SlideShare a Scribd company logo
»«
!" #$
!"# $ %&' # ' () #* +, -. ,/
0, 1 2 1+ 3 $4 5 & , 6 * 78 9 :.
http://CFD.iut.ac.ir
1-
! " #$ % &% '( ) "* " &% &
+ , - $ ./ 01 $ ( ( % 23 ' ( 4 % ')$"6
7/89 : $ . % &$ ; < * = >. ? . @((, 2B.(
. # * 3 ,.& 8 2 (<0B# * B7 .( D 4 ? E " B
8 $ . ? F . DG/ *$ < , >H * .) * % &I < J-
.
$ $ K< , L2 '–M <*ND L 1.*% &+ ,
I$ % O > *% &CFD6 : 0< *$ $ $ !PD I$ND Q % &.
. ! % R ;: <0B# * :E S( " < & <0B# . & % 6 T.L2 9
U <D<0B# L V K W @KB.: N7 3*# * = $ K<0B# 4 @ %
CFDF&.
2-
* 1 7/8 X K P<0B# % &!.%$ .) * 4 (
%$. @(&.G #!< %$ % &3 , ( . B & 8 = % &
2 $ Y 1 * Z[E1K ? %$ = !& % &@H(.* ? H * % ; B J
. F.3# * :EB.
 0 ] D % 4 2 ( :* < % L H 6) ^ < <
B.F T ^[ . D . V % ; B <D $ B ! $ 7 * < .B..
! $ 7 L 7 * _ - $H.<0B# * D :E 3B.4
. B % J*N?B1D[.
1
Turbulence
UL
UL
N?B1-E: .%I 8H *
$ L ) X <0B# * 7 .' )>= L b & . D NB.c*
F ; < : G/ $ .0(d $X *#! : " B.
)1(
* <D. F &H e ' $ 4 ;: & 8 $ ; < % &<0B# L
&< %< & % '.* & 8 "3 $[% 8- f * <- 4 <0B# % &2
<0B#
<0J9 : = > ' $ $ B3
* 8&.
1 < = L bB < J % % &"% 8- f % < D&J 4 @ !
. D $ "L D P <H % Vd L 1.* E: 4 i 4 = j %
3 * < . . B W <0B#$.Vd * B k / 3 fb 0 : G @ l
D $ . D "LB.
J G8 ( <J @ <0B# %4
$ < J %n B&.* J eD% &
* ; < .B % &8- f <0B# % 6) "B.8 ) E * <
% " B% W E <?f % &o 'Q ; < * ; $ B 8 <J @ % ;B.3
% p @ % 8) %nN:< <?f $ 4f % &%n 8# *# B5
J.
2
Eddy
3
Length scale
4
Vortex stretching
5
Energy cascade
Uu (t)
( )u U u t= +
. D 9 : 3 <?fB . @( ; & r <0B# *B.(
% 3 <?f# 7/8 . 9 &7/8 = > $( )..9 : 3&)( >1/0
01/0M $ <&$ D10@ &*<0B# % &(. ! . @( L V.N :
G NL 1 @( % &" J. D B X %n ? E3 % % &D %n $ $
N ) -B.
% * <-3K & ^[ <J @ % &).(< $ ; < * # 3 % W G $ E $ .
*B.4f 9 : N @( b 0 N% "3 & GB , * ". N:<% &
< & 3K & <0B# * <?f.
3-! "#–$ % &#
L & 8 3 Y[<-% . D eD <0B# $ # %= > 9 : ' $ $ &
. <0B# *.4* *1/0<1/0N B "2 ( <0B# * 4 <
%&3 %10100?)B U <D " B < $ ?%109
1012
= ! < ! E:
9 :! & v Q = > % &.w < 3 <')10L 1 @ &* . 2 S( " J
$ D % W100$ ?! ! : V.)B%# * ! :<( ( ( <0B500000% x
& -10x ' ( <' ) *CrayB.
% . D % K , . ;: ) * $* % &< J ? % &L ) B
$ L2 ' ! :< ND %* % * < $ M <N?8 2 ( <0B# ^[ % &
@ ./ I < J < $ .&.
= L [> < ) % B$ 3 1 3<0B# % &
.G , 3 ($* % & L V.0< </)B -* JCFD[> 6 T
3 K EX W * _ -B). ^[jG $ ; < % & 8 $ ; < % &; < % &(3
; < * _ - %$ <0B# L B 8<T eD L V G/!.
)
)
*
4-(%) !
; < <* . 1 - kL 7E)3-2(o '!.
)2(
*#:#p @/<B%:<J @H%y= K<@
& 88.L )KN:<*/<y B.. [K.; <B.
* . 1 -$ . * < $F ; < 0(d z P L 7 # *H< 0(d $
*. 01 *# ; < :. J.P <* < $ G/ ' 3
$^ 1$ !YSD3 "!!L 3 K' O)>o
01.#.
)3(
* 8/ * k L [>X ; < S6
# . L.
)4(
< S0(d : X ;. % &| $ . &# f " - %4 # *
$<0B# L . 9 D)} ! w .7
(. J ? <?( 4 $.%n
8))D $(E K<0B# k)3-5(3 'B.
)5(
K<0B# L B8) %n$X ; < * .L 7E)6(;)B.
)6(
6
Root mean square (RMS)
7
Hot wire
0
1
( )
t
t dt
t
=
5t5t
( )t( ) ( )t t= +
t= +
0
1
( ) 0
t
t dt
t
= =
( )
0.5
22
0
1
( )
t
rms dt
t
= =
k
2 2 21
( )
2
k u v w= + +
TIrefU
0.5 0.5
2 2 21 2
( )
3 3
ref ref
u v w k
TI
U U
+ +
= =
V G %<0B# L; < * %$$ $ K< , L2 ' "-* % * @ & M <
!. V . @( S,!.1 % 8/ 3< *$ + , ; $ % D 3-
.L 7</ = ' O)>3 @! J.
4-1-+!,-
= D! & -L2 '. DL<0B#W! &.I$<" P
NF@N W0<B.
<L2 '%<%(%'<%; <y$[<%!.K#3 >
&( '; <J%N! $#.<)(33<3<?+ f$%%
L2 '(%W" B3$%%; <*#%•7/8*@W& -.
.L2 '%? F<%; <& €J.
4-2-.(&% /# 0,-
0•( 'K< ,)7(B.
)7(
( ')7(%:(%*<0B#@W..+ f; <% J•( ')7(•( ' ! F
1 DL 1E)8(# & -.
)8(
SK%<%(%:; <y$[:"$@0<3 W; <% J
("! & -
)9(
%4*!S,P#B•( ')9(L 1& -#.
)10(
( ) 0i
i
u
t x
+ =
( ) 0i
i
u
t x
+ =
( ) ( ) 0i i
i i
u u
t x x
+ + =
9 =0
0i
i
u
x
=
3-4-3-.(1% )2# 0,-
* &>!L2 '<%4*!S,•< ? $. VL 1)11(B.
)11(
( ')11(!&%L#$!&%L<0B#)<'B.3? (%4*" <0B#& H<%
< $%.$8‚< $*B.
= D! & -•( '<6 D<%; <*! F.W*)12(
)12(
•( ')11(! & -
)13(
%•( ')13($@=; <% J3 >3( '! & -
)14(
.ƒf•( ')14(2 '= ?Bo </*J.•( 'K< ,! LS,
B.3
)15(
Q$!*$%01B3 >•( ')15(.#%$ " <P#
)16(
•( '<%*<0B#L 1*J
2
( )i i i
j i
j i j j
u u p u
u B
t x x x x
µ+ = +
i i i
p p p
u u u
= +
= +
2
( ) ( ) ( ) ( )
( )i i i i i i
j j i
j i j j
u u u u p p u u
u u B
t x x x x
µ
+ + + +
+ + = +
2
i i i i
j j i
j j i j j
u u u p u
u u B
t x x x x x
µ+ + = +
0
j
j
u
x
=
j i
i j i j
j j j
u u
u u u u
x x x
+ =
j
i
j
u
u
x
j i
i j i j
j j j
u u
u u u u
x x x
+ =
)17(
0L$•( '<)17(•( '<<%(%"Q* B-#..' •( '
B3 "D[E1^GK<0B#G(.
L$ 0L2 '*#<0B#@;:eD3 &B.>3"„ (? @
4GB? "KV= ))<(B"I! ?3..•( '<
)? F%$!(.ƒfN:<B..38$3M<
B.
.( D"L2 '… :! D*L2<0B#)':%" <$n%(L 7*-
B.
:%<
:%
:%n%
< ,*y. &L D..36)3N?B0<Bn%8)K<0B#
G"! &)<B< J8.
L2 'D[E1^L2 '8
RANS$3 Q2 'v 1$† &Q.* #$
^ D%#8..3? ($3L2 'N ?84K<<9
&.)''L2 PG
'L2 '.(•ETE-*3"L2 'M,; < #J%"$•< ) &10
Z EB-
..
8
Reynolds Average Novier Stockes
9
Closed set
10
Correlation
i i i
j i i j
j i j j
u u p u
u B u u
t x x x x
µ+ = +
i j9u u
i i i
j i i i j
j i j j
u u p u
u B x u u
t x x x x
µ+ = +
0j
j
u
x
=
( ) ( )p j p j
j j j
T T T
C u C u T
t x x x
+ =
Ak
K< ) &3L.
K< ) &3L.$
K= :<<<%$M?'(..3D[E1^G(11
<0J-
B.K= :<x( <#)n = :<%(<%$M?'(..3D[E1^D B
<0B#12
<0JB.
G(* '4G$%=N$‡/8yV<%K<0B#$%
**; <B.
%D"*8%K<0B#$& B%K<0B#<J @:*#B$
S(:*#::<0B#*!8fB ,.Y &(%L" <0B#
3 'FN )WG("B<0B#$D B<0B#0<k )*:<%
@<%*; <$‡-2* J&%*; <B.
%LyB6GBP<*.; <•0(kK<0B#•E)18(
w<& -B.
)18(
@• D• 2U@()• D$ P(• :D"y8%(<J @8%
U@(B.
Q G L )E)19(B ‡/8 # <- . B <B N e0.Q G GB #
B P <B G $ !F W GB.
11
Reynolds stress tensor
12
Turbulent Heat flux
i ju u
ju T
i ju uix
p j9C u Tix
minla ar turbulent
du
u v
dy
µ= + =
9u v
du
µ
dy
)19(
G 3<0B# Q % &G "( % &B.*G <0B# % &% % &
& 01 o( / 8 &. L X N B * f " <B8%
B
)20(
0(d 3 ; $ ;;) K ? . o </ % &B.G = D% &01 o( / <0B# B
G : ^2 ' $ B< & p @ - <0B# * 4 U@( % &.
k : 3 <8"$. ? @#; < . % J P# "
* 8&. K<0B# (.I@H( k B X > . L $ . D = D-
B.ˆ$ $@ 4 @ K<0B#( # * f " B0(d ^$#.N?B2
& 8L $SP ; < j D : 3 BB.
N?B2-K<0B# _ - $ ; < . X%2%$%J ./ 0101 8 *
u v
u w
v w
2 2 2
xx yy zzD =-9u D =-9v D =-9w
xy xy
xz z x
yz yz
u v
u w
v w
= =
= =
= =
2
u2
v2
w
2
u
<W$ "./ 01 %$ % 28/0<8" BN 01 . K<0B# _ -.
X ; < S :)rms(^ ) : P % < kB* 8 "* <- &
ˆ$ $@ ^[ $ 1 K<0B#B.
4-4-3)40!,-
K<0B#,%*.•E $8%B)J%.(P" Jf &G
B< W" BK<0B#*@B& -.3 'GB%L<0B#D$3
= DJ)+ ,B">*$3<BE%%GB*3<BM 2
&$%$4* ("=X.*$*.$#.GBL 1)21(
*J.
)21(
%3 'yG(L 1v 1$.I$8 ,;) B*
y3G<0B#*.; <B.
B$%0 </%.* $#GBL<0B#FB.v 8&4
! & -.- ,.
5-(,-6
*& 1=2FB&4%! n&%_ -$<DD%_ -
**)<'$O W" BY &F=% &2"•)yGk :o </
*B.
5-1-.70#!& &#Boussinesq Eddy-Viscosity
•E4• ,3N1B.0(&%8%(6 <J%.
; <" B'
)22(
y/E
ijD
min ( )
i j
ij ijla ar ijturbulent i j
j i
u u
u u
x x
µ= + = +
i j9u u
i j9u u
2
2
3
i j t ij iju u S kµ=
*#rG$ ; <;•Eo 'B
<)(<.B•E)22(N?B!S,•( '4".3? (N?BN3( '
N BL V!S,%*BL 1)23(& -.
)23(
Y[-( ?( < ? $4. 1 -=.E%! :<$K< $B%* @
K<0B#*$*.$S(< '*$. 'W.("2$G/
%*..
+ f•< ? $L 7E)24(!*#•< ? $*#$< 1 -=.
L 7L2 'RANS)&8%((*YSD8%($@K•< ? $
•< ? $= 'L<0B#?8)BL2 '$M <L#.BN B
G(•<0B#B.0<3| <%*%(%4*" <0B#%G ,-
: ! :<= )X! K.
)24(
5-2-6Eddy-Viscosity
Y &&o 1 =•E< 3%N WJ%? @*$<%)y B**
..>3(*<! :]22[.
1-=% &01( '%13
2-=% &4( '%14
3-=% &$( '%15
=% &01( '%"; $$L2 ')%.o 1•E_ - 3)$ BN W
% J0<.=% &4( '%4•( 'Q = :<@3 30<"=% &
$( '%N B$PDEQ< &.
13
Zero equation model
14
One equation model
15
Two equation model
ijS
1
2
ji
ij
j i
uu
S
x x
= +
2 2
2
3 3
k
i j t ij ij ij
k
u
u u S k
x
µ=
µtµ
tµ µ
oµ
µ
t oµ=µ +µ
i j9u u
i ju utµ
t oµ µ µ= +
vQ $.† &=K<0B#$%NFKB./<=3
=% &K<:
4 @*#•(J! < &.
$$* @ &f! nL$ 0<K ?
* @.W
L ?)N )WRAM$CPU9 <
* @*%*= :'.
1-68-(#)6%::; <#(
•= >>[<-;: "%L<)B LŒ$L$ L ".$ 4
L• 2%N ?8B$%-"f%3L.*
; $P*.3=L V( :<<0B#$@history effectsL<0B#-
J)v Q * '" <83=L VL B 8<TPB. 2*$%*. 3 F ,
