SlideShare a Scribd company logo
Chapter 3
Determinants
Linear Algebra
Ch03_2
3.1 Introduction to Determinants
Definition
The determinant of a 2  2 matrix A is denoted |A| and is given
by
Observe that the determinant of a 2  2 matrix is given by the
different of the products of the two diagonals of the matrix.
The notation det(A) is also used for the determinant of A.
21
12
22
11
22
21
12
11
a
a
a
a
a
a
a
a


Example 1








1
3
4
2
A
14
12
2
))
3
(
4
(
)
1
2
(
1
3
4
2
)
det( 









A
Ch03_3
Definition
Let A be a square matrix.
The minor of the element aij is denoted Mij and is the determinant
of the matrix that remains after deleting row i and column j of A.
The cofactor of aij is denoted Cij and is given by
Cij = (–1)i+j Mij
Note that Cij = Mij or Mij .
Ch03_4
10
)
4
3
(
)
2
1
(
2
4
3
1
1
2
0
2
1
4
3
0
1
:
of
Minor 32
32 









M
a
3
))
2
(
2
(
)
1
1
(
1
2
2
1
1
2
0
2
1
4
3
0
1
:
of
Minor 11
11 












M
a
Example 2
Solution
Determine the minors and cofactors of the elements a11 and a32
of the following matrix A.











1
2
0
2
1
4
3
0
1
A
3
)
3
(
)
1
(
)
1
(
:
of
Cofactor 2
11
1
1
11
11 



 
M
C
a
10
)
10
(
)
1
(
)
1
(
:
of
Cofactor 5
32
2
3
32
32 




 
M
C
a
Ch03_5
Definition
The determinant of a square matrix is the sum of the products
of the elements of the first row and their cofactors.
These equations are called cofactor expansions of |A|.
n
nC
a
C
a
C
a
C
a
A
n
n
A
C
a
C
a
C
a
C
a
A
A
C
a
C
a
C
a
A
A
1
1
13
13
12
12
11
11
14
14
13
13
12
12
11
11
13
13
12
12
11
11
,
is
If
4,
4
is
If
3,
3
is
If

















Ch03_6
Example 3
Evaluate the determinant of the following matrix A.







 

1
2
4
1
0
3
1
2
1
A
Solution
2
4
0
3
)
1
)(
1
(
1
4
1
3
)
1
(
2
1
2
1
0
)
1
(
1 4
3
2
13
13
12
12
11
11









 C
a
C
a
C
a
A
6
6
2
2
)]
4
0
(
)
2
3
[(
)]
4
1
(
)
1
3
[(
2
)]
2
1
(
)
1
0
[(


















Ch03_7
Theorem 3.1
The determinant of a square matrix is the sum of the products of
the elements of any row or column and their cofactors.
ith row expansion:
jth column expansion: nj
nj
j
j
j
j
in
in
i
i
i
i
C
a
C
a
C
a
A
C
a
C
a
C
a
A










2
2
1
1
2
2
1
1
Example 4
Find the determinant of the following matrix using the second row.







 

1
2
4
1
0
3
1
2
1
A
Solution
6
6
0
12
)]
4
2
(
)
2
1
[(
1
)]
4
1
(
)
1
1
[(
0
)]
2
1
(
)
1
2
[(
3
2
4
2
1
1
1
4
1
1
0
1
2
1
2
3
23
23
22
22
21
21





























 C
a
C
a
C
a
A
Ch03_8
Example 5
Evaluate the determinant of the following 4  4 matrix.













3
0
1
0
5
3
2
7
2
0
1
0
4
0
1
2
Solution
6
)
2
3
(
6
3
1
2
1
)
2
(
3
3
1
0
2
1
0
4
1
2
3









)
(
0
)
(
3
)
(
0
)
(
0 43
33
23
13
43
43
33
33
23
23
13
13
C
C
C
C
C
a
C
a
C
a
C
a
A








Ch03_9
Example 6
Solve the following equation for the variable x.
7
2
1
1 



x
x
x
Solution
Expand the determinant to get the equation
7
)
1
)(
1
(
)
2
( 



 x
x
x
Proceed to simplify this equation and solve for x.
3
or
2
0
)
3
)(
2
(
0
6
7
1
2
2
2












x
x
x
x
x
x
x
x
There are two solutions to this equation, x = – 2 or 3.
Ch03_10
Computing Determinants of 2  2
and 3  3 Matrices







22
21
12
11
a
a
a
a
A 21
12
22
11
A a
a
a
a 











33
32
31
23
22
21
13
12
11
a
a
a
a
a
a
a
a
a
A
32
31
22
21
12
11
33
32
31
23
22
21
13
12
11
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a









left)
right to
from
products
(diagonal
right)
left to
from
products
(diagonal
A
33
21
12
32
23
11
31
22
13
32
21
13
31
23
12
33
22
11
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a







Ch03_11
Homework
Exercise 3.1 pages 161-162:
1, 3, 5, 7, 9, 11, 13
Ch03_12
Let A be an n  n matrix and c be a nonzero scalar.
(a) If then |B| = c|A|.
(b) If then |B| = –|A|.
(c) If then |B| = |A|.
3.2 Properties of Determinants
Theorem 3.2
Proof (a)
|A| = ak1Ck1 + ak2Ck2 + … + aknCkn
|B| = cak1Ck1 + cak2Ck2 + … + caknCkn
|B| = c|A|.
B
A
cRk

B
A
Rj
Ri

B
A
cRj
Ri

Ch03_13
Example 1
.
3
9
2
3
6
1
2
4
3




Solution
21
3
1
2
3
)
3
(
3
3
2
3
0
1
2
0
3
3
9
2
3
6
1
2
4
3
C3
2
C2















Evaluate the determinant
Ch03_14
Example 2
If |A| = 12 is known.
Evaluate the determinants of the following matrices.
,
10
4
2
5
2
0
3
4
1











A





































16
4
0
5
2
0
3
4
1
)
c
(
5
2
0
10
4
2
3
4
1
(b)
10
12
2
5
6
0
3
12
1
)
a
( 3
2
1 B
B
B
Solution
(a) Thus |B1| = 3|A| = 36.
(b) Thus |B2| = – |A| = –12.
(c) Thus |B3| = |A| = 12.
1
2
3
B
A
C

2
3
2
B
A
R
R 

3
1
2
3
B
A
R
R 

Ch03_15
Theorem 3.3
Let A be a square matrix. A is singular if
(a) all the elements of a row (column) are zero.
(b) two rows (columns) are equal.
(c) two rows (columns) are proportional. (i.e., Ri=cRj)
Proof
(a) Let all elements of the kth row of A be zero.
0
0
0
0 2
1
2
2
1
1 







 kn
k
k
kn
kn
k
k
k
k C
C
C
C
a
C
a
C
a
A 

(c) If Ri=cRj, then , row i of B is [0 0 … 0].
 |A|=|B|=0
B
A
cRj
Ri

Definition
A square matrix A is said to be singular if |A|=0.
A is nonsingular if |A|0.
Ch03_16
Example 3
Show that the following matrices are singular.









