SlideShare a Scribd company logo
Data	
  Analysis	
  –	
  Lab	
  II	
  
marco.braggion@unive.it	
  
Source 	
  	
  
•  Most	
  of	
  these	
  examples	
  are	
  taken	
  from	
  R	
  in	
  
Ac'on,	
  (a	
  book	
  by	
  Rob	
  Kabacoff	
  edited	
  by	
  
Manning	
  in	
  2011),	
  that	
  I	
  recommend	
  to	
  you	
  
not	
  only	
  for	
  this	
  course!	
  
A	
  simple	
  scaKerplot	
  
attach(mtcars) 	
plot(wt, mpg) 	
abline(lm(mpg~wt)) 	
title("Regression of MPG on
Weight") 	
detach(mtcars)
10

15

20

mpg

25

30

Regression of MPG on Weight

2

3

4
wt

5
Combining	
  graphs	
  on	
  one	
  window	
  
attach(mtcars) 	
par(mfrow=c(3,1)) 	
hist(wt) 	
hist(mpg) 	
hist(disp) 	
par(opar) 	
detach(mtcars)
8
4
0

Frequency

Histogram of wt

2

3

4

5

wt

6 12
0

Frequency

Histogram of mpg

10

15

20

25

30

35

mpg

0 3 6

Frequency

Histogram of disp

100

200

300
disp

400

500
Combining	
  graphs	
  (II)	
  
attach(mtcars) 	
par(mfrow=c(2,2)) #2 rows 2 cols	
plot(wt,mpg, main="Scatterplot of wt vs. mpg") 	
plot(wt,disp, main="Scatterplot of wt vs disp") 	
hist(wt, main="Histogram of wt") 	
boxplot(wt, main="Boxplot of wt")	

	
  
	
  
Scatterplot of wt vs disp

200

300

disp

20
10

100

15

mpg

25

30

400

Scatterplot of wt vs. mpg

2

3

4

5

2

3

4
wt

Histogram of wt

Boxplot of wt

4

6

3

4

2

2
0

Frequency

8

5

wt

2

3

4
wt

5

5
Simple	
  histogram	
  
hist(mtcars$mpg)	
  	
  

6
4
2
0

Frequency

8

10

12

Histogram of mtcars$mpg

10

15

20

25
mtcars$mpg

30

35
Something	
  more…	
  
•  hist(mtcars$mpg,	
  breaks=12,	
  col="red",	
  	
  
xlab="Miles	
  Per	
  Gallon",	
  main="Colored	
  
histogram	
  with	
  12	
  bins")	
  	
  
4
3
2
1
0

Frequency

5

6

7

Colored histogram with 12 bins

10

15

20

25

Miles Per Gallon

30
Superimposing	
  a	
  normal	
  curve	
  	
  
(try	
  it	
  at	
  home)	
  
4
3
2
1
0

Frequency

5

6

7

Histogram with normal curve

10

15

20

25

Miles Per Gallon

30
Boxplot	
  
25
20
15
10

Miles Per Gallon

30

Car Mileage Data

4

6
Number of Cylinders

8
ScaKerplot	
  Matrix	
  
Basic Scatter Plot Matrix
200

300

400

2

3

4

5

10 15 20 25 30

100

300

mpg

4.0

5.0

100

disp

4

5

3.0

drat

2

3

wt

10

15

20

25

30

3.0

3.5

4.0

4.5

5.0
Further	
  resources	
  
R	
  code	
  school	
  (very	
  nice	
  intro	
  for	
  newbies):	
  
hKp://tryr.codeschool.com/	
  
	
  
Quick-­‐R	
  (Rob	
  Kabacoff	
  site):	
  
hKp://www.statmethods.net/	
  
R	
  Zps	
  (very	
  detailed):	
  
hKp://pj.freefaculty.org/R/RZps.html	
  
R	
  seek	
  (google-­‐like	
  search	
  bar):	
  
hKp://www.rseek.org/	
  

More Related Content

What's hot

Java 8 Concurrency Updates
Java 8 Concurrency UpdatesJava 8 Concurrency Updates
Java 8 Concurrency Updates
Damian Łukasik
 