G ,.(E:Q"!<L2 '*.#(%*•<0B#z01( '%
‚) :&!<L2 'kL#B*#. V$H<.)* ?$! n'Q
*.3E:)$_ -F K &"*<.B0<== >>[<-)
=% &01( '%(.<%)B<L#& B! & -.‡-2+ f; B
%60<B" BND%0<3=" &.2%K &B$w <K &y B
<%'?<& -.$[0<I$01( '%"_ -F K &#ND
& < ,%N b9 DB.
L HF@( Kf$X?(
L HN?B•)
9 D• ($3 T#
2b.3=F &#F P$*n 0<%K<0B#!.:
ml
µ
%rN ?8F2B16
)LP0%,• /Y$ €$',8
$(...
= :<L DcL 01*$* J
L$8- f17
$>&%! n&%+ ,:Ly4 [B$X)<(*#3 '
N?8B"6& /.
2-6-( >#
=% &4( '%"?$9 :!L" <0B#'**9 :L<0B#$
= >9 :L<0B#$)*#"$0<4•( '( :<.#2 '3n%
8)<0B#.%*#4•( '( :<0<B.)2$#%.4•( '= :<
./(•( '! DL H"*F P$*n 0$>•( 'KX*
B(.
=Spalart-Allmaras4=4( '%4•( '=y B= :<%.* $#
ND.=@%&%&-eFB.$3 + &w <-%2&%%%
c '* J89 ?'18
W"F..3 + &34 "==%&%
. 3 B.
N?B1" -=Spalart-Allmaras(V%(3 F ,' Jy 0<
V3=$DV <. @(N-• 2%$D8)(3 F ,(B.
&fD(3 F ,$! B$.D2 ()‡-2D$(
. DW ! F<%= 33 ':<& -B.-& @%P%"3=
*%'W(%4 @-@" BX@ P* <L VD
•< ? $2%4 @F%3=N-.3lB.3"=3 <@J
16
Rapidly developing flows
17
Recirculating flows
18
Adversed pressure gradient
ml
k
tµ
tµ
%*ND&%-19
$%G./($20
B)<)(%'WL )O W**
<0B#-$ Q%)$Y &*4<$) :*<0B#.(.
=% &4( '%)=( Spalart-Allmaras> /FO $*-L HX
:%( >21
&:<W<B.3L HB‡-2L HJL$
22
LB#)&• /4.'$*$E'& <& <
&%0(& 8! F.>E:FN-*L V()[jNF <DNF
JF P#$&$%(=& )%%..
3-6-(#
=% &$( '%*%%L : :k(%L" <0B#‡-2* (
-W< J.3=% &NK<0B#)3. W&%"2%L2 '^<)
%@B(=% &$( '%< &" #ND$•( '= :<Jl3 '* B•[:<
9 :.K<0B#23
$9 := >K<0B#24
B.
3 <Y[<-3=% &( ' $%$=% &Eddy-Viscosity*#.=% &$( '%
=% &B'#*%G ,_ -4*<0B#*$& J#)W<-*
$• &*0<.? ( D!&L2 '01( '%$!&L2 '4( '%"= >
F :$%3 'y" #3<N)W! n*$N?B*#B$3(%
L<0B#N)WND#+ ,.•E:T#=% &Eddy-Viscosity$( '%0<
6 :4$•( '= :<%n%8)K<0B#B./<H<$/($
L 8 ,%%3/<FB..
"L W7<W%*$.WN W= )W%o >' $L" <0B#3=4=)P%
L<' 1$(%= :<L D..
19
Crude simulation
20
Coarse mesh
21
Length scales
22
Wall bounded flows
23 Turbulent velocity scale
24 Turbulent length scale
k
=3 < $ '=$( '%Bf!*#* #$0<*#B.
=% &*<0B#6 D$H<*B.
1-n%8)*•<0B#25
2-r=[ Q? $n%8)•<0B#26
( 8) %n<0B# * %L ) "; < 8) %n z P .$
<0B# 8) %n;G $ N?B H r . 2 ^ B % &<0B# % &
0<!.. = ' % ' L ) N %
0(d% &N?B H r
)25(
& G $
)26(
L 7)M(.
<0B# * = * ( N?B H r @P0(d 4 $ ; < 0(d 4"* (% &
M)27(&.
)27(
25
Turbulent kinetic energy
26
Viscous dissipation rate of Turbulent kinetic energy
k-L
k-L
k-L
k(t)2 2 21
K= (U +V +W )
2
2 2 21
k= (u +v +w )
2
11 12 13
21 22 23
31 32 33
ij
e e e
e e e e
e e e
=
11 12 13
21 22 23
31 32 33
ij
ij ij ije =E +e
1 1
( ) ( )
2 2
j ji i
ij ij ij
j i j i
U uU u
e E e
x x x x
= + = + + +
?&% , @A), B # # 0 C + -(
; < 8) %n % ( ' 40(d * Q *( ( '0(d $( '
0(d $= '$# . ".< X M,% ) L % : $ !& w( ' * 8 *
3 KL 7 * ! D ; < 8) %n)28(..
)28(
% H( L 7; < 8) %n % "!.
= :<G ;% &@(
= :<8 ;+
= :<( G ;+
K<0B# (+
r=[ Q-
== :<F P ;+H r
= :< L )""M n‡/8B$ 4 !& # & . < $ B
! & W.%$ @( G L V! : G/ $B:L )= :< "L ) $ @( G E
"=[ Q< 8) %n @(;G N B L ) $% &(< &L V ) % "
K<0B#B.L )<0B# = :<G ;% &L ) $ (‡( - G& K<0B# (
G ( ; N?B H E% &(B.*2 ( % &K<0B# L ) "$
L ) <J @ - 8 &$B.
K
KxUy
VzW
( )
( U) ( U 2 U ) 2 . .
u U u
ij i j ij ij i j ij
iiiii iv v vi vii
i
K
div K div p E Uu u E E u u E
t
u U u
v V v
w W w
µ µ+ = +
= +
= +
= +
= +
K
K
K
K
K
KK
iiiivvdiv
KivKvi
Ki j9u u
vKviiK
v
viiiviv
- @A), B # # 0 C + -(
0(d M < $ L2 ' & Q% &> .)0(d ( ' Q ^[j
T $(3 ? B w < & X $L2 ' %$ N($ N1 D ( ' $ * ! $
8) %n ( ' -E ")3-29(P <&.
)29(
! <0B# 8) %n % % H( L 7.
= :<G ;% &@(
= :<8 ;+
= :<( G ;+
(K<0B#+
=[ Q r-
== :<F P ;+H r
( '% &)28($)29(< & !& )B - f.L H ( ' $ & . . L
K<0B# 8) %nG $ ; <8 B! D K<0B# % &B.L )' $ &% (
< & o </ . [ ($ %$ :.L ) S(( ' .)j 6 4( L ) 4 $ &
* 8&.( '$ 0 L ) = DŒ[ < ; < * 8) %n 3 ".
%n N ) Q L 7 w < 3* <0B# %n ; < 8).@( =[ Q L )'
)30(
r X z P eD N ( 0 6 4% &N?B HE ")29(&.=[ Q
% B P N ( <0B# 8) %nG %$ <?f % &% &P @(B.r=[ QD $
*# D $m2
/s3
L 7 $ ! K<0B# 4 L '( E .)31(o 'B.
k
x
u
k
( ) 1
( U) ( u 2 u . ) 2 . .
2
u U u
ij i i j ij i j ijij
iiiii iv viivivi
k
div K div p E u u u e e u u E
t
u U u
v V v
w W w
µ µ+ = +
= +
= +
= +
= +
k
k
k
k
kk
vii
viik
K
vi
11 22 33 12 13 232 . 2 ( 2 2 2 )ij ij
e e e e e e e eµ µ= + + + + +
ije
)31(
&L ) 8 J @ ) $ <0B# 8) %n ( ' Y[ 1 L ) 4
($ B1 N W @J &B.B 2 ( <W$ M?'(@( = :< L ) "( ')29(
<0B# = :< L ) : 8 &4f -B.
. & % 8 = :< L2 ' ' * ?r N B K<0B# % &=[ Q@(B$
.O W ( '' N B = D "N W T $ = P L ) %% JB.=$ <
= ( '% ? "% ? $& H< 3 L H 6) ) % & # Π3 < %$
B " B.
$. 9 : o ' %= > 9 : $0<L 7 !)3-32(p @ 9 : Y '
K<0B#27
B.
)32(
G , . 3? ( RH< 0< )< "9 : o ' %B.3 P P
- 2 ( ! < &% *#%n ; < * p @ % &= :< r O E ^ : W J
% %n% &4 < $ 4f..9 : e' %n ) 3 f J% &K<0B#*$ .
B . $G& $. 0 3 NX W $ <o '! 0<.
*4@ ( #'%* 8•< ? $•<0B#*= >9 :%&%p @*<0B#
;).-.
)33(
*#$6.9 :$= >9 :3 <J @%&**<0B#B.
SK%L2 ')32(*$•( ')33(•P <!.
27
Large scale turbulance
2 .ij ije e=
iv
vi
k-L
L
Lk-L
kL
Lkl
3/2
k
k
l
=
=
Ll
lL
t C lµ =
l
)34(
46 QP.:#2 '09/0J.
== :< L2 ' " <)35($)36(%$0< B ?.
)35(
)36(
% H( L 7 L2 'B
= :<b 0 ;
( r+
r=[ Q-
== :<F P ;+H r
L2 '! N W . V w , N B""""< &.< =:)37(%
. V* X $ $ 4 F &$ <0B# % &? " B.
)37(
" <0B# N< , =B $<0B# ."b 0 . W$% . @(k.
<0B# 8 %n Y[ $ (k K ? &=[ Q r B( ? Fp @
. p @ " B.( ' =)36(%c*# k L ) Y[ $ ($ ( L ) 6 <
( ' Y[)35(..l 2 D 3 f b /J BB ^ '"$ B ^ ' !&
G&B < <0B# 8) %n 0 : G& ^ '.6 QL )
Y[ $ (( ' % ' L 7 L ) 3Z[1.
G ) %= ( % &4 B ; E)38(. B 0<.
2
t
k
C l Cµµ = =
µC
k-LLk
( )
( U) ( ) 2 .t
t ij ij
k
k
div k div grad k E E
t
µ
µ
!
+ = +
2
1 2
( )
( U) ( ) 2 .t
t ij ijdiv div grad C E E C
t k k
µ
µ
!
+ = +
kL
kL
kL
kLkL
µCkNLN1LC2LCk-L
1
2
0.09
1.0
1.30
1.44
1.92
k
C
C
C
µ
!
!
=
=
=
=
=
kNLNkLtµ
Lk
L
kkL
kL/k
L
k-L
)38(
S, ! * 4E =$ . W < $ ! J)38(v Q I - ;& J ! &
G% &! X !F W)'3"2"1=i? ( Di=jB(K< , 0< "01 : 3 !
* & * f " < &
)39(
!F W % 8 z P . 3B$!PD D $ <0B# 8) %n 0 : $
B._ 7<- !F W G 0(d & : 3 4# z P ! & * 8 " B&
: ? @1B.G % 4 ,$ $@ c 3 .B( !F W % &$ B% &
* 8 P* <D &O W T % ' $ % &B.
6--(6E #!#FG# 1 !Fluent
=<= :< L2 ' ")40($)41(%$@ B ?Fluent0<-
.
)40(
)41(
! N W . V w , N B L2 '"""": < &J b N)W G/ *#$
(n%8)( <0B#J N. ; < . *.
(n%8)( <0B#N$%..
2 2
2
3 3
k
i j t ij ij ij
k
ij ij
u
u u S k
x
S E
µ=
=
2 2 2 0i
t ij t t
j
u
S divu
x
µ µ µ= = =
2 2 2
-9(u +v +w )-29k
kL
k-LLk
( ) ( ) ( )t
i k b
i j k j
k
k ku G G
t x x x
µ
µ
!
+ = + + +
2
1 3 2( ) ( ) ( ) ( )t
i k b
i j j
u C G C G C
t x x x k k
µ
µ
!
+ = + + +
µCkNLN1LC2LC
kG=
bG=
K •( '* @(n%8)K<0B#28
BG3; < *29
$**
<0B#B$$ &*#^ D[E1(B<0J$ B@K(-Y[B
*( Kf*y*30
B.
; $v 131
%L 7)42(B.
)42(
W*•E)38()•E4(N-)42(! & -
)43(
$. G r.
7-6I-06J(
I$< JB== >>[<-)8 ,B;N< ,("B$< $&$
L+ ," &S(< E*#.•< ? $•<0B#)%:%. D<0B#W
&? >N:<W&BE:'%** 8
)44(
%vQ $%."9 :B*#B..'%
*.8J•%'%3.K<0B#f<;< ? $=[ QJ.
3.D[E1^*9 :K<0B#32
<0JB.P#$B"S(
&?B•< ? $<0B#0<$<-" B.%N?B)45(B.
28
Turbulent kinetic energy production
29
Mean flow
30
Turbulent flux of fluctuating density
31
Exact relation
32
Turbulent time scale
kG
bG
kG
i
k i j
j
u
G u u
x
=
2
k tG Sµ=
ij ijS= 2S Sij ijS =E
t*
[ ] [ ][ ]
[ ] [ ] [ ]
2
t
t
Velocity Length
or
Velocity Time
=
=
k2 2 21
k= (u +v +w )
2
k
L
[ ] [ ]
2
k = Velocity[ ]
k
= Time
L
kL
)45(
. V@0<_ -• 2%( '.& -#.:$@0<L2 ' ND
( :<3 'B.
7-1-4!# E0 "
• D< K(k4*<0B#0<•E< K(* 8B
)46(
c. V*G3D)c* f:4 @B(
)47(
c= ''Q33
*.0J
)48(
*#r(n%8)K<0B#)D $(%4• 2%)$&*ByK(
•E)49(.#.
)49(
Jf>B"3? (3J%B4*
B"%•)N W$3J%!F W@•)N WB.
?B"$c)46("** 8
)50(
>
33
Local equilibrium
[ ]
2 2
.t
k k
cons Cµ= × =
µCkL
µC
u u
y y%
&
=
2w
u v u&
= =
( )k
p =
( )k u
p u v
y
=
j i
ij i k
k k
u u
p -u u -
x x
j ku u=
u
y
uv
t
u
-9u v µ
y
=
t u y% &
=
)51(
0<c)48(*EU < <
)52(
N-• 2< K(cB< ,<-%. VB3ccG. V