 














8
4
2
4
2
1
3
1
2
(b)
9
0
4
1
0
3
7
0
2
)
(a B
A
Solution
(a) All the elements in column 2 of A are zero. Thus |A| = 0.
(b) Row 2 and row 3 are proportional. Thus |B| = 0.
Ch03_17
Theorem 3.4
Let A and B be n  n matrices and c be a nonzero scalar.
(a) |cA| = cn|A|.
(b) |AB| = |A||B|.
(c) |At| = |A|.
(d) (assuming A–1 exists)
A
A
1
1


Proof
(a)
A
c
cA
cA
A n
cRn
cR
cR



...,
,
2
,
1
(d)
A
A
I
A
A
A
A
1
1 1
1
1






 


Ch03_18
Example 4
If A is a 2  2 matrix with |A| = 4, use Theorem 3.4 to compute
the following determinants.
(a) |3A| (b) |A2| (c) |5AtA–1|, assuming A–1 exists
Solution
(a) |3A| = (32)|A| = 9  4 = 36.
(b) |A2| = |AA| =|A| |A|= 4  4 = 16.
(c) |5AtA–1| = (52)|AtA–1| = 25|At||A–1| .
25
1
25 

A
A
Example 5
Prove that |A–1AtA| = |A|
Solution
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A t
t
t
t




 


 1
)
( 1
1
1
1
Ch03_19
Example 6
Prove that if A and B are square matrices of the same size, with A
being singular, then AB is also singular. Is the converse true?
Solution
()
|A| = 0  |AB| = |A||B| = 0
Thus the matrix AB is singular.
()
|AB| = 0  |A||B| = 0  |A| = 0 or |B| = 0
Thus AB being singular implies that either A or B is singular.
The inverse is not true.
Ch03_20
Homework
Exercise 3.2 pp. 170-171: 1, 3, 5, 7, 9, 13
Exercise 11
Prove the following identity without evaluating the determinants.
w
v
u
r
q
p
f
d
b
w
v
u
r
q
p
e
c
a
w
v
u
r
q
p
f
e
d
c
b
a





v
u
q
p
f
e
w
u
r
p
d
c
w
v
r
q
b
a
w
v
u
r
q
p
f
e
d
c
b
a
)
(
)
(
)
( 








Ch03_21
3.3 Numerical Evaluation of a
Determinant
Definition
A square matrix is called an upper triangular matrix if all the
elements below the main diagonal are zero.
It is called a lower triangular matrix if all the elements above the
main diagonal are zero.
triangular
upper
1
0
0
0
9
0
0
0
5
3
2
0
7
0
4
1
,
9
0
0
5
1
0
2
8
3























triangular
lower
1
8
5
4
0
2
0
7
0
0
4
1
0
0
0
8
,
8
9
3
0
1
2
0
0
7























Ch03_22
.
find
,
5
0
0
4
3
0
9
1
2
Let A
A














Theorem 3.5
The determinant of a triangular matrix is the product of its
diagonal elements.
Example 1
Proof
nn
nn
n
n
nn
n
n
nn
n
n
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a























22
11
4
44
3
34
33
22
11
3
33
2
23
22
11
2
22
1
12
11
0
0
0
0
0
0
0
0
0




.
30
)
5
(
3
2
ol. 





A
S
Numerical Evaluation of a Determinant
Ch03_23
Numerical Evaluation of a Determinant
Example 2
Evaluation the determinant.










10
9
4
4
5
2
1
4
2
8
1
0
5
1
0
1
4
2
R1
)
2
(
3
R
R1
R2
10
9
4
4
5
2
1
4
2







13
0
0
5
1
0
1
4
2
2
R3 


R
26
13
)
1
(
2 





Solution (elementary row operations)
Ch03_24
Example 3
Evaluation the determinant.
1
2
0
1
3
0
0
1
0
1
1
2
1
2
0
1


Solution
2
4
0
0
2
2
0
0
2
3
1
0
1
2
0
1
R1
R4
R1
)
1
(
R3
R1
)
2
(
R2
1
2
0
1
3
0
0
1
0
1
1
2
1
2
0
1












6
0
0
0
2
2
0
0
2
3
1
0
1
2
0
1
2R3
R4 





12
6
)
2
(
)
1
(
1 






Ch03_25
Example 4
Evaluation the determinant.
11
2
2
5
2
1
4
2
1




Solution
3
2
0
1
0
0
4
2
1
1
R
)
2
(
3
R
R1
R2
11
2
2
5
2
1
4
2
1










1
0
0
3
2
0
4
2
1
)
1
(
R3
R2





2
)
1
(
2
1
)
1
( 






Ch03_26
Example 5
Evaluation the determinant.
1
5
6
6
4
3
2
2
3
2
1
1
2
0
1
1




Solution
11
5
0
0
0
3
0
0
5
2
0
0
2
0
1
1
R1
)
6
(
R4
R1
)
2
(
R3
R1
R2
1
5
6
6
4
3
2
2
3
2
1
1
2
0
1
1












diagonal element is zero and
all elements below this
diagonal element are zero.
0

Ch03_27
3.3 Determinants, Matrix Inverse,
and Systems of Linear Equations
Definition
Let A be an n  n matrix and Cij be the cofactor of aij.
The matrix whose (i, j)th element is Cij is called the matrix of
cofactors of A.
The transpose of this matrix is called the adjoint of A and is
denoted adj(A).
cofactors
of
matrix
2
1
2
22
21
1
12
11












nn
n
n
n
n
C
C
C
C
C
C
C
C
C






matrix
adjoint
2
1
2
22
21
1
12
11
t
C
C
C
C
C
C
C
C
C
nn
n
n
n
n


















Ch03_28
Example 1
Give the matrix of cofactors and the adjoint matrix of the
following matrix A.












