SlideShare a Scribd company logo
1/38
Novel unified finite element schemes for computational
solid mechanics based on B´ezier elements
Chennakesava Kadapa
Swansea Academy of Advanced Computing
Email: c.kadapa@swansea.ac.uk
UKACM 2019 Conference, London, 10-12 April, 2019.
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 1 / 38
2/38
Introduction
Introduction
Why do we need new finite element techniques for solid mechanics?
Lack of
Accurate, robust and computationally efficient
Explicit schemes for elastodynamics and wave propagation
Incompressible material models
Polymers
Biological soft tissues
Soils
With solid-solid contact
Adaptive refinement
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 2 / 38
3/38
Introduction
Explicit schemes - introduction
Governing equations in infinitesimal (small) strain regime
ρ
∂2
u
∂t2
− · σ = f in Ω (1a)
u = g on ΓD (1b)
σ · n = t on ΓN (1c)
u(x, 0) = u0 in Ω (1d)
v(x, 0) = v0 in Ω (1e)
Finite element discretisation with u = Nu u
M a + Fint
= Fext
(2)
M =
Ω
ρ NT
u Nu dΩ, Fint
=
Ω
BT
σ dΩ
Fext
=
Ω
NT
u f dΩ +
ΓN
NT
u t dΓ
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 3 / 38
4/38
Introduction
Explicit schemes - introduction (cont’d)
Chung and Lee scheme [1]
M an+1 = Fext
n − Fint
n (3a)
un+1 = un + ∆t vn + ∆t2 1
2
− β an + β an+1 (3b)
vn+1 = vn + ∆t [(1 − γ) an + γ an+1] (3c)
∆t = CFL
h
c
(4)
Mass lumping for M
1
3
1
3
1
3
1
4
1
4
1
4
1
4
Advantages
No need for matrix solvers
Computationally appealing for dynamic
problems with short-term response
Blast and impact loading
Wave propagation
Dynamic fracture
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 4 / 38
5/38
Introduction
Explicit schemes - fundamental issues
1
3
1
3
1
3
(a) Row-Sum
1
4
1
4
1
4
1
4
(b) Row-Sum
0 0
0
1
3
1
3
1
3
(c) Row-Sum
3/57 3/57
3/57
16/57
16/5716/57
(d) Proportional
Figure: Lagrange elements: mass contribution for each node using mass lumping
Issues (for compressible linear elastic materials (ν < 0.35))
Linear triangle/tetrahedron - stiff behaviour, especially in bending
Linear quad/hex - difficulty in mesh generation for complex 3D geometries
Quadratic tria/tetra - not recommended for contact problems in dynamics
ANSYS explicit - does not support any higher-order elements
Abaqus explicit - C3D10M but is very expensive
Cubic and higher-order - very expensive for any practical applications.
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 5 / 38
6/38
Introduction
Explicit schemes - additional issues due to incompressibility
At this point we are practically left with linear triangular/tetrahedral elements
only for which
Pure displacement formulation results in
Volumetric and shear locking
Spurious oscillations in pressure field
Reduced integration
Not applicable
Selective reduced integration
Not applicable
B-bar formulation
Not applicable
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 6 / 38
7/38
Literature
Literature
1.) Fractional-step-based projection schemes by Zienkiewicz and co. [2]
2.) Averaged nodal pressure approach by Bonet and Burton [3]
3.) Stabilised nodally integrated elements by Puso and Solberg [4]
4.) F-bar patch for triangular/tetrahedral elements by de Souza Neto et al. [5]
5.) F-bar aided edge-based smoothed method by Onishi et al. [6]
6.) D-VMS mixed formulations by Scovazzi et al [7, 8, 9]
7.) Mixed displacement-stress & displacement-strain by Cervera et al. [10, 11]
8.) First-order conservation laws by Bonet and Gil group [12, 13]
Disadvantages
First-order accuracy for stresses
Significant number of additional variables for second-order accurate stresses
Ad-hoc stabilisation parameters that control accuracy and stability
Unsuitability of dynamic variables to elastostatic problems (occupy major
share of problems in solid mechanics)
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 7 / 38
8/38
B´ezier elements
Alternatives and a solution
Sticking with the Lagrange elements does not offer efficient solutions.
Isogeometric analysis (IGA) - B-Splines, NURBS, T-Splines etc.
Explicit dynamics - Anitescu et al [14], Evans et al [15]
× Major portion of research on IGA is limited to tensor-product meshes.
× No preprocessors (mesh generators) for IGA.
× Pose difficulties in applying Dirichlet BCs.
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 8 / 38
8/38
B´ezier elements
Alternatives and a solution
Sticking with the Lagrange elements does not offer efficient solutions.
Isogeometric analysis (IGA) - B-Splines, NURBS, T-Splines etc.
Explicit dynamics - Anitescu et al [14], Evans et al [15]
× Major portion of research on IGA is limited to tensor-product meshes.
× No preprocessors (mesh generators) for IGA.
× Pose difficulties in applying Dirichlet BCs.
But
Relax requirements on isogeometry.
For practical applications, quadratic elements are sufficient enough.
For quadratic non-isogeometric B´ezier elements, existing mesh generators can
be leveraged by exploiting the properties of B´ezier curve.
Dirichlet BCs can be applied using elimination approach.
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 8 / 38
9/38
B´ezier elements
Quadratic B´ezier elements - properties
P1(X1) P2(X2)
P3(X3)
P4
X4
P5
X5
P6
X6
(a) Curved edges
P1(X1) P2(X2)
P3(X3)
P4(X4)
P5(X5)P6(X6)
(b) Straight edges
Figure: Quadratic B´ezier triangle.
- Control point. - Node.
0
1
0.2
0.4
1
0.6
0.8
2
0.8
0.5 0.6
1
1
0.4
0.2
0 0
0
1
0.2
0.4
0.6
0.8
1
2
0.5
1
0.8
1
0.6
0.4
0.2
0 0
0
1
0.2
0.4
1
0.6
0.8
2
0.8
0.5 0.6
1
1
0.4
0.2
0 0
0
1
0.2
0.4
1
0.6
0.8
2
0.8
0.5 0.6
1
1
0.4
0.2
0 0
0
1
0.2
0.4
1
0.6
0.8
2
0.8
0.5 0.6
1
1
0.4
0.2
0 0
0
1
0.2
0.4
1
0.6
0.8
2
0.8
0.5 0.6
1
1
0.4
0.2
0 0
Figure: Shape functions
Advantages
Non-negative basis functions
Mass lumping - ideal for explicit schemes
Uniform nodal loads due to applied pressure
Smooth curve/surface - good for contacts
1
6
1
6
1
6
1
6
1
6
1
6
Figure: Row-sum lumping
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 9 / 38
10/38
B´ezier elements
Quadratic B´ezier elements - mesh generation
P1(X1) P3(X3)
P2
X2
(a) Curved edge
P1(X1) P3(X3)P2(X2)
(b) Straight edge
Figure: Quadratic B´ezier
curve
A point at parametric coordinate, ξ(0 ≤ ξ ≤ 1)
X(ξ) = (1 − ξ)2
P1 + 2 ξ (1 − ξ) P2 + ξ2
P3
X(ξ = 0) = P1 = X1
X(ξ = 1) = P3 = X3
For any other ξ = ˆξ corresponding to node X2,
P2 =
1
2 ˆξ (1 − ˆξ)
X2 − (1 − ˆξ)2
X1 − ˆξ2
X3 (5)
When X2 is exactly in the middle, then ξ = ˆξ = 0.5.
P2 = 2 [X2 − 0.25 X1 − 0.25 X3] (6)
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 10 / 38
11/38
B´ezier elements
Quadratic B´ezier elements - mesh generation
P1(X1) P2(X2)
P3(X3)
P4
X4
P5
X5
P6
X6
Figure: Quadratic B´ezier triangle
P1 = X1
P2 = X2
P3 = X3
P4 = 2 [X4 − 0.25 X1 − 0.25 X2]
P5 = 2 [X5 − 0.25 X2 − 0.25 X3]
P6 = 2 [X6 − 0.25 X3 − 0.25 X1]
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 11 / 38
12/38
B´ezier elements
Quadratic B´ezier elements - Dirichlet BCs
Mesh generation
P1 = X1
P2 = X2
P3 = X3
P4 = 2 [X4 − 0.25 X1 − 0.25 X2]
P5 = 2 [X5 − 0.25 X2 − 0.25 X3]
P6 = 2 [X6 − 0.25 X3 − 0.25 X1]
Dirichlet BCs
uB
1 = uL
1
uB
2 = uL
2
uB
3 = uL
3
uB
4 = 2 uL
4 − 0.25 uL
1 − 0.25 uL
2
uB
5 = 2 uL
5 − 0.25 uL
2 − 0.25 uL
3
uB
6 = 2 uL
6 − 0.25 uL
3 − 0.25 uL
1
0.4 0.8 1.2 1.6
-log(h)
10−8
10−6
10−4
10−2
errornorm
1.0
3.0
1.0
2.0
L2 error
H1 error
0.4 0.8 1.2 1.6
-log(h)
10−8
10−6
10−4
10−2
errornorm
1.0
3.0
1.0
2.0
L2 error
H1 error
Figure: Poisson equation with solution u(r, θ) = 2
3
(r − 1
r
) sin θ
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 12 / 38
13/38
B-bar formulation
B-bar formulation - behaviour in bending (Kadapa [16])
0 10 20 30 40 50 60
Number of elements per side
0
2
4
6
8
10
Y-displacementofthetip(mm)
Ref
TRI3
TRIB6
TRIB6B
(a) Convergence
-14.00
-7.00
0.00
7.00
-20.00
12.00
pressure
(b) Pressure - TRIB6
-14.00
-7.00
0.00
7.00
-20.00
12.00
pressure
(c) Pressure - TRIB6B
0 5 10 15 20
Number of elements along length
0
10
20
30
40
50
60
70
Y-displacementofthetip
TET4
TETB10
TETB10B
(a) Convergence
-3.25 0.00 3.25-7.00 6.00
pressure
(b) TETB10
-3.25 0.00 3.25-7.00 6.00
pressure
(c) TETB10B
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 13 / 38
14/38
B-bar formulation
B-bar formulation - elastodynamics - complex geometries
(a) Mesh M1 (b) Mesh M2
0.000 0.005 0.010 0.015 0.020
Time (s)
−20
−15
−10
−5
0
5
10
15
20
Y-displacementofpointA(mm)
TETB10-M1
TETB10-M2
TETB10B-M1
TETB10B-M2
(c) Time Vs Displacement
0.0e+00
-2.0e+06
2.0e+06
sigma_xx
(a) TETB10
0.0e+00
-2.0e+06
2.0e+06
sigma_xx
(b) TETB10B
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 14 / 38
15/38
F-bar formulation
F-bar formulation
0 10 20 30 40 50 60 70
Number of elements per side
0
2
4
6
8
10
Y-displacementofpointA
Reference
TRIB6
Q2/Q2-SD
TRIB6F
(a) Convergence
-13.6
-7.2
-0.8
5.6
-20.0
12.0
pressure
(b) TRIB6
-13.6
-7.2
-0.8
5.6
-20.0
12.0
pressure
(c) TRIB6F
-1.0e+05
3.0e+05
7.0e+05
1.1e+06
-5.0e+05
1.5e+06
pressure
(a) Implicit
-1.0e+05
3.0e+05
7.0e+05
1.1e+06
-5.0e+05
1.5e+06
pressure
(b) Explicit
Issues
No reduction in number of load steps
Requires excessive numerical damping for
high-frequency modes
TVD-RK2 method - not computationally
appealing due to two-stage process
Not applicable for truly incompressible
models
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 15 / 38
16/38
Mixed formulation
Mixed displacement-pressure formulation (Kadapa [17])
Modified Cauchy stress:
σ = σdev + m p (7)
Nearly incompressible materials:
p = κ mT
ε − Small strains (8)
p =
∂U
∂J
− Finite strains (9)
Static and implicit elastodynamics:
Kuu Kup
Kpu Kpp
∆u
∆p = −
Ru
Rp
(10)
Explicit elastodynamics:
Muu an+1 = Fext
n − Fint,mixed
n (11)
un+1 = un + ∆t vn + ∆t2 1
2
− β an + β an+1 (12)
vn+1 = vn + ∆t [(1 − γ) an + γ an+1] (13)
Mpp pn+1 =
Ω
NT
p κ mT
εn+1 dΩ − Small strains (14)
Mpp pn+1 =
Ω
NT
p
∂U
∂J un+1
dΩ − Finite strains (15)
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 16 / 38
17/38
Mixed formulation
Displacement-pressure combinations - Inf-Sup stability and Accuracy
BT2/BT0 — Quadratic B´ezier triangle/tetrahedron for displacement
and element-wise constant value for pressure (25%)
BT2/BT1 — Quadratic B´ezier triangle/tetrahedron for displacement
and linear B´ezier triangle/tetrahedron for pressure (5%)
0.1 0.4 0.7 1.0 1.3
-log(h)
−2.5
−2.0
−1.5
−1.0
−0.5
0.0
log(βh)
BT2/BT0 (2D)
BT2/BT0 (3D)
BT2/BT1 (2D)
BT2/BT1 (3D)
(a) Inf-Sup constants
0.0 0.3 0.6 0.9 1.2 1.5 1.8
-log(h)
10−10
10−8
10−6
10−4
10−2
100
102
errornorm
1
4.2
1
2.1
1
2
1
1
||eu||L2 (BT2/BT0)
||eu||L2 (BT2/BT1)
||eσ||L2 (BT2/BT0)
||eσ||L2 (BT2/BT1)
(b) 2D problem
0.0 0.3 0.6 0.9 1.2 1.5
-log(h)
10−10