/ &
)3-53(
?B"$@•E)52(E *U < <
)54(
= D*0<w <P• D< K("& 8B.L )" K
:.#B.3:)L 1"P.#.(
=<0<B.#>B%3 ':*.)<=
<L'%"L%G?GO >$L%(3 F ,
,.
L 0 1"o'Q=<PB• B
3 fNz <..K ?$F(* + &=<NF$
.
1-#>B%3 ':6 Q2N 70*" BP#)%L )
)%* W< K(W<B".S(U -• D* W< K(<‚ P3#
<>B$:6 Q3 'J.
2-* W< K(<3 ':N $ ,.( 'X%• 01./
0<B..3y.#)(%3; B)<'.$%; B
3
( ) 2k u u u
p u v u
y y y% %
& &
&
= = =
( )
2
4 4
4
t t
u vu y u
u
y
%
%
& &
&
× = = ' = =
u v
P
.
u v
Cons
%
=
2
t µ
k
* =C
L
2
u v u v
C Cµ µ
% %
= ' =
u v
- 0.3
P
(
µC =0.09
k-LµC
k-L
k-L
k-L
µC
µC
µC
µC =0.09
3-$•E:"= '[j? @k :G*$k := 7P"*$> :
Y%*%$L 01./" $[j%@,% &"*K
:.#%)<')< $% $ ,.T( 'XyZ[1B
%3 f0<.
4-P#* W< K(%y $*<0B#FB".S()%0<B
.* $#6F Q•( '<)%*<0B#.$S(=< "4 @
"*#B"6F Q'-L[?8%$ $".K?#%
Z[1y B=L V#**4 @*#W< J".0<
B.
5-D*%X3 f?88 ,"0<4•( '%'3$[
KL2 'B"? >:&E:N-*6 D& H<%*
3 'J.'$[$•( '( :<%$*4•( '( :<?%3 '
X*$**0<"'4( ' =%!
8-J LM!# &#
=<<W$•EBoussinesq Eddy-Viscosity?" B%o >' $NF
<)N?8/.%FN B,$ $@ T%B*$@L V( ' T" < &3
=.&& -D%034
".':;3=G ,
" BD%p @& -.
* '4•P <!363"=*.0J3=NG ,F $ ,
8%LSwirling$@• DRecirculating<&LG<.JB.
3"=G ,< &% &8N ?8B$%Z E%"! [w <E T<B..
<- B* Bk :o'Q$L W=%F &$%3=$)F3 "=
L 1< J..G/%3"Lr(%n8)K<0B#<r=[ Q
..
34
Over diffusive
µC
k-Lk-L
k-L
µC
µC
kL
µC
k-L
k-L
tµ
k-L
Y[-%% < :=<3=%%* f% WL lT
7..-K3J‡ :)
% (2% &Bo 'Q
% (L8+ ,
L% 8p @X $
2% &%$$% &J $
L$8- f$
*V% (N >X> :J T.
L['<% (X> :J T.
Z[13"B[%%$%Z[1=( ' $%L 1. J€
N&%%=$@(=% &PB.?( 3! & -.- ,.
9-O! P0 Q
'%&%o </=<$Y &&4)F%= 3G ,
_ -*..?= ( 3ΠN WBH $. # *#
)
= :< ( ' 4%
= 4) %$?<M2
SK .%= 3> / 3. 3e' = 3WQ@4I 8H *
Q . J( KW 3.L D[Qk. $ = 3
SK%. B b = 3.
%?QLΠ= 3SK . $ !%*#!( ' .4
! N W T * 4 %G(! ) =.
35
Realizable k-L Model
k-L
k-L
k-L
k-L
k-L
k-L
L
ji
i j t ij
j i
uu 2
-9u u µ - 9kE
x x 3
= +
)55(
' 0<o& -.B !.
)56(
E &( ' ƒf . !)56(&84. .)j .)(.($. +#
( ' .!K &: B p @ G0K /.'K &
)57(
B.G K#& = (8B .)j40 .^ B & -QM 2 L
/ &.+ &3$ XW 3%M # B36
)(@B & / W K.S(4
ND%?XW 3ΠN W 4)realizable(B <B0< !H<..3
=. B P J ΠN W.' L 7_ -M2 *'"H $N?B
. B P ; < * *.= 3%W.&%$= .)*# . <
? ) *= 3
f< & G.
< & G- f f.
V .J(%< & 9 ?' 8
%%8- f $< &
B.
9-1-! E #O! P0 Q
= :< ( ' $ = 3)58(%$ND.
36
Schwarz inequality
2 2
2
3
t
U
u k
x
=
2
t µ
k
µ =C 9
L
2
2 2
2
3
k U
u k C
x
µ=
2
u
1
3.7
3
k U
x Cµ
=
( )
2 2 2
S T S Tu u u u)
µC
k-LµCkL
k-L
k-L
kL
)58(
L2 ')58($=' <oB.Q $= 6)59(#..
)59(
.B= :< ( 'H($ . ?Q= *# 6L$ 0< <
B.
<?%N WŒ[ < K). . 3(B&0 E: K+%.'
& L ) U /<D B & 01 K+: J4.F@B 4f $.( D= ?
$ . ' <0 k : " U /B <B $.=%'
%< = .) $ . B ND NF^ 1 7-%< Bw
<%. * 8.
9-2--A& R%S! $ %0!%4 -
$ )?M2 <==. <L$ 0 34
' ? & / . V"$ . $ G r $%B)60(. B b.
( ) ( )
( ) ( ) 2
1 2 1 3
1 max 0.43, 2
5
j t
k b
j j t j
j t
b
kj j j
ij ij
u kk k
G G
t x x x
u k
C S C C G C
t x x x k
k
C S S S S
µ
µ
!
µ
µ
!
*
*
*
+ = + + +
+ = + + + +
+
+ ,
= = =- .
+/ 0
kGbGk-L
1
2
1.44
0.9
1
1.2
k
C
C
!
!
=
=
=
=
kk-L
k
krealizable-k-L
k-L
realizable-k-L
tµrealizable-k-Lk-LµC
kL
)60(
$ ; < G- f r$ .%B.$)61()B.
)61(
% ; B
= L2 '$< & % e.". % e * L2 ' )B # <% ; B U <D
.
% $ $:X$B '
% L$ :< $ -:$
% &:K< ( I$
2
0
1
2
t
s
ij ij ij ij
ij ij ijk k
ij ij ijk k
k
C
C
kU
A A
U S S
µ
µ
µ
1
1
&
&
=
=
+
= + 2 2
2 = 2
2 = 2
ijUkV0AsA
( )
0
1
3
4.04
6 cos
1
cos 6
3
1
2
s
ij jk ki
ij ij
ji
ij
j i
A
A
W
S S S
W
S
S S S
uu
S
x x
=
=
=
=
=
= +
kL
kL
0
k
n
=0
n
=
. 3? D > L )L [> "* = . % ; B L F@ kB ) 9 <.
<' 1 * J 0<CFDL% &$<-.: * $ O > " 3 . 8 ,
$XP3 % $ $ X 3 N ( w < . D P < $ B$.. < [> † & J
B )6 : "% &k % $ $ X % -$*% &-K<0B# L B *7/8 4 $
$# . = ' = >.
10-SU2V 0 !#
=X $ $ )<' K<0B# =B.< J P ) = 3%*2 % &
P G- f $ ΠB. V ! <D 4 *$ "% &<B % K 8f . : " B =
..* % | "= % & ?G *# &% &. - " % <8 . & ( B.
' $ $ N B z Q 3*!& <' 1 % & &* 8 *# . R 3 B
&.
. : $% &< = "* % ;:N - 7 T % &.9B @J
2 % = 3o 'Q B % &)2 $ ( ) $k / % &(?3 ' $ G/ % $ <B -
*N ' 0< ;: L[?8 ) T % $ . =[ Q r < - <0B# 8) %n ( r &
. V' " = % &cL 1 "J.
* [?8 3 + & = 3* $ 8- f % &G & % &Q $ X "p @ % &)^[j
2% &9 W %J $ % & J SJ $(L V N B = 3 * f ". K<0B# - * k E-.
*&%V=T % &G 2 > %% &. D ! T % (@ #
G o 'Q ? N ( *% &%= "G ,.N ( %$ .) = 3 -2
. 9 D X f f G- f.
kL
kL
kL
k-L
k-L
k-L
11-6(%) ! 3)4 -(
+ ,( G ( ' = K<0B# 4 [ = 337
(RSM)) = .$38
@B.
= % XG , ? K & "*PD % &$ + , G * % &% K 8f
.$ ".8 ; B 3 .E ; </ ( 0 % &* 4%n J <D B
B ) ) .W <0B# 8).O W ( G = :< ( ' " K Y >< L V % *
0< ( G *.
G ,3=% &K<0B#B0<•EEddy-Viscosity*0(% &G
(J%.**; <;).=RSM%•)&4%G
(4•( '( :<4< JB.+ fG(%4•('%" B
'8%(:<<%4•('%ND" B6B"3%3 'O W
X8%(4•('%6•( '( :<B.? ( D4•('%"+ f
! & /(=$( '%0<"! FL 736G(= P)62(
*3R E$G>O W)$:L 1TO W)B..
)62(
PW &##RSM
=% &Eddy-ViscosityL• 2%7<39
"? F40(G(
. &-".-&.3 f"=Eddy-Viscosity'%•0(6( TG
()3zL6 T(B.+ f*.( D 3yQY,
$Z[E1+ ," JKc0<Eddy-Viscosity)8%(J%
37
Reynolds stess model
38
Second order model
39
Attached boundary layer flows
k-L
k-L
2
2ij
ij i j
u u v u w
R u u v u v v w
w u w v w w
= = =
2
u
.**k ; <.( 1B$S(K*)<=% &Eddy-Viscosity
=..
•'=% &0RSM<=1968$/* ( $40
K80 <$$%)
. &(%8%(T#B.3=.3 $K%* + &Second Order Closure$
Second Moment Closure$Second Order Modeling<- BB.*#*'ŒŒ
=% &Eddy-Viscosity<B SJB$c0(&%= PG(‚ :<NDL2 '= :<
0)#8%(& H<%< $B(.#.E &)63(* 8" B
G4 (* :<41
B$3*. '.( D$'%ND3•( '= :<$
.( D'%ND6•( '= :<%3 'XG(*$**B.
)63(
G(%4*$'%G(%4*'%
<)(&!&%3 '= >9 :!&.( D$'%$!&.( D'%"$[S L2 '
ND4•( 'QK@B.S(=RSM=% &wEddy-Viscosity+ ,B"3? (
$J + ,3"=3=&6(Bfo 16<: W%K<0B#F
$$%o >X $$<L)<'B.3=%L Vy + ,
L.' )>$" J*#*L%k E-
$L%G- f42
$* $43
$LF P#44
L.45
B3=
(%#. W--..
40
Donaldson
41
Symetric
42
Swirl flows
43
Rotational flows
44
Free convection flows
45
Buoyant flows
2
2
ij
ij i j
u u v
R u u
v u v
= = =
2
2ij
ij i j
u u v u w
R u u v u v v w
w u w v w w
= = =
<?%P<*B*#.6 TL<0B#L BN?B213
$Tˆ$ $@
214
" B'$[? #:8%1""o( /01: " B4413
8%1<0B#K ?L$ 0N WD[%.** 8B• D< K(
*•<0B#$'%$%4• 01./)*3*•<0B#N W7(:8%1<0B#
L 164B.
)64(
3Y[<-B3y8%(* 8&<D4*•<0B#4 [)'
*• 2%<0B#$%4y./("0<=% &Eddy-Viscosity=% &( ' $%>
$ <$" T[† &J.WN W)‡-2L'%(= )& /
.B.30<=% &Eddy-Viscosity? F &LL BT4 ,$ $@46
$"!
LL B8- f47
$LB • VG48
^[11B.
12--0&!.(( E #X 8# 0!% 43)4(%) !
•( '( :<v 1%G(L )! PD$3= DyQ.#.
3c2( Kf. V$!)E &"!L%<%
y $&"4 xVS,%K<0B#$L2 'k*#!S,%*!B(
K&$%PD)$M ((B.‚ P&%prime$overbar%G•0(
$; <<%<0B#0<! F'
)65(
12-1-.(&% /
•( '(%
)66(
46
Anisotropic
47
Highly swirling flows
48
Stress diriven secondary flows
2
u2
vww
2 2
1 , 0.4 , 0.6u k v k w w k= = =
k-Lk-V
iB
u u u= +
0k
k
u
x
=
•( '; <
)67(
O 0$•( '66$67K ?
)68(
D[& B$.; <$; B!S,%… Q.
12-2-.(1% )2
•( '(%
)69(
•( '; <
)70(
6%•( ' y B<
)71(
,KO<8%B.
O 0•( ' $K ?
)a(
'•Mij& - 8 L 1.B !.
)b(
= D+ fL )N ?8"! &•( '( :<%8%(=RSM.#.
0k
k
u
x
=
0k
k
u
x
=
2
1i i i
k i
k i k k
u u p u
u B
t x x x x
+ = + +
2
1i i i i
ik k
k k i k k
u u u p u
u u B
t x x x x x
+ + = + +
1i i
ii k
i k k
Du p u
u u B
Dt x x x
+ = + +
D
Dt
2
1ii i i i i
ik k k k
k k k k i k k
u u u u u p u
u u u u B
t x x x x x x x
+ + + = + +
2
1j j j ji i
jk k k k
k k k k i k k
u u uu u u p
u u u u B
t x x x x x x x
+ + + = + +
j iu a+u b
)72(
H( L 1%'
( r
= :<b 0 ;+
=[ Q r-
= :<K<0B# G 8 N :< L V E+
=rH+= :<F P ;
( '72( ' GB0@ N* 8&'%G GB & = :<N:< (4
. 2 ( '.)(
12-3-E #3)4(%) !
)73(
*#
F PK<0B#•E $*; <49
(K<0B#•E $G; <50
(K<0B#•E $$%PD51
K< ) &38$G<0B#52
=[ QK<0B#53
49 Advection ( By Mean Flow )
50 Production ( By Mean Strain )
51 Production ( By Body Force )
52 Pressure-Strain Correlation
53 Dissipation
( )
( ) ( )
( ) ( )
j i i ji j i j k
k i j j k
k k k k
i j j ji i
i jk j ik i j j i
k k j i j i