5
3
1
2
4
1
3
0
2
A
Solution The cofactors of A are as follows.
14
5
3
2
4
11 



C 3
5
1
2
1
12 




C 1
3
1
4
1
13 




C
9
5
3
3
0
21 




C 7
5
1
3
2
22 

C 6
3
1
0
2
23 



C
12
2
4
3
0
31 



C 1
2
1
3
2
32 




C 8
4
1
0
2
33 


C
The matrix of cofactors
of A is












8
6
1
1
7
3
12
9
14
)
(
adj A













8
1
12
6
7
9
1
3
14
The adjoint of A is
Ch03_29
Theorem 3.6
Let A be a square matrix with |A|  0. A is invertible with
)
(
adj
1
1
A
A
A 

Proof
Consider the matrix product Aadj(A). The (i, j)th element of this
product is
 
jn
in
j
i
j
i
jn
j
j
in
i
i
C
a
C
a
C
a
C
C
C
a
a
a
A
j
A
i
j
i




















2
2
1
1
2
1
2
1
))
adj(
of
(column
)
of
(row
element
th
)
,
(
Ch03_30
Therefore






j
i
j
i
A
j
i
if
0
if
element
th
)
.
(  A adj(A) = |A|In
Proof of Theorem 3.6
.
2
2
1
1 A
C
a
C
a
C
a jn
in
j
i
j
i 


 
If i = j,
If i  j, let .
by
replaced
is
B
A
Ri
Rj

.
0
So 2
2
1
1 



 B
C
a
C
a
C
a jn
in
j
i
j
i 
Since |A|  0, n
I
A
A
A 








)
(
adj
1
Similarly, .
n
I
A
A
A









)
(
adj
1
Thus )
(
adj
1
1
A
A
A 

row i = row j in B
Matrices A and B have the same cofactors
Cj1, Cj2, …, Cjn.
Ch03_31
Theorem 3.7
A square matrix A is invertible if and only if |A|  0.
Proof
() Assume that A is invertible.
 AA–1 = In.
 |AA–1| = |In|.
 |A||A–1| = 1
 |A|  0.
() Theorem 3.6 tells us that if |A|  0, then A is invertible.
A–1 exists if and only if |A|  0.
Ch03_32
Example 2
Use a determinant to find out which of the following matrices are
invertible.



































 

0
8
2
2
1
1
1
2
1
1
0
1
7
12
4
3
4
2
1
2
2
4
2
3
1
1 D
C
B
A
Solution
|A| = 5  0. A is invertible.
|B| = 0. B is singular. The inverse does not exist.
|C| = 0. C is singular. The inverse does not exist.
|D| = 2  0. D is invertible.
Ch03_33
Example 3
Use the formula for the inverse of a matrix to compute the inverse
of the matrix












5
3
1
2
4
1
3
0
2
A
Solution
|A| = 25, so the inverse of A exists.We found adj(A) in Example 1












8
6
1
1
7
3
12
9
14
)
(
adj A




































25
8
25
6
25
1
25
1
25
7
25
3
25
12
25
9
25
14
8
6
1
1
7
3
12
9
14
25
1
)
adj(
1
1
A
A
A
Ch03_34
Homework
Exercise 3.3 page 178-179: 1, 3, 5, 7.
Exercise
Show that if A = A-1, then |A| = 1.
Show that if At = A-1, then |A| = 1.
Ch03_35
Theorem 3.8
Let AX = B be a system of n linear equations in n variables.
(1) If |A|  0, there is a unique solution.
(2) If |A| = 0, there may be many or no solutions.
Proof
(1) If |A|  0
 A–1 exists (Thm 3.7)
 there is then a unique solution given by X = A–1B (Thm 2.9).
(2) If |A| = 0
 since A  C implies that if |A|0 then |C|0 (Thm 3.2).
 the reduced echelon form of A is not In.
 The solution to the system AX = B is not unique.
 many or no solutions.
Ch03_36
Example 4
Determine whether or not the following system of equations has
an unique solution.
9
4
7
5
3
4
2
2
3
3
3
2
1
3
2
1
3
2
1










x
x
x
x
x
x
x
x
x
Solution
Since
0
1
4
7
3
1
4
2
3
3


Thus the system does not have an unique solution.
Ch03_37
Theorem 3.9 Cramer’s Rule
Let AX = B be a system of n linear equations in n variables such
that |A|  0. The system has a unique solution given by
Where Ai is the matrix obtained by replacing column i of A with B.
A
A
x
A
A
x
A
A
x n
n 

 ,
...
,
, 2
2
1
1
Proof
|A|  0  the solution to AX = B is unique and is given by
B
A
A
B
A
X
)
(
adj
1
1

 
Ch03_38
xi, the ith element of X, is given by
 
)
(
1
1
)]
(
adj
of
row
[
1
2
2
1
1
2
1
2
1
ni
n
i
i
n
ni
i
i
i
C
b
C
b
C
b
A
b
b
b
C
C
C
A
B
A
i
A
x




















Thus
A
A
x i
i 
Proof of Cramer’s Rule
the cofactor expansion of |Ai|
in terms of the ith column
Ch03_39
Example 5
Solving the following system of equations using Cramer’s rule.
6
3
2
5
5
2
2
3
3
2
1
3
2
1
3
2
1











x
x
x
x
x
x
x
x
x
Solution
The matrix of coefficients A and column matrix of constants B are




















6
5
2
and
3
2
1
1
5
2
1
3
1
B
A
It is found that |A| = –3  0. Thus Cramer’s rule be applied. We
get

































6
2
1
5
5
2
2
3
1
3
6
1
1
5
2
1
2
1
3
2
6
1
5
5
1
3
2
3
2
1 A
A
A
Ch03_40
Giving
Cramer’s rule now gives
9
,
6
,
3 3
2
1 



 A
A
A
3
3
9
,
2
3
6
,
1
3
3 3
3
2
2
1
1 














A
A
x
A
A
x
A
A
x
The unique solution is .
3
,
2
,
1 3
2
1 


 x
x
x
Ch03_41
Example 6
Determine values of  for which the following system of
equations has nontrivial solutions.Find the solutions for each
value of .
0
)
1
(
2
0
)
4
(
)
2
(
2
1
2
1







x
x
x
x



Solution
homogeneous system
 x1 = 0, x2 = 0 is the trivial solution.
 nontrivial solutions exist  many solutions

  
  = – 3 or  = 2.
0
1
2
4
2







0
)
3
)(
2
( 

 

0
6
2


 

0
)
4
(
2
)
1
)(
2
( 



 


Ch03_42
 = – 3 results in the system
This system has many solutions, x1 = r, x2 = r.
0
2
2
0
2
1
2
1





x
x
x
x
 = 2 results in the system
This system has many solutions, x1 = – 3r/2, x2 = r.
0
3
2
0
6
4
2
1
2
1




x
x
x
x
Ch03_43
Homework
Exercise 3.3 pages 179-180:
9, 11, 13, 15.