10−8
10−6
10−4
10−2
100
102
errornorm
1
4.2
1
2.1
1
1.8
1 0.5
||eu||L2 (BT2/BT0)
||eu||L2 (BT2/BT1)
||eσ||L2 (BT2/BT0)
||eσ||L2 (BT2/BT1)
(c) 3D problem
Figure: Stability and accuracy characteristics.
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 17 / 38
18/38
Fully-Explicit scheme - examples
Mixed formulation - examples - elastostatics
0 5 10 15 20
Number of elements per side
0
20
40
60
80
100
120
%Compression
p/p0 =20
p/p0 =40
p/p0 =60
p/p0 =80
Reference
BT2
BT2/BT0
BT2/BT1
Q2/Q2-SD
(a) Convergence
-186.0
-124.0
-62.0
0.0
-250.0
60.0
pressure
(b) BT2
-186.0
-124.0
-62.0
0.0
-250.0
60.0
pressure
(c) BT2/BT0
-186.0
-124.0
-62.0
0.0
-250.0
60.0
pressure
(d) BT2/BT1
Figure: Compression of block: Neo-Hookean model, ν = 0.4999.
0 25 50 75 100 125 150 175 200
Z-displacement of point A (x-1)
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Loadfactor
Reference
M1-BT2
M1-BT2/BT0
M1-BT2/BT1
M2-BT2
M2-BT2/BT0
M2-BT2/BT1
(a) Convergence
-3.00e+05
-1.00e+05
1.00e+05
3.00e+05
-5.00e+05
5.00e+05
sigma_zz
(b) BT2
-3.00e+05
-1.00e+05
1.00e+05
3.00e+05
-5.00e+05
5.00e+05
sigma_zz
(c) BT2/BT0
-3.00e+05
-1.00e+05
1.00e+05
3.00e+05
-5.00e+05
5.00e+05
sigma_zz
(d) BT2/BT1
Figure: Compression of block: Neo-Hookean model, ν = 0.3.
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 18 / 38
19/38
Fully-Explicit scheme - examples
Mixed formulation - examples - elastodynamics
-1.0e+05
3.0e+05
7.0e+05
1.1e+06
-5.0e+05
1.5e+06
pressure
(i) (ii) (iii) (iv)
Figure: Neo-Hookean model, ν = 0.499.
Implicit or Explicit.
0 10 20 30 40 50 60 70 80
Time (μs)
3
4
5
6
7
8
Radius(mm)
Reference
BT2-Implicit
BT2-Explicit
BT2/BT0-Implicit
BT2/BT0-Explicit
BT2/BT1-Implicit
BT2/BT1-Explicit
-140.0
-70.0
0.0
70.0
-200.0
150.0
pressure
Figure: Elastoplastic. Implicit or Explicit.
0.0 0.2 0.4 0.6 0.8 1.0
Time (ms)
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
Radialdisplacement(in)
Experiment
Belytschko-Tsay (fine)
NURBS-Shell-p4
BT2-Explicit
BT2/BT0-Explicit
BT2/BT1-Explicit
(a) Comparison
-1.00e+04
0.00e+00
1.00e+04
2.00e+04
-2.00e+04
3.00e+04
pressure
(b) BT2
-1.00e+04
0.00e+00
1.00e+04
2.00e+04
-2.00e+04
3.00e+04
pressure
(c) BT2/BT1
Figure: Elastoplastic. Implicit or Explicit.
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 19 / 38
20/38
Semi-implicit scheme
Semi-implicit scheme for mixed formulation
Weak form:
Muu an+1 +
Ω
BT
m pn+1 dΩ = Fext
n −
Ω
BT
σdev(un) dΩ (16)
Ω
NT
p mT
εn+1 −
pn+1
κ
dΩ = 0 (17)
Discretised system:
Kuu Kup
Kpu Kpp
∆u
∆p = −
Ru
Rp
(18)
where Kuu =
αm
β∆t2
Muu; Kpp = −
Ω
1
κ
NT
p Np dΩ
Solution: ∆p = S−1
−Rp + Kpu K−1
uu Ru (19)
∆u = K−1
uu [−Ru − Kup ∆p] (20)
Schur complement, S = Kpp − Kpu K−1
uu Kup (21)
Advantages:
Using BT2/BT1 element, size of S is only about 5% of that of global matrix.
Critical time step is limited only by shear wave speed
Straightforward to add contacts - Lagrange multipliers or penalty or Nitsche
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 20 / 38
21/38
Semi-implicit scheme
Semi-implicit scheme - Fully-Explicit Vs Semi-Implicit
(a) M1 (b) M2
0 5 10 15 20 25 30 35 40
Time (ms)
−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0
Y-displacement(cm)
Explicit
Semi-implicit
(c) M1, ν = 0.45
0 5 10 15 20 25 30 35 40
Time (ms)
−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0
Y-displacement(cm)
Explicit
Semi-implicit
(d) M1, ν = 0.499
Figure: Twisting column: Neo-Hookean model.
ν = 0.3 ν = 0.45 ν = 0.48 ν = 0.499 ν = 0.49999
Mesh M1
Fully-explicit (FE) 10.8 17.6 27.4 119.2 1171.7
Semi-implicit (SI) 9.9 9.4 9.6 9.1 9.1
Ratio (FE/SI) 1.1 1.9 2.9 13.1 128.8
Mesh M2
Fully-explicit (FE) 161.7 286.8 429.8 1857.4 17838.1
Semi-implicit (SI) 199.1 188.3 185.9 183.0 183.0
Ratio (FE/SI) 0.8 1.5 2.3 10.1 97.5
Table: Twisting column: time taken in seconds for each simulation to reach 10 ms.
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 21 / 38
22/38
Semi-implicit scheme
Semi-implicit scheme - Fully-Implicit Vs Semi-Implicit
0 5 10 15 20 25 30 35 40
Time (ms)
−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0
Y-displacement(cm)
Implicit (CM)
Implicit (LM)
Semi-implicit
(a) M1
0 5 10 15 20 25 30 35 40
Time (ms)
−1.5
−1.0
−0.5
0.0
0.5
1.0
1.5
2.0
Y-displacement(cm)
Implicit (CM)
Implicit (LM)
Semi-implicit
(b) M2
1.29e+04
3.57e+04
5.86e+04
8.14e+04
1.04e+05
1.27e+05
-1.00e+04
1.50e+05
pressure
(c) FI
1.29e+04
3.57e+04
5.86e+04
8.14e+04
1.04e+05
1.27e+05
-1.00e+04
1.50e+05
pressure
(d) SI
Figure: Twisting column: Neo-Hookean model, ν = 0.5.
Mesh M1 Mesh M2
Fully-implicit scheme (FI) 319 12884
Semi-implicit scheme (SI) 10 218
Ratio (FI/SI) 32 60
Table: Twisting column: time taken in seconds for each simulation to reach 10 ms.
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 22 / 38
23/38
Semi-implicit scheme
Semi-implicit scheme - complex geometry and wave propagation
-0.2 0.0 0.2-0.5 0.5
pressure
0.0 1.2 2.4 3.6-1.0 5.0
pressure
Figure: Stent model: Ogden model with ν = 0.5.
0.1 0.2 0.3 0.40.0 0.5
Displacement
-3.0 0.0 3.0-7.9 7.3
sigma_xy
Figure: Wave propagation: shear wave in linear elastic medium, ν = 0.5.
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 23 / 38
24/38
Summary
Summary
Novel unified finite element formulations using B´ezier elements
Introduced B-bar and F-bar formulations for BT2 element
Introduced BT2/BT0 and BT2/BT1 elements
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 24 / 38
25/38
Summary
Acknowledgements
Acknowledges the support of the Supercomputing Wales project, which is
part-funded by the European Regional Development Fund (ERDF) via the Welsh
Government.
Thank you
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 25 / 38
26/38
References
References I
J. Chung and J. M. Lee.
A new family of explicit time integration methods for linear and non-linear structural
dynamics.
International Journal for Numerical Methods in Engineering, 37:3961–3976, 1994.
O. C. Zienkiewicz, J. Rojek, R. L. Taylor, and M. Pastor.
Triangles and Tetrahedra in explicit dynamic codes for solids.
International Journal for Numerical Methods in Engineering, 43:565–583, 1998.
J. Bonet and A. J. Burton.
A simple average nodal pressure tetrahedral element for incompressible and nearly
incompressible dynamic explicit applications.
Communications in Numerical Methods in Engineering, 14:437–449, 1998.
M. A. Puso and J. Solberg.
A stabilized nodally integrated tetrahedral.
International Journal of Numerical Methods in Engineering, 67:841–867, 2006.
E. A. de Souza Neto, F. M. Andrade Pires, and D. R. J. Owen.
F-bar-based linear triangles and tetrahedra for finite strain analysis of nearly incompressible
solids. Part I: formulation and benchmarking.
International Journal of Numerical Methods in Engineering, 62:353–383, 2005.
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 26 / 38
27/38
References
References II
Y. Onishi, R. Iida, and K. Amaya.
F-bar aided edge-based smoothed finite element method using tetrahedral elements for
finite deformation analysis of nearly incompressible solids.
International Journal for Numerical Methods in Engineering, 109:1582–1606, 2017.
G. Scovazzi, B. Carnes, X. Zeng, and S. Rossi.
A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and
fully incompressible solid dynamics: a dynamic variational multiscale approach.
International Journal for Numerical Methods in Engineering, 106:799–839, 2016.
S. Rossi, N. Abboud, and G. Scovazzi.
Implicit finite incompressible elastodynamics with linear finite elements: A stabilized
method in rate form.
Computer Methods in Applied Mechanics and Engineering, 311:208–249, 2016.
G. Scovazzi, T. Song, and X. Zeng.
A velocity/stress mixed stabilized nodal finite element for elastodynamics: Analysis and
computations with strongly and weakly enforced boundary conditions.
Computer Methods in Applied Mechanics and Engineering, 325:532–576, 2017.
M. Cervera, M. Chiumenti, and R. Codina.
Mixed stabilized finite element methods in nonlinear solid mechanics. Part I: formulation.
Computer Methods in Applied Mechanics and Engineering, 199:2559–2570, 2010.
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 27 / 38
28/38
References
References III
M. Cervera, M. Chiumenti, and R. Codina.
Mixed stabilized finite element methods in nonlinear solid mechanics. Part II: strain
localization.
Computer Methods in Applied Mechanics and Engineering, 199:2571–2589, 2010.
A. J. Gil, C. H. Lee, J. Bonet, and M. Aguirre.
A stabilised Petrov-Galerkin formulation for linear tetrahedral elements in compressible,
nearly incompressible and truly incompressible fast dynamics.
Computer Methods in Applied Mechanics and Engineering, 276:659–690, 2014.
J. Bonet, A. J. Gil, C. H. Lee, M. Aguirre, and R. Ortigosa.
A first order hyperbolic framework for large strain computational solid dynamics. Part I:
total Lagrangian isothermal elasticity.
Computer Methods in Applied Mechanics and Engineering, 283:689–732, 2015.
C. Anitescu, C. Nguyen, T. Rabczuk, and X. Zhuang.
Isogeometric analysis for explicit elastodynamics using a dual-basis diagonal mass
formulation.
Computer Methods in Applied Mechanics and Engineering, 346:574–591, 2019.
J. A. Evans, R. R. Hiemstra, T. J. R. Hughes, and A. Reali.
Explicit higher-order accurate isogeometric collocation methods for structural dynamics.
Computer Methods in Applied Mechanics and Engineering, 338:208–240, 2018.
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 28 / 38
29/38
References
References IV
C. Kadapa.
Novel quadratic B´ezier triangular and tetrahedral elements using existing mesh generators:
Applications to linear nearly incompressible elastostatics and implicit and explicit
elastodynamics.
International Journal for Numerical Methods in Engineering, 117:543–573, 2019.
C. Kadapa.
Novel quadratic B´ezier triangular and tetrahedral elements using existing mesh generators:
Extension to nearly incompressible implicit and explicit elastodynamics in finite strains.
International Journal for Numerical Methods in Engineering, 2019.
T. J. R. Hughes.
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis.
Dover Publications, 2000.
E. A. de Souza Neto, D. Peri´c, and D. R. J. Owen.
Computational Methods for Plasticity, Theory and Applications.
John Wiley and Sons, United Kingdom, 2008.
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 29 / 38
30/38
References
Appendix
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 30 / 38
31/38
Appendix
B-bar formulation - basics
Idea: Hughes [18]
¯σ = D ¯ε, ¯ε = Idev ε + ¯εvol, ¯εvol =
1
V e
Ωe
εvol dΩ (22)
Fint,Bbar
=
Ω
¯BT
¯σ dΩ (23)
¯Ba =