u u uu u u u u u
u u u u u
t x x x x
u u u up p u u
u u u B u B
x x x x x x
+ + + + =
+ + + + + +
ij i jR u u=
ij i jR u u=
ij i jR u u=
ij i jR u u=
ij i jR u u=ij i jR u u=
2 2 2
1 2 3 1 2 2 1 1 3 3 1 2 3 3 2u ,u ,u ,u u =u u ,u u =u u ,u u =u u
( ) ijk
i j ij ij ij ij
i
dD
u u P G
Dt x
= + + + 3
i j i j i j
k
k
D u u u u u u
u
Dt t x
= +
j i
ij i k j k
k k
u u
P u u u u
x x
= +
i j j iu B u B+
2ji
ij ij
j i
uup p
S
x x
3 = =
ji
j i
uu
x x
*n 0G/,K<0B#54
JE73<0B# 8) %n % = :< O W ( '35" B :G L2 ' ? @
& € (BG k ) L )8..
12-4-.(E #B #@A),
P#•En%8)K<0B#L 1B"& K•E73* <& 8
c*M$ji$.! :*L2 '$*•( '( :<n%
8)K<0B#...
)74(
*#:
(n%8)K<0B#•E $G; <55
(n%8)K<0B#•E $$%PD56
=[ Qn%8)K<0B#57
*n 0G/,n%8)K<0B#
54 Diffusion
55
Production ( By Mean Strain )
56
Production ( By Body Force )
57
Dissipation
( )( )
i j
ijk i jk j ik i j k
k
turbulent diffusion molecular diffusion
u up
d u u u u u
x
= + + +
ijW
i j
1
k= u u
2
k
( )
( ) ( )
k
k k
i
i
Dk d
P G
Dt x
= + +
( )k
i
i j
j
u
P u u
x
=
( )k
i iG u B=
2
i
j
u
x
=
( ) 1
2
k
i
i j j i
i
k p u
d u u u
x
=
13-X Y%4,Z,#!-06>#J 4%,%!.(E #3)4(%) !
13-1-[ I0 ,-0.7&#,?&%
)75(
E75F P59
G(* 8&.L )K3KrH= >;-*
60
B.F L"3K-.."*#8%(;**; <P
J.
13-2-(%4-0.7&#3?&%
)76(
E)76(K(K<0B#B"L )K3Kr(;* J.
; <$GB.)* J."; <•E $!&G8%" (?3 <N
$y $#K<0B#**B(.. &$G:•<* J.; <$
* #K<0B#*"*&fJ%**; <<$<: W=" BK<0B#
PB$**•<0B#><: W=B.$ &.(%L V$‡-2
J%B4 @"(%J%B•< &*2% &>[<-61
(%
J%B$ •< &4$*.. &<B$$%. 1$!:w <
K<0B#VN WSK.(K<0B#"N W$3= Dv 162
B$S(%
(%.?N 2. :$W%=RSM$3N-•( '= :<8%
(B
58
Advection ( By Mean Flow )
59
Convection
60
Stream line
61
Mixing layer
62
Exact
i j i j i j
k
k
Du u u u u u
u
Dt t x
= +
iu uj
j i
ij i k j k
k k
u u
P u u u u
x x
= +
iu uj
.
13-3-B%3/
)77(
3*yr= :<F e•E $. ( 'LK<0B#63
"L*864
$*n 0
( ?(65
..
+ f.W" B*3L 1G?BG(0(
.. J.L )" KK$ $ F P*66
% 8(0<
L B 8<T*.<0B#" B3? (P#$L 1 *< J9 :L
K<0B#".3lB.#rL 1*n 00! F.
& K*E.BE $* JXG" (
4•< ? $" ( ?(*n 0$#.&<BB!&z* JX4
.? @*$***N <,$N. D%*#.? @)f9 :
4f**n 0$f9 :p @*$*(J.
13-4-A260! @G3-
)78(
•0 €$3K< ) &38$G<0B#@-" BXP67
:n%8)K<0B#
*0(&%.0<L*8B.•E $Xn%$#
&40(% &G(*0(" &•0 €$K3"= :<K<0B#4*
63
Turbulent fluctuation
64
Pressure fluctuation
65
Molecular diffusion
66
Advection
67
Redistribution
( )( )
i j
ijk i jk j ik i j k
k
turbulent diffusion molecular diffusion
u up
d u u u u u
x
= + + +
i ju u
i j ku u ui ju u
kui j ku u u
( )i j
k
u u
*
x
2ji
ij ij
j i
up u p
S
x x
3 = =
Tˆ$@ $@68
.ˆ$@ $@69
BL )K3"n%%p @<-
%4fW&.
K%*<%xB)'*LK1
J(L 7N-• 2B$#$%"P#B"3
(" B3*. '30(.)0(&%G(<J @B.XP
8/n%G<-$W&.
Pb<?2.
1-*•%*<%x"& 8BB.
3?N 2$T * #,$ $@L<0B#B.N 2'<K%
$T l,$ $@L<0B#" B•3N 2*$J%
.; <% &o </Lo </•E $$&$%$ B%$"2% &
>[<-L ".$" J$% &"6 1L8$8?O >"" <D
L" VL$"* < $$)D * B$L VN :<$%*= D
)D$TB3 &NlBT ',$ $@*<0B#.
2-G:=[ Q? $70
=[ Q%n8)K<0B#$G&:*#.01BO)>
o '8) %n" K<0B#P#" B<W$$&4
0(% &%GK<0B#.01" $'?#
)79(
3lYSDPT,$ $@*J.
68
Anisotropic
69
Isotropic
70
Viscous dissipation
i ju u
i ju u
0
u u
y z
= =
2
u
2
u2
w2
v
2 2 2
u w v
2 2 2
u w v4 4
2 2 21
k (u v w )
2
= + +k 05
2
2
2
0
0
0
u
v
w
5
5
5
3-8&*$ 8f% f<N.$8&4
6 Wx*$**<0B#l… :(<$. D*4.? @. T
*$ x( <#**J.
13-5-;R2Y#
)80(
3"K=[ QU@()? $(B.L )K3K=[ Q r•E $V
< ? $( ?B..W!<) 1 P•< ? $<0B#" B?G:=[ Q
( ? •< ? $B.>1[-*E*=[ QU@(:%4f)
D%* J.p @$%&ˆ$ $@$<B(r&.
14-(!% 43)4(%) !
T$($P( '= :<G" (%K' l4< ) & %71
B<6 D% <'$= P3 'JK<L2 '<J.
1-1 4B%
Xo </.D[E1^*n 0" ? $*n 08$*n 0K<0B#B.
(•<0B#"2!*n 0? $= :<4fB.(<0B#L 1E
81o '! F.
)81(
S((2$F &3".**n 0? $!8fB ,f J$
**#% (% &%?8$$#.
71
Correlation
ji
j i
uu
x x
i ju u
i ju u
1/2
3/2
Re t t
t
t
t
u l
u k
l k
=
L [>X*n 0% 8$"f% J! :<3.‚) :T3?..
3 /y*n 0% 80<% B$T! :<* ?S,".'% JK$
k )*yKy*n 0% 8.33<.B% E-% J
K%$yF*n 0% 8VN WD[%<BB.+#L 8 #o </
* 83.6 TL"3^<)T!$S(‚& J**#!8fB ,
.
( &$(72
3 ($0*n 0<0B#0<•"= :<* J73
=
= :<* J€*n 04.? @6 <* JF e74
* &..)E82(.
E8246 QP$:*#'222/0".3:0<%
% xB...)K*9 :•7/8%% &%n N DB.=% &% K%
*n 0<0B#@$K &:( & =$+ , ($$@(^F% <:
3=.
)82(
2-1 4Z %4I
(%(%XPK8UMIST%L(FB".
)%&%2$* ? &$@% &J* )–2W<B$%?BL 183B.
)83(
*#
72
Harlow, Daly
73
Gradiant transport hypothesis
74
Spatial gradiant
sC
k
L
i j
i j s k lk
l
u uk
u u u C u u
x
=
(1) (2) ( )w
ij ij ij ij3 = 3 + 3 + 3
)84(
:<6F Q)
)58(
1B.G:%$* J,$@ $@$T YSD,$@ $@*
Xn%8)8%p @(*8%<?f yB.
D[E1^.8J,$ $@75
$@D[E1^ˆ$ $@%(76
<0JB.
? @"•E $4 @* B4 @"*N,$@ $@<877
J$3 &$
?*"v 778
3QJ.D[E1^"9 ?'79
-
.9 ?'%* >3<Z Ev 1T,$@ $@$‘0D*#Z E*..
3-1 4;R2Y#
3)%3.: :DB.•< ? $( ?()$•< ? $<0B#(n%8)
<0B#=$%L DM2$9 :4f80
JN ).2 '3L D*
75
Return to isotropy
76
Isotropisation of production
77
Over ridden
78
Wall correction
79
Wall reflection term
80
High frequency and small scale motion
( ) ( )
(1)
1
(2)
2
( )
(2)
1 2
3/2
3
2
3
1
3
3 3
2 2
ij i j ij
ij ij kk ij
w
ij kl k l ij ik j k jk i k
w w
ij i j ij
n
k
C u u k
C P P
n n n n n n
k
C u u C
k
C y
3 =
3 =
3 = 3 3 3 6
3 = + 3
6 =
( ) ( )
1 2 1 2 31.8 0.6 0.5 0.3 2.5w w
C C C C C= = = = =
ny(1)
ijW(2)
ijW
(1)
ijW(2)
ijW
(w)
ijW(w)
ijW
ˆ$ $@c.3*. 'r=[ Q0(% &G(*rN
=[ Q81
'L;).-.
)86(
E #RSM1 !!#FG#Fluent
1 = :< ( '( % 8 = :< % v@FluentL 187B.
)87(
( ) ( ) ( ) ( )
( ) ( ) 2 ( )(
ij ij
ij ij
i j k i j i j k kj i ik j i j
k k k k
C D
j ji i i
i k j k
k k k k k
P
u u u u u u u u p u u u u
t x x x x
u uu u u
u u u u p
x x x x x
µ
µ
3
+ = + + +
+ + + )
ij
i
k
u
x
*#
P$1 4<D *$ v* = UB
0( ? *n$1 4<D *$ v* = UB
(K<0B#•E $G; <$1 4<D *$ v* = UB
0K<0B# *n<D L2 ' 3< $* = UB
ij= 3=K< ) &38$G<0B#<D L2 ' 3< $* = UB
ij===[ QK<0B#<D L2 ' 3< $* = UB
* $# . %( ' ND N W L 187r " b 0 % ) % F (=[ QG 3 k ) $
! U <D . . 8.282
? & $G)1975(% $ $83
)1980(L F@= 6 T% &
F.f 6 E J %=% &<8 O > 3 # .% &
CFDPP . B 0< !& %! $#.L F@ W <D ( 3($ " B% # * <-
. * ? ( & @ 1 $ . * # *.
81
Total dissipation rate
82
Launder
83
Rodi
2
3
ij ij=
ijC=
,l ijD=
ijP=
,T ijD=
b 0 L )" B ( G % J 6 < b 0 ; ( G = :< r ? c-
J = *.% PCFD6 T3E N?B.
)88(
= . VB.
=[ Q r% * . N:< c= B 4 < % &B.K! %B
G %$ ;:% ( % &(i=j)3 %$ $ VO > *89$# ..
)89(
r=[ Q%n" <0B# 8)?$ % <(B.
G N '( M? 6–8N?8 "* @ &( ' L ) 387.W *# 3 < $. =.*# V
G %$N ? @ @ < # $ ( % &:L $ K ? % $ - N ( 8 L
N ( 8:E % 4 -%o </ ; < . *.G L ) V–! : % " 8
%n P"G( % % &( )G G& $ <8 * . N:<B % &
(( )B.
? @ V . 2 D[1G L ) %$-D 8.X L D[1 3 . &
=[ Q= ! - #( : *$ . 2 $*
B ? "; <.% J* 8 &G & V &% &0< % (
. L * 4 <% &G @G : $ &% &G& ( B&.
J$ 2 ; . < J L V 3 & ' =* )84
)1975(. B F.3 + & #=% &
$e' )% &CFDF % P.
)90(
Q70 N)W . W *# LNJ.
<0B# 8) %n$ . 2 ; $% G * X 0< # *
$# . K &.< % ( ' GBr k = ( ' & ( G = :=[ Q= 3
84
Launder and Gibson
T,ijD
,
i jt
T ij
m k m
u u
D
x x
µ
!
=
kN =0.82
ijLijL
2
3
ij ij=
ijLijE
i=j
i j4
k-L
(1) (2) ( )w
ij ij ij ij3 = 3 + 3 + 3
k
ijL
NDB.= = ' N?B<%" J > /% &% PCFD. B 0<.
* % ( ' % ; B% &= :< L2 ' . 2 % eD ( G) B N:
% $ $:X$$. '.
* : $ $ -:$
:X
% $ $ X ) : : " % $ $ L [> 4 & TK<0B# L B *TI= > $
$ 7/8B c ; $ 0<ˆ91$# ..
)91(
c % $ $ % ; B * ' "G # *$ ) "w < . D N ( ).%
= 8 - X z % ; B 2 ( L )k-e".0< *.
G :@ ( % &4E)BJ..
0<B$%%$%"$ P"** 8B$%4• 01./.
)92(
3 &Y[<-38%(%4*yBN ?8B$%4• 01./* 8
&..=% &. B < S, E ($ " < & + , ^ <) ( G3= z
G $ ; < * _ - & v 8 W B% &(B.( G =(RSM)† &
= *. W N ( $ "< J D ^2 ' L ) * JL ) % .' 1 %
*&0<B.= 3 ) $ '= ' - : : 4 &B.v 1 N?B %
k-LL
ij i jR =u uLk
0
n
=0
i ju u
n
=
2
3
3 2
4
2
1
2 2
2 3
1.5( )
1
2
0 ( )
ref
i j
k U TI
k
C
l
u k
u u k
u u i j
µ
=
=
=
= =
= 4
i j iju u =c kijc
2 2 2
1.098 0.248 0.654 0.255
u v w u v
k k k k
= = = =
k-L
= 6W % & @ ./ * # . &3=% &0< % <0B#-
4 @ # .' 1 * J.