Control and Guidance law for Guided Bomb
Control and Guidance law for Guided BombControl and Guidance law for Guided Bomb
Control and Guidance law for Guided Bomb
Mohammed Osman
 
Ricostruzione della meteorologia urbana con WRF
Ricostruzione della meteorologia urbana con WRFRicostruzione della meteorologia urbana con WRF
Ricostruzione della meteorologia urbana con WRF
ARIANET
 
e computer notes - Date time functions
e computer notes - Date time functionse computer notes - Date time functions
e computer notes - Date time functions
ecomputernotes
 
FR3.L09 - MULTIBASELINE GRADIENT AMBIGUITY RESOLUTION TO SUPPORT MINIMUM COST...
FR3.L09 - MULTIBASELINE GRADIENT AMBIGUITY RESOLUTION TO SUPPORT MINIMUM COST...FR3.L09 - MULTIBASELINE GRADIENT AMBIGUITY RESOLUTION TO SUPPORT MINIMUM COST...
FR3.L09 - MULTIBASELINE GRADIENT AMBIGUITY RESOLUTION TO SUPPORT MINIMUM COST...
grssieee
 
OpenQuake: Impact of Engine v 1.0 launch on worldwide #seismic hazard assessm...
OpenQuake: Impact of Engine v 1.0 launch on worldwide #seismic hazard assessm...OpenQuake: Impact of Engine v 1.0 launch on worldwide #seismic hazard assessm...
OpenQuake: Impact of Engine v 1.0 launch on worldwide #seismic hazard assessm...
Global Earthquake Model Foundation
 
Acme issec
Acme issec Acme issec
Acme issec
Rajiv Ganguly
 
ENVIRON- 2006
ENVIRON- 2006ENVIRON- 2006
ENVIRON- 2006
Rajiv Ganguly
 
AeroReport-1 (1)
AeroReport-1 (1)AeroReport-1 (1)
AeroReport-1 (1)
James Cianciolo
 
WLCG-Discu
WLCG-DiscuWLCG-Discu
WLCG-Discu
guestfbf1e1
 
J07.00011 : Superconducting Parametric Cavities as an “Optical” Quantum Compu...
J07.00011 : Superconducting Parametric Cavities as an “Optical” Quantum Compu...J07.00011 : Superconducting Parametric Cavities as an “Optical” Quantum Compu...
J07.00011 : Superconducting Parametric Cavities as an “Optical” Quantum Compu...
Jimmy Shih-Chun Hung
 
CHiMaD Hackathon 2: Team mcgill
CHiMaD Hackathon 2: Team mcgillCHiMaD Hackathon 2: Team mcgill
CHiMaD Hackathon 2: Team mcgill
Daniel Wheeler
 
Killing rsm
Killing rsmKilling rsm
Modelling the Notre-Dame de Paris fire
Modelling the Notre-Dame de Paris fireModelling the Notre-Dame de Paris fire
Modelling the Notre-Dame de Paris fire
ARIANET
 
study Latent Doodle Space
study Latent Doodle Spacestudy Latent Doodle Space
study Latent Doodle Space
Chiamin Hsu
 
EMCA project_OQRelease
EMCA project_OQReleaseEMCA project_OQRelease
EMCA project_OQRelease
Global Earthquake Model Foundation
 
Midterm Presentation
Midterm PresentationMidterm Presentation
Midterm Presentation
Matthew Haveard
 
7B_3_Matterhorn on the horizon
7B_3_Matterhorn on the horizon7B_3_Matterhorn on the horizon
7B_3_Matterhorn on the horizon
GISRUK conference
 
Using Singular Spectrum Analysis to Model Electricity Prices
Using Singular Spectrum Analysis  to Model Electricity PricesUsing Singular Spectrum Analysis  to Model Electricity Prices
Using Singular Spectrum Analysis to Model Electricity Prices
NicolasRR
 