( ¯B1 + 2B1)/3 ( ¯B2 − B2)/3 ( ¯B3 − B3)/3
( ¯B1 − B1)/3 ( ¯B2 + 2B2)/3 ( ¯B3 − B3)/3
( ¯B1 − B1)/3 ( ¯B2 − B2)/3 ( ¯B3 + 2B3)/3
B2 B1 0
0 B3 B2
B3 0 B1










(24)
B1 =
∂Na
∂x
; B2 =
∂Na
∂y
; B3 =
∂Na
∂z
(25)
¯B1 =
1
V e
Ωe
∂Na
∂x
dΩ; ¯B2 =
1
V e
Ωe
∂Na
∂y
dΩ; ¯B3 =
1
V e
Ωe
∂Na
∂z
dΩ. (26)
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 31 / 38
32/38
Appendix
B-bar formulation - Implicit and explicit schemes
Implicit scheme:
M an+αm + K un+αf = Fext
n+αf
(27)
where, K =
Ω
¯BT
D¯B dΩ. (28)
Explicit scheme:
Muu an+1 = Fext
n − Fint,Bbar
n
un+1 = un + ∆t vn + ∆t2 1
2
− β an + β an+1
vn+1 = vn + ∆t [(1 − γ) an + γ an+1]
Fint,Bbar
n =
Ω
¯BT
Ω ¯σn dΩ
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 32 / 38
33/38
Appendix
B-bar formulation - Thick cylinder under internal pressure
−2.0 −1.5 −1.0 −0.5
-log(h)
10−8
10−6
10−4
10−2
100
102
L2
errornormindisplacement
1.0
2.0
1.0
3.0
TRI3
TRIB6
TRIB6B
(a) ν = 0.3
−2.0 −1.5 −1.0 −0.5
-log(h)
10−8
10−6
10−4
10−2
100
102
L2
errornormindisplacement
1.0
2.0
1.0
3.0
TRI3
TRIB6
TRIB6B
(b) ν = 0.48
−2.0 −1.5 −1.0 −0.5
-log(h)
10−8
10−6
10−4
10−2
100
102
L2
errornormindisplacement
1.0
2.2
1.0
3.0
TRI3
TRIB6
TRIB6B
(c) ν = 0.49999
−2.0 −1.5 −1.0 −0.5
-log(h)
10−6
10−4
10−2
100
102
L2
errornorminstress
1.0
1.0
1.0
2.0
TRI3
TRIB6
TRIB6B
(d) ν = 0.3
−2.0 −1.5 −1.0 −0.5
-log(h)
10−6
10−4
10−2
100
102
L2
errornorminstress
1.0
1.0
1.0
2.0
TRI3
TRIB6
TRIB6B
(e) ν = 0.48
−2.0 −1.5 −1.0 −0.5
-log(h)
10−6
10−4
10−2
100
102
L2
errornorminstress
1.0
2.0
TRI3
TRIB6
TRIB6B
(f) ν = 0.49999
Figure: Error norms in displacement and stress
-0.06
0
0.06
0.12
-0.10
0.17
sigma_xx
(a) Displacement
formulation
-0.06
0
0.06
0.12
-0.10
0.17
sigma_xx
(b) B-bar formulation
Figure: σxx stress
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 33 / 38
34/38
Appendix
B-bar formulation - Thick sphere under internal pressure
−2.25 −2.00 −1.50 −1.00 −0.75
-log(h)
10−6
10−4
10−2
100
102
L2
errornormindisplacement
1.0
2.0
1.0
3.0
TET4
TETB10
TETB10B
(a) ν = 0.3
−2.25 −2.00 −1.50 −1.00 −0.75
-log(h)
10−6
10−4
10−2
100
102
L2
errornormindisplacement
1.0
1.8
1.0
3.0
TET4
TETB10
TETB10B
(b) ν = 0.48
−2.25 −2.00 −1.50 −1.00 −0.75
-log(h)
10−6
10−4
10−2
100
102
L2
errornormindisplacement
1.0
3.0
TET4
TETB10
TETB10B
(c) ν = 0.49999
−2.25 −2.00 −1.50 −1.00 −0.75
-log(h)
10−2
100
102
104
L2
errornorminstress
1.0
1.0
1.0
2.0
TET4
TETB10
TETB10B
(d) ν = 0.3
−2.25 −2.00 −1.50 −1.00 −0.75
-log(h)
10−2
100
102
104
L2
errornorminstress
1.0
0.75
1.0
2.0
TET4
TETB10
TETB10B
(e) ν = 0.48
−2.25 −2.00 −1.50 −1.00 −0.75
-log(h)
10−2
100
102
104
L2
errornorminstress 1.0
0.75
1.0
2.0
TET4
TETB10
TETB10B
(f) ν = 0.49999
Figure: Error norms in displacement and stress
-0.080
-0.040
0.000
0.040
-0.098
0.071
sigma_xx
(a) Displacement
formulation
-0.080
-0.040
0.000
0.040
-0.098
0.071
sigma_xx
(b) B-bar formulation
Figure: σxx stress
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 34 / 38
35/38
Appendix
B-bar formulation - behaviour in bending
0 10 20 30 40 50 60
Number of elements per side
0
2
4
6
8
10
Y-displacementofthetip(mm)
Ref
TRI3
TRIB6
TRIB6B
(a) Convergence
-14.00
-7.00
0.00
7.00
-20.00
12.00
pressure
(b) Pressure - TRIB6
-14.00
-7.00
0.00
7.00
-20.00
12.00
pressure
(c) Pressure - TRIB6B
0 5 10 15 20
Number of elements along length
0
10
20
30
40
50
60
70
Y-displacementofthetip
TET4
TETB10
TETB10B
(a) Convergence
-3.25 0.00 3.25-7.00 6.00
pressure
(b) TETB10
-3.25 0.00 3.25-7.00 6.00
pressure
(c) TETB10B
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 35 / 38
36/38
Appendix
B-bar formulation - elastodynamics - complex geometries
(a) Mesh M1 (b) Mesh M2
0.000 0.005 0.010 0.015 0.020
Time (s)
−20
−15
−10
−5
0
5
10
15
20
Y-displacementofpointA(mm)
TETB10-M1
TETB10-M2
TETB10B-M1
TETB10B-M2
(c) Time Vs Displacement
0.0e+00
-2.0e+06
2.0e+06
sigma_xx
(a) TETB10
0.0e+00
-2.0e+06
2.0e+06
sigma_xx
(b) TETB10B
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 36 / 38
37/38
Appendix
F-bar formulation - Implicit and explicit schemes
Idea: de Souza Neto et al [19]
¯σ = σ(¯F), ¯F =
J0
J
1
dim
F, J = detF, J0 = J|centroid (29)
Implicit scheme:
αm
β ∆t2
M + αf (KM + KG + Kq) ∆u = −R (30)
KM =
ω
BT
D B dω, KG =
ω
GT
Σ G dω, Kq =
ω
GT
q (G0 − G) dω (31)
Explicit scheme:
Muu an+1 = Fext
n − Fint,Fbar
n
un+1 = un + ∆t vn + ∆t2 1
2
− β an + β an+1
vn+1 = vn + ∆t [(1 − γ) an + γ an+1]
Fint,Fbar
=
ω
BT
ω ¯σ dω
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 37 / 38
38/38
Appendix
F-bar formulation - results and issues
0 10 20 30 40 50 60 70
Number of elements per side
0
2
4
6
8
10
Y-displacementofpointA
Reference
TRIB6
Q2/Q2-SD
TRIB6F
(a) Convergence
-13.6
-7.2
-0.8
5.6
-20.0
12.0
pressure
(b) TRIB6
-13.6
-7.2
-0.8
5.6
-20.0
12.0
pressure
(c) TRIB6F
-1.0e+05
3.0e+05
7.0e+05
1.1e+06
-5.0e+05
1.5e+06
pressure
(a) Implicit
-1.0e+05
3.0e+05
7.0e+05
1.1e+06
-5.0e+05
1.5e+06
pressure
(b) Explicit
Issues
No reduction in number of load steps
Requires excessive numerical damping for
high-frequency modes
TVD-RK2 method - not computationally
appealing due to two-stage process
Not applicable for truly incompressible
models
Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 38 / 38

