically separates the fibers. Deposit fiber mass onto a belt, creating a continuous roll of lowdensity material width of roughly 1-meter and a thickness 10-20 cm called a picker lap. The fibers have a virtually uniform, random orientation in the plane, with substantial out of plane orientation. To thin the picker lap, it may be passed through a card. Individual fibers are mostly oriented in the direction of material flow through the machine. This orientation allows the fibers to pack closer than previously resulting in a thickness reduction, increased density, and a preferred distribution of fiber orientations in the machine direction. The resulting material is called a carded web.
  • 10. Densification of web The carded web may be used as input to the needle punch, or it may be cross-lapped first. The cross-lapper places carded web transverse to the machine direction allowing the preferred fiber orientation to be in the cross direction. Needle punch creates mechanical interlocking through barbed needles Bonding can be done to chemically adhere the fibers Adhesive application Thermal bonding (sacrificial low melt fibers are pre-included in the web)
  • 12. Knitted Fabrics There are two basic types of knitting - weft knitting and warp knitting. They are distinguished by the direction in which the loops are formed. Weft knitting, the most common type of knitting in the apparel industry, forms loops when yarns are moving in the weft direction, or perpendicular to the direction of fabric formation. Warp knitting differs from weft knitting in that multiple yarns are interlooped simultaneously. A set of yarns are supplied from a creel or warp beam and interlooped in the cross (course) direction.
  • 13. Jersey Knits The simplest weft knit structure is the jersey. Inherently bulky due to curvature of the yarn. The “natural” thickness of a jersey knit fabric is roughly three times the thickness of the yarns, resulting in maximum yarn packing factors of 20-25%, and thus Vf around 15%. High extensibility (up to 100% strain to failure) which allows complex shape formation capabilities.
  • 14. Rib Knits In a rib knit structure it is possible to incorporate large yarns in the weft to create a weft inserted rib knit. In such a way a “unidirectional” preform can be constructed. However it is difficult to achieve fiber volume fractions greater than 30% in these structures due to the inherent bulkiness of the fabric.
  • 16. Warp Knits In the WIWK, the load bearing yarns are locked into the structure through the knitting process
  • 17. Braiding Biaxial braided fabrics may incorporate a longitudinal yarn creating a triaxial braid. The braided fabric is characterized mainly by the braid angle, θ, (10° - 80° ). Braids are tubular and frequently compared with filament winding. They have been shown to be cost competitive. The braided fabric is flexible before formation, and thus the fabric can conform to various shapes. The braided fabric may be formed around a mandrel, and rather complex shapes can be formed.
  • 18. Braiding Braids are formed by a circular “maypole” pattern of yarn carrier motions
  • 19. Types of 2D Braids
  • 21. Woven Fabrics Generally characterized by two sets of perpendicular yarns systems One set is raised and lowered to make “sheds” (these are warp yarns) The other set is passed through these sheds, perpendicular to the warp yarns (these are fill, or pick or weft yarns)
  • 23. Woven Fabrics The structure of the woven fabric is the pattern of interlacing between the warp and weft yarns Yarns can “float”, or not interlace for some distance within a woven fabric
  • 25. Crimp in Weaves The crimp is defined as one less than the ratio of the yarn's actual length to the length of fabric it traverses. Crimp levels influence fiber volume fraction, thickness of fabric, and mechanical performance of fabric. High crimp leads to Reduced tensile and compressive properties Increased shear modulus in the dry fabric and the resulting composite Fewer regions for localized delamination between individual yarns.
  • 26. Applications of Weaves Weaves can be formed into composites with fiber volume fractions as high as 65%. High harness count satins – 8 and 12 –serve the role previously held by 0/90 tape lay-ups. There is a significant cost benefit to using the fabrics in that much fewer layers need be applied because the woven fabric is usually many times thicker than the tape (depending on the yarns used in the fabric).
  • 29. Variations in Weave Design If large yarns are used in the warp direction and small yarns are infrequently spaced in the weft direction, the resulting fabric resembles a unidirectional material. Weaves can be formed with gradients in a single or double axis by changing yarn size across the width or length Complex shapes can be achieved through “floating” and cutting yarns to reduce total number of yarns in some section of the part
  • 32. Issues with shaping woven fabrics Tailoring the cross-section of a woven fabric will generally result in a change in weave angle, a change in the distribution of longitudinal, weaver, and fill, and a change in fiber volume fraction in consequence to the change in thickness. Some fiber volume fraction effects can be controlled by tooling. The tailoring occurs in a discrete manner, using individual yarns, whereas most tooling will be approximately continuous.
  • 33. Example of single taper weave Consider a tapered panel where gradation in thickness is achieved by changing yarn size/count across the width
  • 34. Design of tapered woven panel Pick count is constant, warps and wefts per dent are modified to 18 17 16 taper 15 Z yarn path changes 14 13 to accommodate the 12 11 10 weave. Number Pick Columns per inch Picks per column Warp per dent 9 8 7 6 5 4 3 2 1 1 3 5 7 9 11 13 15 Dent 17 19 21 23 25 27 29 31
  • 35. Variation in Fiber Volume Fraction 60% This variation in yarn packing results in variations in Vf for the resulting composite. Fiber Volume Fraction 58% 56% 54% 52% 50% 48% Calculated Target 46% 44% 42% 40% 0.000 0.500 1.000 1.500 Distance from Thin Edge (in) 2.000 2.500
  • 36. Variation in weave angle The weave angle will 55 ° also change throughout the width of the part due 50 ° to varying warp yarn count and part thickness. 45 ° Weave Angle 40 ° 35 ° Calculated 30 ° Target 25 ° 0.0 0.5 1.0 1.5 Distance from Thin Edge (in) 2.0 2.5
  • 37. Yarn Distributions The distribution of warp, weft, and Z yarn will also vary throughout the part. 60% 55% 50% 45% 40% Yarn Distribution 35% %Z % Warp % Fill 30% 25% 20% 15% 0.0 0.5 1.0 1.5 Distance from Thin Edge (in) 2.0 2.5
  • 38. Variations in Modulus All mechanical properties will vary throughout the part 14 12 10 E11 Tensile Modulus (Msi) E22 E33 8 6 4 2 0 0.0 0.5 1.0 1.5 Distance from Thin Edge (in) 2.0 2.5