Interazione tra isola di calore urbana e la variabilità micrometeorologica in...
Interazione tra isola di calore urbana e la variabilità micrometeorologica in...Interazione tra isola di calore urbana e la variabilità micrometeorologica in...
Interazione tra isola di calore urbana e la variabilità micrometeorologica in...
ARIANET
 

What's hot (20)

Java 8 Concurrency Updates
Java 8 Concurrency UpdatesJava 8 Concurrency Updates
Java 8 Concurrency Updates
 
Control and Guidance law for Guided Bomb
Control and Guidance law for Guided BombControl and Guidance law for Guided Bomb
Control and Guidance law for Guided Bomb
 
Ricostruzione della meteorologia urbana con WRF
Ricostruzione della meteorologia urbana con WRFRicostruzione della meteorologia urbana con WRF
Ricostruzione della meteorologia urbana con WRF
 
e computer notes - Date time functions
e computer notes - Date time functionse computer notes - Date time functions
e computer notes - Date time functions
 
FR3.L09 - MULTIBASELINE GRADIENT AMBIGUITY RESOLUTION TO SUPPORT MINIMUM COST...
FR3.L09 - MULTIBASELINE GRADIENT AMBIGUITY RESOLUTION TO SUPPORT MINIMUM COST...FR3.L09 - MULTIBASELINE GRADIENT AMBIGUITY RESOLUTION TO SUPPORT MINIMUM COST...
FR3.L09 - MULTIBASELINE GRADIENT AMBIGUITY RESOLUTION TO SUPPORT MINIMUM COST...
 
OpenQuake: Impact of Engine v 1.0 launch on worldwide #seismic hazard assessm...
OpenQuake: Impact of Engine v 1.0 launch on worldwide #seismic hazard assessm...OpenQuake: Impact of Engine v 1.0 launch on worldwide #seismic hazard assessm...
OpenQuake: Impact of Engine v 1.0 launch on worldwide #seismic hazard assessm...
 
Acme issec
Acme issec Acme issec
Acme issec
 
ENVIRON- 2006
ENVIRON- 2006ENVIRON- 2006
ENVIRON- 2006
 
AeroReport-1 (1)
AeroReport-1 (1)AeroReport-1 (1)
AeroReport-1 (1)
 
WLCG-Discu
WLCG-DiscuWLCG-Discu
WLCG-Discu
 
J07.00011 : Superconducting Parametric Cavities as an “Optical” Quantum Compu...
J07.00011 : Superconducting Parametric Cavities as an “Optical” Quantum Compu...J07.00011 : Superconducting Parametric Cavities as an “Optical” Quantum Compu...
J07.00011 : Superconducting Parametric Cavities as an “Optical” Quantum Compu...
 
CHiMaD Hackathon 2: Team mcgill
CHiMaD Hackathon 2: Team mcgillCHiMaD Hackathon 2: Team mcgill
CHiMaD Hackathon 2: Team mcgill
 
Killing rsm
Killing rsmKilling rsm
Killing rsm
 
Modelling the Notre-Dame de Paris fire
Modelling the Notre-Dame de Paris fireModelling the Notre-Dame de Paris fire
Modelling the Notre-Dame de Paris fire
 
study Latent Doodle Space
study Latent Doodle Spacestudy Latent Doodle Space
study Latent Doodle Space
 
EMCA project_OQRelease
EMCA project_OQReleaseEMCA project_OQRelease
EMCA project_OQRelease
 
Midterm Presentation
Midterm PresentationMidterm Presentation
Midterm Presentation
 
7B_3_Matterhorn on the horizon
7B_3_Matterhorn on the horizon7B_3_Matterhorn on the horizon
7B_3_Matterhorn on the horizon
 
Using Singular Spectrum Analysis to Model Electricity Prices
Using Singular Spectrum Analysis  to Model Electricity PricesUsing Singular Spectrum Analysis  to Model Electricity Prices
Using Singular Spectrum Analysis to Model Electricity Prices
 
Interazione tra isola di calore urbana e la variabilità micrometeorologica in...
Interazione tra isola di calore urbana e la variabilità micrometeorologica in...Interazione tra isola di calore urbana e la variabilità micrometeorologica in...
Interazione tra isola di calore urbana e la variabilità micrometeorologica in...
 