More Related Content

What's hot

QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
The Statistical and Applied Mathematical Sciences Institute
 
EH1 - Reduced-order modelling for vibration energy harvesting
EH1 - Reduced-order modelling for vibration energy harvestingEH1 - Reduced-order modelling for vibration energy harvesting
EH1 - Reduced-order modelling for vibration energy harvesting
University of Glasgow
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
The Statistical and Applied Mathematical Sciences Institute
 
Steady state analysis of 5 phase symmetric power system networks displaying r...
Steady state analysis of 5 phase symmetric power system networks displaying r...Steady state analysis of 5 phase symmetric power system networks displaying r...
Steady state analysis of 5 phase symmetric power system networks displaying r...
Alexander Decker
 
SPECTRAL FINITE ELEMENTAL METHOD-SHM
SPECTRAL FINITE ELEMENTAL METHOD-SHMSPECTRAL FINITE ELEMENTAL METHOD-SHM
SPECTRAL FINITE ELEMENTAL METHOD-SHMMallesh N G
 
Ica group 3[1]
Ica group 3[1]Ica group 3[1]
Ica group 3[1]
Apoorva Srinivasan
 
PCA on graph/network
PCA on graph/networkPCA on graph/network
PCA on graph/network
Daisuke Yoneoka
 
Free vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using femFree vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using fem
Osama Mohammed Elmardi Suleiman
 
Influence of Design Parameters on the Singularities and Workspace of a 3-RPS ...
Influence of Design Parameters on the Singularities and Workspace of a 3-RPS ...Influence of Design Parameters on the Singularities and Workspace of a 3-RPS ...
Influence of Design Parameters on the Singularities and Workspace of a 3-RPS ...
Dr. Ranjan Jha
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
The Statistical and Applied Mathematical Sciences Institute
 
Delta Like Robot
Delta Like RobotDelta Like Robot
Delta Like Robot
Dr. Ranjan Jha
 
Spacey random walks and higher-order data analysis
Spacey random walks and higher-order data analysisSpacey random walks and higher-order data analysis
Spacey random walks and higher-order data analysis
David Gleich
 
Principal Component Analysis for Tensor Analysis and EEG classification
Principal Component Analysis for Tensor Analysis and EEG classificationPrincipal Component Analysis for Tensor Analysis and EEG classification
Principal Component Analysis for Tensor Analysis and EEG classification
Tatsuya Yokota
 
An Algebraic Method to Check the Singularity-Free Paths for Parallel Robots
An Algebraic Method to Check the Singularity-Free Paths for Parallel RobotsAn Algebraic Method to Check the Singularity-Free Paths for Parallel Robots
An Algebraic Method to Check the Singularity-Free Paths for Parallel Robots
Dr. Ranjan Jha
 
Ph.D. Thesis : Ranjan JHA : Contributions to the Performance Analysis of Para...
Ph.D. Thesis : Ranjan JHA : Contributions to the Performance Analysis of Para...Ph.D. Thesis : Ranjan JHA : Contributions to the Performance Analysis of Para...
Ph.D. Thesis : Ranjan JHA : Contributions to the Performance Analysis of Para...
Dr. Ranjan Jha
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
The Statistical and Applied Mathematical Sciences Institute
 
Talk given at the Workshop in Catania University
Talk given at the Workshop in Catania University Talk given at the Workshop in Catania University
Talk given at the Workshop in Catania University
Marco Frasca
 
Big data matrix factorizations and Overlapping community detection in graphs
Big data matrix factorizations and Overlapping community detection in graphsBig data matrix factorizations and Overlapping community detection in graphs
Big data matrix factorizations and Overlapping community detection in graphs
David Gleich
 
Fast relaxation methods for the matrix exponential
Fast relaxation methods for the matrix exponential Fast relaxation methods for the matrix exponential
Fast relaxation methods for the matrix exponential
David Gleich
 
TENSOR DECOMPOSITION WITH PYTHON
TENSOR DECOMPOSITION WITH PYTHONTENSOR DECOMPOSITION WITH PYTHON
TENSOR DECOMPOSITION WITH PYTHON
André Panisson
 

What's hot (20)

QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
EH1 - Reduced-order modelling for vibration energy harvesting
EH1 - Reduced-order modelling for vibration energy harvestingEH1 - Reduced-order modelling for vibration energy harvesting
EH1 - Reduced-order modelling for vibration energy harvesting
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Steady state analysis of 5 phase symmetric power system networks displaying r...
Steady state analysis of 5 phase symmetric power system networks displaying r...Steady state analysis of 5 phase symmetric power system networks displaying r...
Steady state analysis of 5 phase symmetric power system networks displaying r...
 
SPECTRAL FINITE ELEMENTAL METHOD-SHM
SPECTRAL FINITE ELEMENTAL METHOD-SHMSPECTRAL FINITE ELEMENTAL METHOD-SHM
SPECTRAL FINITE ELEMENTAL METHOD-SHM
 
Ica group 3[1]
Ica group 3[1]Ica group 3[1]
Ica group 3[1]
 
PCA on graph/network
PCA on graph/networkPCA on graph/network
PCA on graph/network
 
Free vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using femFree vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using fem
 
Influence of Design Parameters on the Singularities and Workspace of a 3-RPS ...
Influence of Design Parameters on the Singularities and Workspace of a 3-RPS ...Influence of Design Parameters on the Singularities and Workspace of a 3-RPS ...
Influence of Design Parameters on the Singularities and Workspace of a 3-RPS ...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Delta Like Robot
Delta Like RobotDelta Like Robot
Delta Like Robot
 
Spacey random walks and higher-order data analysis
Spacey random walks and higher-order data analysisSpacey random walks and higher-order data analysis
Spacey random walks and higher-order data analysis
 
Principal Component Analysis for Tensor Analysis and EEG classification
Principal Component Analysis for Tensor Analysis and EEG classificationPrincipal Component Analysis for Tensor Analysis and EEG classification
Principal Component Analysis for Tensor Analysis and EEG classification
 
An Algebraic Method to Check the Singularity-Free Paths for Parallel Robots
An Algebraic Method to Check the Singularity-Free Paths for Parallel RobotsAn Algebraic Method to Check the Singularity-Free Paths for Parallel Robots
An Algebraic Method to Check the Singularity-Free Paths for Parallel Robots
 
Ph.D. Thesis : Ranjan JHA : Contributions to the Performance Analysis of Para...
Ph.D. Thesis : Ranjan JHA : Contributions to the Performance Analysis of Para...Ph.D. Thesis : Ranjan JHA : Contributions to the Performance Analysis of Para...
Ph.D. Thesis : Ranjan JHA : Contributions to the Performance Analysis of Para...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Talk given at the Workshop in Catania University
Talk given at the Workshop in Catania University Talk given at the Workshop in Catania University
Talk given at the Workshop in Catania University
 
Big data matrix factorizations and Overlapping community detection in graphs
Big data matrix factorizations and Overlapping community detection in graphsBig data matrix factorizations and Overlapping community detection in graphs
Big data matrix factorizations and Overlapping community detection in graphs
 
Fast relaxation methods for the matrix exponential
Fast relaxation methods for the matrix exponential Fast relaxation methods for the matrix exponential
Fast relaxation methods for the matrix exponential
 
TENSOR DECOMPOSITION WITH PYTHON
TENSOR DECOMPOSITION WITH PYTHONTENSOR DECOMPOSITION WITH PYTHON
TENSOR DECOMPOSITION WITH PYTHON
 

Similar to Novel unified finite element schemes for computational solid mechanics based on Bézier elements

EFFINET - Initial Presentation
EFFINET - Initial PresentationEFFINET - Initial Presentation
EFFINET - Initial Presentation
Pantelis Sopasakis
 
Engineering Mathematics Booklet (151 Pages).pdf
Engineering Mathematics Booklet (151 Pages).pdfEngineering Mathematics Booklet (151 Pages).pdf
Engineering Mathematics Booklet (151 Pages).pdf
ssuserd44223
 
Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...
Alexander Litvinenko
 
Development of Improved Diode Clamped Multilevel Inverter Using Optimized Sel...
Development of Improved Diode Clamped Multilevel Inverter Using Optimized Sel...Development of Improved Diode Clamped Multilevel Inverter Using Optimized Sel...
Development of Improved Diode Clamped Multilevel Inverter Using Optimized Sel...
eeiej_journal
 
計算材料学
計算材料学計算材料学
QCD Phase Diagram
QCD Phase DiagramQCD Phase Diagram
QCD Phase Diagram
RomanHllwieser
 
