SlideShare a Scribd company logo
Kapitza Thermal Boundary Resistance
Kapitza Thermal Boundary Resistance at 
Niobium/Superfluid He interfaces in SRF cavities 
Jay AMRIT 
LIMSI-CNRS , Paris-Sud University, Orsay 
jay.amrit@limsi.fr 
In collaboration with 
Claire ANTOINE 
(CEA, Saclay) 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
Part I : Introduction on KTBR 
Why is it important?/Model predictions 
Part II : Experiments with Nb: bulk purity & surface state 
Poly-crystals 
Single crystals 
Comparison and impact on SRF cavities 
Part III : New analysis & ongoing work 
Importance of nanoscale surface roughness 
Kapitza resistance at grain boundaries in Nb 
Pressure dependency of KTBR : What would happen to cavity performance if we increased the pressure to 25 bars? 
Summary & possible future studies… 
Outline 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
Part I : Introduction on KTBR Why is it important?/Model predictionsPart II : Experiments with Nb: bulk purity & surface statePoly-crystalsSingle crystalsComparison and impact on SRF cavitiesPart III : New analysis & ongoing work Importance of nanoscale surface roughness Kapitza resistance at grain boundaries in NbPressure dependency of KTBR : What would happen to cavity performance if we increased the pressure to 25 bars? Summary & possible future studies… OutlineThin Films and New Ideas for RF Superconductivity, Padova, 2014
Part I : Introduction on KTBR Why is it important?/Model predictionsPart II : Experiments with Nb: bulk purity & surface statePoly-crystalsSingle crystalsComparison and impact on SRF cavitiesPart III : New analysis & ongoing work Importance of nanoscale surface roughness Kapitza resistance at grain boundaries in NbPressure dependency of KTBR : What would happen to cavity performance if we increased the pressure to 25 bars? Summary & possible future studies… OutlineThin Films and New Ideas for RF Superconductivity, Padova, 2014
Part I : Introduction on KTBR Why is it important?/Model predictionsPart II : Experiments with Nb: bulk purity & surface statePoly-crystalsSingle crystalsComparison and impact on SRF cavitiesPart III : New analysis & ongoing work Importance of nanoscale surface roughness Kapitza resistance at grain boundaries in NbPressure dependency of KTBR : What would happen to cavity performance if we increased the pressure to 25 bars? Summary & possible future studies… 
OutlineThin Films and New Ideas for RF Superconductivity, Padova, 2014
Introduction: Discovery of thermal boundary resistance 
Pyotr L. KAPITZA 
(1894-1984) 
-prix Nobel 1978- 
Discovered in 1941 by Kapitza 
Cooling of Solids with Superfluid Helium 
Superfluidity He 
• Discovered 1938 
•Temperatures < 2 K (-271°C) 
•Quasi-infinite thermal conductivity 
Copper 
Superfluid 
4He 
Q  
 Thermal boundary resistance = Kapitza resistance 
 Impossible to reach zero absolute temperature 
by direct cooling 
Fountain effect 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
Introduction: Fundamental interest in Kapitza resistance 
TBR is an important phenomenon at low temperatures 
3  10 
S 
K 
T 
T 
 
 
8  10 
L 
K 
T 
T 
 
 
Typical temperature gradient with temperature jump over atomic distances 
1 mm 1 mm 
TL 
TS 
Solid (Cu) Superfluid He 
TK 
x 
Kcu ~1 W/(mK) KHe ~ 800 x KCu 
K L T  T 8 10 
K S T  T 3 10 
For Nb : K Nb T  (100 1000)T 
Kapitza length K K L  K  R 
L km K HeII 8 ,  
L cm K Cu 10 ,  
Temperature 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
Introduction: Kapitza resistance in SRF cavities 
Electrical surface resistance : 
  
T / 2 
RF 0 
acc 
RF 
E(z, t)dt 
T 
2 
Accelerating field : E (MV/m) 
Quality factor QO : 
E dV 
2 
1 
U v 
2 
 o  (stored energy) 
Power dissipated 
  Energy stored per sec 
q 
ωU 
Qo  
(3-4 nano ohms) 
Heat dissipation in inner walls : B// penetrates ~50 nm into walls 
Joule effect 
c residual 
2 
Rs  A( / T )exp( 1.76T / T ) R 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
e 
Nb He II 
Tin 
THe 
Kapitza T 
q 
B  
Tin Tbath 
Tout 
RK K(T) 
e 
q 
K 
s 
o 
acc 
R 
K 
R e 
T 
E 
 
  
 
 
  
 
  
 
1 
8 
2 1/ 2  
Cavités ellipsoïdales : ] [ ] [ / 4 mT acc MV m B  E 
2 
// 2 
1 
q R B s 
o 
  
 
 
  
 
 
 
 
Power dissipation :  
R q 
K 
e 
T T T in He K   
 
 
 
     Temperature jump : 
Kapitza resistance 
Introduction: simple thermal model 
Accelerating field dependence on K and RK 
A strong RK limits the Eacc ! 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
Heat transport in superfluid Helium 
•Interaction potential between 2 atoms determines 
heat transport in He 
•Energy is rapidly distributed between atoms 
•Only longitudinal (acoustic) phonons transport heat 
•Other excitations : rotons, maxons, vortices 
 240 L c m.s-1 
 = cLk 
Dispersion relation of Helium 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
Heat transport in superfluid Helium 
 240 L c m.s-1 
 = cLk 
Dispersion relation of Helium 
•Unique characteristics of heat and mass transfer 
•Mixture of two fluids (& not two phases) : 
•Momentum density : 
Two fluid model of He II (Tisza, 1938) 
Normal component : n  n  n s 
Superfluid component : s  s   0 s s 
s  
n  
q 
Two different sounds 
First sound (240 m/s) pressure wave & both fluids move in phase 
Second sound (~20m/s): temperature wave & fluids move in opposite directions 
s s n n J        
n n s s   0     
Normal component = source & Superfluid component = sink 
s n     
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
Heat transport in Niobium in a nutshell 
Lattice bcc, a =3.29 A 
Atoms oscillate around their equilibrium positions, 
producing vibrational waves 
Acoustic modes (  = vk) 
•3 branches : longitudinal & 2 transverse 
•Each branch has N modes 
•Mode = (, k)=quantum of acoustic vibration (phonon) 
111 
100 
L 
L 
T 
T 
J. Phys. C 2, 421 (1969) 
Longitudinal Transverse 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
Thermal boundary resistance: how does it come about at the 
Nb/He II interface? 
The key is to determine 
the transmission of 
phonons 
Very small overlap 
in wave vectors 
Dispersion relation of Nb and He 
0 
1 
2 
3 
4 
5 
6 
0 0,5 1 1,5 2 2,5 
Nb dispersion relation 
freq (THz) 
Freq (Thz) 
Freq (THz) 
q (A 
-1 
) 
Nb (111) 
L 
T 
He II 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
Number of phonons of wave vector k incident at 
an angle q per unit time : 
Bose-Einstein distribution 
Heat energy transmitted : 
Energy incident per branch and for a given k : 
Thermal resistance 
q 
 
 
 c cos 
4 
d 
N1,b  n( ,T )g( k )dk 1,b 
  k T 1 n( ,T ) e B 1 
 
     
3 
b 
2 
3 
3 
c 
4 d 
( 2 / L ) 
d k 
g( k )dk 
  
 
  
 
N° of modes with wavevector k for a given branch 
  N1,b 
3 
1 2T 
A 
RK 
 
 
 
Thermal boundary resistance: formal approach 
    
 
 
 
 
 
 
b  
b 
K 
d c d 
T 
n T 
g 
T 
q 
R 
  
q 
   q q q 
 
 
0 
/ 2 
0 
0 2 cos sin 
( , ) 
( ) 
4 
1 1 
 
 
Specific heat 
  1 1 2 
1 2 
4 
1 1 
 
  
 
 
   D 
K 
C 
T 
q 
R 
 
       
 
  
b 
b q Q Q n T g d c d 
  
q 
     q q q 
0 
/ 2 
0 
1 2 2 1 0 ( , ) ( ) cos sin 
2 
1 
    
Average transmission 
(phonons /) 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
Kapitza resistance model : Acoustic mismatch model (AMM) 
(Khalatnikov, 1952) 
•Parallel component of momentum 
•Frequency 
 Conservation laws at the interface: 
// 
S 
// 
L p p 
  
 
L S   
Snell’s law 
S 
S 
L 
L 
c 
sin 
c 
sinq q 
 
  S 
L 
L S 
L S 
AM Z 
Z 
Z Z 
4Z Z 4 
( ) 2  
 
 q  
Transmission coefficient is due to 
discontinuity in sound velocity & density 
  L L L, Z  c 
  S S S , Z  c 
L q 
L L p k 
 
 
 
 
S S p k 
 
 
 
 
k k sin i k cos j S S S S S 
   
 q  q 
k k i k j L L L L L 
   
 sinq  cosq 
S q 
 240 L c m.s-1 
 3 5 c 
L q 
Critical cone in superfluid limits transmission of phonons !! 
5068 ,  Nb L c m.s-1 2092 m.s-1 ,  Nb T 0.002 c 
4 
2 ( ) 
0 
 