Viewers also liked

Data Handling
Data HandlingData Handling
Data Handling
keithpeter
 
Data Analysis Presentation
Data Analysis PresentationData Analysis Presentation
Data Analysis Presentation
unmgrc
 
Praktyczne przykłady sukcesu biznesowego z użyciem wyszukiwarki Google- szans...
Praktyczne przykłady sukcesu biznesowego z użyciem wyszukiwarki Google- szans...Praktyczne przykłady sukcesu biznesowego z użyciem wyszukiwarki Google- szans...
Praktyczne przykłady sukcesu biznesowego z użyciem wyszukiwarki Google- szans...
Robert Stolarczyk
 
Introduction to the guide of uncertainty in measurement
Introduction to the guide of uncertainty in measurementIntroduction to the guide of uncertainty in measurement
Introduction to the guide of uncertainty in measurement
Maurice Maeck
 
Calibrationofglassware2016
Calibrationofglassware2016Calibrationofglassware2016
Calibrationofglassware2016
Abhilasha Pandey
 
Research methods workshop data analysis
Research methods workshop data analysisResearch methods workshop data analysis
Research methods workshop data analysis
Katrina Pritchard
 
Topic 2 error & uncertainty- part 3
Topic 2  error & uncertainty- part 3Topic 2  error & uncertainty- part 3
Topic 2 error & uncertainty- part 3
Noel Gallagher
 
Measurement & uncertainty pp presentation
Measurement & uncertainty pp presentationMeasurement & uncertainty pp presentation
Measurement & uncertainty pp presentation
simonandisa
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statistics
Tarun Gehlot
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
Pauline Velarde
 
Using Topological Data Analysis on your BigData
Using Topological Data Analysis on your BigDataUsing Topological Data Analysis on your BigData
Using Topological Data Analysis on your BigData
AnalyticsWeek
 
Physics 1.2b Errors and Uncertainties
Physics 1.2b Errors and UncertaintiesPhysics 1.2b Errors and Uncertainties
Physics 1.2b Errors and Uncertainties
JohnPaul Kennedy
 
Presentation and analysis and interpretation of data
Presentation and analysis  and interpretation of dataPresentation and analysis  and interpretation of data
Presentation and analysis and interpretation of data
Lovely Ann Azanza
 
Data Analysis, Presentation and Interpretation of Data
Data Analysis, Presentation and Interpretation of DataData Analysis, Presentation and Interpretation of Data
Data Analysis, Presentation and Interpretation of Data
Roqui Malijan
 
Chapter 4
Chapter 4Chapter 4
Chapter 4 presentation of data
Chapter 4 presentation of dataChapter 4 presentation of data
Chapter 4 presentation of data
Polytechnic University of the Philippines
 
Data analysis powerpoint
Data analysis powerpointData analysis powerpoint
Data analysis powerpoint
Sarah Hallum
 
Data analysis powerpoint
Data analysis powerpointData analysis powerpoint
Data analysis powerpoint
jamiebrandon
 
Chapter 10-DATA ANALYSIS & PRESENTATION
Chapter 10-DATA ANALYSIS & PRESENTATIONChapter 10-DATA ANALYSIS & PRESENTATION
Chapter 10-DATA ANALYSIS & PRESENTATION
Ludy Mae Nalzaro,BSM,BSN,MN
 
Quantitative Data Analysis
Quantitative Data AnalysisQuantitative Data Analysis
Quantitative Data Analysis
Asma Muhamad
 

Viewers also liked (20)

Data Handling
Data HandlingData Handling
Data Handling
 
Data Analysis Presentation
Data Analysis PresentationData Analysis Presentation
Data Analysis Presentation
 
Praktyczne przykłady sukcesu biznesowego z użyciem wyszukiwarki Google- szans...
Praktyczne przykłady sukcesu biznesowego z użyciem wyszukiwarki Google- szans...Praktyczne przykłady sukcesu biznesowego z użyciem wyszukiwarki Google- szans...
Praktyczne przykłady sukcesu biznesowego z użyciem wyszukiwarki Google- szans...
 