More Related Content

Similar to Mat 223_Ch3-Determinants.ppt

determinants-160504230830.pdf
determinants-160504230830.pdfdeterminants-160504230830.pdf
determinants-160504230830.pdf
Praveen Kumar Verma PMP
 
determinants-160504230830_repaired.pdf
determinants-160504230830_repaired.pdfdeterminants-160504230830_repaired.pdf
determinants-160504230830_repaired.pdf
TGBSmile
 
Determinants
DeterminantsDeterminants
Determinants
Joey Valdriz
 
Determinants, crammers law, Inverse by adjoint and the applications
Determinants, crammers law,  Inverse by adjoint and the applicationsDeterminants, crammers law,  Inverse by adjoint and the applications
Determinants, crammers law, Inverse by adjoint and the applications
NikoBellic28
 
Metrix[1]
Metrix[1]Metrix[1]
Metrix[1]
Aon Narinchoti
 
Determinants and matrices.ppt
Determinants and matrices.pptDeterminants and matrices.ppt
Determinants and matrices.ppt
SauravDash10
 
ObjectiveQuestionsonEngineeringMathematicsForGATE2022.pdf
ObjectiveQuestionsonEngineeringMathematicsForGATE2022.pdfObjectiveQuestionsonEngineeringMathematicsForGATE2022.pdf
ObjectiveQuestionsonEngineeringMathematicsForGATE2022.pdf
MohammedArish6
 
nabil-201-chap-03.ppt
nabil-201-chap-03.pptnabil-201-chap-03.ppt
nabil-201-chap-03.ppt
Tigabu Yaya
 
6.5 determinant x
6.5 determinant x6.5 determinant x
6.5 determinant x
math260
 
Matrix2 english
Matrix2 englishMatrix2 english
Matrix2 english
Alfia Magfirona
 
determinant1.pdf
determinant1.pdfdeterminant1.pdf
determinant1.pdf
Litan Saha
 
Introduction of determinant
Introduction of determinantIntroduction of determinant
Introduction of determinant
Pankaj Das
 
Math 2318 - Test 3In this test we will try something differe.docx
Math 2318 - Test 3In this test we will try something differe.docxMath 2318 - Test 3In this test we will try something differe.docx
Math 2318 - Test 3In this test we will try something differe.docx
andreecapon
 
Determinants - Mathematics
Determinants - MathematicsDeterminants - Mathematics
Determinants - Mathematics
Drishti Bhalla
 
3. Matrix Algebra.ppt
3. Matrix Algebra.ppt3. Matrix Algebra.ppt
3. Matrix Algebra.ppt
Freelancers Union
 
Calculus and matrix algebra notes
Calculus and matrix algebra notesCalculus and matrix algebra notes
Calculus and matrix algebra notes
VICTOROGOT4
 
Matrix and Determinants
Matrix and DeterminantsMatrix and Determinants
Matrix and Determinants
AarjavPinara
 
Set theory and relation
Set theory and relationSet theory and relation
Set theory and relationankush_kumar
 

Similar to Mat 223_Ch3-Determinants.ppt (20)

determinants-160504230830.pdf
determinants-160504230830.pdfdeterminants-160504230830.pdf
determinants-160504230830.pdf
 
determinants-160504230830_repaired.pdf
determinants-160504230830_repaired.pdfdeterminants-160504230830_repaired.pdf
determinants-160504230830_repaired.pdf
 
Determinants
DeterminantsDeterminants
Determinants
 
Determinants, crammers law, Inverse by adjoint and the applications
Determinants, crammers law,  Inverse by adjoint and the applicationsDeterminants, crammers law,  Inverse by adjoint and the applications
Determinants, crammers law, Inverse by adjoint and the applications
 
Metrix[1]
Metrix[1]Metrix[1]
Metrix[1]
 
Determinants and matrices.ppt
Determinants and matrices.pptDeterminants and matrices.ppt
Determinants and matrices.ppt
 
ObjectiveQuestionsonEngineeringMathematicsForGATE2022.pdf
ObjectiveQuestionsonEngineeringMathematicsForGATE2022.pdfObjectiveQuestionsonEngineeringMathematicsForGATE2022.pdf
ObjectiveQuestionsonEngineeringMathematicsForGATE2022.pdf
 
nabil-201-chap-03.ppt
nabil-201-chap-03.pptnabil-201-chap-03.ppt
nabil-201-chap-03.ppt
 
Indices
IndicesIndices
Indices
 
Es272 ch4b
Es272 ch4bEs272 ch4b
Es272 ch4b
 
6.5 determinant x
6.5 determinant x6.5 determinant x
6.5 determinant x
 
Matrix2 english
Matrix2 englishMatrix2 english
Matrix2 english
 
determinant1.pdf
determinant1.pdfdeterminant1.pdf
determinant1.pdf
 
Introduction of determinant
Introduction of determinantIntroduction of determinant
Introduction of determinant
 
Math 2318 - Test 3In this test we will try something differe.docx
Math 2318 - Test 3In this test we will try something differe.docxMath 2318 - Test 3In this test we will try something differe.docx
Math 2318 - Test 3In this test we will try something differe.docx
 
Determinants - Mathematics
Determinants - MathematicsDeterminants - Mathematics
Determinants - Mathematics
 
3. Matrix Algebra.ppt
3. Matrix Algebra.ppt3. Matrix Algebra.ppt
3. Matrix Algebra.ppt
 
Calculus and matrix algebra notes
Calculus and matrix algebra notesCalculus and matrix algebra notes
Calculus and matrix algebra notes
 
Matrix and Determinants
Matrix and DeterminantsMatrix and Determinants
Matrix and Determinants
 
Set theory and relation
Set theory and relationSet theory and relation
Set theory and relation
 

More from Tigabu Yaya

ML_basics_lecture1_linear_regression.pdf
ML_basics_lecture1_linear_regression.pdfML_basics_lecture1_linear_regression.pdf
ML_basics_lecture1_linear_regression.pdf
Tigabu Yaya
 
03. Data Exploration in Data Science.pdf
03. Data Exploration in Data Science.pdf03. Data Exploration in Data Science.pdf
03. Data Exploration in Data Science.pdf
Tigabu Yaya
 
MOD_Architectural_Design_Chap6_Summary.pdf
MOD_Architectural_Design_Chap6_Summary.pdfMOD_Architectural_Design_Chap6_Summary.pdf
MOD_Architectural_Design_Chap6_Summary.pdf
Tigabu Yaya
 