 
  
 
  q 
q d 
c 
AM AM 
Nb 
He 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
Kapitza resistance models : diffuse mismatch model (DMM) 
“Trick” to increase phonon transmission in model 
Phonons loose “memory” of former states 
No physical restrictions on scattering mechanism !! 
NO dependency on interface properties 
t ( ) 1  
t ( ) 2  
r ( ) 2  
r ( ) 1  
t ( ) r ( ) 1 1 1     
t ( ) r ( ) 1 2 2     
1 1 2 2 t ()q  t ()q 
~ 0.5 
q 
q 
t ( ) 1 
1 
2 
1 
1    
 
 
  
 
 
  
 
 
 
 
r ( ) t ( ) 1 2    
He II 
Nb 
DMM phonon transmission is increased by two orders of magnitude 
How the diffuse scattering comes about is not explained in this model! 
(at equilibrium) 
Swartz & Pohl 1989 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
0 
1 
2 
3 
4 
5 
40 
60 
80 
100 
120 
1,5 1,6 1,7 1,8 1,9 2 2,1 
Khalatnikov & Dm for NbHeII 
RKhalat (cm2K/W) 
Rdm (cm2K/W) 
T (K) 
AM model 
DM model 
Theoretical Model predictions of Kapitza resistance for Nb/HeII 
Depends on properties of liquid He 
Depends on properties of Nb 
Experiments 
Nb/HeII 
The Kapitza resistance at a solid/ superfluid He II interface is anomalous ! 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
Experimental Cell 
Nb disc sample 
Heater 
Carbon 
Thermometers 
Q  
superfluid 
To 
T1 4He Filling line 
Temperature profile 
across a sample 
K : thermal conductivity 
e : sample thickness 
K 
e 
Q 
S(T T ) 
R K . 2 
1 0  
 
 
To 
T1 
RK 
Q  
To 
RK 
T 
Experiments : cell configuration & method 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
Polycrystalline Niobium: 4 different bulk & surface treatments 100 μmchemically etched250 μmannealed and chemicallyetchedLightHeavy250 μm 
electropolished50 μmannealed, chemically etched & electropolishedMicrographics of surfaces1234RRR 178 
RRR 178 
RRR 647 
RRR 6474.08.1σ 25.085.0σ 4.03.1σ 1.02.0σ )mμ(σK2.4K300ρρRRR
0.5 
1 
1.5 
2 
2.5 
3 
3.5 
4 
4.5 
1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 
R 
K 
(cm2K.W-1) 
Temperature (K) 
1 
3 
4 
2 
Polycrystalline Niobium : RK results 
Sample, RRR Surface Treatment s (μm)# RK (cm2K4W-1) 
#1, 178  CP(~30 μm) 1.8 + 0.4 10.7T-3.55 
#2, 178  EP 0.85 + 0.25 21.3T-4.11 
#3, 647 Annealed +CP 1.3 + 0.4 16.1T-3.93 
#4, 647▲ Annealed +EP 0.2 + 0.1 19.1T-3.61 
Bulk purity : 
Change in K by a factor of 5 (annealing) 
RK changes by ~15% only 
(1 & 3) 
Surface Roughness : 
Smaller surface roughness s leads to 
higher RK (independent of bulk purity) 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
Polycrystalline Niobium : RK compared to total thermal resistance 
20 
30 
40 
50 
60 
70 
80 
1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 
T(K) 
4 
3 
2 
1 
 
 
 
 
 
K 
e 
R 
R 
K 
K 
RRR 647 
annealed 
RRR 178 
•RK constitutes ~70% of total thermal resistance 
•Higher bulk purity and lower temperatures lead to a stronger impact of RK 
•RK is the key parameter for cooling cavities 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
Polycrystalline Niobium : Which samples are best? 
20 
30 
40 
50 
60 
70 
80 
1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 
T(K) 
4 
3 
2 
1 
 
 
 
 
 
K 
e 
R 
R 
K 
K 
RRR 647 
annealed 
RRR 178 
30 
40 
50 
60 
70 
80 
90 
1,5 1,6 1,7 1,8 1,9 2 2,1 
T(K) 
3 
4 
1 
2 
1/ 2 
1 
 
 
 
 
 
 
K 
e 
R 
E 
K 
acc 
Annealed and CP is best ! 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014 
•RK constitutes ~70% of total thermal resistance 
•Higher bulk purity and lower temperatures lead to a stronger impact of RK 
•RK is the key parameter for cooling cavities
μm 
-14 
-13 
-12 
-11 
-10 
-9 
-8 
-7 
-6 
-5 
-4 
-3 
-2 
-1 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
μm 
-4 
-3.5 
-3 
-2.5 
-2 
-1.5 
-1 
-0.5 
0 
0.5 
1 
1.5 
2 
1 
1,5 
2 
2,5 
3 
3,5 
4 
4,5 
1,5 1,6 1,7 1,8 1,9 2 2,1 
Temperature (K) 
Damaged 
Layer 
Chemically 
polished 
Single Crystal (111) Niobium : Impact of surface state on RK 
Niobium ingot ( = 5 cm) , RRR = 300 
Crystallographic orientation (111) – EBSD technique 
2 sample surfaces : 
Damaged Layer sample 
• Electrical discharge machining (EDM) 
• large dumps (25μm) 
• impurities (O2, Cu, Zn,…) 
• velvet-like texture, s ~ 7μm 
Chemically polished sample 
• BCP- removal of 30μm 
• s ~ 1μm 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
Single Crystal Niobium : Phonon-dislocation interactions in skin layer 
1 
1,5 
2 
2,5 
3 
3,5 
4 
4,5 
1,5 1,6 1,7 1,8 1,9 2 2,1 
Temperature (K) 
Damaged 
Layer 
Chemically 
polished 
EDM creates dislocations within narrow layer ( μm) 
Thermal Resistivity Model for Nb (W. Wasserbäch) 
(Philos. Mag. A.38 401 (1978)) 
Random distribution of dislocations: 
(cm3K3/W) 2 
3.05 10 9 
T 
N 
R d 
dp 
   
K DL K CP dp d R  R  R  Analysis : , , 
~1 d  
Plausible dislocation density which explains results 
12 ~ 910 d N cm-2 
Important result indicating scattering/reflection of energy back into Nb due to dislocations & 
impurities (contradicts theoretical ideas) 
~ 40% 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
Relative importance of RK compared to (RK + e/K) 
0.5 
0.6 
0.7 
0.8 
0.9 
1.5 1.6 1.7 1.8 1.9 2 2.1 
R 
K 
/[R 
K 
+(d/K)] 
T(K) 
(a) 
(b) 
(c) 
(d) 
polycrystalline 
RRR = 647 
single crystal 
Polycrystalline and Single crystal Nb 
CP 
EP 
DL 
CP 
Single crystals : 
Relative importance of RK increases with T 
Polycrystalline Nb : 
Relative importance of RK decreases with T 
RK constitutes ~75% at T~1.8K for 
chemically polished polycrystalline 
& single crystals 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
0,4 
0,5 
0,6 
0,7 
0,8 
0,9 
1,5 1,6 1,7 1,8 1,9 2 2,1 
Nb crystal with Damaged Layer 
Nb crystal _chemically polished 
CP polycrystalline Nb (sample 3) 
Temperature (K) 
1/ 2 
1 
 
 
 
 
 
 
K 
e 
R 
E 
K 
acc 
Comparing polycrystalline to single crystals 
Annealed & CP polycrystalline 
is strictly equivalent to CP 
single crystal 
Surface roughness are the 
same in both cases! 
Thermal point of view … 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
- roughness length 
- root mean roughness height 
- inclination of roughness 
New analysis using resonant scattering at Nb/HeII interface 
I. N. Adamenko & I. M. Fuks, JETP, 32, 1123 (1971) 
 
s 
He II 
Nb surface 
ζ(r)  
Nature of phonon scattering is defined by s, l and  
Amplification of heat flux due to Multiple resonant phonon scattering 
Solid surface is characterized at a given scale length by : 
σ 
 
2σ 
γ  
(roughness) 
ideal interface 
l = phonon wavelength 
Phonon wavelength = 
Transmission coefficient = 
  
 
 
  
 
 
 
 
 
 
  
2 
1 231 
l 
s 
   AM 
( ) 
3 
3.8 
( ) 
T K 
nm 
k T 
hc 
nm 
B 
l  L  
2 
169  
 
 
 
  
 
 
 
l 
s 
l 
s 
f 
 
 
 
 
 
 
 
 
  
l 
s 
  Q Q f o 
2 
2 
1 
  1 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
Impact of Nanoscale surface roughness on RK (new) 
20 
30 
40 
50 
60 
1,5 1,6 1,7 1,8 1,9 2 2,1 
Roughness analysis-single & poly crystals 
tau rough/tau 0 
Tau rough/tau0 
Temperature (K) 
Nb Polycrystal 
Annealed + chemically polished 
(RRR 647) 
Nb Single crystal 
Chemically polished 
(RRR 300) 
• RK of ideal surface is >> RK of real surface 
• Resonant scattering is ~40 times more effective 
0,3 
0,35 
0,4 
0,45 
0,5 
0,55 
1,5 1,6 1,7 1,8 1,9 2 2,1 
T (K) 
5 . 0 3 . 0 ~   
 