IRJET- Comparative Result of Displacement and Stress for Tapered Beam L/D=...
IRJET- 	  Comparative Result of Displacement and Stress for Tapered Beam L/D=...IRJET- 	  Comparative Result of Displacement and Stress for Tapered Beam L/D=...
IRJET- Comparative Result of Displacement and Stress for Tapered Beam L/D=...
IRJET Journal
 
A Bibliography on the Numerical Solution of Delay Differential Equations.pdf
A Bibliography on the Numerical Solution of Delay Differential Equations.pdfA Bibliography on the Numerical Solution of Delay Differential Equations.pdf
A Bibliography on the Numerical Solution of Delay Differential Equations.pdf
Jackie Gold
 
Efficient Finite Element Computation of Circulating Currents in Thin Parallel...
Efficient Finite Element Computation of Circulating Currents in Thin Parallel...Efficient Finite Element Computation of Circulating Currents in Thin Parallel...
Efficient Finite Element Computation of Circulating Currents in Thin Parallel...
Antti Lehikoinen
 
Self-Balancing Multimemetic Algorithms in Dynamic Scale-Free Networks
Self-Balancing Multimemetic Algorithms in Dynamic Scale-Free NetworksSelf-Balancing Multimemetic Algorithms in Dynamic Scale-Free Networks
Self-Balancing Multimemetic Algorithms in Dynamic Scale-Free Networks
Rafael Nogueras
 
ACME2016-extendedAbstract
ACME2016-extendedAbstractACME2016-extendedAbstract
ACME2016-extendedAbstractZhaowei Liu
 
Self-sampling Strategies for Multimemetic Algorithms in Unstable Computationa...
Self-sampling Strategies for Multimemetic Algorithms in Unstable Computationa...Self-sampling Strategies for Multimemetic Algorithms in Unstable Computationa...
Self-sampling Strategies for Multimemetic Algorithms in Unstable Computationa...
Rafael Nogueras
 
Kinetic pathways to the isotropic-nematic phase transformation: a mean field ...
Kinetic pathways to the isotropic-nematic phase transformation: a mean field ...Kinetic pathways to the isotropic-nematic phase transformation: a mean field ...
Kinetic pathways to the isotropic-nematic phase transformation: a mean field ...
Amit Bhattacharjee
 
GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...
GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...
GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...
AEIJjournal2
 
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
João Baltazar
 
Dynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beamsDynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beams
University of Glasgow
 
Anomalous Synchronization Stability of Power-grid Network
Anomalous Synchronization Stability of Power-grid NetworkAnomalous Synchronization Stability of Power-grid Network
Anomalous Synchronization Stability of Power-grid Network
Heetae Kim
 
01_FEA overview 2023-1 of fhtr j thrf for any.pptx
01_FEA overview 2023-1 of fhtr j thrf for any.pptx01_FEA overview 2023-1 of fhtr j thrf for any.pptx
01_FEA overview 2023-1 of fhtr j thrf for any.pptx
RaviBabaladi2
 
[AAAI2021] Combinatorial Pure Exploration with Full-bandit or Partial Linear ...
[AAAI2021] Combinatorial Pure Exploration with Full-bandit or Partial Linear ...[AAAI2021] Combinatorial Pure Exploration with Full-bandit or Partial Linear ...
[AAAI2021] Combinatorial Pure Exploration with Full-bandit or Partial Linear ...
Yuko Kuroki (黒木祐子)
 

Similar to Novel unified finite element schemes for computational solid mechanics based on Bézier elements (20)

EFFINET - Initial Presentation
EFFINET - Initial PresentationEFFINET - Initial Presentation
EFFINET - Initial Presentation
 
Engineering Mathematics Booklet (151 Pages).pdf
Engineering Mathematics Booklet (151 Pages).pdfEngineering Mathematics Booklet (151 Pages).pdf
Engineering Mathematics Booklet (151 Pages).pdf
 
Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...Application of parallel hierarchical matrices and low-rank tensors in spatial...
Application of parallel hierarchical matrices and low-rank tensors in spatial...
 
Development of Improved Diode Clamped Multilevel Inverter Using Optimized Sel...
Development of Improved Diode Clamped Multilevel Inverter Using Optimized Sel...Development of Improved Diode Clamped Multilevel Inverter Using Optimized Sel...
Development of Improved Diode Clamped Multilevel Inverter Using Optimized Sel...
 
計算材料学
計算材料学計算材料学
計算材料学
 
QCD Phase Diagram
QCD Phase DiagramQCD Phase Diagram
QCD Phase Diagram
 
IRJET- Comparative Result of Displacement and Stress for Tapered Beam L/D=...
IRJET- 	  Comparative Result of Displacement and Stress for Tapered Beam L/D=...IRJET- 	  Comparative Result of Displacement and Stress for Tapered Beam L/D=...
IRJET- Comparative Result of Displacement and Stress for Tapered Beam L/D=...
 
A Bibliography on the Numerical Solution of Delay Differential Equations.pdf
A Bibliography on the Numerical Solution of Delay Differential Equations.pdfA Bibliography on the Numerical Solution of Delay Differential Equations.pdf
A Bibliography on the Numerical Solution of Delay Differential Equations.pdf
 
AMSimulation-Submitted
AMSimulation-SubmittedAMSimulation-Submitted
AMSimulation-Submitted
 
Efficient Finite Element Computation of Circulating Currents in Thin Parallel...
Efficient Finite Element Computation of Circulating Currents in Thin Parallel...Efficient Finite Element Computation of Circulating Currents in Thin Parallel...
Efficient Finite Element Computation of Circulating Currents in Thin Parallel...
 
Self-Balancing Multimemetic Algorithms in Dynamic Scale-Free Networks
Self-Balancing Multimemetic Algorithms in Dynamic Scale-Free NetworksSelf-Balancing Multimemetic Algorithms in Dynamic Scale-Free Networks
Self-Balancing Multimemetic Algorithms in Dynamic Scale-Free Networks
 
ACME2016-extendedAbstract
ACME2016-extendedAbstractACME2016-extendedAbstract
ACME2016-extendedAbstract
 
Self-sampling Strategies for Multimemetic Algorithms in Unstable Computationa...
Self-sampling Strategies for Multimemetic Algorithms in Unstable Computationa...Self-sampling Strategies for Multimemetic Algorithms in Unstable Computationa...
Self-sampling Strategies for Multimemetic Algorithms in Unstable Computationa...
 
Kinetic pathways to the isotropic-nematic phase transformation: a mean field ...
Kinetic pathways to the isotropic-nematic phase transformation: a mean field ...Kinetic pathways to the isotropic-nematic phase transformation: a mean field ...
Kinetic pathways to the isotropic-nematic phase transformation: a mean field ...
 
GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...
GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...
GDQ SIMULATION FOR FLOW AND HEAT TRANSFER OF A NANOFLUID OVER A NONLINEARLY S...
 
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
A Numerical Study on the Application of BEM to Steady Cavitating Potential Fl...
 
Dynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beamsDynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beams
 
Anomalous Synchronization Stability of Power-grid Network
Anomalous Synchronization Stability of Power-grid NetworkAnomalous Synchronization Stability of Power-grid Network
Anomalous Synchronization Stability of Power-grid Network
 
01_FEA overview 2023-1 of fhtr j thrf for any.pptx
01_FEA overview 2023-1 of fhtr j thrf for any.pptx01_FEA overview 2023-1 of fhtr j thrf for any.pptx
01_FEA overview 2023-1 of fhtr j thrf for any.pptx
 
[AAAI2021] Combinatorial Pure Exploration with Full-bandit or Partial Linear ...
[AAAI2021] Combinatorial Pure Exploration with Full-bandit or Partial Linear ...[AAAI2021] Combinatorial Pure Exploration with Full-bandit or Partial Linear ...
[AAAI2021] Combinatorial Pure Exploration with Full-bandit or Partial Linear ...
 

Recently uploaded

NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
Amil Baba Dawood bangali
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
PrashantGoswami42
 
Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
MuhammadTufail242431
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
fxintegritypublishin
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
Kamal Acharya
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
JoytuBarua2
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
Kamal Acharya
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
Osamah Alsalih
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
bakpo1
 
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSETECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
DuvanRamosGarzon1
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
ankuprajapati0525
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
seandesed
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 

Recently uploaded (20)

NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
NO1 Uk best vashikaran specialist in delhi vashikaran baba near me online vas...
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
 
Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
 
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdfHybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
Hybrid optimization of pumped hydro system and solar- Engr. Abdul-Azeez.pdf
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
 
Planning Of Procurement o different goods and services
Planning Of Procurement o different goods and servicesPlanning Of Procurement o different goods and services
Planning Of Procurement o different goods and services
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
H.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdfH.Seo,  ICLR 2024, MLILAB,  KAIST AI.pdf
H.Seo, ICLR 2024, MLILAB, KAIST AI.pdf
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
 
MCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdfMCQ Soil mechanics questions (Soil shear strength).pdf
MCQ Soil mechanics questions (Soil shear strength).pdf
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
一比一原版(SFU毕业证)西蒙菲莎大学毕业证成绩单如何办理
 
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSETECHNICAL TRAINING MANUAL   GENERAL FAMILIARIZATION COURSE
TECHNICAL TRAINING MANUAL GENERAL FAMILIARIZATION COURSE
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
The role of big data in decision making.
The role of big data in decision making.The role of big data in decision making.
The role of big data in decision making.
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 

Novel unified finite element schemes for computational solid mechanics based on Bézier elements

