HDDM: Hierarchical Bayesian Drift-Diffusion Modeling Thomas V. Wiecki & Imri Sofer, Michael J. Frank
Drift-Diffusion Model
 
 
Traditional model fitting Fitting separate models to each subject Fitting one model to  all  subjects e.g. DMAT, fast-dm, EZ Ignores similarities Ignores differences Subject 1 ... Subject n P( data 1 | θ 1 ) ... P( data n | θ n ) P( data| θ ) Subject 1 ... Subject n Subject 1 ... Subject n Subject 1 ... Subject n
Hierarchical model estimation Subject 1 ... Subject n Group P( θ group |θ 1 ,  θ. , ,  θ n ) P(θ 1 |data, θ group ) ... P(θ n |data, θ group )
Hierarchical Bayesian estimation Pro Adequately maps experimental structure onto model
Needs less data for individual subject estimation
Constraining of subject parameters (helps with extreme fits)
Estimation of full posterior, not just maximum
... Contra Computationally expensive (sampling, e.g. MCMC)
Correct model behavior can be hard to assess (e.g. chain convergence)
Methods still in development
Hierarchical Bayesian estimation  (via PyMC) of parameters of the DDM in Python. Ratcliff, Vandekerckhove, Tuerlinckx, Lee, Wagenmakers Heavily  optimized  likelihood functions Navarro & Fuss (2009) likelihood
Collapsed model for inter-trial variabilities Flexible  creation of complex models tailored to specific hypotheses (e.g. separate drift-rate parameters for different stimulus types).
Several convergence and goodness-of-fit  diagnostics
Validated : integrated tests check if parameters from simulated data can be recovered HDDM
...it works!

HDDM: Hierarchical Bayesian estimation of the Drift Diffusion Model