MOD_Design_Implementation_Ch7_summary.pdf
MOD_Design_Implementation_Ch7_summary.pdfMOD_Design_Implementation_Ch7_summary.pdf
MOD_Design_Implementation_Ch7_summary.pdf
Tigabu Yaya
 
GER_Project_Management_Ch22_summary.pdf
GER_Project_Management_Ch22_summary.pdfGER_Project_Management_Ch22_summary.pdf
GER_Project_Management_Ch22_summary.pdf
Tigabu Yaya
 
lecture_GPUArchCUDA02-CUDAMem.pdf
lecture_GPUArchCUDA02-CUDAMem.pdflecture_GPUArchCUDA02-CUDAMem.pdf
lecture_GPUArchCUDA02-CUDAMem.pdf
Tigabu Yaya
 
lecture_GPUArchCUDA04-OpenMPHOMP.pdf
lecture_GPUArchCUDA04-OpenMPHOMP.pdflecture_GPUArchCUDA04-OpenMPHOMP.pdf
lecture_GPUArchCUDA04-OpenMPHOMP.pdf
Tigabu Yaya
 
6_RealTimeScheduling.pdf
6_RealTimeScheduling.pdf6_RealTimeScheduling.pdf
6_RealTimeScheduling.pdf
Tigabu Yaya
 
Regression.pptx
Regression.pptxRegression.pptx
Regression.pptx
Tigabu Yaya
 
lecture6.pdf
lecture6.pdflecture6.pdf
lecture6.pdf
Tigabu Yaya
 
lecture5.pdf
lecture5.pdflecture5.pdf
lecture5.pdf
Tigabu Yaya
 
lecture4.pdf
lecture4.pdflecture4.pdf
lecture4.pdf
Tigabu Yaya
 
lecture3.pdf
lecture3.pdflecture3.pdf
lecture3.pdf
Tigabu Yaya
 
lecture2.pdf
lecture2.pdflecture2.pdf
lecture2.pdf
Tigabu Yaya
 
Chap 4.ppt
Chap 4.pptChap 4.ppt
Chap 4.ppt
Tigabu Yaya
 
200402_RoseRealTime.ppt
200402_RoseRealTime.ppt200402_RoseRealTime.ppt
200402_RoseRealTime.ppt
Tigabu Yaya
 
matrixfactorization.ppt
matrixfactorization.pptmatrixfactorization.ppt
matrixfactorization.ppt
Tigabu Yaya
 
nnfl.0620.pptx
nnfl.0620.pptxnnfl.0620.pptx
nnfl.0620.pptx
Tigabu Yaya
 
L20.ppt
L20.pptL20.ppt
L20.ppt
Tigabu Yaya
 
The Jacobi and Gauss-Seidel Iterative Methods.pdf
The Jacobi and Gauss-Seidel Iterative Methods.pdfThe Jacobi and Gauss-Seidel Iterative Methods.pdf
The Jacobi and Gauss-Seidel Iterative Methods.pdf
Tigabu Yaya
 

More from Tigabu Yaya (20)

ML_basics_lecture1_linear_regression.pdf
ML_basics_lecture1_linear_regression.pdfML_basics_lecture1_linear_regression.pdf
ML_basics_lecture1_linear_regression.pdf
 
03. Data Exploration in Data Science.pdf
03. Data Exploration in Data Science.pdf03. Data Exploration in Data Science.pdf
03. Data Exploration in Data Science.pdf
 
MOD_Architectural_Design_Chap6_Summary.pdf
MOD_Architectural_Design_Chap6_Summary.pdfMOD_Architectural_Design_Chap6_Summary.pdf
MOD_Architectural_Design_Chap6_Summary.pdf
 
MOD_Design_Implementation_Ch7_summary.pdf
MOD_Design_Implementation_Ch7_summary.pdfMOD_Design_Implementation_Ch7_summary.pdf
MOD_Design_Implementation_Ch7_summary.pdf
 
GER_Project_Management_Ch22_summary.pdf
GER_Project_Management_Ch22_summary.pdfGER_Project_Management_Ch22_summary.pdf
GER_Project_Management_Ch22_summary.pdf
 
lecture_GPUArchCUDA02-CUDAMem.pdf
lecture_GPUArchCUDA02-CUDAMem.pdflecture_GPUArchCUDA02-CUDAMem.pdf
lecture_GPUArchCUDA02-CUDAMem.pdf
 
lecture_GPUArchCUDA04-OpenMPHOMP.pdf
lecture_GPUArchCUDA04-OpenMPHOMP.pdflecture_GPUArchCUDA04-OpenMPHOMP.pdf
lecture_GPUArchCUDA04-OpenMPHOMP.pdf
 
6_RealTimeScheduling.pdf
6_RealTimeScheduling.pdf6_RealTimeScheduling.pdf
6_RealTimeScheduling.pdf
 
Regression.pptx
Regression.pptxRegression.pptx
Regression.pptx
 
lecture6.pdf
lecture6.pdflecture6.pdf
lecture6.pdf
 
lecture5.pdf
lecture5.pdflecture5.pdf
lecture5.pdf
 
lecture4.pdf
lecture4.pdflecture4.pdf
lecture4.pdf
 
lecture3.pdf
lecture3.pdflecture3.pdf
lecture3.pdf
 
lecture2.pdf
lecture2.pdflecture2.pdf
lecture2.pdf
 
Chap 4.ppt
Chap 4.pptChap 4.ppt
Chap 4.ppt
 
200402_RoseRealTime.ppt
200402_RoseRealTime.ppt200402_RoseRealTime.ppt
200402_RoseRealTime.ppt
 
matrixfactorization.ppt
matrixfactorization.pptmatrixfactorization.ppt
matrixfactorization.ppt
 
nnfl.0620.pptx
nnfl.0620.pptxnnfl.0620.pptx
nnfl.0620.pptx
 
L20.ppt
L20.pptL20.ppt
L20.ppt
 
The Jacobi and Gauss-Seidel Iterative Methods.pdf
The Jacobi and Gauss-Seidel Iterative Methods.pdfThe Jacobi and Gauss-Seidel Iterative Methods.pdf
The Jacobi and Gauss-Seidel Iterative Methods.pdf
 

Recently uploaded

Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
GeoBlogs
 
How to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERPHow to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERP
Celine George
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
kaushalkr1407
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
Anna Sz.
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
Vikramjit Singh
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
DeeptiGupta154
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
Introduction to Quality Improvement Essentials
Introduction to Quality Improvement EssentialsIntroduction to Quality Improvement Essentials
Introduction to Quality Improvement Essentials
Excellence Foundation for South Sudan
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
Col Mukteshwar Prasad
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
Nguyen Thanh Tu Collection
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
PedroFerreira53928
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Thiyagu K
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
Special education needs
 