Introduction to the guide of uncertainty in measurement
Introduction to the guide of uncertainty in measurementIntroduction to the guide of uncertainty in measurement
Introduction to the guide of uncertainty in measurement
 
Calibrationofglassware2016
Calibrationofglassware2016Calibrationofglassware2016
Calibrationofglassware2016
 
Research methods workshop data analysis
Research methods workshop data analysisResearch methods workshop data analysis
Research methods workshop data analysis
 
Topic 2 error & uncertainty- part 3
Topic 2  error & uncertainty- part 3Topic 2  error & uncertainty- part 3
Topic 2 error & uncertainty- part 3
 
Measurement & uncertainty pp presentation
Measurement & uncertainty pp presentationMeasurement & uncertainty pp presentation
Measurement & uncertainty pp presentation
 
Error analysis statistics
Error analysis   statisticsError analysis   statistics
Error analysis statistics
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
Using Topological Data Analysis on your BigData
Using Topological Data Analysis on your BigDataUsing Topological Data Analysis on your BigData
Using Topological Data Analysis on your BigData
 
Physics 1.2b Errors and Uncertainties
Physics 1.2b Errors and UncertaintiesPhysics 1.2b Errors and Uncertainties
Physics 1.2b Errors and Uncertainties
 
Presentation and analysis and interpretation of data
Presentation and analysis  and interpretation of dataPresentation and analysis  and interpretation of data
Presentation and analysis and interpretation of data
 
Data Analysis, Presentation and Interpretation of Data
Data Analysis, Presentation and Interpretation of DataData Analysis, Presentation and Interpretation of Data
Data Analysis, Presentation and Interpretation of Data
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
Chapter 4 presentation of data
Chapter 4 presentation of dataChapter 4 presentation of data
Chapter 4 presentation of data
 
Data analysis powerpoint
Data analysis powerpointData analysis powerpoint
Data analysis powerpoint
 
Data analysis powerpoint
Data analysis powerpointData analysis powerpoint
Data analysis powerpoint
 
Chapter 10-DATA ANALYSIS & PRESENTATION
Chapter 10-DATA ANALYSIS & PRESENTATIONChapter 10-DATA ANALYSIS & PRESENTATION
Chapter 10-DATA ANALYSIS & PRESENTATION
 
Quantitative Data Analysis
Quantitative Data AnalysisQuantitative Data Analysis
Quantitative Data Analysis
 

Similar to Data Analysis Second Lab

MLMM_16_08_2022.pdf
MLMM_16_08_2022.pdfMLMM_16_08_2022.pdf
MLMM_16_08_2022.pdf
LorenzoCampoli1
 
CarProject
CarProjectCarProject
CarProject
Shirley Law
 
EM_and_Dynamic_Modeling_of_an_Maglev
EM_and_Dynamic_Modeling_of_an_MaglevEM_and_Dynamic_Modeling_of_an_Maglev
EM_and_Dynamic_Modeling_of_an_Maglev
Nirmal Paudel
 
Efficient Implementation of Self-Organizing Map for Sparse Input Data
Efficient Implementation of Self-Organizing Map for Sparse Input DataEfficient Implementation of Self-Organizing Map for Sparse Input Data
Efficient Implementation of Self-Organizing Map for Sparse Input Data
ymelka
 
ME 644 Trebuchet Parametric Design Optimization
ME 644 Trebuchet Parametric Design OptimizationME 644 Trebuchet Parametric Design Optimization
ME 644 Trebuchet Parametric Design Optimization
Benjamin Johnson
 