 
 
l 
s 
Ratio of Surface Roughness to 
phonon wavelength 
Selective diffuse resonant scattering 
enhances transmission 
Resonant scattering : acoustic impedance 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
0,5 
0,6 
0,7 
0,8 
0,9 
1 
1,5 1,6 1,7 1,8 1,9 2 2,1 
Polycryst sample 3_JLTP2000 _ also called Ktcbis 
sigma_poly 3 
sigma (nm)_single CP 
s (nm) 
T(K) 
Nb polycrystal 
Nb single crystal 
Surface Roughness 
Effective heat transfer 
between Niobium and He II 
occurs at scales less than 
a nanometer 
Impact of Nanoscale surface roughness on RK (in progress) 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
Pressure dependency of Kapitza resistance 
Will cooling of SRF cavities be more efficient if the He II pressure is increased to 25 bars? 
3000 
3500 
4000 
4500 
5000 
5500 
6000 
6500 
0 5 10 15 20 25 
Impédance acoustique de l'HeII 
en fonction de la pression 
T = 0.10K 
T = 0.20K 
T = 0.30K 
T = 0.40K 
T = 0.50K 
T = 0.60K 
T = 0.70K 
T = 0.80K 
T = 0.90K 
T = 1.00K 
T = 1.10K 
T = 1.20K 
T = 1.30K 
T = 1.40K 
T = 1.50K 
T = 1.60K 
T = 1.70K 
T = 1.80K 
T = 1.90K 
T = 2.00K 
P (atm) 
He L L Z   c 
changes by ~80% 
Acoustic impedance 
of Liquid He 
cL and L increases with pressure 
  
 
 
Nb 
He 
Nb He 
Nb He 
AM Z 
Z 
Z Z 
Z Z 4 
( ) 
4 
2  Transmission 
Coefficient 
Niobium 
He II 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
Pressure dependency of Kapitza resistance 
Will cooling of SRF cavities be more efficient if the He II pressure is increased to 25 bars? 
3000 
3500 
4000 
4500 
5000 
5500 
6000 
6500 
0 5 10 15 20 25 
Impédance acoustique de l'HeII 
en fonction de la pression 
T = 0.10K 
T = 0.20K 
T = 0.30K 
T = 0.40K 
T = 0.50K 
T = 0.60K 
T = 0.70K 
T = 0.80K 
T = 0.90K 
T = 1.00K 
T = 1.10K 
T = 1.20K 
T = 1.30K 
T = 1.40K 
T = 1.50K 
T = 1.60K 
T = 1.70K 
T = 1.80K 
T = 1.90K 
T = 2.00K 
P (atm) 
He L L Z   c 
changes by ~80% 
Acoustic impedance 
of Liquid He 
cL and L increases with pressure 
  
 
 
Nb 
He 
Nb He 
Nb He 
AM Z 
Z 
Z Z 
Z Z 4 
( ) 
4 
2  Transmission 
Coefficient 
0 
1 
2 
3 
4 
5 
6 
7 
150 
200 
250 
0 5 10 15 20 25 
P (bar) 
~1.8K 
2 
 
 
 
 
 
l 
s 
 
Silicon crystal (111) 
Niobium 
He II 
~80% change in acoustic impedance of He 
NO change in transmission! 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
0,2 
0,4 
0,6 
0,8 
1 
1,2 
1,4 
1,6 1,7 1,8 1,9 2 2,1 2,2 
Grain-grain R 
K 
(cm2K/W) 
T(K) 
R 
K 
~2T-3 (cm2K/W) 
R 
Ky 
R 
Kx 
Kapitza resistance RG-G at grain boundaries in polycrystalline Nb 
 
 
 
  
 
 
 
O 
G G 
o 
polycrystal 
R K 
nd 
n 
K 
K 
( 1) 
1 
G G R  Kapitza resistance at 
grain-grain boundaries 
Thermal conductivity of Nb : 
o K Casimir thermal conductivity 
n Nb. of grains 
Anisotropy in heat flow through cavity walls: 
-grain size d 
-grain distribution 
In plane 
Cross plane 
Solid-solid model 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014 
G G K 
acc 
R R 
n 
(n 1) 
d 
e 
1 
E 
 
 
 

•Cooling of cavities is controlled by K and RK 
•As purity of Nb improves, RK dominates 
•Surface quality (chemical purity, structural order, surface roughness…) rather 
than effective surface area 
•Poly-crystals : Annealed + CP + s ~ 1.2μm is better than 
Annealed + electro-polished 
•Single crystals : Chemically polished (RRR 300) give better performance 
•Thermo-mechanical history of sample : dislocations due to machining 
•Equivalence in performance with poly-crystals and single crystals 
• is important parameter 
•Presence of dislocations and/or impurities increase RK 
•Raising the pressure to 25 bars changes impedance by ~80%, but no effect on RK 
•RK is anomalous – cannot be explained by acoustic mismatch theory 
•New analysis : Resonant scattering of phonons from nanoscale roughnesses 
Summary 
R e K K / 
1 
 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
Possible Future work related to Kapitza resistance 
How does the properties of superfluid He affect RK? 
… 
3 
2 2 3 4 3 ( ) 
~ q 
s T 
A 
q 
d s T 
T 
s 
n  n  
 
 
 
 
  
Viscous flow of non-turbulent He II Mutual friction for high heat fluxes 
between normal fluid and vortices 
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
Kapitza resistance under High heat fluxes ? 
 2 3  1 1.5( T T) ( T T) 0.25( T T) 
T 
Tcorrect 
   
 
 
   
 
 2 3  
,0 
1 1.5( T T) ( T T) 0.25( T T) 
R 
q 
T 
R correct K 
K 
   
 
   
  
 
Possible Future work related to Kapitza resistance 
Radiation model for heat flux : 
( ) 4 4 
1 L q  T T T T T L   1 with 
For  0.5 
T 
T 
2 
K0 
K 
R 
we have R  
Thin Films and New Ideas for RF Superconductivity, Padova, 2014
Possible Future work related to Kapitza resistance 
-Convection in liquid 
-Nucleate boiling 
-Film boiling 
-Development of Turbulence & attenuation of second sound 
Physics of quantum fluidsThin Films and New Ideas for RF Superconductivity, Padova, 2014
Possible Future work related to Kapitza resistanceWill coating of surfaces modify van der Waals forces on the Niobium surface ? NiobiumHe IIThin Films and New Ideas for RF Superconductivity, Padova, 2014
Thank you for your attention
Thin Films and New Ideas for RF Superconductivity, Padova, 2014Nb +1 μm TiNb after removal of 30μm Nb after removal of 5 μm

More Related Content

What's hot

Paleoenvironmental significance of clay minerals
Paleoenvironmental significance of clay mineralsPaleoenvironmental significance of clay minerals
Paleoenvironmental significance of clay minerals
Solomon Adeyinka
 
Bonding in minerals
Bonding in minerals Bonding in minerals
Bonding in minerals
parag sonwane
 
Bucket chain excavator
Bucket chain excavatorBucket chain excavator
Bucket chain excavator
Daud Manatap Sitorus
 
Textures of ore_minerals
Textures of ore_mineralsTextures of ore_minerals
Textures of ore_minerals
Jenny García González
 
Clasificacion de rocas
Clasificacion de rocasClasificacion de rocas
Clasificacion de rocas
ZAMARYA
 
The origin of clay
The origin of clayThe origin of clay
The origin of clay
dargilles
 
3 bab ii batuan sub batuan beku & piroklastik
3 bab ii batuan sub batuan beku & piroklastik3 bab ii batuan sub batuan beku & piroklastik
3 bab ii batuan sub batuan beku & piroklastik
Alviyanda Whoost
 
Magmatismo y tectónica de placas
Magmatismo y tectónica de placasMagmatismo y tectónica de placas
Magmatismo y tectónica de placas
Julio Sanchez
 
Vein deposits of tin and tungsten.pptx
Vein deposits of tin and tungsten.pptxVein deposits of tin and tungsten.pptx
Vein deposits of tin and tungsten.pptx
IshtiaqAhmad163916
 
Edx peak identification chart
Edx peak identification chartEdx peak identification chart
Edx peak identification chart
rentscha
 
Economic geology - Genetic classification of ores
Economic geology - Genetic classification of oresEconomic geology - Genetic classification of ores
Economic geology - Genetic classification of ores
AbdelMonem Soltan
 
Mica
MicaMica
GRAPHITE PRESENTATION (3).pptx
GRAPHITE  PRESENTATION (3).pptxGRAPHITE  PRESENTATION (3).pptx
GRAPHITE PRESENTATION (3).pptx
Imposter7
 
Depositos del tipo skarn
Depositos del tipo skarnDepositos del tipo skarn
Depositos del tipo skarn
Wilfredo Quispe Barreno
 