  • 1. 1/38 Novel unified finite element schemes for computational solid mechanics based on B´ezier elements Chennakesava Kadapa Swansea Academy of Advanced Computing Email: c.kadapa@swansea.ac.uk UKACM 2019 Conference, London, 10-12 April, 2019. Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 1 / 38
  • 2. 2/38 Introduction Introduction Why do we need new finite element techniques for solid mechanics? Lack of Accurate, robust and computationally efficient Explicit schemes for elastodynamics and wave propagation Incompressible material models Polymers Biological soft tissues Soils With solid-solid contact Adaptive refinement Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 2 / 38
  • 3. 3/38 Introduction Explicit schemes - introduction Governing equations in infinitesimal (small) strain regime ρ ∂2 u ∂t2 − · σ = f in Ω (1a) u = g on ΓD (1b) σ · n = t on ΓN (1c) u(x, 0) = u0 in Ω (1d) v(x, 0) = v0 in Ω (1e) Finite element discretisation with u = Nu u M a + Fint = Fext (2) M = Ω ρ NT u Nu dΩ, Fint = Ω BT σ dΩ Fext = Ω NT u f dΩ + ΓN NT u t dΓ Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 3 / 38
  • 4. 4/38 Introduction Explicit schemes - introduction (cont’d) Chung and Lee scheme [1] M an+1 = Fext n − Fint n (3a) un+1 = un + ∆t vn + ∆t2 1 2 − β an + β an+1 (3b) vn+1 = vn + ∆t [(1 − γ) an + γ an+1] (3c) ∆t = CFL h c (4) Mass lumping for M 1 3 1 3 1 3 1 4 1 4 1 4 1 4 Advantages No need for matrix solvers Computationally appealing for dynamic problems with short-term response Blast and impact loading Wave propagation Dynamic fracture Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 4 / 38
  • 5. 5/38 Introduction Explicit schemes - fundamental issues 1 3 1 3 1 3 (a) Row-Sum 1 4 1 4 1 4 1 4 (b) Row-Sum 0 0 0 1 3 1 3 1 3 (c) Row-Sum 3/57 3/57 3/57 16/57 16/5716/57 (d) Proportional Figure: Lagrange elements: mass contribution for each node using mass lumping Issues (for compressible linear elastic materials (ν < 0.35)) Linear triangle/tetrahedron - stiff behaviour, especially in bending Linear quad/hex - difficulty in mesh generation for complex 3D geometries Quadratic tria/tetra - not recommended for contact problems in dynamics ANSYS explicit - does not support any higher-order elements Abaqus explicit - C3D10M but is very expensive Cubic and higher-order - very expensive for any practical applications. Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 5 / 38
  • 6. 6/38 Introduction Explicit schemes - additional issues due to incompressibility At this point we are practically left with linear triangular/tetrahedral elements only for which Pure displacement formulation results in Volumetric and shear locking Spurious oscillations in pressure field Reduced integration Not applicable Selective reduced integration Not applicable B-bar formulation Not applicable Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 6 / 38
  • 7. 7/38 Literature Literature 1.) Fractional-step-based projection schemes by Zienkiewicz and co. [2] 2.) Averaged nodal pressure approach by Bonet and Burton [3] 3.) Stabilised nodally integrated elements by Puso and Solberg [4] 4.) F-bar patch for triangular/tetrahedral elements by de Souza Neto et al. [5] 5.) F-bar aided edge-based smoothed method by Onishi et al. [6] 6.) D-VMS mixed formulations by Scovazzi et al [7, 8, 9] 7.) Mixed displacement-stress & displacement-strain by Cervera et al. [10, 11] 8.) First-order conservation laws by Bonet and Gil group [12, 13] Disadvantages First-order accuracy for stresses Significant number of additional variables for second-order accurate stresses Ad-hoc stabilisation parameters that control accuracy and stability Unsuitability of dynamic variables to elastostatic problems (occupy major share of problems in solid mechanics) Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 7 / 38
  • 8. 8/38 B´ezier elements Alternatives and a solution Sticking with the Lagrange elements does not offer efficient solutions. Isogeometric analysis (IGA) - B-Splines, NURBS, T-Splines etc. Explicit dynamics - Anitescu et al [14], Evans et al [15] × Major portion of research on IGA is limited to tensor-product meshes. × No preprocessors (mesh generators) for IGA. × Pose difficulties in applying Dirichlet BCs. Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 8 / 38
  • 9. 8/38 B´ezier elements Alternatives and a solution Sticking with the Lagrange elements does not offer efficient solutions. Isogeometric analysis (IGA) - B-Splines, NURBS, T-Splines etc. Explicit dynamics - Anitescu et al [14], Evans et al [15] × Major portion of research on IGA is limited to tensor-product meshes. × No preprocessors (mesh generators) for IGA. × Pose difficulties in applying Dirichlet BCs. But Relax requirements on isogeometry. For practical applications, quadratic elements are sufficient enough. For quadratic non-isogeometric B´ezier elements, existing mesh generators can be leveraged by exploiting the properties of B´ezier curve. Dirichlet BCs can be applied using elimination approach. Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 8 / 38
  • 10. 9/38 B´ezier elements Quadratic B´ezier elements - properties P1(X1) P2(X2) P3(X3) P4 X4 P5 X5 P6 X6 (a) Curved edges P1(X1) P2(X2) P3(X3) P4(X4) P5(X5)P6(X6) (b) Straight edges Figure: Quadratic B´ezier triangle. - Control point. - Node. 0 1 0.2 0.4 1 0.6 0.8 2 0.8 0.5 0.6 1 1 0.4 0.2 0 0 0 1 0.2 0.4 0.6 0.8 1 2 0.5 1 0.8 1 0.6 0.4 0.2 0 0 0 1 0.2 0.4 1 0.6 0.8 2 0.8 0.5 0.6 1 1 0.4 0.2 0 0 0 1 0.2 0.4 1 0.6 0.8 2 0.8 0.5 0.6 1 1 0.4 0.2 0 0 0 1 0.2 0.4 1 0.6 0.8 2 0.8 0.5 0.6 1 1 0.4 0.2 0 0 0 1 0.2 0.4 1 0.6 0.8 2 0.8 0.5 0.6 1 1 0.4 0.2 0 0 Figure: Shape functions Advantages Non-negative basis functions Mass lumping - ideal for explicit schemes Uniform nodal loads due to applied pressure Smooth curve/surface - good for contacts 1 6 1 6 1 6 1 6 1 6 1 6 Figure: Row-sum lumping Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 9 / 38
  • 11. 10/38 B´ezier elements Quadratic B´ezier elements - mesh generation P1(X1) P3(X3) P2 X2 (a) Curved edge P1(X1) P3(X3)P2(X2) (b) Straight edge Figure: Quadratic B´ezier curve A point at parametric coordinate, ξ(0 ≤ ξ ≤ 1) X(ξ) = (1 − ξ)2 P1 + 2 ξ (1 − ξ) P2 + ξ2 P3 X(ξ = 0) = P1 = X1 X(ξ = 1) = P3 = X3 For any other ξ = ˆξ corresponding to node X2, P2 = 1 2 ˆξ (1 − ˆξ) X2 − (1 − ˆξ)2 X1 − ˆξ2 X3 (5) When X2 is exactly in the middle, then ξ = ˆξ = 0.5. P2 = 2 [X2 − 0.25 X1 − 0.25 X3] (6) Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 10 / 38
  • 12. 11/38 B´ezier elements Quadratic B´ezier elements - mesh generation P1(X1) P2(X2) P3(X3) P4 X4 P5 X5 P6 X6 Figure: Quadratic B´ezier triangle P1 = X1 P2 = X2 P3 = X3 P4 = 2 [X4 − 0.25 X1 − 0.25 X2] P5 = 2 [X5 − 0.25 X2 − 0.25 X3] P6 = 2 [X6 − 0.25 X3 − 0.25 X1] Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 11 / 38
  • 13. 12/38 B´ezier elements Quadratic B´ezier elements - Dirichlet BCs Mesh generation P1 = X1 P2 = X2 P3 = X3 P4 = 2 [X4 − 0.25 X1 − 0.25 X2] P5 = 2 [X5 − 0.25 X2 − 0.25 X3] P6 = 2 [X6 − 0.25 X3 − 0.25 X1] Dirichlet BCs uB 1 = uL 1 uB 2 = uL 2 uB 3 = uL 3 uB 4 = 2 uL 4 − 0.25 uL 1 − 0.25 uL 2 uB 5 = 2 uL 5 − 0.25 uL 2 − 0.25 uL 3 uB 6 = 2 uL 6 − 0.25 uL 3 − 0.25 uL 1 0.4 0.8 1.2 1.6 -log(h) 10−8 10−6 10−4 10−2 errornorm 1.0 3.0 1.0 2.0 L2 error H1 error 0.4 0.8 1.2 1.6 -log(h) 10−8 10−6 10−4 10−2 errornorm 1.0 3.0 1.0 2.0 L2 error H1 error Figure: Poisson equation with solution u(r, θ) = 2 3 (r − 1 r ) sin θ Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 12 / 38
  • 14. 13/38 B-bar formulation B-bar formulation - behaviour in bending (Kadapa [16]) 0 10 20 30 40 50 60 Number of elements per side 0 2 4 6 8 10 Y-displacementofthetip(mm) Ref TRI3 TRIB6 TRIB6B (a) Convergence -14.00 -7.00 0.00 7.00 -20.00 12.00 pressure (b) Pressure - TRIB6 -14.00 -7.00 0.00 7.00 -20.00 12.00 pressure (c) Pressure - TRIB6B 0 5 10 15 20 Number of elements along length 0 10 20 30 40 50 60 70 Y-displacementofthetip TET4 TETB10 TETB10B (a) Convergence -3.25 0.00 3.25-7.00 6.00 pressure (b) TETB10 -3.25 0.00 3.25-7.00 6.00 pressure (c) TETB10B Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 13 / 38
  • 15. 14/38 B-bar formulation B-bar formulation - elastodynamics - complex geometries (a) Mesh M1 (b) Mesh M2 0.000 0.005 0.010 0.015 0.020 Time (s) −20 −15 −10 −5 0 5 10 15 20 Y-displacementofpointA(mm) TETB10-M1 TETB10-M2 TETB10B-M1 TETB10B-M2 (c) Time Vs Displacement 0.0e+00 -2.0e+06 2.0e+06 sigma_xx (a) TETB10 0.0e+00 -2.0e+06 2.0e+06 sigma_xx (b) TETB10B Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 14 / 38