Thesis
ThesisThesis
FR4.L09.5 - THREE DIMENSIONAL RECONSTRUCTION OF URBAN AREAS USING JOINTLY PHA...
FR4.L09.5 - THREE DIMENSIONAL RECONSTRUCTION OF URBAN AREAS USING JOINTLY PHA...FR4.L09.5 - THREE DIMENSIONAL RECONSTRUCTION OF URBAN AREAS USING JOINTLY PHA...
FR4.L09.5 - THREE DIMENSIONAL RECONSTRUCTION OF URBAN AREAS USING JOINTLY PHA...
grssieee
 
gmrit-cse
gmrit-csegmrit-cse
gmrit-cse
Ayyarao T S L V
 
Self-Balancing Multimemetic Algorithms in Dynamic Scale-Free Networks
Self-Balancing Multimemetic Algorithms in Dynamic Scale-Free NetworksSelf-Balancing Multimemetic Algorithms in Dynamic Scale-Free Networks
Self-Balancing Multimemetic Algorithms in Dynamic Scale-Free Networks
Rafael Nogueras
 
Novel unified finite element schemes for computational solid mechanics based ...
Novel unified finite element schemes for computational solid mechanics based ...Novel unified finite element schemes for computational solid mechanics based ...
Novel unified finite element schemes for computational solid mechanics based ...
CHENNAKESAVA KADAPA
 
ICML2016: Low-rank tensor completion: a Riemannian manifold preconditioning a...
ICML2016: Low-rank tensor completion: a Riemannian manifold preconditioning a...ICML2016: Low-rank tensor completion: a Riemannian manifold preconditioning a...
ICML2016: Low-rank tensor completion: a Riemannian manifold preconditioning a...
Hiroyuki KASAI
 
Computation Assignment Help
Computation Assignment Help Computation Assignment Help
Computation Assignment Help
Programming Homework Help
 
ALEA:Fine-grain Energy Profiling with Basic Block sampling
ALEA:Fine-grain Energy Profiling with Basic Block samplingALEA:Fine-grain Energy Profiling with Basic Block sampling
ALEA:Fine-grain Energy Profiling with Basic Block sampling
Lev Mukhanov
 
Web design ing
Web design ingWeb design ing
Web design ing
Stefanos Anastasiadis
 
EENG519FinalProjectReport
EENG519FinalProjectReportEENG519FinalProjectReport
EENG519FinalProjectReport
Daniel K
 
Linear models
Linear modelsLinear models
Linear models
FAO
 
WaReS Validation Report
WaReS Validation ReportWaReS Validation Report
WaReS Validation Report
Marine Analytica
 
A study of the worst case ratio of a simple algorithm for simple assembly lin...
A study of the worst case ratio of a simple algorithm for simple assembly lin...A study of the worst case ratio of a simple algorithm for simple assembly lin...
A study of the worst case ratio of a simple algorithm for simple assembly lin...
narmo
 
Boosting the Performance of Nested Spatial Mapping with Unequal Modulation in...
Boosting the Performance of Nested Spatial Mapping with Unequal Modulation in...Boosting the Performance of Nested Spatial Mapping with Unequal Modulation in...
Boosting the Performance of Nested Spatial Mapping with Unequal Modulation in...
Ealwan Lee
 
VKI_RVAD_2005_Application_of_a_Lattice_Boltzmann_Code
VKI_RVAD_2005_Application_of_a_Lattice_Boltzmann_CodeVKI_RVAD_2005_Application_of_a_Lattice_Boltzmann_Code
VKI_RVAD_2005_Application_of_a_Lattice_Boltzmann_Code
Norbert Gruen
 

Similar to Data Analysis Second Lab (20)

MLMM_16_08_2022.pdf
MLMM_16_08_2022.pdfMLMM_16_08_2022.pdf
MLMM_16_08_2022.pdf
 
CarProject
CarProjectCarProject
CarProject
 
EM_and_Dynamic_Modeling_of_an_Maglev
EM_and_Dynamic_Modeling_of_an_MaglevEM_and_Dynamic_Modeling_of_an_Maglev
EM_and_Dynamic_Modeling_of_an_Maglev
 