Economic geology - Sedimentary ore deposits
Economic geology - Sedimentary ore depositsEconomic geology - Sedimentary ore deposits
Economic geology - Sedimentary ore deposits
AbdelMonem Soltan
 
Graphite Presentation
Graphite PresentationGraphite Presentation
Graphite Presentation
saituysal
 
Igneous rocks bs 1st year
Igneous rocks  bs 1st yearIgneous rocks  bs 1st year
Igneous rocks bs 1st year
Awais Bakshy
 
Ortographic projection
Ortographic projectionOrtographic projection
Ortographic projection
Jorge Ponce
 
Clacite & Dolomite
Clacite & DolomiteClacite & Dolomite
Clacite & Dolomite
Vishnu Raayan
 
Quaternary formation of Mainland and Saurashtra Gujarat.pptx
Quaternary formation of  Mainland and Saurashtra Gujarat.pptxQuaternary formation of  Mainland and Saurashtra Gujarat.pptx
Quaternary formation of Mainland and Saurashtra Gujarat.pptx
ShankarLamani
 

What's hot (20)

Paleoenvironmental significance of clay minerals
Paleoenvironmental significance of clay mineralsPaleoenvironmental significance of clay minerals
Paleoenvironmental significance of clay minerals
 
Bonding in minerals
Bonding in minerals Bonding in minerals
Bonding in minerals
 
Bucket chain excavator
Bucket chain excavatorBucket chain excavator
Bucket chain excavator
 
Textures of ore_minerals
Textures of ore_mineralsTextures of ore_minerals
Textures of ore_minerals
 
Clasificacion de rocas
Clasificacion de rocasClasificacion de rocas
Clasificacion de rocas
 
The origin of clay
The origin of clayThe origin of clay
The origin of clay
 
3 bab ii batuan sub batuan beku & piroklastik
3 bab ii batuan sub batuan beku & piroklastik3 bab ii batuan sub batuan beku & piroklastik
3 bab ii batuan sub batuan beku & piroklastik
 
Magmatismo y tectónica de placas
Magmatismo y tectónica de placasMagmatismo y tectónica de placas
Magmatismo y tectónica de placas
 
Vein deposits of tin and tungsten.pptx
Vein deposits of tin and tungsten.pptxVein deposits of tin and tungsten.pptx
Vein deposits of tin and tungsten.pptx
 
Edx peak identification chart
Edx peak identification chartEdx peak identification chart
Edx peak identification chart
 
Economic geology - Genetic classification of ores
Economic geology - Genetic classification of oresEconomic geology - Genetic classification of ores
Economic geology - Genetic classification of ores
 
Mica
MicaMica
Mica
 
GRAPHITE PRESENTATION (3).pptx
GRAPHITE  PRESENTATION (3).pptxGRAPHITE  PRESENTATION (3).pptx
GRAPHITE PRESENTATION (3).pptx
 
Depositos del tipo skarn
Depositos del tipo skarnDepositos del tipo skarn
Depositos del tipo skarn
 
Economic geology - Sedimentary ore deposits
Economic geology - Sedimentary ore depositsEconomic geology - Sedimentary ore deposits
Economic geology - Sedimentary ore deposits
 
Graphite Presentation
Graphite PresentationGraphite Presentation
Graphite Presentation
 
Igneous rocks bs 1st year
Igneous rocks  bs 1st yearIgneous rocks  bs 1st year
Igneous rocks bs 1st year
 
Ortographic projection
Ortographic projectionOrtographic projection
Ortographic projection
 
Clacite & Dolomite
Clacite & DolomiteClacite & Dolomite
Clacite & Dolomite
 
Quaternary formation of Mainland and Saurashtra Gujarat.pptx
Quaternary formation of  Mainland and Saurashtra Gujarat.pptxQuaternary formation of  Mainland and Saurashtra Gujarat.pptx
Quaternary formation of Mainland and Saurashtra Gujarat.pptx
 

Similar to Jay amrit kapitza resistance at niobiumsuperfluid he interfaces

Lobanov - Nb-sputtered 150 MHz Quarter-wave Resonators for ANU Linac Upgrade
Lobanov - Nb-sputtered 150 MHz Quarter-wave Resonators for ANU Linac UpgradeLobanov - Nb-sputtered 150 MHz Quarter-wave Resonators for ANU Linac Upgrade
Lobanov - Nb-sputtered 150 MHz Quarter-wave Resonators for ANU Linac Upgrade
thinfilmsworkshop
 
"Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate""Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate"
Chad Orzel
 
Sebastian
SebastianSebastian
Sebastian
oriolespinal
 
Lecture 7 pseudogap
Lecture 7 pseudogapLecture 7 pseudogap
Lecture 7 pseudogap
AllenHermann
 
Carbon nano materials
Carbon nano materialsCarbon nano materials
Carbon nano materials
King Saud University
 
Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
Brandt - Superconductors and Vortices at Radio Frequency Magnetic FieldsBrandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
thinfilmsworkshop
 
Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopy
nirupam12
 
Pira - Cylindrical post magnetron sputtering
Pira - Cylindrical post magnetron sputteringPira - Cylindrical post magnetron sputtering
Pira - Cylindrical post magnetron sputtering
thinfilmsworkshop
 
BoltzTrap webinar116_David_J_Singh.pdf
BoltzTrap webinar116_David_J_Singh.pdfBoltzTrap webinar116_David_J_Singh.pdf
BoltzTrap webinar116_David_J_Singh.pdf
DrSanjaySingh13
 
CNT Ballistic Transistor
CNT Ballistic TransistorCNT Ballistic Transistor
CNT Ballistic Transistor
Tashfain Yousuf
 
Xiaoxing Xi - Magnesium Diboride Thin Films for Superconducting RF Cavities
Xiaoxing Xi - Magnesium Diboride Thin Films for Superconducting RF CavitiesXiaoxing Xi - Magnesium Diboride Thin Films for Superconducting RF Cavities
Xiaoxing Xi - Magnesium Diboride Thin Films for Superconducting RF Cavities
thinfilmsworkshop
 
Mahadevan krishnan coaxial energetic deposition of thin films
Mahadevan krishnan   coaxial energetic deposition of thin filmsMahadevan krishnan   coaxial energetic deposition of thin films
Mahadevan krishnan coaxial energetic deposition of thin films
thinfilmsworkshop
 
Perugia giazotto
Perugia giazottoPerugia giazotto
Perugia giazotto
nipslab
 
Perugia giazotto
Perugia giazottoPerugia giazotto
Perugia giazotto
nipslab
 
Nanomagnetism columbia 2013
Nanomagnetism columbia 2013Nanomagnetism columbia 2013
Nanomagnetism columbia 2013
oriolespinal
 
3.magnetic levitation over a superconductor
3.magnetic levitation over a superconductor3.magnetic levitation over a superconductor
3.magnetic levitation over a superconductor
Narayan Behera
 
Mott insulators
Mott insulatorsMott insulators
Mott insulators
ABDERRAHMANE REGGAD
 
Pressure Dependance of Tc for TbNi2Mn
Pressure Dependance of Tc for TbNi2MnPressure Dependance of Tc for TbNi2Mn
Pressure Dependance of Tc for TbNi2Mn
Damon Jackson
 
Magnetism at oxide interface final
Magnetism at oxide interface finalMagnetism at oxide interface final
Enzo palmieri experimental results on thermal boundary resistance for niobi...
Enzo palmieri   experimental results on thermal boundary resistance for niobi...Enzo palmieri   experimental results on thermal boundary resistance for niobi...
Enzo palmieri experimental results on thermal boundary resistance for niobi...
thinfilmsworkshop
 

Similar to Jay amrit kapitza resistance at niobiumsuperfluid he interfaces (20)

Lobanov - Nb-sputtered 150 MHz Quarter-wave Resonators for ANU Linac Upgrade
Lobanov - Nb-sputtered 150 MHz Quarter-wave Resonators for ANU Linac UpgradeLobanov - Nb-sputtered 150 MHz Quarter-wave Resonators for ANU Linac Upgrade
Lobanov - Nb-sputtered 150 MHz Quarter-wave Resonators for ANU Linac Upgrade
 
"Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate""Squeezed States in Bose-Einstein Condensate"
"Squeezed States in Bose-Einstein Condensate"
 
Sebastian
SebastianSebastian
Sebastian
 
Lecture 7 pseudogap
Lecture 7 pseudogapLecture 7 pseudogap
Lecture 7 pseudogap
 
Carbon nano materials
Carbon nano materialsCarbon nano materials
Carbon nano materials
 
Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
Brandt - Superconductors and Vortices at Radio Frequency Magnetic FieldsBrandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
Brandt - Superconductors and Vortices at Radio Frequency Magnetic Fields
 
Introduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling MicroscopyIntroduction to Scanning Tunneling Microscopy
Introduction to Scanning Tunneling Microscopy
 
Pira - Cylindrical post magnetron sputtering
Pira - Cylindrical post magnetron sputteringPira - Cylindrical post magnetron sputtering
Pira - Cylindrical post magnetron sputtering
 