Recently uploaded (20)

Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
 
How to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERPHow to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERP
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
Polish students' mobility in the Czech Republic
Polish students' mobility in the Czech RepublicPolish students' mobility in the Czech Republic
Polish students' mobility in the Czech Republic
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
 
Overview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with MechanismOverview on Edible Vaccine: Pros & Cons with Mechanism
Overview on Edible Vaccine: Pros & Cons with Mechanism
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Introduction to Quality Improvement Essentials
Introduction to Quality Improvement EssentialsIntroduction to Quality Improvement Essentials
Introduction to Quality Improvement Essentials
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
Unit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdfUnit 2- Research Aptitude (UGC NET Paper I).pdf
Unit 2- Research Aptitude (UGC NET Paper I).pdf
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
special B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdfspecial B.ed 2nd year old paper_20240531.pdf
special B.ed 2nd year old paper_20240531.pdf
 

Mat 223_Ch3-Determinants.ppt

  • 2. Ch03_2 3.1 Introduction to Determinants Definition The determinant of a 2  2 matrix A is denoted |A| and is given by Observe that the determinant of a 2  2 matrix is given by the different of the products of the two diagonals of the matrix. The notation det(A) is also used for the determinant of A. 21 12 22 11 22 21 12 11 a a a a a a a a   Example 1         1 3 4 2 A 14 12 2 )) 3 ( 4 ( ) 1 2 ( 1 3 4 2 ) det(           A
  • 3. Ch03_3 Definition Let A be a square matrix. The minor of the element aij is denoted Mij and is the determinant of the matrix that remains after deleting row i and column j of A. The cofactor of aij is denoted Cij and is given by Cij = (–1)i+j Mij Note that Cij = Mij or Mij .
  • 4. Ch03_4 10 ) 4 3 ( ) 2 1 ( 2 4 3 1 1 2 0 2 1 4 3 0 1 : of Minor 32 32           M a 3 )) 2 ( 2 ( ) 1 1 ( 1 2 2 1 1 2 0 2 1 4 3 0 1 : of Minor 11 11              M a Example 2 Solution Determine the minors and cofactors of the elements a11 and a32 of the following matrix A.            1 2 0 2 1 4 3 0 1 A 3 ) 3 ( ) 1 ( ) 1 ( : of Cofactor 2 11 1 1 11 11       M C a 10 ) 10 ( ) 1 ( ) 1 ( : of Cofactor 5 32 2 3 32 32        M C a
  • 5. Ch03_5 Definition The determinant of a square matrix is the sum of the products of the elements of the first row and their cofactors. These equations are called cofactor expansions of |A|. n nC a C a C a C a A n n A C a C a C a C a A A C a C a C a A A 1 1 13 13 12 12 11 11 14 14 13 13 12 12 11 11 13 13 12 12 11 11 , is If 4, 4 is If 3, 3 is If                 
  • 6. Ch03_6 Example 3 Evaluate the determinant of the following matrix A.           1 2 4 1 0 3 1 2 1 A Solution 2 4 0 3 ) 1 )( 1 ( 1 4 1 3 ) 1 ( 2 1 2 1 0 ) 1 ( 1 4 3 2 13 13 12 12 11 11           C a C a C a A 6 6 2 2 )] 4 0 ( ) 2 3 [( )] 4 1 ( ) 1 3 [( 2 )] 2 1 ( ) 1 0 [(                  
  • 7. Ch03_7 Theorem 3.1 The determinant of a square matrix is the sum of the products of the elements of any row or column and their cofactors. ith row expansion: jth column expansion: nj nj j j j j in in i i i i C a C a C a A C a C a C a A           2 2 1 1 2 2 1 1 Example 4 Find the determinant of the following matrix using the second row.           1 2 4 1 0 3 1 2 1 A Solution 6 6 0 12 )] 4 2 ( ) 2 1 [( 1 )] 4 1 ( ) 1 1 [( 0 )] 2 1 ( ) 1 2 [( 3 2 4 2 1 1 1 4 1 1 0 1 2 1 2 3 23 23 22 22 21 21                               C a C a C a A
  • 8. Ch03_8 Example 5 Evaluate the determinant of the following 4  4 matrix.              3 0 1 0 5 3 2 7 2 0 1 0 4 0 1 2 Solution 6 ) 2 3 ( 6 3 1 2 1 ) 2 ( 3 3 1 0 2 1 0 4 1 2 3          ) ( 0 ) ( 3 ) ( 0 ) ( 0 43 33 23 13 43 43 33 33 23 23 13 13 C C C C C a C a C a C a A        
  • 9. Ch03_9 Example 6 Solve the following equation for the variable x. 7 2 1 1     x x x Solution Expand the determinant to get the equation 7 ) 1 )( 1 ( ) 2 (      x x x Proceed to simplify this equation and solve for x. 3 or 2 0 ) 3 )( 2 ( 0 6 7 1 2 2 2             x x x x x x x x There are two solutions to this equation, x = – 2 or 3.
  • 10. Ch03_10 Computing Determinants of 2  2 and 3  3 Matrices        22 21 12 11 a a a a A 21 12 22 11 A a a a a             33 32 31 23 22 21 13 12 11 a a a a a a a a a A 32 31 22 21 12 11 33 32 31 23 22 21 13 12 11 a a a a a a a a a a a a a a a          left) right to from products (diagonal right) left to from products (diagonal A 33 21 12 32 23 11 31 22 13 32 21 13 31 23 12 33 22 11 a a a a a a a a a a a a a a a a a a       
  • 11. Ch03_11 Homework Exercise 3.1 pages 161-162: 1, 3, 5, 7, 9, 11, 13
  • 12. Ch03_12 Let A be an n  n matrix and c be a nonzero scalar. (a) If then |B| = c|A|. (b) If then |B| = –|A|. (c) If then |B| = |A|. 3.2 Properties of Determinants Theorem 3.2 Proof (a) |A| = ak1Ck1 + ak2Ck2 + … + aknCkn |B| = cak1Ck1 + cak2Ck2 + … + caknCkn |B| = c|A|. B A cRk  B A Rj Ri  B A cRj Ri 