More Related Content

What's hot

South Amboy of 1920s Is Theme of Fundraiser (The Suburban)
South Amboy of 1920s Is Theme of Fundraiser (The Suburban)South Amboy of 1920s Is Theme of Fundraiser (The Suburban)
South Amboy of 1920s Is Theme of Fundraiser (The Suburban)
Jacqueline Durett
 
2008-12-04 - Roller Rink Marks 50 Years
2008-12-04 - Roller Rink Marks 50 Years2008-12-04 - Roller Rink Marks 50 Years
2008-12-04 - Roller Rink Marks 50 Years
Jacqueline Durett
 
Employee Health Benefits Overview
Employee Health Benefits OverviewEmployee Health Benefits Overview
Employee Health Benefits Overview
msvaishnav
 
Xarxes socials
Xarxes socialsXarxes socials
Xarxes socials
Meri Caballero
 
2009-08-27 - East Brunswick Resident Needs Stem Cells
2009-08-27 - East Brunswick Resident Needs Stem Cells2009-08-27 - East Brunswick Resident Needs Stem Cells
2009-08-27 - East Brunswick Resident Needs Stem Cells
Jacqueline Durett
 
New BYOB Law for Sayreville (The Suburban)
New BYOB Law for Sayreville (The Suburban)New BYOB Law for Sayreville (The Suburban)
New BYOB Law for Sayreville (The Suburban)
Jacqueline Durett
 
NETWORK REBRAND - pitch presentation (short version)
NETWORK REBRAND  - pitch presentation (short version)NETWORK REBRAND  - pitch presentation (short version)
NETWORK REBRAND - pitch presentation (short version)
Stefano Di Ceglie
 
Instructivo manual de requisitos de inscripcion de informacion leagl, tecnica...
Instructivo manual de requisitos de inscripcion de informacion leagl, tecnica...Instructivo manual de requisitos de inscripcion de informacion leagl, tecnica...
Instructivo manual de requisitos de inscripcion de informacion leagl, tecnica...
mamache
 
South Amboy Lays Out Plans for 2009 (The Suburban)
South Amboy Lays Out Plans for 2009 (The Suburban)South Amboy Lays Out Plans for 2009 (The Suburban)
South Amboy Lays Out Plans for 2009 (The Suburban)
Jacqueline Durett
 
القيادة وقت الازمات
القيادة وقت الازمات القيادة وقت الازمات
القيادة وقت الازمات
Dr Ghaiath Hussein
 
Historiografía de la educación comie selección
Historiografía de la educación comie selecciónHistoriografía de la educación comie selección
Historiografía de la educación comie selección
nada
 
CCNxCon2012: Session 2: DASH over CCN: A CCN Use-Case for a SocialMedia Base...
CCNxCon2012: Session 2: DASH over CCN:  A CCN Use-Case for a SocialMedia Base...CCNxCon2012: Session 2: DASH over CCN:  A CCN Use-Case for a SocialMedia Base...
CCNxCon2012: Session 2: DASH over CCN: A CCN Use-Case for a SocialMedia Base...
PARC, a Xerox company
 
English
EnglishEnglish
English
Balearespete
 
Hudson City Youth Dept Assessment 03312012
Hudson City Youth Dept Assessment  03312012Hudson City Youth Dept Assessment  03312012
Hudson City Youth Dept Assessment 03312012
rosemarielongo
 
Google In China Case Competition Written Report
Google In China Case Competition Written ReportGoogle In China Case Competition Written Report
Google In China Case Competition Written Report
kcg016
 
Prca debate-on-the-future-of-the-agency
Prca debate-on-the-future-of-the-agencyPrca debate-on-the-future-of-the-agency
Prca debate-on-the-future-of-the-agency
Ged Carroll
 
Cocina para impostores
Cocina para impostoresCocina para impostores
Cocina para impostores
Caracool Cool Cool
 
Virtues some surahs of the noble qura'n - imaam al-albaanee
Virtues   some surahs of the noble qura'n - imaam al-albaaneeVirtues   some surahs of the noble qura'n - imaam al-albaanee
Virtues some surahs of the noble qura'n - imaam al-albaanee
Shahedur
 
Robert Murdock Band Brings 60s back to S.A. (The Suburban)
Robert Murdock Band Brings 60s back to S.A. (The Suburban)Robert Murdock Band Brings 60s back to S.A. (The Suburban)
Robert Murdock Band Brings 60s back to S.A. (The Suburban)
Jacqueline Durett
 

What's hot (19)

South Amboy of 1920s Is Theme of Fundraiser (The Suburban)
South Amboy of 1920s Is Theme of Fundraiser (The Suburban)South Amboy of 1920s Is Theme of Fundraiser (The Suburban)
South Amboy of 1920s Is Theme of Fundraiser (The Suburban)
 
2008-12-04 - Roller Rink Marks 50 Years
2008-12-04 - Roller Rink Marks 50 Years2008-12-04 - Roller Rink Marks 50 Years
2008-12-04 - Roller Rink Marks 50 Years
 
Employee Health Benefits Overview
Employee Health Benefits OverviewEmployee Health Benefits Overview
Employee Health Benefits Overview
 
Xarxes socials
Xarxes socialsXarxes socials
Xarxes socials
 
2009-08-27 - East Brunswick Resident Needs Stem Cells
2009-08-27 - East Brunswick Resident Needs Stem Cells2009-08-27 - East Brunswick Resident Needs Stem Cells
2009-08-27 - East Brunswick Resident Needs Stem Cells
 
New BYOB Law for Sayreville (The Suburban)
New BYOB Law for Sayreville (The Suburban)New BYOB Law for Sayreville (The Suburban)
New BYOB Law for Sayreville (The Suburban)
 
NETWORK REBRAND - pitch presentation (short version)
NETWORK REBRAND  - pitch presentation (short version)NETWORK REBRAND  - pitch presentation (short version)
NETWORK REBRAND - pitch presentation (short version)
 
Instructivo manual de requisitos de inscripcion de informacion leagl, tecnica...
Instructivo manual de requisitos de inscripcion de informacion leagl, tecnica...Instructivo manual de requisitos de inscripcion de informacion leagl, tecnica...
Instructivo manual de requisitos de inscripcion de informacion leagl, tecnica...
 
South Amboy Lays Out Plans for 2009 (The Suburban)
South Amboy Lays Out Plans for 2009 (The Suburban)South Amboy Lays Out Plans for 2009 (The Suburban)
South Amboy Lays Out Plans for 2009 (The Suburban)
 
القيادة وقت الازمات
القيادة وقت الازمات القيادة وقت الازمات
القيادة وقت الازمات
 
Historiografía de la educación comie selección
Historiografía de la educación comie selecciónHistoriografía de la educación comie selección
Historiografía de la educación comie selección
 
CCNxCon2012: Session 2: DASH over CCN: A CCN Use-Case for a SocialMedia Base...
CCNxCon2012: Session 2: DASH over CCN:  A CCN Use-Case for a SocialMedia Base...CCNxCon2012: Session 2: DASH over CCN:  A CCN Use-Case for a SocialMedia Base...
CCNxCon2012: Session 2: DASH over CCN: A CCN Use-Case for a SocialMedia Base...
 
English
EnglishEnglish
English
 
Hudson City Youth Dept Assessment 03312012
Hudson City Youth Dept Assessment  03312012Hudson City Youth Dept Assessment  03312012
Hudson City Youth Dept Assessment 03312012
 
Google In China Case Competition Written Report
Google In China Case Competition Written ReportGoogle In China Case Competition Written Report
Google In China Case Competition Written Report
 
Prca debate-on-the-future-of-the-agency
Prca debate-on-the-future-of-the-agencyPrca debate-on-the-future-of-the-agency
Prca debate-on-the-future-of-the-agency
 
Cocina para impostores
Cocina para impostoresCocina para impostores
Cocina para impostores
 
Virtues some surahs of the noble qura'n - imaam al-albaanee
Virtues   some surahs of the noble qura'n - imaam al-albaaneeVirtues   some surahs of the noble qura'n - imaam al-albaanee
Virtues some surahs of the noble qura'n - imaam al-albaanee
 
Robert Murdock Band Brings 60s back to S.A. (The Suburban)
Robert Murdock Band Brings 60s back to S.A. (The Suburban)Robert Murdock Band Brings 60s back to S.A. (The Suburban)
Robert Murdock Band Brings 60s back to S.A. (The Suburban)
 

Viewers also liked

Fall2016_highres
Fall2016_highresFall2016_highres
Fall2016_highres
Caroline Alexandrae Fisher
 
格安ラルフローレンのシャツ個々のソリューションの保護
格安ラルフローレンのシャツ個々のソリューションの保護格安ラルフローレンのシャツ個々のソリューションの保護
格安ラルフローレンのシャツ個々のソリューションの保護
boxian843
 
HPH profile - PM
HPH profile - PMHPH profile - PM
HPH profile - PM
Sunny Duong
 
Mentoring_Brussels_2015
Mentoring_Brussels_2015Mentoring_Brussels_2015
Mentoring_Brussels_2015
Peter Schellinck
 
Slideshow
SlideshowSlideshow
Slideshow
Anna_AFS
 
Understanding how is that adaptive cursor sharing (acs) produces multiple opt...
Understanding how is that adaptive cursor sharing (acs) produces multiple opt...Understanding how is that adaptive cursor sharing (acs) produces multiple opt...
Understanding how is that adaptive cursor sharing (acs) produces multiple opt...
Enkitec
 
Bab 3-substansi-genetika-perbaikan
Bab 3-substansi-genetika-perbaikanBab 3-substansi-genetika-perbaikan
Bab 3-substansi-genetika-perbaikan
abyanrifqy
 
ESF1 Piling Vibrator - Operating instructions
ESF1 Piling Vibrator - Operating instructionsESF1 Piling Vibrator - Operating instructions
ESF1 Piling Vibrator - Operating instructions
The Hammerman Equipment Plastic Piling Co. Ltd
 