BoltzTrap webinar116_David_J_Singh.pdf
BoltzTrap webinar116_David_J_Singh.pdfBoltzTrap webinar116_David_J_Singh.pdf
BoltzTrap webinar116_David_J_Singh.pdf
 
CNT Ballistic Transistor
CNT Ballistic TransistorCNT Ballistic Transistor
CNT Ballistic Transistor
 
Xiaoxing Xi - Magnesium Diboride Thin Films for Superconducting RF Cavities
Xiaoxing Xi - Magnesium Diboride Thin Films for Superconducting RF CavitiesXiaoxing Xi - Magnesium Diboride Thin Films for Superconducting RF Cavities
Xiaoxing Xi - Magnesium Diboride Thin Films for Superconducting RF Cavities
 
Mahadevan krishnan coaxial energetic deposition of thin films
Mahadevan krishnan   coaxial energetic deposition of thin filmsMahadevan krishnan   coaxial energetic deposition of thin films
Mahadevan krishnan coaxial energetic deposition of thin films
 
Perugia giazotto
Perugia giazottoPerugia giazotto
Perugia giazotto
 
Perugia giazotto
Perugia giazottoPerugia giazotto
Perugia giazotto
 
Nanomagnetism columbia 2013
Nanomagnetism columbia 2013Nanomagnetism columbia 2013
Nanomagnetism columbia 2013
 
3.magnetic levitation over a superconductor
3.magnetic levitation over a superconductor3.magnetic levitation over a superconductor
3.magnetic levitation over a superconductor
 
Mott insulators
Mott insulatorsMott insulators
Mott insulators
 
Pressure Dependance of Tc for TbNi2Mn
Pressure Dependance of Tc for TbNi2MnPressure Dependance of Tc for TbNi2Mn
Pressure Dependance of Tc for TbNi2Mn
 
Magnetism at oxide interface final
Magnetism at oxide interface finalMagnetism at oxide interface final
Magnetism at oxide interface final
 
Enzo palmieri experimental results on thermal boundary resistance for niobi...
Enzo palmieri   experimental results on thermal boundary resistance for niobi...Enzo palmieri   experimental results on thermal boundary resistance for niobi...
Enzo palmieri experimental results on thermal boundary resistance for niobi...
 

More from thinfilmsworkshop

V. Palmieri - Superconducting resonant cavities
V. Palmieri - Superconducting resonant cavitiesV. Palmieri - Superconducting resonant cavities
V. Palmieri - Superconducting resonant cavities
thinfilmsworkshop
 
V. Palmieri - The classical superconductivity
V. Palmieri - The classical superconductivityV. Palmieri - The classical superconductivity
V. Palmieri - The classical superconductivity
thinfilmsworkshop
 
Motori superconduttivi 2
Motori superconduttivi 2Motori superconduttivi 2
Motori superconduttivi 2
thinfilmsworkshop
 
Motori superconduttivi 1
Motori superconduttivi 1Motori superconduttivi 1
Motori superconduttivi 1
thinfilmsworkshop
 
3 ej fccrf legnaro 2014-10-06
3   ej fccrf legnaro 2014-10-063   ej fccrf legnaro 2014-10-06
3 ej fccrf legnaro 2014-10-06
thinfilmsworkshop
 
Tesi Master Andrea Camacho Romero
Tesi Master Andrea Camacho RomeroTesi Master Andrea Camacho Romero
Tesi Master Andrea Camacho Romero
thinfilmsworkshop
 
Tesi Bachelor Debastiani
Tesi Bachelor DebastianiTesi Bachelor Debastiani
Tesi Bachelor Debastiani
thinfilmsworkshop
 
Tesi Bachelor Giovanni Vergari
Tesi Bachelor Giovanni VergariTesi Bachelor Giovanni Vergari
Tesi Bachelor Giovanni Vergari
thinfilmsworkshop
 
Tesi master Ram Khrishna Thakur
Tesi master Ram Khrishna ThakurTesi master Ram Khrishna Thakur
Tesi master Ram Khrishna Thakur
thinfilmsworkshop
 
Tesi master Goulong yu
Tesi master Goulong yuTesi master Goulong yu
Tesi master Goulong yu
thinfilmsworkshop
 
Tesi magistrale Akaberi Nazkhatoon
Tesi magistrale Akaberi NazkhatoonTesi magistrale Akaberi Nazkhatoon
Tesi magistrale Akaberi Nazkhatoon
thinfilmsworkshop
 
Tesi master Acosta Gabriela
Tesi master Acosta GabrielaTesi master Acosta Gabriela
Tesi master Acosta Gabriela
thinfilmsworkshop
 
Tesi PhD Zhang Yan
Tesi PhD  Zhang YanTesi PhD  Zhang Yan
Tesi PhD Zhang Yan
thinfilmsworkshop
 
Tesi federico della ricca
Tesi federico della riccaTesi federico della ricca
Tesi federico della ricca
thinfilmsworkshop
 
Tesi Master Zambotto Dino
Tesi Master Zambotto Dino Tesi Master Zambotto Dino
Tesi Master Zambotto Dino
thinfilmsworkshop
 
Tesi master Vanessa Rampazzo
Tesi master Vanessa Rampazzo Tesi master Vanessa Rampazzo
Tesi master Vanessa Rampazzo
thinfilmsworkshop
 
Tesi master Paolo Modanese
Tesi master Paolo ModaneseTesi master Paolo Modanese
Tesi master Paolo Modanese
thinfilmsworkshop
 
Tesi Master Diego Tonini
Tesi Master Diego ToniniTesi Master Diego Tonini
Tesi Master Diego Tonini
thinfilmsworkshop
 
Tesi Master Giorgio Keppel
Tesi Master Giorgio KeppelTesi Master Giorgio Keppel
Tesi Master Giorgio Keppel
thinfilmsworkshop
 
Tes master Tommaso Cavallin
Tes master Tommaso CavallinTes master Tommaso Cavallin
Tes master Tommaso Cavallin
thinfilmsworkshop
 

More from thinfilmsworkshop (20)

V. Palmieri - Superconducting resonant cavities
V. Palmieri - Superconducting resonant cavitiesV. Palmieri - Superconducting resonant cavities
V. Palmieri - Superconducting resonant cavities
 
V. Palmieri - The classical superconductivity
V. Palmieri - The classical superconductivityV. Palmieri - The classical superconductivity
V. Palmieri - The classical superconductivity
 
Motori superconduttivi 2
Motori superconduttivi 2Motori superconduttivi 2
Motori superconduttivi 2
 
Motori superconduttivi 1
Motori superconduttivi 1Motori superconduttivi 1
Motori superconduttivi 1
 
3 ej fccrf legnaro 2014-10-06
3   ej fccrf legnaro 2014-10-063   ej fccrf legnaro 2014-10-06
3 ej fccrf legnaro 2014-10-06
 
Tesi Master Andrea Camacho Romero
Tesi Master Andrea Camacho RomeroTesi Master Andrea Camacho Romero
Tesi Master Andrea Camacho Romero
 
Tesi Bachelor Debastiani
Tesi Bachelor DebastianiTesi Bachelor Debastiani
Tesi Bachelor Debastiani
 
Tesi Bachelor Giovanni Vergari
Tesi Bachelor Giovanni VergariTesi Bachelor Giovanni Vergari
Tesi Bachelor Giovanni Vergari
 
Tesi master Ram Khrishna Thakur
Tesi master Ram Khrishna ThakurTesi master Ram Khrishna Thakur
Tesi master Ram Khrishna Thakur
 
Tesi master Goulong yu
Tesi master Goulong yuTesi master Goulong yu
Tesi master Goulong yu
 
Tesi magistrale Akaberi Nazkhatoon
Tesi magistrale Akaberi NazkhatoonTesi magistrale Akaberi Nazkhatoon
Tesi magistrale Akaberi Nazkhatoon
 
Tesi master Acosta Gabriela
Tesi master Acosta GabrielaTesi master Acosta Gabriela
Tesi master Acosta Gabriela
 
Tesi PhD Zhang Yan
Tesi PhD  Zhang YanTesi PhD  Zhang Yan
Tesi PhD Zhang Yan
 
Tesi federico della ricca
Tesi federico della riccaTesi federico della ricca
Tesi federico della ricca
 
Tesi Master Zambotto Dino
Tesi Master Zambotto Dino Tesi Master Zambotto Dino
Tesi Master Zambotto Dino
 
Tesi master Vanessa Rampazzo
Tesi master Vanessa Rampazzo Tesi master Vanessa Rampazzo
Tesi master Vanessa Rampazzo
 
Tesi master Paolo Modanese
Tesi master Paolo ModaneseTesi master Paolo Modanese
Tesi master Paolo Modanese
 
Tesi Master Diego Tonini
Tesi Master Diego ToniniTesi Master Diego Tonini
Tesi Master Diego Tonini
 
Tesi Master Giorgio Keppel
Tesi Master Giorgio KeppelTesi Master Giorgio Keppel
Tesi Master Giorgio Keppel
 
Tes master Tommaso Cavallin
Tes master Tommaso CavallinTes master Tommaso Cavallin
Tes master Tommaso Cavallin
 