  • 14. Ch03_14 Example 2 If |A| = 12 is known. Evaluate the determinants of the following matrices. , 10 4 2 5 2 0 3 4 1            A                                      16 4 0 5 2 0 3 4 1 ) c ( 5 2 0 10 4 2 3 4 1 (b) 10 12 2 5 6 0 3 12 1 ) a ( 3 2 1 B B B Solution (a) Thus |B1| = 3|A| = 36. (b) Thus |B2| = – |A| = –12. (c) Thus |B3| = |A| = 12. 1 2 3 B A C  2 3 2 B A R R   3 1 2 3 B A R R  
  • 15. Ch03_15 Theorem 3.3 Let A be a square matrix. A is singular if (a) all the elements of a row (column) are zero. (b) two rows (columns) are equal. (c) two rows (columns) are proportional. (i.e., Ri=cRj) Proof (a) Let all elements of the kth row of A be zero. 0 0 0 0 2 1 2 2 1 1          kn k k kn kn k k k k C C C C a C a C a A   (c) If Ri=cRj, then , row i of B is [0 0 … 0].  |A|=|B|=0 B A cRj Ri  Definition A square matrix A is said to be singular if |A|=0. A is nonsingular if |A|0.
  • 16. Ch03_16 Example 3 Show that the following matrices are singular.                          8 4 2 4 2 1 3 1 2 (b) 9 0 4 1 0 3 7 0 2 ) (a B A Solution (a) All the elements in column 2 of A are zero. Thus |A| = 0. (b) Row 2 and row 3 are proportional. Thus |B| = 0.
  • 17. Ch03_17 Theorem 3.4 Let A and B be n  n matrices and c be a nonzero scalar. (a) |cA| = cn|A|. (b) |AB| = |A||B|. (c) |At| = |A|. (d) (assuming A–1 exists) A A 1 1   Proof (a) A c cA cA A n cRn cR cR    ..., , 2 , 1 (d) A A I A A A A 1 1 1 1 1          
  • 18. Ch03_18 Example 4 If A is a 2  2 matrix with |A| = 4, use Theorem 3.4 to compute the following determinants. (a) |3A| (b) |A2| (c) |5AtA–1|, assuming A–1 exists Solution (a) |3A| = (32)|A| = 9  4 = 36. (b) |A2| = |AA| =|A| |A|= 4  4 = 16. (c) |5AtA–1| = (52)|AtA–1| = 25|At||A–1| . 25 1 25   A A Example 5 Prove that |A–1AtA| = |A| Solution A A A A A A A A A A A A A A A A t t t t          1 ) ( 1 1 1 1
  • 19. Ch03_19 Example 6 Prove that if A and B are square matrices of the same size, with A being singular, then AB is also singular. Is the converse true? Solution () |A| = 0  |AB| = |A||B| = 0 Thus the matrix AB is singular. () |AB| = 0  |A||B| = 0  |A| = 0 or |B| = 0 Thus AB being singular implies that either A or B is singular. The inverse is not true.
  • 20. Ch03_20 Homework Exercise 3.2 pp. 170-171: 1, 3, 5, 7, 9, 13 Exercise 11 Prove the following identity without evaluating the determinants. w v u r q p f d b w v u r q p e c a w v u r q p f e d c b a      v u q p f e w u r p d c w v r q b a w v u r q p f e d c b a ) ( ) ( ) (         
  • 21. Ch03_21 3.3 Numerical Evaluation of a Determinant Definition A square matrix is called an upper triangular matrix if all the elements below the main diagonal are zero. It is called a lower triangular matrix if all the elements above the main diagonal are zero. triangular upper 1 0 0 0 9 0 0 0 5 3 2 0 7 0 4 1 , 9 0 0 5 1 0 2 8 3                        triangular lower 1 8 5 4 0 2 0 7 0 0 4 1 0 0 0 8 , 8 9 3 0 1 2 0 0 7                       
  • 22. Ch03_22 . find , 5 0 0 4 3 0 9 1 2 Let A A               Theorem 3.5 The determinant of a triangular matrix is the product of its diagonal elements. Example 1 Proof nn nn n n nn n n nn n n a a a a a a a a a a a a a a a a a a a a a a a a                        22 11 4 44 3 34 33 22 11 3 33 2 23 22 11 2 22 1 12 11 0 0 0 0 0 0 0 0 0     . 30 ) 5 ( 3 2 ol.       A S Numerical Evaluation of a Determinant
  • 23. Ch03_23 Numerical Evaluation of a Determinant Example 2 Evaluation the determinant.           10 9 4 4 5 2 1 4 2 8 1 0 5 1 0 1 4 2 R1 ) 2 ( 3 R R1 R2 10 9 4 4 5 2 1 4 2        13 0 0 5 1 0 1 4 2 2 R3    R 26 13 ) 1 ( 2       Solution (elementary row operations)
  • 24. Ch03_24 Example 3 Evaluation the determinant. 1 2 0 1 3 0 0 1 0 1 1 2 1 2 0 1   Solution 2 4 0 0 2 2 0 0 2 3 1 0 1 2 0 1 R1 R4 R1 ) 1 ( R3 R1 ) 2 ( R2 1 2 0 1 3 0 0 1 0 1 1 2 1 2 0 1             6 0 0 0 2 2 0 0 2 3 1 0 1 2 0 1 2R3 R4       12 6 ) 2 ( ) 1 ( 1       
  • 25. Ch03_25 Example 4 Evaluation the determinant. 11 2 2 5 2 1 4 2 1     Solution 3 2 0 1 0 0 4 2 1 1 R ) 2 ( 3 R R1 R2 11 2 2 5 2 1 4 2 1           1 0 0 3 2 0 4 2 1 ) 1 ( R3 R2      2 ) 1 ( 2 1 ) 1 (       
  • 26. Ch03_26 Example 5 Evaluation the determinant. 1 5 6 6 4 3 2 2 3 2 1 1 2 0 1 1     Solution 11 5 0 0 0 3 0 0 5 2 0 0 2 0 1 1 R1 ) 6 ( R4 R1 ) 2 ( R3 R1 R2 1 5 6 6 4 3 2 2 3 2 1 1 2 0 1 1             diagonal element is zero and all elements below this diagonal element are zero. 0 
  • 27. Ch03_27 3.3 Determinants, Matrix Inverse, and Systems of Linear Equations Definition Let A be an n  n matrix and Cij be the cofactor of aij. The matrix whose (i, j)th element is Cij is called the matrix of cofactors of A. The transpose of this matrix is called the adjoint of A and is denoted adj(A). cofactors of matrix 2 1 2 22 21 1 12 11             nn n n n n C C C C C C C C C       matrix adjoint 2 1 2 22 21 1 12 11 t C C C C C C C C C nn n n n n                  
