Geometry - 4.4 Proving Triangles Congruent using SSS and SAS
Side-Side-Side Congruence Postulate SSS Post.  - If three sides of one triangle are congruent to three sides of a second triangle, then the two triangles are congruent. If then,
Using SSS Congruence Post. 1) 2) 1) Given 2) SSS Prove:
Side-Angle-Side Congruence Postulate SAS Post.  – If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the two triangles are congruent. If then,
 
Using SAS Congruence Post. 1) 2) 3) 1) Given 2) Vertical Angles 3) SAS Prove:
Proof 1) MB is perpendicular bisector of AP 2) <ABM and <PBM are right <‘s 3) 4) 5) 6) 1) Given 2) Def of Perpendiculars 3) Def of Bisector 4) Def of Right <‘s 5) Reflexive Property 6) SAS Given: MB is perpendicular bisector of AP Prove:
Proof 1) O is the midpoint of MQ and NP 2) 3) 4) 1) Given 2) Def of midpoint 3) Vertical Angles 4) SAS Given: O is the midpoint of MQ and NP Prove:
Proof 1) 2) 3) 1) Given 2) Reflexive Property 3) SSS Given: Prove:
Proof 1) 2) 3) 4) 1) Given 2) Alt. Int. <‘s Thm 3) Reflexive Property 4) SAS Given: Prove:
Practice Problems Pg. 266 #4, 12, 13, 15, 21, 25 #4 and 15 (prove triangles congruent only) HW Check Next Class

Lecture 4.4

  • 1.
    Geometry - 4.4Proving Triangles Congruent using SSS and SAS
  • 2.
    Side-Side-Side Congruence PostulateSSS Post. - If three sides of one triangle are congruent to three sides of a second triangle, then the two triangles are congruent. If then,
  • 3.
    Using SSS CongruencePost. 1) 2) 1) Given 2) SSS Prove:
  • 4.
    Side-Angle-Side Congruence PostulateSAS Post. – If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the two triangles are congruent. If then,
  • 5.
  • 6.
    Using SAS CongruencePost. 1) 2) 3) 1) Given 2) Vertical Angles 3) SAS Prove:
  • 7.
    Proof 1) MBis perpendicular bisector of AP 2) <ABM and <PBM are right <‘s 3) 4) 5) 6) 1) Given 2) Def of Perpendiculars 3) Def of Bisector 4) Def of Right <‘s 5) Reflexive Property 6) SAS Given: MB is perpendicular bisector of AP Prove:
  • 8.
    Proof 1) Ois the midpoint of MQ and NP 2) 3) 4) 1) Given 2) Def of midpoint 3) Vertical Angles 4) SAS Given: O is the midpoint of MQ and NP Prove:
  • 9.
    Proof 1) 2)3) 1) Given 2) Reflexive Property 3) SSS Given: Prove:
  • 10.
    Proof 1) 2)3) 4) 1) Given 2) Alt. Int. <‘s Thm 3) Reflexive Property 4) SAS Given: Prove:
  • 11.
    Practice Problems Pg.266 #4, 12, 13, 15, 21, 25 #4 and 15 (prove triangles congruent only) HW Check Next Class