Recently uploaded

Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Leonel Morgado
 
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of ProteinsGBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
Areesha Ahmad
 
Sustainable Land Management - Climate Smart Agriculture
Sustainable Land Management - Climate Smart AgricultureSustainable Land Management - Climate Smart Agriculture
Sustainable Land Management - Climate Smart Agriculture
International Food Policy Research Institute- South Asia Office
 
Male reproduction physiology by Suyash Garg .pptx
Male reproduction physiology by Suyash Garg .pptxMale reproduction physiology by Suyash Garg .pptx
Male reproduction physiology by Suyash Garg .pptx
suyashempire
 
Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...
Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...
Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...
PsychoTech Services
 
Anti-Universe And Emergent Gravity and the Dark Universe
Anti-Universe And Emergent Gravity and the Dark UniverseAnti-Universe And Emergent Gravity and the Dark Universe
Anti-Universe And Emergent Gravity and the Dark Universe
Sérgio Sacani
 
Randomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNERandomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNE
University of Maribor
 
cathode ray oscilloscope and its applications
cathode ray oscilloscope and its applicationscathode ray oscilloscope and its applications
cathode ray oscilloscope and its applications
sandertein
 
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
Advanced-Concepts-Team
 
BIRDS DIVERSITY OF SOOTEA BISWANATH ASSAM.ppt.pptx
BIRDS  DIVERSITY OF SOOTEA BISWANATH ASSAM.ppt.pptxBIRDS  DIVERSITY OF SOOTEA BISWANATH ASSAM.ppt.pptx
BIRDS DIVERSITY OF SOOTEA BISWANATH ASSAM.ppt.pptx
goluk9330
 
CLASS 12th CHEMISTRY SOLID STATE ppt (Animated)
CLASS 12th CHEMISTRY SOLID STATE ppt (Animated)CLASS 12th CHEMISTRY SOLID STATE ppt (Animated)
CLASS 12th CHEMISTRY SOLID STATE ppt (Animated)
eitps1506
 
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdfMending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Selcen Ozturkcan
 
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
hozt8xgk
 
Pests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdfPests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdf
PirithiRaju
 
AJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdfAJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR
 
(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...
(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...
(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...
Scintica Instrumentation
 
HUMAN EYE By-R.M Class 10 phy best digital notes.pdf
HUMAN EYE By-R.M Class 10 phy best digital notes.pdfHUMAN EYE By-R.M Class 10 phy best digital notes.pdf
HUMAN EYE By-R.M Class 10 phy best digital notes.pdf
Ritik83251
 
2001_Book_HumanChromosomes - Genéticapdf
2001_Book_HumanChromosomes - Genéticapdf2001_Book_HumanChromosomes - Genéticapdf
2001_Book_HumanChromosomes - Genéticapdf
lucianamillenium
 
23PH301 - Optics - Optical Lenses.pptx
23PH301 - Optics  -  Optical Lenses.pptx23PH301 - Optics  -  Optical Lenses.pptx
23PH301 - Optics - Optical Lenses.pptx
RDhivya6
 
LEARNING TO LIVE WITH LAWS OF MOTION .pptx
LEARNING TO LIVE WITH LAWS OF MOTION .pptxLEARNING TO LIVE WITH LAWS OF MOTION .pptx
LEARNING TO LIVE WITH LAWS OF MOTION .pptx
yourprojectpartner05
 

Recently uploaded (20)

Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
Describing and Interpreting an Immersive Learning Case with the Immersion Cub...
 
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of ProteinsGBSN - Biochemistry (Unit 6) Chemistry of Proteins
GBSN - Biochemistry (Unit 6) Chemistry of Proteins
 
Sustainable Land Management - Climate Smart Agriculture
Sustainable Land Management - Climate Smart AgricultureSustainable Land Management - Climate Smart Agriculture
Sustainable Land Management - Climate Smart Agriculture
 
Male reproduction physiology by Suyash Garg .pptx
Male reproduction physiology by Suyash Garg .pptxMale reproduction physiology by Suyash Garg .pptx
Male reproduction physiology by Suyash Garg .pptx
 
Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...
Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...
Sexuality - Issues, Attitude and Behaviour - Applied Social Psychology - Psyc...
 
Anti-Universe And Emergent Gravity and the Dark Universe
Anti-Universe And Emergent Gravity and the Dark UniverseAnti-Universe And Emergent Gravity and the Dark Universe
Anti-Universe And Emergent Gravity and the Dark Universe
 
Randomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNERandomised Optimisation Algorithms in DAPHNE
Randomised Optimisation Algorithms in DAPHNE
 
cathode ray oscilloscope and its applications
cathode ray oscilloscope and its applicationscathode ray oscilloscope and its applications
cathode ray oscilloscope and its applications
 
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
ESA/ACT Science Coffee: Diego Blas - Gravitational wave detection with orbita...
 
BIRDS DIVERSITY OF SOOTEA BISWANATH ASSAM.ppt.pptx
BIRDS  DIVERSITY OF SOOTEA BISWANATH ASSAM.ppt.pptxBIRDS  DIVERSITY OF SOOTEA BISWANATH ASSAM.ppt.pptx
BIRDS DIVERSITY OF SOOTEA BISWANATH ASSAM.ppt.pptx
 
CLASS 12th CHEMISTRY SOLID STATE ppt (Animated)
CLASS 12th CHEMISTRY SOLID STATE ppt (Animated)CLASS 12th CHEMISTRY SOLID STATE ppt (Animated)
CLASS 12th CHEMISTRY SOLID STATE ppt (Animated)
 
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdfMending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
Mending Clothing to Support Sustainable Fashion_CIMaR 2024.pdf
 
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
快速办理(UAM毕业证书)马德里自治大学毕业证学位证一模一样
 
Pests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdfPests of Storage_Identification_Dr.UPR.pdf
Pests of Storage_Identification_Dr.UPR.pdf
 
AJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdfAJAY KUMAR NIET GreNo Guava Project File.pdf
AJAY KUMAR NIET GreNo Guava Project File.pdf
 
(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...
(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...
(June 12, 2024) Webinar: Development of PET theranostics targeting the molecu...
 
HUMAN EYE By-R.M Class 10 phy best digital notes.pdf
HUMAN EYE By-R.M Class 10 phy best digital notes.pdfHUMAN EYE By-R.M Class 10 phy best digital notes.pdf
HUMAN EYE By-R.M Class 10 phy best digital notes.pdf
 
2001_Book_HumanChromosomes - Genéticapdf
2001_Book_HumanChromosomes - Genéticapdf2001_Book_HumanChromosomes - Genéticapdf
2001_Book_HumanChromosomes - Genéticapdf
 
23PH301 - Optics - Optical Lenses.pptx
23PH301 - Optics  -  Optical Lenses.pptx23PH301 - Optics  -  Optical Lenses.pptx
23PH301 - Optics - Optical Lenses.pptx
 
LEARNING TO LIVE WITH LAWS OF MOTION .pptx
LEARNING TO LIVE WITH LAWS OF MOTION .pptxLEARNING TO LIVE WITH LAWS OF MOTION .pptx
LEARNING TO LIVE WITH LAWS OF MOTION .pptx
 