Con cuál me quedo
Con cuál me quedoCon cuál me quedo
Con cuál me quedo
Inmaculada Díaz Valiente
 
AFS Acceptance: Got Culture?
AFS Acceptance: Got Culture? AFS Acceptance: Got Culture?
AFS Acceptance: Got Culture?
AFS Acceptance
 
C12 Replikasi DNA
C12 Replikasi DNAC12 Replikasi DNA
C12 Replikasi DNA
Catatan Medis
 
Sintesis protein
Sintesis protein Sintesis protein
Sintesis protein
Qorina Oktaviani
 
Dn aand rna1
Dn aand rna1Dn aand rna1
Dn aand rna1
Nurul Sholehuddin
 
Types and methods of physiotherapy
Types and methods of physiotherapyTypes and methods of physiotherapy
Types and methods of physiotherapy
Sam Shaikh
 
Six Sigma by PresentationLoad
Six Sigma by PresentationLoadSix Sigma by PresentationLoad
Six Sigma by PresentationLoad
PresentationLoad
 
Mikroskop, lupa i durbin
Mikroskop, lupa i durbinMikroskop, lupa i durbin
Mikroskop, lupa i durbin
Драга Вулићевић
 
Company core-values - english templates
Company core-values - english templatesCompany core-values - english templates
Company core-values - english templates
Daniel de Carvalho Luz
 
8 D – Problem Solving Process
8 D – Problem Solving Process8 D – Problem Solving Process
8 D – Problem Solving Process
Anand Subramaniam
 

Viewers also liked (18)

Fall2016_highres
Fall2016_highresFall2016_highres
Fall2016_highres
 
格安ラルフローレンのシャツ個々のソリューションの保護
格安ラルフローレンのシャツ個々のソリューションの保護格安ラルフローレンのシャツ個々のソリューションの保護
格安ラルフローレンのシャツ個々のソリューションの保護
 
HPH profile - PM
HPH profile - PMHPH profile - PM
HPH profile - PM
 
Mentoring_Brussels_2015
Mentoring_Brussels_2015Mentoring_Brussels_2015
Mentoring_Brussels_2015
 
Slideshow
SlideshowSlideshow
Slideshow
 
Understanding how is that adaptive cursor sharing (acs) produces multiple opt...
Understanding how is that adaptive cursor sharing (acs) produces multiple opt...Understanding how is that adaptive cursor sharing (acs) produces multiple opt...
Understanding how is that adaptive cursor sharing (acs) produces multiple opt...
 
Bab 3-substansi-genetika-perbaikan
Bab 3-substansi-genetika-perbaikanBab 3-substansi-genetika-perbaikan
Bab 3-substansi-genetika-perbaikan
 
ESF1 Piling Vibrator - Operating instructions
ESF1 Piling Vibrator - Operating instructionsESF1 Piling Vibrator - Operating instructions
ESF1 Piling Vibrator - Operating instructions
 
Con cuál me quedo
Con cuál me quedoCon cuál me quedo
Con cuál me quedo
 
AFS Acceptance: Got Culture?
AFS Acceptance: Got Culture? AFS Acceptance: Got Culture?
AFS Acceptance: Got Culture?
 
C12 Replikasi DNA
C12 Replikasi DNAC12 Replikasi DNA
C12 Replikasi DNA
 
Sintesis protein
Sintesis protein Sintesis protein
Sintesis protein
 
Dn aand rna1
Dn aand rna1Dn aand rna1
Dn aand rna1
 
Types and methods of physiotherapy
Types and methods of physiotherapyTypes and methods of physiotherapy
Types and methods of physiotherapy
 
Six Sigma by PresentationLoad
Six Sigma by PresentationLoadSix Sigma by PresentationLoad
Six Sigma by PresentationLoad
 
Mikroskop, lupa i durbin
Mikroskop, lupa i durbinMikroskop, lupa i durbin
Mikroskop, lupa i durbin
 
Company core-values - english templates
Company core-values - english templatesCompany core-values - english templates
Company core-values - english templates
 
8 D – Problem Solving Process
8 D – Problem Solving Process8 D – Problem Solving Process
8 D – Problem Solving Process
 

Similar to jadiditurbulencemodeling

أيقظ المارد الكامن
أيقظ المارد الكامنأيقظ المارد الكامن
أيقظ المارد الكامن
Dr Ghaiath Hussein
 
المساجد والاماكن الاثريه بالمدينه المنوره
المساجد والاماكن الاثريه بالمدينه المنورهالمساجد والاماكن الاثريه بالمدينه المنوره
المساجد والاماكن الاثريه بالمدينه المنوره
MosaadRamadan AbdAlhk
 
3rdchapter
3rdchapter3rdchapter
3rdchapter
mtalupuru
 
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4
Dimitris Psounis
 
كيف تصبح نجما لامعا فى العمل
كيف تصبح نجما لامعا فى العمل كيف تصبح نجما لامعا فى العمل
كيف تصبح نجما لامعا فى العمل
Al husseiny Abd ellatef
 
Social Bullseye Services Overview
Social Bullseye Services OverviewSocial Bullseye Services Overview
Social Bullseye Services Overview
Dave Jaworski
 
คำคม แปะไว้
คำคม แปะไว้คำคม แปะไว้
คำคม แปะไว้
Jin Yun
 
Representing the curriculum symposium
Representing the curriculum symposiumRepresenting the curriculum symposium
Representing the curriculum symposium
Helen Beetham
 
كيف تصبح نجما لامعا في العمل
كيف تصبح نجما لامعا في العملكيف تصبح نجما لامعا في العمل
كيف تصبح نجما لامعا في العمل
Dr Ghaiath Hussein
 
كيف تصبح نجم لامع في العمل
كيف تصبح نجم لامع في العمل كيف تصبح نجم لامع في العمل
كيف تصبح نجم لامع في العمل
محمد شريف Mohammed Sherif
 
Religion 6th-primary-2nd-term- (4)
Religion 6th-primary-2nd-term- (4)Religion 6th-primary-2nd-term- (4)
Religion 6th-primary-2nd-term- (4)
khawagah
 
الجزء الثانى أسئلة تنفيذية مهندس محمد زكى إسماعيل
الجزء الثانى أسئلة تنفيذية مهندس محمد زكى إسماعيلالجزء الثانى أسئلة تنفيذية مهندس محمد زكى إسماعيل
الجزء الثانى أسئلة تنفيذية مهندس محمد زكى إسماعيل
Mohamed Saeed
 
النظريات التفسيرية للعلاقات الدولية بين التكيف و النغير في ظل تحولات العالم م...
النظريات التفسيرية للعلاقات الدولية بين التكيف و النغير في ظل تحولات العالم م...النظريات التفسيرية للعلاقات الدولية بين التكيف و النغير في ظل تحولات العالم م...
النظريات التفسيرية للعلاقات الدولية بين التكيف و النغير في ظل تحولات العالم م...
OùSsama Elfalaki
 
20thchapter
20thchapter20thchapter
20thchapter
mtalupuru
 
D9عنا البحريني التفاصيل كاملة
D9عنا البحريني التفاصيل كاملةD9عنا البحريني التفاصيل كاملة
D9عنا البحريني التفاصيل كاملة
Kuchik Khan Jangali
 
(Guia para elaborar,_estrutura
(Guia para elaborar,_estrutura(Guia para elaborar,_estrutura
(Guia para elaborar,_estrutura
Kátia Amaral
 
Основные правила подбора КФ от Яндекса
Основные правила подбора КФ от ЯндексаОсновные правила подбора КФ от Яндекса
Основные правила подбора КФ от Яндекса
MAXGEN Онлайния
 
255blia
255blia255blia
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 2
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 2ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 2
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 2
Dimitris Psounis
 
Km การดูแลผู้ป่วยได้รับยาละลายลิ่มเลือดในผู้ป่วยผ่าตัดลิ้นหัวใจ
Km การดูแลผู้ป่วยได้รับยาละลายลิ่มเลือดในผู้ป่วยผ่าตัดลิ้นหัวใจKm การดูแลผู้ป่วยได้รับยาละลายลิ่มเลือดในผู้ป่วยผ่าตัดลิ้นหัวใจ
Km การดูแลผู้ป่วยได้รับยาละลายลิ่มเลือดในผู้ป่วยผ่าตัดลิ้นหัวใจ
sucheera Leethochawalit
 

Similar to jadiditurbulencemodeling (20)

أيقظ المارد الكامن
أيقظ المارد الكامنأيقظ المارد الكامن
أيقظ المارد الكامن
 
المساجد والاماكن الاثريه بالمدينه المنوره
المساجد والاماكن الاثريه بالمدينه المنورهالمساجد والاماكن الاثريه بالمدينه المنوره
المساجد والاماكن الاثريه بالمدينه المنوره
 
3rdchapter
3rdchapter3rdchapter
3rdchapter
 
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 4
 
كيف تصبح نجما لامعا فى العمل
كيف تصبح نجما لامعا فى العمل كيف تصبح نجما لامعا فى العمل
كيف تصبح نجما لامعا فى العمل
 
Social Bullseye Services Overview
Social Bullseye Services OverviewSocial Bullseye Services Overview
Social Bullseye Services Overview
 
คำคม แปะไว้
คำคม แปะไว้คำคม แปะไว้
คำคม แปะไว้
 
Representing the curriculum symposium
Representing the curriculum symposiumRepresenting the curriculum symposium
Representing the curriculum symposium
 
كيف تصبح نجما لامعا في العمل
كيف تصبح نجما لامعا في العملكيف تصبح نجما لامعا في العمل
كيف تصبح نجما لامعا في العمل
 
كيف تصبح نجم لامع في العمل
كيف تصبح نجم لامع في العمل كيف تصبح نجم لامع في العمل
كيف تصبح نجم لامع في العمل
 
Religion 6th-primary-2nd-term- (4)
Religion 6th-primary-2nd-term- (4)Religion 6th-primary-2nd-term- (4)
Religion 6th-primary-2nd-term- (4)
 
الجزء الثانى أسئلة تنفيذية مهندس محمد زكى إسماعيل
الجزء الثانى أسئلة تنفيذية مهندس محمد زكى إسماعيلالجزء الثانى أسئلة تنفيذية مهندس محمد زكى إسماعيل
الجزء الثانى أسئلة تنفيذية مهندس محمد زكى إسماعيل
 
النظريات التفسيرية للعلاقات الدولية بين التكيف و النغير في ظل تحولات العالم م...
النظريات التفسيرية للعلاقات الدولية بين التكيف و النغير في ظل تحولات العالم م...النظريات التفسيرية للعلاقات الدولية بين التكيف و النغير في ظل تحولات العالم م...
النظريات التفسيرية للعلاقات الدولية بين التكيف و النغير في ظل تحولات العالم م...
 
20thchapter
20thchapter20thchapter
20thchapter
 
D9عنا البحريني التفاصيل كاملة
D9عنا البحريني التفاصيل كاملةD9عنا البحريني التفاصيل كاملة
D9عنا البحريني التفاصيل كاملة
 
(Guia para elaborar,_estrutura
(Guia para elaborar,_estrutura(Guia para elaborar,_estrutura
(Guia para elaborar,_estrutura
 
Основные правила подбора КФ от Яндекса
Основные правила подбора КФ от ЯндексаОсновные правила подбора КФ от Яндекса
Основные правила подбора КФ от Яндекса
 
255blia
255blia255blia
255blia
 
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 2
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 2ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 2
ΠΛΗ31 ΤΥΠΟΛΟΓΙΟ ΕΝΟΤΗΤΑΣ 2
 
Km การดูแลผู้ป่วยได้รับยาละลายลิ่มเลือดในผู้ป่วยผ่าตัดลิ้นหัวใจ
Km การดูแลผู้ป่วยได้รับยาละลายลิ่มเลือดในผู้ป่วยผ่าตัดลิ้นหัวใจKm การดูแลผู้ป่วยได้รับยาละลายลิ่มเลือดในผู้ป่วยผ่าตัดลิ้นหัวใจ
Km การดูแลผู้ป่วยได้รับยาละลายลิ่มเลือดในผู้ป่วยผ่าตัดลิ้นหัวใจ
 

More from Mohammad Jadidi

Turbulence near the wall.pdf
Turbulence near the wall.pdfTurbulence near the wall.pdf
Turbulence near the wall.pdf
Mohammad Jadidi
 
Introduction to CFD- Chapter 1
Introduction to CFD- Chapter 1Introduction to CFD- Chapter 1
Introduction to CFD- Chapter 1
Mohammad Jadidi
 
Dr jadidi fluent-basic-m010-homework
Dr jadidi fluent-basic-m010-homeworkDr jadidi fluent-basic-m010-homework
Dr jadidi fluent-basic-m010-homework
Mohammad Jadidi
 
Dr jadidi fluent-basic-m09
Dr jadidi fluent-basic-m09Dr jadidi fluent-basic-m09
Dr jadidi fluent-basic-m09
Mohammad Jadidi
 
Dr jadidi fluent-basic-m08
Dr jadidi fluent-basic-m08Dr jadidi fluent-basic-m08
Dr jadidi fluent-basic-m08
Mohammad Jadidi
 
Dr jadidi fluent-basic-m07
Dr jadidi fluent-basic-m07Dr jadidi fluent-basic-m07
Dr jadidi fluent-basic-m07
Mohammad Jadidi
 
Dr jadidi fluent-basic-m06
Dr jadidi fluent-basic-m06Dr jadidi fluent-basic-m06
Dr jadidi fluent-basic-m06
Mohammad Jadidi
 