  • 16. 15/38 F-bar formulation F-bar formulation 0 10 20 30 40 50 60 70 Number of elements per side 0 2 4 6 8 10 Y-displacementofpointA Reference TRIB6 Q2/Q2-SD TRIB6F (a) Convergence -13.6 -7.2 -0.8 5.6 -20.0 12.0 pressure (b) TRIB6 -13.6 -7.2 -0.8 5.6 -20.0 12.0 pressure (c) TRIB6F -1.0e+05 3.0e+05 7.0e+05 1.1e+06 -5.0e+05 1.5e+06 pressure (a) Implicit -1.0e+05 3.0e+05 7.0e+05 1.1e+06 -5.0e+05 1.5e+06 pressure (b) Explicit Issues No reduction in number of load steps Requires excessive numerical damping for high-frequency modes TVD-RK2 method - not computationally appealing due to two-stage process Not applicable for truly incompressible models Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 15 / 38
  • 17. 16/38 Mixed formulation Mixed displacement-pressure formulation (Kadapa [17]) Modified Cauchy stress: σ = σdev + m p (7) Nearly incompressible materials: p = κ mT ε − Small strains (8) p = ∂U ∂J − Finite strains (9) Static and implicit elastodynamics: Kuu Kup Kpu Kpp ∆u ∆p = − Ru Rp (10) Explicit elastodynamics: Muu an+1 = Fext n − Fint,mixed n (11) un+1 = un + ∆t vn + ∆t2 1 2 − β an + β an+1 (12) vn+1 = vn + ∆t [(1 − γ) an + γ an+1] (13) Mpp pn+1 = Ω NT p κ mT εn+1 dΩ − Small strains (14) Mpp pn+1 = Ω NT p ∂U ∂J un+1 dΩ − Finite strains (15) Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 16 / 38
  • 18. 17/38 Mixed formulation Displacement-pressure combinations - Inf-Sup stability and Accuracy BT2/BT0 — Quadratic B´ezier triangle/tetrahedron for displacement and element-wise constant value for pressure (25%) BT2/BT1 — Quadratic B´ezier triangle/tetrahedron for displacement and linear B´ezier triangle/tetrahedron for pressure (5%) 0.1 0.4 0.7 1.0 1.3 -log(h) −2.5 −2.0 −1.5 −1.0 −0.5 0.0 log(βh) BT2/BT0 (2D) BT2/BT0 (3D) BT2/BT1 (2D) BT2/BT1 (3D) (a) Inf-Sup constants 0.0 0.3 0.6 0.9 1.2 1.5 1.8 -log(h) 10−10 10−8 10−6 10−4 10−2 100 102 errornorm 1 4.2 1 2.1 1 2 1 1 ||eu||L2 (BT2/BT0) ||eu||L2 (BT2/BT1) ||eσ||L2 (BT2/BT0) ||eσ||L2 (BT2/BT1) (b) 2D problem 0.0 0.3 0.6 0.9 1.2 1.5 -log(h) 10−10 10−8 10−6 10−4 10−2 100 102 errornorm 1 4.2 1 2.1 1 1.8 1 0.5 ||eu||L2 (BT2/BT0) ||eu||L2 (BT2/BT1) ||eσ||L2 (BT2/BT0) ||eσ||L2 (BT2/BT1) (c) 3D problem Figure: Stability and accuracy characteristics. Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 17 / 38
  • 19. 18/38 Fully-Explicit scheme - examples Mixed formulation - examples - elastostatics 0 5 10 15 20 Number of elements per side 0 20 40 60 80 100 120 %Compression p/p0 =20 p/p0 =40 p/p0 =60 p/p0 =80 Reference BT2 BT2/BT0 BT2/BT1 Q2/Q2-SD (a) Convergence -186.0 -124.0 -62.0 0.0 -250.0 60.0 pressure (b) BT2 -186.0 -124.0 -62.0 0.0 -250.0 60.0 pressure (c) BT2/BT0 -186.0 -124.0 -62.0 0.0 -250.0 60.0 pressure (d) BT2/BT1 Figure: Compression of block: Neo-Hookean model, ν = 0.4999. 0 25 50 75 100 125 150 175 200 Z-displacement of point A (x-1) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Loadfactor Reference M1-BT2 M1-BT2/BT0 M1-BT2/BT1 M2-BT2 M2-BT2/BT0 M2-BT2/BT1 (a) Convergence -3.00e+05 -1.00e+05 1.00e+05 3.00e+05 -5.00e+05 5.00e+05 sigma_zz (b) BT2 -3.00e+05 -1.00e+05 1.00e+05 3.00e+05 -5.00e+05 5.00e+05 sigma_zz (c) BT2/BT0 -3.00e+05 -1.00e+05 1.00e+05 3.00e+05 -5.00e+05 5.00e+05 sigma_zz (d) BT2/BT1 Figure: Compression of block: Neo-Hookean model, ν = 0.3. Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 18 / 38
  • 20. 19/38 Fully-Explicit scheme - examples Mixed formulation - examples - elastodynamics -1.0e+05 3.0e+05 7.0e+05 1.1e+06 -5.0e+05 1.5e+06 pressure (i) (ii) (iii) (iv) Figure: Neo-Hookean model, ν = 0.499. Implicit or Explicit. 0 10 20 30 40 50 60 70 80 Time (μs) 3 4 5 6 7 8 Radius(mm) Reference BT2-Implicit BT2-Explicit BT2/BT0-Implicit BT2/BT0-Explicit BT2/BT1-Implicit BT2/BT1-Explicit -140.0 -70.0 0.0 70.0 -200.0 150.0 pressure Figure: Elastoplastic. Implicit or Explicit. 0.0 0.2 0.4 0.6 0.8 1.0 Time (ms) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Radialdisplacement(in) Experiment Belytschko-Tsay (fine) NURBS-Shell-p4 BT2-Explicit BT2/BT0-Explicit BT2/BT1-Explicit (a) Comparison -1.00e+04 0.00e+00 1.00e+04 2.00e+04 -2.00e+04 3.00e+04 pressure (b) BT2 -1.00e+04 0.00e+00 1.00e+04 2.00e+04 -2.00e+04 3.00e+04 pressure (c) BT2/BT1 Figure: Elastoplastic. Implicit or Explicit. Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 19 / 38
  • 21. 20/38 Semi-implicit scheme Semi-implicit scheme for mixed formulation Weak form: Muu an+1 + Ω BT m pn+1 dΩ = Fext n − Ω BT σdev(un) dΩ (16) Ω NT p mT εn+1 − pn+1 κ dΩ = 0 (17) Discretised system: Kuu Kup Kpu Kpp ∆u ∆p = − Ru Rp (18) where Kuu = αm β∆t2 Muu; Kpp = − Ω 1 κ NT p Np dΩ Solution: ∆p = S−1 −Rp + Kpu K−1 uu Ru (19) ∆u = K−1 uu [−Ru − Kup ∆p] (20) Schur complement, S = Kpp − Kpu K−1 uu Kup (21) Advantages: Using BT2/BT1 element, size of S is only about 5% of that of global matrix. Critical time step is limited only by shear wave speed Straightforward to add contacts - Lagrange multipliers or penalty or Nitsche Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 20 / 38
  • 22. 21/38 Semi-implicit scheme Semi-implicit scheme - Fully-Explicit Vs Semi-Implicit (a) M1 (b) M2 0 5 10 15 20 25 30 35 40 Time (ms) −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 Y-displacement(cm) Explicit Semi-implicit (c) M1, ν = 0.45 0 5 10 15 20 25 30 35 40 Time (ms) −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 Y-displacement(cm) Explicit Semi-implicit (d) M1, ν = 0.499 Figure: Twisting column: Neo-Hookean model. ν = 0.3 ν = 0.45 ν = 0.48 ν = 0.499 ν = 0.49999 Mesh M1 Fully-explicit (FE) 10.8 17.6 27.4 119.2 1171.7 Semi-implicit (SI) 9.9 9.4 9.6 9.1 9.1 Ratio (FE/SI) 1.1 1.9 2.9 13.1 128.8 Mesh M2 Fully-explicit (FE) 161.7 286.8 429.8 1857.4 17838.1 Semi-implicit (SI) 199.1 188.3 185.9 183.0 183.0 Ratio (FE/SI) 0.8 1.5 2.3 10.1 97.5 Table: Twisting column: time taken in seconds for each simulation to reach 10 ms. Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 21 / 38
  • 23. 22/38 Semi-implicit scheme Semi-implicit scheme - Fully-Implicit Vs Semi-Implicit 0 5 10 15 20 25 30 35 40 Time (ms) −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 Y-displacement(cm) Implicit (CM) Implicit (LM) Semi-implicit (a) M1 0 5 10 15 20 25 30 35 40 Time (ms) −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 Y-displacement(cm) Implicit (CM) Implicit (LM) Semi-implicit (b) M2 1.29e+04 3.57e+04 5.86e+04 8.14e+04 1.04e+05 1.27e+05 -1.00e+04 1.50e+05 pressure (c) FI 1.29e+04 3.57e+04 5.86e+04 8.14e+04 1.04e+05 1.27e+05 -1.00e+04 1.50e+05 pressure (d) SI Figure: Twisting column: Neo-Hookean model, ν = 0.5. Mesh M1 Mesh M2 Fully-implicit scheme (FI) 319 12884 Semi-implicit scheme (SI) 10 218 Ratio (FI/SI) 32 60 Table: Twisting column: time taken in seconds for each simulation to reach 10 ms. Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 22 / 38
  • 24. 23/38 Semi-implicit scheme Semi-implicit scheme - complex geometry and wave propagation -0.2 0.0 0.2-0.5 0.5 pressure 0.0 1.2 2.4 3.6-1.0 5.0 pressure Figure: Stent model: Ogden model with ν = 0.5. 0.1 0.2 0.3 0.40.0 0.5 Displacement -3.0 0.0 3.0-7.9 7.3 sigma_xy Figure: Wave propagation: shear wave in linear elastic medium, ν = 0.5. Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 23 / 38
  • 25. 24/38 Summary Summary Novel unified finite element formulations using B´ezier elements Introduced B-bar and F-bar formulations for BT2 element Introduced BT2/BT0 and BT2/BT1 elements Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 24 / 38
  • 26. 25/38 Summary Acknowledgements Acknowledges the support of the Supercomputing Wales project, which is part-funded by the European Regional Development Fund (ERDF) via the Welsh Government. Thank you Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 25 / 38
  • 27. 26/38 References References I J. Chung and J. M. Lee. A new family of explicit time integration methods for linear and non-linear structural dynamics. International Journal for Numerical Methods in Engineering, 37:3961–3976, 1994. O. C. Zienkiewicz, J. Rojek, R. L. Taylor, and M. Pastor. Triangles and Tetrahedra in explicit dynamic codes for solids. International Journal for Numerical Methods in Engineering, 43:565–583, 1998. J. Bonet and A. J. Burton. A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications. Communications in Numerical Methods in Engineering, 14:437–449, 1998. M. A. Puso and J. Solberg. A stabilized nodally integrated tetrahedral. International Journal of Numerical Methods in Engineering, 67:841–867, 2006. E. A. de Souza Neto, F. M. Andrade Pires, and D. R. J. Owen. F-bar-based linear triangles and tetrahedra for finite strain analysis of nearly incompressible solids. Part I: formulation and benchmarking. International Journal of Numerical Methods in Engineering, 62:353–383, 2005. Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 26 / 38