Efficient Implementation of Self-Organizing Map for Sparse Input Data
Efficient Implementation of Self-Organizing Map for Sparse Input DataEfficient Implementation of Self-Organizing Map for Sparse Input Data
Efficient Implementation of Self-Organizing Map for Sparse Input Data
 
ME 644 Trebuchet Parametric Design Optimization
ME 644 Trebuchet Parametric Design OptimizationME 644 Trebuchet Parametric Design Optimization
ME 644 Trebuchet Parametric Design Optimization
 
Thesis
ThesisThesis
Thesis
 
FR4.L09.5 - THREE DIMENSIONAL RECONSTRUCTION OF URBAN AREAS USING JOINTLY PHA...
FR4.L09.5 - THREE DIMENSIONAL RECONSTRUCTION OF URBAN AREAS USING JOINTLY PHA...FR4.L09.5 - THREE DIMENSIONAL RECONSTRUCTION OF URBAN AREAS USING JOINTLY PHA...
FR4.L09.5 - THREE DIMENSIONAL RECONSTRUCTION OF URBAN AREAS USING JOINTLY PHA...
 
gmrit-cse
gmrit-csegmrit-cse
gmrit-cse
 
Self-Balancing Multimemetic Algorithms in Dynamic Scale-Free Networks
Self-Balancing Multimemetic Algorithms in Dynamic Scale-Free NetworksSelf-Balancing Multimemetic Algorithms in Dynamic Scale-Free Networks
Self-Balancing Multimemetic Algorithms in Dynamic Scale-Free Networks
 
Novel unified finite element schemes for computational solid mechanics based ...
Novel unified finite element schemes for computational solid mechanics based ...Novel unified finite element schemes for computational solid mechanics based ...
Novel unified finite element schemes for computational solid mechanics based ...
 
ICML2016: Low-rank tensor completion: a Riemannian manifold preconditioning a...
ICML2016: Low-rank tensor completion: a Riemannian manifold preconditioning a...ICML2016: Low-rank tensor completion: a Riemannian manifold preconditioning a...
ICML2016: Low-rank tensor completion: a Riemannian manifold preconditioning a...
 
Computation Assignment Help
Computation Assignment Help Computation Assignment Help
Computation Assignment Help
 
ALEA:Fine-grain Energy Profiling with Basic Block sampling
ALEA:Fine-grain Energy Profiling with Basic Block samplingALEA:Fine-grain Energy Profiling with Basic Block sampling
ALEA:Fine-grain Energy Profiling with Basic Block sampling
 
Web design ing
Web design ingWeb design ing
Web design ing
 
EENG519FinalProjectReport
EENG519FinalProjectReportEENG519FinalProjectReport
EENG519FinalProjectReport
 
Linear models
Linear modelsLinear models
Linear models
 
WaReS Validation Report
WaReS Validation ReportWaReS Validation Report
WaReS Validation Report
 
A study of the worst case ratio of a simple algorithm for simple assembly lin...
A study of the worst case ratio of a simple algorithm for simple assembly lin...A study of the worst case ratio of a simple algorithm for simple assembly lin...
A study of the worst case ratio of a simple algorithm for simple assembly lin...
 
Boosting the Performance of Nested Spatial Mapping with Unequal Modulation in...
Boosting the Performance of Nested Spatial Mapping with Unequal Modulation in...Boosting the Performance of Nested Spatial Mapping with Unequal Modulation in...
Boosting the Performance of Nested Spatial Mapping with Unequal Modulation in...
 
VKI_RVAD_2005_Application_of_a_Lattice_Boltzmann_Code
VKI_RVAD_2005_Application_of_a_Lattice_Boltzmann_CodeVKI_RVAD_2005_Application_of_a_Lattice_Boltzmann_Code
VKI_RVAD_2005_Application_of_a_Lattice_Boltzmann_Code
 

Recently uploaded

Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
James Anderson
 
Artificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopmentArtificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopment
Octavian Nadolu
 
20240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 202420240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 2024
Matthew Sinclair
 
Video Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the FutureVideo Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the Future
Alpen-Adria-Universität
 
Microsoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdfMicrosoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdf
Uni Systems S.M.S.A.
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
ControlCase
 
Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
Safe Software
 
UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6
DianaGray10
 
Introduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - CybersecurityIntroduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - Cybersecurity
mikeeftimakis1
 
“I’m still / I’m still / Chaining from the Block”
“I’m still / I’m still / Chaining from the Block”“I’m still / I’m still / Chaining from the Block”
“I’m still / I’m still / Chaining from the Block”
Claudio Di Ciccio
 
みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...
みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...
みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...
名前 です男
 
Communications Mining Series - Zero to Hero - Session 1
Communications Mining Series - Zero to Hero - Session 1Communications Mining Series - Zero to Hero - Session 1
Communications Mining Series - Zero to Hero - Session 1
DianaGray10
 
Pushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 daysPushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 days
Adtran
 
National Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practicesNational Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practices
Quotidiano Piemontese
 
Data structures and Algorithms in Python.pdf
Data structures and Algorithms in Python.pdfData structures and Algorithms in Python.pdf
Data structures and Algorithms in Python.pdf
TIPNGVN2
 
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
Neo4j
 
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
SOFTTECHHUB
 
“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...
“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...
“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...
Edge AI and Vision Alliance
 
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdfObservability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Paige Cruz
 
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdfUnlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Malak Abu Hammad
 

Recently uploaded (20)

Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
Alt. GDG Cloud Southlake #33: Boule & Rebala: Effective AppSec in SDLC using ...
 
Artificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopmentArtificial Intelligence for XMLDevelopment
Artificial Intelligence for XMLDevelopment
 
20240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 202420240605 QFM017 Machine Intelligence Reading List May 2024
20240605 QFM017 Machine Intelligence Reading List May 2024
 
Video Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the FutureVideo Streaming: Then, Now, and in the Future
Video Streaming: Then, Now, and in the Future
 
Microsoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdfMicrosoft - Power Platform_G.Aspiotis.pdf
Microsoft - Power Platform_G.Aspiotis.pdf
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
 
Essentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FMEEssentials of Automations: The Art of Triggers and Actions in FME
Essentials of Automations: The Art of Triggers and Actions in FME
 
UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6UiPath Test Automation using UiPath Test Suite series, part 6
UiPath Test Automation using UiPath Test Suite series, part 6
 
Introduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - CybersecurityIntroduction to CHERI technology - Cybersecurity
Introduction to CHERI technology - Cybersecurity
 
“I’m still / I’m still / Chaining from the Block”
“I’m still / I’m still / Chaining from the Block”“I’m still / I’m still / Chaining from the Block”
“I’m still / I’m still / Chaining from the Block”
 
みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...
みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...
みなさんこんにちはこれ何文字まで入るの?40文字以下不可とか本当に意味わからないけどこれ限界文字数書いてないからマジでやばい文字数いけるんじゃないの?えこ...
 
Communications Mining Series - Zero to Hero - Session 1
Communications Mining Series - Zero to Hero - Session 1Communications Mining Series - Zero to Hero - Session 1
Communications Mining Series - Zero to Hero - Session 1
 
Pushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 daysPushing the limits of ePRTC: 100ns holdover for 100 days
Pushing the limits of ePRTC: 100ns holdover for 100 days
 
National Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practicesNational Security Agency - NSA mobile device best practices
National Security Agency - NSA mobile device best practices
 
Data structures and Algorithms in Python.pdf
Data structures and Algorithms in Python.pdfData structures and Algorithms in Python.pdf
Data structures and Algorithms in Python.pdf
 
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
GraphSummit Singapore | Neo4j Product Vision & Roadmap - Q2 2024
 
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
Goodbye Windows 11: Make Way for Nitrux Linux 3.5.0!
 
“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...
“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...
“Building and Scaling AI Applications with the Nx AI Manager,” a Presentation...
 
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdfObservability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
Observability Concepts EVERY Developer Should Know -- DeveloperWeek Europe.pdf
 
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdfUnlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
Unlock the Future of Search with MongoDB Atlas_ Vector Search Unleashed.pdf
 

Data Analysis Second Lab