Dr jadidi fluent-basic-m05
Dr jadidi fluent-basic-m05Dr jadidi fluent-basic-m05
Dr jadidi fluent-basic-m05
Mohammad Jadidi
 
Dr jadidi fluent-basic-m04
Dr jadidi fluent-basic-m04Dr jadidi fluent-basic-m04
Dr jadidi fluent-basic-m04
Mohammad Jadidi
 
Dr jadidi fluent-basic-m03
Dr jadidi fluent-basic-m03Dr jadidi fluent-basic-m03
Dr jadidi fluent-basic-m03
Mohammad Jadidi
 
Dr jadidi fluent-basic-m02
Dr jadidi fluent-basic-m02Dr jadidi fluent-basic-m02
Dr jadidi fluent-basic-m02
Mohammad Jadidi
 
Dr jadidi fluent-basic-m01-b
Dr jadidi fluent-basic-m01-bDr jadidi fluent-basic-m01-b
Dr jadidi fluent-basic-m01-b
Mohammad Jadidi
 
Dr jadidi fluent-basic-m01
Dr jadidi fluent-basic-m01Dr jadidi fluent-basic-m01
Dr jadidi fluent-basic-m01
Mohammad Jadidi
 
04 reactive flows - eddy disipation model
04 reactive flows - eddy disipation model04 reactive flows - eddy disipation model
04 reactive flows - eddy disipation model
Mohammad Jadidi
 
01 reactive flows - governing equations favre averaging
01 reactive flows - governing equations favre averaging 01 reactive flows - governing equations favre averaging
01 reactive flows - governing equations favre averaging
Mohammad Jadidi
 
00 reactive flows - governing equations
00 reactive flows - governing equations00 reactive flows - governing equations
00 reactive flows - governing equations
Mohammad Jadidi
 
01 reactive flows - finite-rate formulation for reaction modeling
01 reactive flows - finite-rate formulation for reaction modeling01 reactive flows - finite-rate formulation for reaction modeling
01 reactive flows - finite-rate formulation for reaction modeling
Mohammad Jadidi
 
00 reactive flows - species transport
00 reactive flows - species transport00 reactive flows - species transport
00 reactive flows - species transport
Mohammad Jadidi
 
01 multiphase flows- fundamental definitions
01 multiphase flows- fundamental definitions01 multiphase flows- fundamental definitions
01 multiphase flows- fundamental definitions
Mohammad Jadidi
 
00 multiphase flows - intorduction
00 multiphase flows - intorduction00 multiphase flows - intorduction
00 multiphase flows - intorduction
Mohammad Jadidi
 

More from Mohammad Jadidi (20)

Turbulence near the wall.pdf
Turbulence near the wall.pdfTurbulence near the wall.pdf
Turbulence near the wall.pdf
 
Introduction to CFD- Chapter 1
Introduction to CFD- Chapter 1Introduction to CFD- Chapter 1
Introduction to CFD- Chapter 1
 
Dr jadidi fluent-basic-m010-homework
Dr jadidi fluent-basic-m010-homeworkDr jadidi fluent-basic-m010-homework
Dr jadidi fluent-basic-m010-homework
 
Dr jadidi fluent-basic-m09
Dr jadidi fluent-basic-m09Dr jadidi fluent-basic-m09
Dr jadidi fluent-basic-m09
 
Dr jadidi fluent-basic-m08
Dr jadidi fluent-basic-m08Dr jadidi fluent-basic-m08
Dr jadidi fluent-basic-m08
 
Dr jadidi fluent-basic-m07
Dr jadidi fluent-basic-m07Dr jadidi fluent-basic-m07
Dr jadidi fluent-basic-m07
 
Dr jadidi fluent-basic-m06
Dr jadidi fluent-basic-m06Dr jadidi fluent-basic-m06
Dr jadidi fluent-basic-m06
 
Dr jadidi fluent-basic-m05
Dr jadidi fluent-basic-m05Dr jadidi fluent-basic-m05
Dr jadidi fluent-basic-m05
 
Dr jadidi fluent-basic-m04
Dr jadidi fluent-basic-m04Dr jadidi fluent-basic-m04
Dr jadidi fluent-basic-m04
 
Dr jadidi fluent-basic-m03
Dr jadidi fluent-basic-m03Dr jadidi fluent-basic-m03
Dr jadidi fluent-basic-m03
 
Dr jadidi fluent-basic-m02
Dr jadidi fluent-basic-m02Dr jadidi fluent-basic-m02
Dr jadidi fluent-basic-m02
 
Dr jadidi fluent-basic-m01-b
Dr jadidi fluent-basic-m01-bDr jadidi fluent-basic-m01-b
Dr jadidi fluent-basic-m01-b
 
Dr jadidi fluent-basic-m01
Dr jadidi fluent-basic-m01Dr jadidi fluent-basic-m01
Dr jadidi fluent-basic-m01
 
04 reactive flows - eddy disipation model
04 reactive flows - eddy disipation model04 reactive flows - eddy disipation model
04 reactive flows - eddy disipation model
 
01 reactive flows - governing equations favre averaging
01 reactive flows - governing equations favre averaging 01 reactive flows - governing equations favre averaging
01 reactive flows - governing equations favre averaging
 
00 reactive flows - governing equations
00 reactive flows - governing equations00 reactive flows - governing equations
00 reactive flows - governing equations
 
01 reactive flows - finite-rate formulation for reaction modeling
01 reactive flows - finite-rate formulation for reaction modeling01 reactive flows - finite-rate formulation for reaction modeling
01 reactive flows - finite-rate formulation for reaction modeling
 
00 reactive flows - species transport
00 reactive flows - species transport00 reactive flows - species transport
00 reactive flows - species transport
 
01 multiphase flows- fundamental definitions
01 multiphase flows- fundamental definitions01 multiphase flows- fundamental definitions
01 multiphase flows- fundamental definitions
 
00 multiphase flows - intorduction
00 multiphase flows - intorduction00 multiphase flows - intorduction
00 multiphase flows - intorduction
 