  • 28. 27/38 References References II Y. Onishi, R. Iida, and K. Amaya. F-bar aided edge-based smoothed finite element method using tetrahedral elements for finite deformation analysis of nearly incompressible solids. International Journal for Numerical Methods in Engineering, 109:1582–1606, 2017. G. Scovazzi, B. Carnes, X. Zeng, and S. Rossi. A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: a dynamic variational multiscale approach. International Journal for Numerical Methods in Engineering, 106:799–839, 2016. S. Rossi, N. Abboud, and G. Scovazzi. Implicit finite incompressible elastodynamics with linear finite elements: A stabilized method in rate form. Computer Methods in Applied Mechanics and Engineering, 311:208–249, 2016. G. Scovazzi, T. Song, and X. Zeng. A velocity/stress mixed stabilized nodal finite element for elastodynamics: Analysis and computations with strongly and weakly enforced boundary conditions. Computer Methods in Applied Mechanics and Engineering, 325:532–576, 2017. M. Cervera, M. Chiumenti, and R. Codina. Mixed stabilized finite element methods in nonlinear solid mechanics. Part I: formulation. Computer Methods in Applied Mechanics and Engineering, 199:2559–2570, 2010. Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 27 / 38
  • 29. 28/38 References References III M. Cervera, M. Chiumenti, and R. Codina. Mixed stabilized finite element methods in nonlinear solid mechanics. Part II: strain localization. Computer Methods in Applied Mechanics and Engineering, 199:2571–2589, 2010. A. J. Gil, C. H. Lee, J. Bonet, and M. Aguirre. A stabilised Petrov-Galerkin formulation for linear tetrahedral elements in compressible, nearly incompressible and truly incompressible fast dynamics. Computer Methods in Applied Mechanics and Engineering, 276:659–690, 2014. J. Bonet, A. J. Gil, C. H. Lee, M. Aguirre, and R. Ortigosa. A first order hyperbolic framework for large strain computational solid dynamics. Part I: total Lagrangian isothermal elasticity. Computer Methods in Applied Mechanics and Engineering, 283:689–732, 2015. C. Anitescu, C. Nguyen, T. Rabczuk, and X. Zhuang. Isogeometric analysis for explicit elastodynamics using a dual-basis diagonal mass formulation. Computer Methods in Applied Mechanics and Engineering, 346:574–591, 2019. J. A. Evans, R. R. Hiemstra, T. J. R. Hughes, and A. Reali. Explicit higher-order accurate isogeometric collocation methods for structural dynamics. Computer Methods in Applied Mechanics and Engineering, 338:208–240, 2018. Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 28 / 38
  • 30. 29/38 References References IV C. Kadapa. Novel quadratic B´ezier triangular and tetrahedral elements using existing mesh generators: Applications to linear nearly incompressible elastostatics and implicit and explicit elastodynamics. International Journal for Numerical Methods in Engineering, 117:543–573, 2019. C. Kadapa. Novel quadratic B´ezier triangular and tetrahedral elements using existing mesh generators: Extension to nearly incompressible implicit and explicit elastodynamics in finite strains. International Journal for Numerical Methods in Engineering, 2019. T. J. R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Publications, 2000. E. A. de Souza Neto, D. Peri´c, and D. R. J. Owen. Computational Methods for Plasticity, Theory and Applications. John Wiley and Sons, United Kingdom, 2008. Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 29 / 38
  • 31. 30/38 References Appendix Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 30 / 38
  • 32. 31/38 Appendix B-bar formulation - basics Idea: Hughes [18] ¯σ = D ¯ε, ¯ε = Idev ε + ¯εvol, ¯εvol = 1 V e Ωe εvol dΩ (22) Fint,Bbar = Ω ¯BT ¯σ dΩ (23) ¯Ba =           ( ¯B1 + 2B1)/3 ( ¯B2 − B2)/3 ( ¯B3 − B3)/3 ( ¯B1 − B1)/3 ( ¯B2 + 2B2)/3 ( ¯B3 − B3)/3 ( ¯B1 − B1)/3 ( ¯B2 − B2)/3 ( ¯B3 + 2B3)/3 B2 B1 0 0 B3 B2 B3 0 B1           (24) B1 = ∂Na ∂x ; B2 = ∂Na ∂y ; B3 = ∂Na ∂z (25) ¯B1 = 1 V e Ωe ∂Na ∂x dΩ; ¯B2 = 1 V e Ωe ∂Na ∂y dΩ; ¯B3 = 1 V e Ωe ∂Na ∂z dΩ. (26) Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 31 / 38
  • 33. 32/38 Appendix B-bar formulation - Implicit and explicit schemes Implicit scheme: M an+αm + K un+αf = Fext n+αf (27) where, K = Ω ¯BT D¯B dΩ. (28) Explicit scheme: Muu an+1 = Fext n − Fint,Bbar n un+1 = un + ∆t vn + ∆t2 1 2 − β an + β an+1 vn+1 = vn + ∆t [(1 − γ) an + γ an+1] Fint,Bbar n = Ω ¯BT Ω ¯σn dΩ Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 32 / 38
  • 34. 33/38 Appendix B-bar formulation - Thick cylinder under internal pressure −2.0 −1.5 −1.0 −0.5 -log(h) 10−8 10−6 10−4 10−2 100 102 L2 errornormindisplacement 1.0 2.0 1.0 3.0 TRI3 TRIB6 TRIB6B (a) ν = 0.3 −2.0 −1.5 −1.0 −0.5 -log(h) 10−8 10−6 10−4 10−2 100 102 L2 errornormindisplacement 1.0 2.0 1.0 3.0 TRI3 TRIB6 TRIB6B (b) ν = 0.48 −2.0 −1.5 −1.0 −0.5 -log(h) 10−8 10−6 10−4 10−2 100 102 L2 errornormindisplacement 1.0 2.2 1.0 3.0 TRI3 TRIB6 TRIB6B (c) ν = 0.49999 −2.0 −1.5 −1.0 −0.5 -log(h) 10−6 10−4 10−2 100 102 L2 errornorminstress 1.0 1.0 1.0 2.0 TRI3 TRIB6 TRIB6B (d) ν = 0.3 −2.0 −1.5 −1.0 −0.5 -log(h) 10−6 10−4 10−2 100 102 L2 errornorminstress 1.0 1.0 1.0 2.0 TRI3 TRIB6 TRIB6B (e) ν = 0.48 −2.0 −1.5 −1.0 −0.5 -log(h) 10−6 10−4 10−2 100 102 L2 errornorminstress 1.0 2.0 TRI3 TRIB6 TRIB6B (f) ν = 0.49999 Figure: Error norms in displacement and stress -0.06 0 0.06 0.12 -0.10 0.17 sigma_xx (a) Displacement formulation -0.06 0 0.06 0.12 -0.10 0.17 sigma_xx (b) B-bar formulation Figure: σxx stress Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 33 / 38
  • 35. 34/38 Appendix B-bar formulation - Thick sphere under internal pressure −2.25 −2.00 −1.50 −1.00 −0.75 -log(h) 10−6 10−4 10−2 100 102 L2 errornormindisplacement 1.0 2.0 1.0 3.0 TET4 TETB10 TETB10B (a) ν = 0.3 −2.25 −2.00 −1.50 −1.00 −0.75 -log(h) 10−6 10−4 10−2 100 102 L2 errornormindisplacement 1.0 1.8 1.0 3.0 TET4 TETB10 TETB10B (b) ν = 0.48 −2.25 −2.00 −1.50 −1.00 −0.75 -log(h) 10−6 10−4 10−2 100 102 L2 errornormindisplacement 1.0 3.0 TET4 TETB10 TETB10B (c) ν = 0.49999 −2.25 −2.00 −1.50 −1.00 −0.75 -log(h) 10−2 100 102 104 L2 errornorminstress 1.0 1.0 1.0 2.0 TET4 TETB10 TETB10B (d) ν = 0.3 −2.25 −2.00 −1.50 −1.00 −0.75 -log(h) 10−2 100 102 104 L2 errornorminstress 1.0 0.75 1.0 2.0 TET4 TETB10 TETB10B (e) ν = 0.48 −2.25 −2.00 −1.50 −1.00 −0.75 -log(h) 10−2 100 102 104 L2 errornorminstress 1.0 0.75 1.0 2.0 TET4 TETB10 TETB10B (f) ν = 0.49999 Figure: Error norms in displacement and stress -0.080 -0.040 0.000 0.040 -0.098 0.071 sigma_xx (a) Displacement formulation -0.080 -0.040 0.000 0.040 -0.098 0.071 sigma_xx (b) B-bar formulation Figure: σxx stress Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 34 / 38
  • 36. 35/38 Appendix B-bar formulation - behaviour in bending 0 10 20 30 40 50 60 Number of elements per side 0 2 4 6 8 10 Y-displacementofthetip(mm) Ref TRI3 TRIB6 TRIB6B (a) Convergence -14.00 -7.00 0.00 7.00 -20.00 12.00 pressure (b) Pressure - TRIB6 -14.00 -7.00 0.00 7.00 -20.00 12.00 pressure (c) Pressure - TRIB6B 0 5 10 15 20 Number of elements along length 0 10 20 30 40 50 60 70 Y-displacementofthetip TET4 TETB10 TETB10B (a) Convergence -3.25 0.00 3.25-7.00 6.00 pressure (b) TETB10 -3.25 0.00 3.25-7.00 6.00 pressure (c) TETB10B Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 35 / 38
  • 37. 36/38 Appendix B-bar formulation - elastodynamics - complex geometries (a) Mesh M1 (b) Mesh M2 0.000 0.005 0.010 0.015 0.020 Time (s) −20 −15 −10 −5 0 5 10 15 20 Y-displacementofpointA(mm) TETB10-M1 TETB10-M2 TETB10B-M1 TETB10B-M2 (c) Time Vs Displacement 0.0e+00 -2.0e+06 2.0e+06 sigma_xx (a) TETB10 0.0e+00 -2.0e+06 2.0e+06 sigma_xx (b) TETB10B Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 36 / 38
  • 38. 37/38 Appendix F-bar formulation - Implicit and explicit schemes Idea: de Souza Neto et al [19] ¯σ = σ(¯F), ¯F = J0 J 1 dim F, J = detF, J0 = J|centroid (29) Implicit scheme: αm β ∆t2 M + αf (KM + KG + Kq) ∆u = −R (30) KM = ω BT D B dω, KG = ω GT Σ G dω, Kq = ω GT q (G0 − G) dω (31) Explicit scheme: Muu an+1 = Fext n − Fint,Fbar n un+1 = un + ∆t vn + ∆t2 1 2 − β an + β an+1 vn+1 = vn + ∆t [(1 − γ) an + γ an+1] Fint,Fbar = ω BT ω ¯σ dω Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 37 / 38
  • 39. 38/38 Appendix F-bar formulation - results and issues 0 10 20 30 40 50 60 70 Number of elements per side 0 2 4 6 8 10 Y-displacementofpointA Reference TRIB6 Q2/Q2-SD TRIB6F (a) Convergence -13.6 -7.2 -0.8 5.6 -20.0 12.0 pressure (b) TRIB6 -13.6 -7.2 -0.8 5.6 -20.0 12.0 pressure (c) TRIB6F -1.0e+05 3.0e+05 7.0e+05 1.1e+06 -5.0e+05 1.5e+06 pressure (a) Implicit -1.0e+05 3.0e+05 7.0e+05 1.1e+06 -5.0e+05 1.5e+06 pressure (b) Explicit Issues No reduction in number of load steps Requires excessive numerical damping for high-frequency modes TVD-RK2 method - not computationally appealing due to two-stage process Not applicable for truly incompressible models Chennakesava Kadapa (SA2C) Unified FE schemes for Computational Mechanics UKACM 2019 Conference 38 / 38