Jay amrit kapitza resistance at niobiumsuperfluid he interfaces

  • 2. Kapitza Thermal Boundary Resistance at Niobium/Superfluid He interfaces in SRF cavities Jay AMRIT LIMSI-CNRS , Paris-Sud University, Orsay jay.amrit@limsi.fr In collaboration with Claire ANTOINE (CEA, Saclay) Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 3. Part I : Introduction on KTBR Why is it important?/Model predictions Part II : Experiments with Nb: bulk purity & surface state Poly-crystals Single crystals Comparison and impact on SRF cavities Part III : New analysis & ongoing work Importance of nanoscale surface roughness Kapitza resistance at grain boundaries in Nb Pressure dependency of KTBR : What would happen to cavity performance if we increased the pressure to 25 bars? Summary & possible future studies… Outline Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 4. Part I : Introduction on KTBR Why is it important?/Model predictionsPart II : Experiments with Nb: bulk purity & surface statePoly-crystalsSingle crystalsComparison and impact on SRF cavitiesPart III : New analysis & ongoing work Importance of nanoscale surface roughness Kapitza resistance at grain boundaries in NbPressure dependency of KTBR : What would happen to cavity performance if we increased the pressure to 25 bars? Summary & possible future studies… OutlineThin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 5. Part I : Introduction on KTBR Why is it important?/Model predictionsPart II : Experiments with Nb: bulk purity & surface statePoly-crystalsSingle crystalsComparison and impact on SRF cavitiesPart III : New analysis & ongoing work Importance of nanoscale surface roughness Kapitza resistance at grain boundaries in NbPressure dependency of KTBR : What would happen to cavity performance if we increased the pressure to 25 bars? Summary & possible future studies… OutlineThin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 6. Part I : Introduction on KTBR Why is it important?/Model predictionsPart II : Experiments with Nb: bulk purity & surface statePoly-crystalsSingle crystalsComparison and impact on SRF cavitiesPart III : New analysis & ongoing work Importance of nanoscale surface roughness Kapitza resistance at grain boundaries in NbPressure dependency of KTBR : What would happen to cavity performance if we increased the pressure to 25 bars? Summary & possible future studies… OutlineThin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 7. Introduction: Discovery of thermal boundary resistance Pyotr L. KAPITZA (1894-1984) -prix Nobel 1978- Discovered in 1941 by Kapitza Cooling of Solids with Superfluid Helium Superfluidity He • Discovered 1938 •Temperatures < 2 K (-271°C) •Quasi-infinite thermal conductivity Copper Superfluid 4He Q   Thermal boundary resistance = Kapitza resistance  Impossible to reach zero absolute temperature by direct cooling Fountain effect Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 8. Introduction: Fundamental interest in Kapitza resistance TBR is an important phenomenon at low temperatures 3  10 S K T T   8  10 L K T T   Typical temperature gradient with temperature jump over atomic distances 1 mm 1 mm TL TS Solid (Cu) Superfluid He TK x Kcu ~1 W/(mK) KHe ~ 800 x KCu K L T  T 8 10 K S T  T 3 10 For Nb : K Nb T  (100 1000)T Kapitza length K K L  K  R L km K HeII 8 ,  L cm K Cu 10 ,  Temperature Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 9. Introduction: Kapitza resistance in SRF cavities Electrical surface resistance :   T / 2 RF 0 acc RF E(z, t)dt T 2 Accelerating field : E (MV/m) Quality factor QO : E dV 2 1 U v 2  o  (stored energy) Power dissipated   Energy stored per sec q ωU Qo  (3-4 nano ohms) Heat dissipation in inner walls : B// penetrates ~50 nm into walls Joule effect c residual 2 Rs  A( / T )exp( 1.76T / T ) R Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 10. e Nb He II Tin THe Kapitza T q B  Tin Tbath Tout RK K(T) e q K s o acc R K R e T E            1 8 2 1/ 2  Cavités ellipsoïdales : ] [ ] [ / 4 mT acc MV m B  E 2 // 2 1 q R B s o           Power dissipation :  R q K e T T T in He K           Temperature jump : Kapitza resistance Introduction: simple thermal model Accelerating field dependence on K and RK A strong RK limits the Eacc ! Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 11. Heat transport in superfluid Helium •Interaction potential between 2 atoms determines heat transport in He •Energy is rapidly distributed between atoms •Only longitudinal (acoustic) phonons transport heat •Other excitations : rotons, maxons, vortices  240 L c m.s-1  = cLk Dispersion relation of Helium Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 12. Heat transport in superfluid Helium  240 L c m.s-1  = cLk Dispersion relation of Helium •Unique characteristics of heat and mass transfer •Mixture of two fluids (& not two phases) : •Momentum density : Two fluid model of He II (Tisza, 1938) Normal component : n  n  n s Superfluid component : s  s   0 s s s  n  q Two different sounds First sound (240 m/s) pressure wave & both fluids move in phase Second sound (~20m/s): temperature wave & fluids move in opposite directions s s n n J        n n s s   0     Normal component = source & Superfluid component = sink s n     Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 13. Heat transport in Niobium in a nutshell Lattice bcc, a =3.29 A Atoms oscillate around their equilibrium positions, producing vibrational waves Acoustic modes (  = vk) •3 branches : longitudinal & 2 transverse •Each branch has N modes •Mode = (, k)=quantum of acoustic vibration (phonon) 111 100 L L T T J. Phys. C 2, 421 (1969) Longitudinal Transverse Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 14. Thermal boundary resistance: how does it come about at the Nb/He II interface? The key is to determine the transmission of phonons Very small overlap in wave vectors Dispersion relation of Nb and He 0 1 2 3 4 5 6 0 0,5 1 1,5 2 2,5 Nb dispersion relation freq (THz) Freq (Thz) Freq (THz) q (A -1 ) Nb (111) L T He II Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 15. Number of phonons of wave vector k incident at an angle q per unit time : Bose-Einstein distribution Heat energy transmitted : Energy incident per branch and for a given k : Thermal resistance q    c cos 4 d N1,b  n( ,T )g( k )dk 1,b   k T 1 n( ,T ) e B 1       3 b 2 3 3 c 4 d ( 2 / L ) d k g( k )dk       N° of modes with wavevector k for a given branch   N1,b 3 1 2T A RK    Thermal boundary resistance: formal approach           b  b K d c d T n T g T q R   q    q q q   0 / 2 0 0 2 cos sin ( , ) ( ) 4 1 1   Specific heat   1 1 2 1 2 4 1 1         D K C T q R            b b q Q Q n T g d c d   q      q q q 0 / 2 0 1 2 2 1 0 ( , ) ( ) cos sin 2 1     Average transmission (phonons /) Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 16. Kapitza resistance model : Acoustic mismatch model (AMM) (Khalatnikov, 1952) •Parallel component of momentum •Frequency  Conservation laws at the interface: // S // L p p    L S   Snell’s law S S L L c sin c sinq q    S L L S L S AM Z Z Z Z 4Z Z 4 ( ) 2    q  Transmission coefficient is due to discontinuity in sound velocity & density   L L L, Z  c   S S S , Z  c L q L L p k     S S p k     k k sin i k cos j S S S S S     q  q k k i k j L L L L L     sinq  cosq S q  240 L c m.s-1  3 5 c L q Critical cone in superfluid limits transmission of phonons !! 5068 ,  Nb L c m.s-1 2092 m.s-1 ,  Nb T 0.002 c 4 2 ( ) 0        q q d c AM AM Nb He Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 17. Kapitza resistance models : diffuse mismatch model (DMM) “Trick” to increase phonon transmission in model Phonons loose “memory” of former states No physical restrictions on scattering mechanism !! NO dependency on interface properties t ( ) 1  t ( ) 2  r ( ) 2  r ( ) 1  t ( ) r ( ) 1 1 1     t ( ) r ( ) 1 2 2     1 1 2 2 t ()q  t ()q ~ 0.5 q q t ( ) 1 1 2 1 1                r ( ) t ( ) 1 2    He II Nb DMM phonon transmission is increased by two orders of magnitude How the diffuse scattering comes about is not explained in this model! (at equilibrium) Swartz & Pohl 1989 Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 18. 0 1 2 3 4 5 40 60 80 100 120 1,5 1,6 1,7 1,8 1,9 2 2,1 Khalatnikov & Dm for NbHeII RKhalat (cm2K/W) Rdm (cm2K/W) T (K) AM model DM model Theoretical Model predictions of Kapitza resistance for Nb/HeII Depends on properties of liquid He Depends on properties of Nb Experiments Nb/HeII The Kapitza resistance at a solid/ superfluid He II interface is anomalous ! Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 19. Experimental Cell Nb disc sample Heater Carbon Thermometers Q  superfluid To T1 4He Filling line Temperature profile across a sample K : thermal conductivity e : sample thickness K e Q S(T T ) R K . 2 1 0    To T1 RK Q  To RK T Experiments : cell configuration & method Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 20. Polycrystalline Niobium: 4 different bulk & surface treatments 100 μmchemically etched250 μmannealed and chemicallyetchedLightHeavy250 μm electropolished50 μmannealed, chemically etched & electropolishedMicrographics of surfaces1234RRR 178 RRR 178 RRR 647 RRR 6474.08.1σ 25.085.0σ 4.03.1σ 1.02.0σ )mμ(σK2.4K300ρρRRR