  • 28. Ch03_28 Example 1 Give the matrix of cofactors and the adjoint matrix of the following matrix A.             5 3 1 2 4 1 3 0 2 A Solution The cofactors of A are as follows. 14 5 3 2 4 11     C 3 5 1 2 1 12      C 1 3 1 4 1 13      C 9 5 3 3 0 21      C 7 5 1 3 2 22   C 6 3 1 0 2 23     C 12 2 4 3 0 31     C 1 2 1 3 2 32      C 8 4 1 0 2 33    C The matrix of cofactors of A is             8 6 1 1 7 3 12 9 14 ) ( adj A              8 1 12 6 7 9 1 3 14 The adjoint of A is
  • 29. Ch03_29 Theorem 3.6 Let A be a square matrix with |A|  0. A is invertible with ) ( adj 1 1 A A A   Proof Consider the matrix product Aadj(A). The (i, j)th element of this product is   jn in j i j i jn j j in i i C a C a C a C C C a a a A j A i j i                     2 2 1 1 2 1 2 1 )) adj( of (column ) of (row element th ) , (
  • 30. Ch03_30 Therefore       j i j i A j i if 0 if element th ) . (  A adj(A) = |A|In Proof of Theorem 3.6 . 2 2 1 1 A C a C a C a jn in j i j i      If i = j, If i  j, let . by replaced is B A Ri Rj  . 0 So 2 2 1 1      B C a C a C a jn in j i j i  Since |A|  0, n I A A A          ) ( adj 1 Similarly, . n I A A A          ) ( adj 1 Thus ) ( adj 1 1 A A A   row i = row j in B Matrices A and B have the same cofactors Cj1, Cj2, …, Cjn.
  • 31. Ch03_31 Theorem 3.7 A square matrix A is invertible if and only if |A|  0. Proof () Assume that A is invertible.  AA–1 = In.  |AA–1| = |In|.  |A||A–1| = 1  |A|  0. () Theorem 3.6 tells us that if |A|  0, then A is invertible. A–1 exists if and only if |A|  0.
  • 32. Ch03_32 Example 2 Use a determinant to find out which of the following matrices are invertible.                                       0 8 2 2 1 1 1 2 1 1 0 1 7 12 4 3 4 2 1 2 2 4 2 3 1 1 D C B A Solution |A| = 5  0. A is invertible. |B| = 0. B is singular. The inverse does not exist. |C| = 0. C is singular. The inverse does not exist. |D| = 2  0. D is invertible.
  • 33. Ch03_33 Example 3 Use the formula for the inverse of a matrix to compute the inverse of the matrix             5 3 1 2 4 1 3 0 2 A Solution |A| = 25, so the inverse of A exists.We found adj(A) in Example 1             8 6 1 1 7 3 12 9 14 ) ( adj A                                     25 8 25 6 25 1 25 1 25 7 25 3 25 12 25 9 25 14 8 6 1 1 7 3 12 9 14 25 1 ) adj( 1 1 A A A
  • 34. Ch03_34 Homework Exercise 3.3 page 178-179: 1, 3, 5, 7. Exercise Show that if A = A-1, then |A| = 1. Show that if At = A-1, then |A| = 1.
  • 35. Ch03_35 Theorem 3.8 Let AX = B be a system of n linear equations in n variables. (1) If |A|  0, there is a unique solution. (2) If |A| = 0, there may be many or no solutions. Proof (1) If |A|  0  A–1 exists (Thm 3.7)  there is then a unique solution given by X = A–1B (Thm 2.9). (2) If |A| = 0  since A  C implies that if |A|0 then |C|0 (Thm 3.2).  the reduced echelon form of A is not In.  The solution to the system AX = B is not unique.  many or no solutions.
  • 36. Ch03_36 Example 4 Determine whether or not the following system of equations has an unique solution. 9 4 7 5 3 4 2 2 3 3 3 2 1 3 2 1 3 2 1           x x x x x x x x x Solution Since 0 1 4 7 3 1 4 2 3 3   Thus the system does not have an unique solution.
  • 37. Ch03_37 Theorem 3.9 Cramer’s Rule Let AX = B be a system of n linear equations in n variables such that |A|  0. The system has a unique solution given by Where Ai is the matrix obtained by replacing column i of A with B. A A x A A x A A x n n    , ... , , 2 2 1 1 Proof |A|  0  the solution to AX = B is unique and is given by B A A B A X ) ( adj 1 1   
  • 38. Ch03_38 xi, the ith element of X, is given by   ) ( 1 1 )] ( adj of row [ 1 2 2 1 1 2 1 2 1 ni n i i n ni i i i C b C b C b A b b b C C C A B A i A x                     Thus A A x i i  Proof of Cramer’s Rule the cofactor expansion of |Ai| in terms of the ith column
  • 39. Ch03_39 Example 5 Solving the following system of equations using Cramer’s rule. 6 3 2 5 5 2 2 3 3 2 1 3 2 1 3 2 1            x x x x x x x x x Solution The matrix of coefficients A and column matrix of constants B are                     6 5 2 and 3 2 1 1 5 2 1 3 1 B A It is found that |A| = –3  0. Thus Cramer’s rule be applied. We get                                  6 2 1 5 5 2 2 3 1 3 6 1 1 5 2 1 2 1 3 2 6 1 5 5 1 3 2 3 2 1 A A A
  • 40. Ch03_40 Giving Cramer’s rule now gives 9 , 6 , 3 3 2 1      A A A 3 3 9 , 2 3 6 , 1 3 3 3 3 2 2 1 1                A A x A A x A A x The unique solution is . 3 , 2 , 1 3 2 1     x x x
  • 41. Ch03_41 Example 6 Determine values of  for which the following system of equations has nontrivial solutions.Find the solutions for each value of . 0 ) 1 ( 2 0 ) 4 ( ) 2 ( 2 1 2 1        x x x x    Solution homogeneous system  x1 = 0, x2 = 0 is the trivial solution.  nontrivial solutions exist  many solutions       = – 3 or  = 2. 0 1 2 4 2        0 ) 3 )( 2 (      0 6 2      0 ) 4 ( 2 ) 1 )( 2 (        
  • 42. Ch03_42  = – 3 results in the system This system has many solutions, x1 = r, x2 = r. 0 2 2 0 2 1 2 1      x x x x  = 2 results in the system This system has many solutions, x1 = – 3r/2, x2 = r. 0 3 2 0 6 4 2 1 2 1     x x x x
  • 43. Ch03_43 Homework Exercise 3.3 pages 179-180: 9, 11, 13, 15.