  • 21. 0.5 1 1.5 2 2.5 3 3.5 4 4.5 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 R K (cm2K.W-1) Temperature (K) 1 3 4 2 Polycrystalline Niobium : RK results Sample, RRR Surface Treatment s (μm)# RK (cm2K4W-1) #1, 178  CP(~30 μm) 1.8 + 0.4 10.7T-3.55 #2, 178  EP 0.85 + 0.25 21.3T-4.11 #3, 647 Annealed +CP 1.3 + 0.4 16.1T-3.93 #4, 647▲ Annealed +EP 0.2 + 0.1 19.1T-3.61 Bulk purity : Change in K by a factor of 5 (annealing) RK changes by ~15% only (1 & 3) Surface Roughness : Smaller surface roughness s leads to higher RK (independent of bulk purity) Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 22. Polycrystalline Niobium : RK compared to total thermal resistance 20 30 40 50 60 70 80 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 T(K) 4 3 2 1      K e R R K K RRR 647 annealed RRR 178 •RK constitutes ~70% of total thermal resistance •Higher bulk purity and lower temperatures lead to a stronger impact of RK •RK is the key parameter for cooling cavities Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 23. Polycrystalline Niobium : Which samples are best? 20 30 40 50 60 70 80 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 T(K) 4 3 2 1      K e R R K K RRR 647 annealed RRR 178 30 40 50 60 70 80 90 1,5 1,6 1,7 1,8 1,9 2 2,1 T(K) 3 4 1 2 1/ 2 1       K e R E K acc Annealed and CP is best ! Thin Films and New Ideas for RF Superconductivity, Padova, 2014 •RK constitutes ~70% of total thermal resistance •Higher bulk purity and lower temperatures lead to a stronger impact of RK •RK is the key parameter for cooling cavities
  • 24. μm -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 μm -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 1 1,5 2 2,5 3 3,5 4 4,5 1,5 1,6 1,7 1,8 1,9 2 2,1 Temperature (K) Damaged Layer Chemically polished Single Crystal (111) Niobium : Impact of surface state on RK Niobium ingot ( = 5 cm) , RRR = 300 Crystallographic orientation (111) – EBSD technique 2 sample surfaces : Damaged Layer sample • Electrical discharge machining (EDM) • large dumps (25μm) • impurities (O2, Cu, Zn,…) • velvet-like texture, s ~ 7μm Chemically polished sample • BCP- removal of 30μm • s ~ 1μm Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 25. Single Crystal Niobium : Phonon-dislocation interactions in skin layer 1 1,5 2 2,5 3 3,5 4 4,5 1,5 1,6 1,7 1,8 1,9 2 2,1 Temperature (K) Damaged Layer Chemically polished EDM creates dislocations within narrow layer ( μm) Thermal Resistivity Model for Nb (W. Wasserbäch) (Philos. Mag. A.38 401 (1978)) Random distribution of dislocations: (cm3K3/W) 2 3.05 10 9 T N R d dp    K DL K CP dp d R  R  R  Analysis : , , ~1 d  Plausible dislocation density which explains results 12 ~ 910 d N cm-2 Important result indicating scattering/reflection of energy back into Nb due to dislocations & impurities (contradicts theoretical ideas) ~ 40% Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 26. Relative importance of RK compared to (RK + e/K) 0.5 0.6 0.7 0.8 0.9 1.5 1.6 1.7 1.8 1.9 2 2.1 R K /[R K +(d/K)] T(K) (a) (b) (c) (d) polycrystalline RRR = 647 single crystal Polycrystalline and Single crystal Nb CP EP DL CP Single crystals : Relative importance of RK increases with T Polycrystalline Nb : Relative importance of RK decreases with T RK constitutes ~75% at T~1.8K for chemically polished polycrystalline & single crystals Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 27. 0,4 0,5 0,6 0,7 0,8 0,9 1,5 1,6 1,7 1,8 1,9 2 2,1 Nb crystal with Damaged Layer Nb crystal _chemically polished CP polycrystalline Nb (sample 3) Temperature (K) 1/ 2 1       K e R E K acc Comparing polycrystalline to single crystals Annealed & CP polycrystalline is strictly equivalent to CP single crystal Surface roughness are the same in both cases! Thermal point of view … Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 28. - roughness length - root mean roughness height - inclination of roughness New analysis using resonant scattering at Nb/HeII interface I. N. Adamenko & I. M. Fuks, JETP, 32, 1123 (1971)  s He II Nb surface ζ(r)  Nature of phonon scattering is defined by s, l and  Amplification of heat flux due to Multiple resonant phonon scattering Solid surface is characterized at a given scale length by : σ  2σ γ  (roughness) ideal interface l = phonon wavelength Phonon wavelength = Transmission coefficient =               2 1 231 l s    AM ( ) 3 3.8 ( ) T K nm k T hc nm B l  L  2 169          l s l s f           l s   Q Q f o 2 2 1   1 Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 29. Impact of Nanoscale surface roughness on RK (new) 20 30 40 50 60 1,5 1,6 1,7 1,8 1,9 2 2,1 Roughness analysis-single & poly crystals tau rough/tau 0 Tau rough/tau0 Temperature (K) Nb Polycrystal Annealed + chemically polished (RRR 647) Nb Single crystal Chemically polished (RRR 300) • RK of ideal surface is >> RK of real surface • Resonant scattering is ~40 times more effective 0,3 0,35 0,4 0,45 0,5 0,55 1,5 1,6 1,7 1,8 1,9 2 2,1 T (K) 5 . 0 3 . 0 ~      l s Ratio of Surface Roughness to phonon wavelength Selective diffuse resonant scattering enhances transmission Resonant scattering : acoustic impedance Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 30. 0,5 0,6 0,7 0,8 0,9 1 1,5 1,6 1,7 1,8 1,9 2 2,1 Polycryst sample 3_JLTP2000 _ also called Ktcbis sigma_poly 3 sigma (nm)_single CP s (nm) T(K) Nb polycrystal Nb single crystal Surface Roughness Effective heat transfer between Niobium and He II occurs at scales less than a nanometer Impact of Nanoscale surface roughness on RK (in progress) Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 31. Pressure dependency of Kapitza resistance Will cooling of SRF cavities be more efficient if the He II pressure is increased to 25 bars? 3000 3500 4000 4500 5000 5500 6000 6500 0 5 10 15 20 25 Impédance acoustique de l'HeII en fonction de la pression T = 0.10K T = 0.20K T = 0.30K T = 0.40K T = 0.50K T = 0.60K T = 0.70K T = 0.80K T = 0.90K T = 1.00K T = 1.10K T = 1.20K T = 1.30K T = 1.40K T = 1.50K T = 1.60K T = 1.70K T = 1.80K T = 1.90K T = 2.00K P (atm) He L L Z   c changes by ~80% Acoustic impedance of Liquid He cL and L increases with pressure     Nb He Nb He Nb He AM Z Z Z Z Z Z 4 ( ) 4 2  Transmission Coefficient Niobium He II Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 32. Pressure dependency of Kapitza resistance Will cooling of SRF cavities be more efficient if the He II pressure is increased to 25 bars? 3000 3500 4000 4500 5000 5500 6000 6500 0 5 10 15 20 25 Impédance acoustique de l'HeII en fonction de la pression T = 0.10K T = 0.20K T = 0.30K T = 0.40K T = 0.50K T = 0.60K T = 0.70K T = 0.80K T = 0.90K T = 1.00K T = 1.10K T = 1.20K T = 1.30K T = 1.40K T = 1.50K T = 1.60K T = 1.70K T = 1.80K T = 1.90K T = 2.00K P (atm) He L L Z   c changes by ~80% Acoustic impedance of Liquid He cL and L increases with pressure     Nb He Nb He Nb He AM Z Z Z Z Z Z 4 ( ) 4 2  Transmission Coefficient 0 1 2 3 4 5 6 7 150 200 250 0 5 10 15 20 25 P (bar) ~1.8K 2      l s  Silicon crystal (111) Niobium He II ~80% change in acoustic impedance of He NO change in transmission! Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 33. 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 1,7 1,8 1,9 2 2,1 2,2 Grain-grain R K (cm2K/W) T(K) R K ~2T-3 (cm2K/W) R Ky R Kx Kapitza resistance RG-G at grain boundaries in polycrystalline Nb         O G G o polycrystal R K nd n K K ( 1) 1 G G R  Kapitza resistance at grain-grain boundaries Thermal conductivity of Nb : o K Casimir thermal conductivity n Nb. of grains Anisotropy in heat flow through cavity walls: -grain size d -grain distribution In plane Cross plane Solid-solid model Thin Films and New Ideas for RF Superconductivity, Padova, 2014 G G K acc R R n (n 1) d e 1 E    
  • 34. •Cooling of cavities is controlled by K and RK •As purity of Nb improves, RK dominates •Surface quality (chemical purity, structural order, surface roughness…) rather than effective surface area •Poly-crystals : Annealed + CP + s ~ 1.2μm is better than Annealed + electro-polished •Single crystals : Chemically polished (RRR 300) give better performance •Thermo-mechanical history of sample : dislocations due to machining •Equivalence in performance with poly-crystals and single crystals • is important parameter •Presence of dislocations and/or impurities increase RK •Raising the pressure to 25 bars changes impedance by ~80%, but no effect on RK •RK is anomalous – cannot be explained by acoustic mismatch theory •New analysis : Resonant scattering of phonons from nanoscale roughnesses Summary R e K K / 1  Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 35. Possible Future work related to Kapitza resistance How does the properties of superfluid He affect RK? … 3 2 2 3 4 3 ( ) ~ q s T A q d s T T s n  n        Viscous flow of non-turbulent He II Mutual friction for high heat fluxes between normal fluid and vortices Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 36. Kapitza resistance under High heat fluxes ?  2 3  1 1.5( T T) ( T T) 0.25( T T) T Tcorrect           2 3  ,0 1 1.5( T T) ( T T) 0.25( T T) R q T R correct K K           Possible Future work related to Kapitza resistance Radiation model for heat flux : ( ) 4 4 1 L q  T T T T T L   1 with For  0.5 T T 2 K0 K R we have R  Thin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 37. Possible Future work related to Kapitza resistance -Convection in liquid -Nucleate boiling -Film boiling -Development of Turbulence & attenuation of second sound Physics of quantum fluidsThin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 38. Possible Future work related to Kapitza resistanceWill coating of surfaces modify van der Waals forces on the Niobium surface ? NiobiumHe IIThin Films and New Ideas for RF Superconductivity, Padova, 2014
  • 39. Thank you for your attention
  • 40. Thin Films and New Ideas for RF Superconductivity, Padova, 2014Nb +1 μm TiNb after removal of 30μm Nb after removal of 5 μm