jadiditurbulencemodeling

  • 1. »« !" #$ !"# $ %&' # ' () #* +, -. ,/ 0, 1 2 1+ 3 $4 5 & , 6 * 78 9 :. http://CFD.iut.ac.ir
  • 2. 1- ! " #$ % &% '( ) "* " &% & + , - $ ./ 01 $ ( ( % 23 ' ( 4 % ')$"6 7/89 : $ . % &$ ; < * = >. ? . @((, 2B.( . # * 3 ,.& 8 2 (<0B# * B7 .( D 4 ? E " B 8 $ . ? F . DG/ *$ < , >H * .) * % &I < J- . $ $ K< , L2 '–M <*ND L 1.*% &+ , I$ % O > *% &CFD6 : 0< *$ $ $ !PD I$ND Q % &. . ! % R ;: <0B# * :E S( " < & <0B# . & % 6 T.L2 9 U <D<0B# L V K W @KB.: N7 3*# * = $ K<0B# 4 @ % CFDF&. 2- * 1 7/8 X K P<0B# % &!.%$ .) * 4 ( %$. @(&.G #!< %$ % &3 , ( . B & 8 = % & 2 $ Y 1 * Z[E1K ? %$ = !& % &@H(.* ? H * % ; B J . F.3# * :EB. 0 ] D % 4 2 ( :* < % L H 6) ^ < < B.F T ^[ . D . V % ; B <D $ B ! $ 7 * < .B.. ! $ 7 L 7 * _ - $H.<0B# * D :E 3B.4 . B % J*N?B1D[. 1 Turbulence UL UL
  • 3. N?B1-E: .%I 8H * $ L ) X <0B# * 7 .' )>= L b & . D NB.c* F ; < : G/ $ .0(d $X *#! : " B. )1( * <D. F &H e ' $ 4 ;: & 8 $ ; < % &<0B# L &< %< & % '.* & 8 "3 $[% 8- f * <- 4 <0B# % &2 <0B# <0J9 : = > ' $ $ B3 * 8&. 1 < = L bB < J % % &"% 8- f % < D&J 4 @ ! . D $ "L D P <H % Vd L 1.* E: 4 i 4 = j % 3 * < . . B W <0B#$.Vd * B k / 3 fb 0 : G @ l D $ . D "LB. J G8 ( <J @ <0B# %4 $ < J %n B&.* J eD% & * ; < .B % &8- f <0B# % 6) "B.8 ) E * < % " B% W E <?f % &o 'Q ; < * ; $ B 8 <J @ % ;B.3 % p @ % 8) %nN:< <?f $ 4f % &%n 8# *# B5 J. 2 Eddy 3 Length scale 4 Vortex stretching 5 Energy cascade Uu (t) ( )u U u t= +
  • 4. . D 9 : 3 <?fB . @( ; & r <0B# *B.( % 3 <?f# 7/8 . 9 &7/8 = > $( )..9 : 3&)( >1/0 01/0M $ <&$ D10@ &*<0B# % &(. ! . @( L V.N : G NL 1 @( % &" J. D B X %n ? E3 % % &D %n $ $ N ) -B. % * <-3K & ^[ <J @ % &).(< $ ; < * # 3 % W G $ E $ . *B.4f 9 : N @( b 0 N% "3 & GB , * ". N:<% & < & 3K & <0B# * <?f. 3-! "#–$ % &# L & 8 3 Y[<-% . D eD <0B# $ # %= > 9 : ' $ $ & . <0B# *.4* *1/0<1/0N B "2 ( <0B# * 4 < %&3 %10100?)B U <D " B < $ ?%109 1012 = ! < ! E: 9 :! & v Q = > % &.w < 3 <')10L 1 @ &* . 2 S( " J $ D % W100$ ?! ! : V.)B%# * ! :<( ( ( <0B500000% x & -10x ' ( <' ) *CrayB. % . D % K , . ;: ) * $* % &< J ? % &L ) B $ L2 ' ! :< ND %* % * < $ M <N?8 2 ( <0B# ^[ % & @ ./ I < J < $ .&. = L [> < ) % B$ 3 1 3<0B# % & .G , 3 ($* % & L V.0< </)B -* JCFD[> 6 T 3 K EX W * _ -B). ^[jG $ ; < % & 8 $ ; < % &; < % &(3 ; < * _ - %$ <0B# L B 8<T eD L V G/!. ) ) *
  • 5. 4-(%) ! ; < <* . 1 - kL 7E)3-2(o '!. )2( *#:#p @/<B%:<J @H%y= K<@ & 88.L )KN:<*/<y B.. [K.; <B. * . 1 -$ . * < $F ; < 0(d z P L 7 # *H< 0(d $ *. 01 *# ; < :. J.P <* < $ G/ ' 3 $^ 1$ !YSD3 "!!L 3 K' O)>o 01.#. )3( * 8/ * k L [>X ; < S6 # . L. )4( < S0(d : X ;. % &| $ . &# f " - %4 # * $<0B# L . 9 D)} ! w .7 (. J ? <?( 4 $.%n 8))D $(E K<0B# k)3-5(3 'B. )5( K<0B# L B8) %n$X ; < * .L 7E)6(;)B. )6( 6 Root mean square (RMS) 7 Hot wire 0 1 ( ) t t dt t = 5t5t ( )t( ) ( )t t= + t= + 0 1 ( ) 0 t t dt t = = ( ) 0.5 22 0 1 ( ) t rms dt t = = k 2 2 21 ( ) 2 k u v w= + + TIrefU 0.5 0.5 2 2 21 2 ( ) 3 3 ref ref u v w k TI U U + + = =
  • 6. V G %<0B# L; < * %$$ $ K< , L2 ' "-* % * @ & M < !. V . @( S,!.1 % 8/ 3< *$ + , ; $ % D 3- .L 7</ = ' O)>3 @! J. 4-1-+!,- = D! & -L2 '. DL<0B#W! &.I$<" P NF@N W0<B. <L2 '%<%(%'<%; <y$[<%!.K#3 > &( '; <J%N! $#.<)(33<3<?+ f$%% L2 '(%W" B3$%%; <*#%•7/8*@W& -. .L2 '%? F<%; <& €J. 4-2-.(&% /# 0,- 0•( 'K< ,)7(B. )7( ( ')7(%:(%*<0B#@W..+ f; <% J•( ')7(•( ' ! F 1 DL 1E)8(# & -. )8( SK%<%(%:; <y$[:"$@0<3 W; <% J ("! & - )9( %4*!S,P#B•( ')9(L 1& -#. )10( ( ) 0i i u t x + = ( ) 0i i u t x + = ( ) ( ) 0i i i i u u t x x + + = 9 =0 0i i u x =
  • 7. 3-4-3-.(1% )2# 0,- * &>!L2 '<%4*!S,•< ? $. VL 1)11(B. )11( ( ')11(!&%L#$!&%L<0B#)<'B.3? (%4*" <0B#& H<% < $%.$8‚< $*B. = D! & -•( '<6 D<%; <*! F.W*)12( )12( •( ')11(! & - )13( %•( ')13($@=; <% J3 >3( '! & - )14( .ƒf•( ')14(2 '= ?Bo </*J.•( 'K< ,! LS, B.3 )15( Q$!*$%01B3 >•( ')15(.#%$ " <P# )16( •( '<%*<0B#L 1*J 2 ( )i i i j i j i j j u u p u u B t x x x x µ+ = + i i i p p p u u u = + = + 2 ( ) ( ) ( ) ( ) ( )i i i i i i j j i j i j j u u u u p p u u u u B t x x x x µ + + + + + + = + 2 i i i i j j i j j i j j u u u p u u u B t x x x x x µ+ + = + 0 j j u x = j i i j i j j j j u u u u u u x x x + = j i j u u x j i i j i j j j j u u u u u u x x x + =
  • 8. )17( 0L$•( '<)17(•( '<<%(%"Q* B-#..' •( ' B3 "D[E1^GK<0B#G(. L$ 0L2 '*#<0B#@;:eD3 &B.>3"„ (? @ 4GB? "KV= ))<(B"I! ?3..•( '< )? F%$!(.ƒfN:<B..38$3M< B. .( D"L2 '… :! D*L2<0B#)':%" <$n%(L 7*- B. :%< :% :%n% < ,*y. &L D..36)3N?B0<Bn%8)K<0B# G"! &)<B< J8. L2 'D[E1^L2 '8 RANS$3 Q2 'v 1$† &Q.* #$ ^ D%#8..3? ($3L2 'N ?84K<<9 &.)''L2 PG 'L2 '.(•ETE-*3"L2 'M,; < #J%"$•< ) &10 Z EB- .. 8 Reynolds Average Novier Stockes 9 Closed set 10 Correlation i i i j i i j j i j j u u p u u B u u t x x x x µ+ = + i j9u u i i i j i i i j j i j j u u p u u B x u u t x x x x µ+ = + 0j j u x = ( ) ( )p j p j j j j T T T C u C u T t x x x + = Ak
  • 9. K< ) &3L. K< ) &3L.$ K= :<<<%$M?'(..3D[E1^G(11 <0J- B.K= :<x( <#)n = :<%(<%$M?'(..3D[E1^D B <0B#12 <0JB. G(* '4G$%=N$‡/8yV<%K<0B#$% **; <B. %D"*8%K<0B#$& B%K<0B#<J @:*#B$ S(:*#::<0B#*!8fB ,.Y &(%L" <0B# 3 'FN )WG("B<0B#$D B<0B#0<k )*:<% @<%*; <$‡-2* J&%*; <B. %LyB6GBP<*.; <•0(kK<0B#•E)18( w<& -B. )18( @• D• 2U@()• D$ P(• :D"y8%(<J @8% U@(B. Q G L )E)19(B ‡/8 # <- . B <B N e0.Q G GB # B P <B G $ !F W GB. 11 Reynolds stress tensor 12 Turbulent Heat flux i ju u ju T i ju uix p j9C u Tix minla ar turbulent du u v dy µ= + = 9u v du µ dy
  • 10. )19( G 3<0B# Q % &G "( % &B.*G <0B# % &% % & & 01 o( / 8 &. L X N B * f " <B8% B )20( 0(d 3 ; $ ;;) K ? . o </ % &B.G = D% &01 o( / <0B# B G : ^2 ' $ B< & p @ - <0B# * 4 U@( % &. k : 3 <8"$. ? @#; < . % J P# " * 8&. K<0B# (.I@H( k B X > . L $ . D = D- B.ˆ$ $@ 4 @ K<0B#( # * f " B0(d ^$#.N?B2 & 8L $SP ; < j D : 3 BB. N?B2-K<0B# _ - $ ; < . X%2%$%J ./ 0101 8 * u v u w v w 2 2 2 xx yy zzD =-9u D =-9v D =-9w xy xy xz z x yz yz u v u w v w = = = = = = 2 u2 v2 w 2 u
  • 11. <W$ "./ 01 %$ % 28/0<8" BN 01 . K<0B# _ -. X ; < S :)rms(^ ) : P % < kB* 8 "* <- & ˆ$ $@ ^[ $ 1 K<0B#B. 4-4-3)40!,- K<0B#,%*.•E $8%B)J%.(P" Jf &G B< W" BK<0B#*@B& -.3 'GB%L<0B#D$3 = DJ)+ ,B">*$3<BE%%GB*3<BM 2 &$%$4* ("=X.*$*.$#.GBL 1)21( *J. )21( %3 'yG(L 1v 1$.I$8 ,;) B* y3G<0B#*.; <B. B$%0 </%.* $#GBL<0B#FB.v 8&4 ! & -.- ,. 5-(,-6 *& 1=2FB&4%! n&%_ -$<DD%_ - **)<'$O W" BY &F=% &2"•)yGk :o </ *B. 5-1-.70#!& &#Boussinesq Eddy-Viscosity •E4• ,3N1B.0(&%8%(6 <J%. ; <" B' )22( y/E ijD min ( ) i j ij ijla ar ijturbulent i j j i u u u u x x µ= + = + i j9u u i j9u u 2 2 3 i j t ij iju u S kµ=
  • 12. *#rG$ ; <;•Eo 'B <)(<.B•E)22(N?B!S,•( '4".3? (N?BN3( ' N BL V!S,%*BL 1)23(& -. )23( Y[-( ?( < ? $4. 1 -=.E%! :<$K< $B%* @ K<0B#*$*.$S(< '*$. 'W.("2$G/ %*.. + f•< ? $L 7E)24(!*#•< ? $*#$< 1 -=. L 7L2 'RANS)&8%((*YSD8%($@K•< ? $ •< ? $= 'L<0B#?8)BL2 '$M <L#.BN B G(•<0B#B.0<3| <%*%(%4*" <0B#%G ,- : ! :<= )X! K. )24( 5-2-6Eddy-Viscosity Y &&o 1 =•E< 3%N WJ%? @*$<%)y B** ..>3(*<! :]22[. 1-=% &01( '%13 2-=% &4( '%14 3-=% &$( '%15 =% &01( '%"; $$L2 ')%.o 1•E_ - 3)$ BN W % J0<.=% &4( '%4•( 'Q = :<@3 30<"=% & $( '%N B$PDEQ< &. 13 Zero equation model 14 One equation model 15 Two equation model ijS 1 2 ji ij j i uu S x x = + 2 2 2 3 3 k i j t ij ij ij k u u u S k x µ= µtµ tµ µ oµ µ t oµ=µ +µ i j9u u i ju utµ t oµ µ µ= +
  • 13. vQ $.† &=K<0B#$%NFKB./<=3 =% &K<: 4 @*#•(J! < &. $$* @ &f! nL$ 0<K ? * @.W L ?)N )WRAM$CPU9 < * @*%*= :'. 1-68-(#)6%::; <#( •= >>[<-;: "%L<)B LŒ$L$ L ".$ 4 L• 2%N ?8B$%-"f%3L.* ; $P*.3=L V( :<<0B#$@history effectsL<0B#- J)v Q * '" <83=L VL B 8<TPB. 2*$%*. 3 F , G ,.(E:Q"!<L2 '*.#(%*•<0B#z01( '% ‚) :&!<L2 'kL#B*#. V$H<.)* ?$! n'Q *.3E:)$_ -F K &"*<.B0<== >>[<-) =% &01( '%(.<%)B<L#& B! & -.‡-2+ f; B %60<B" BND%0<3=" &.2%K &B$w <K &y B <%'?<& -.$[0<I$01( '%"_ -F K &#ND & < ,%N b9 DB. L HF@( Kf$X?( L HN?B•) 9 D• ($3 T# 2b.3=F &#F P$*n 0<%K<0B#!.: ml µ
  • 14. %rN ?8F2B16 )LP0%,• /Y$ €$',8 $(... = :<L DcL 01*$* J L$8- f17 $>&%! n&%+ ,:Ly4 [B$X)<(*#3 ' N?8B"6& /. 2-6-( ># =% &4( '%"?$9 :!L" <0B#'**9 :L<0B#$ = >9 :L<0B#$)*#"$0<4•( '( :<.#2 '3n% 8)<0B#.%*#4•( '( :<0<B.)2$#%.4•( '= :< ./(•( '! DL H"*F P$*n 0$>•( 'KX* B(. =Spalart-Allmaras4=4( '%4•( '=y B= :<%.* $# ND.=@%&%&-eFB.$3 + &w <-%2&%%% c '* J89 ?'18 W"F..3 + &34 "==%&% . 3 B. N?B1" -=Spalart-Allmaras(V%(3 F ,' Jy 0< V3=$DV <. @(N-• 2%$D8)(3 F ,(B. &fD(3 F ,$! B$.D2 ()‡-2D$( . DW ! F<%= 33 ':<& -B.-& @%P%"3= *%'W(%4 @-@" BX@ P* <L VD •< ? $2%4 @F%3=N-.3lB.3"=3 <@J 16 Rapidly developing flows 17 Recirculating flows 18 Adversed pressure gradient ml k tµ tµ
  • 15. %*ND&%-19 $%G./($20 B)<)(%'WL )O W** <0B#-$ Q%)$Y &*4<$) :*<0B#.(. =% &4( '%)=( Spalart-Allmaras> /FO $*-L HX :%( >21 &:<W<B.3L HB‡-2L HJL$ 22 LB#)&• /4.'$*$E'& <& < &%0(& 8! F.>E:FN-*L V()[jNF <DNF JF P#$&$%(=& )%%.. 3-6-(# =% &$( '%*%%L : :k(%L" <0B#‡-2* ( -W< J.3=% &NK<0B#)3. W&%"2%L2 '^<) %@B(=% &$( '%< &" #ND$•( '= :<Jl3 '* B•[:< 9 :.K<0B#23 $9 := >K<0B#24 B. 3 <Y[<-3=% &( ' $%$=% &Eddy-Viscosity*#.=% &$( '% =% &B'#*%G ,_ -4*<0B#*$& J#)W<-* $• &*0<.? ( D!&L2 '01( '%$!&L2 '4( '%"= > F :$%3 'y" #3<N)W! n*$N?B*#B$3(% L<0B#N)WND#+ ,.•E:T#=% &Eddy-Viscosity$( '%0< 6 :4$•( '= :<%n%8)K<0B#B./<H<$/($ L 8 ,%%3/<FB.. "L W7<W%*$.WN W= )W%o >' $L" <0B#3=4=)P% L<' 1$(%= :<L D.. 19 Crude simulation 20 Coarse mesh 21 Length scales 22 Wall bounded flows 23 Turbulent velocity scale 24 Turbulent length scale k
  • 16. =3 < $ '=$( '%Bf!*#* #$0<*#B. =% &*<0B#6 D$H<*B. 1-n%8)*•<0B#25 2-r=[ Q? $n%8)•<0B#26 ( 8) %n<0B# * %L ) "; < 8) %n z P .$ <0B# 8) %n;G $ N?B H r . 2 ^ B % &<0B# % & 0<!.. = ' % ' L ) N % 0(d% &N?B H r )25( & G $ )26( L 7)M(. <0B# * = * ( N?B H r @P0(d 4 $ ; < 0(d 4"* (% & M)27(&. )27( 25 Turbulent kinetic energy 26 Viscous dissipation rate of Turbulent kinetic energy k-L k-L k-L k(t)2 2 21 K= (U +V +W ) 2 2 2 21 k= (u +v +w ) 2 11 12 13 21 22 23 31 32 33 ij e e e e e e e e e e = 11 12 13 21 22 23 31 32 33 ij ij ij ije =E +e 1 1 ( ) ( ) 2 2 j ji i ij ij ij j i j i U uU u e E e x x x x = + = + + +
  • 17. ?&% , @A), B # # 0 C + -( ; < 8) %n % ( ' 40(d * Q *( ( '0(d $( ' 0(d $= '$# . ".< X M,% ) L % : $ !& w( ' * 8 * 3 KL 7 * ! D ; < 8) %n)28(.. )28( % H( L 7; < 8) %n % "!. = :<G ;% &@( = :<8 ;+ = :<( G ;+ K<0B# (+ r=[ Q- == :<F P ;+H r = :< L )""M n‡/8B$ 4 !& # & . < $ B ! & W.%$ @( G L V! : G/ $B:L )= :< "L ) $ @( G E "=[ Q< 8) %n @(;G N B L ) $% &(< &L V ) % " K<0B#B.L )<0B# = :<G ;% &L ) $ (‡( - G& K<0B# ( G ( ; N?B H E% &(B.*2 ( % &K<0B# L ) "$ L ) <J @ - 8 &$B. K KxUy VzW ( ) ( U) ( U 2 U ) 2 . . u U u ij i j ij ij i j ij iiiii iv v vi vii i K div K div p E Uu u E E u u E t u U u v V v w W w µ µ+ = + = + = + = + = + K K K K K KK iiiivvdiv KivKvi Ki j9u u vKviiK v viiiviv
  • 18. - @A), B # # 0 C + -( 0(d M < $ L2 ' & Q% &> .)0(d ( ' Q ^[j T $(3 ? B w < & X $L2 ' %$ N($ N1 D ( ' $ * ! $ 8) %n ( ' -E ")3-29(P <&. )29( ! <0B# 8) %n % % H( L 7. = :<G ;% &@( = :<8 ;+ = :<( G ;+ (K<0B#+ =[ Q r- == :<F P ;+H r ( '% &)28($)29(< & !& )B - f.L H ( ' $ & . . L K<0B# 8) %nG $ ; <8 B! D K<0B# % &B.L )' $ &% ( < & o </ . [ ($ %$ :.L ) S(( ' .)j 6 4( L ) 4 $ & * 8&.( '$ 0 L ) = DŒ[ < ; < * 8) %n 3 ". %n N ) Q L 7 w < 3* <0B# %n ; < 8).@( =[ Q L )' )30( r X z P eD N ( 0 6 4% &N?B HE ")29(&.=[ Q % B P N ( <0B# 8) %nG %$ <?f % &% &P @(B.r=[ QD $ *# D $m2 /s3 L 7 $ ! K<0B# 4 L '( E .)31(o 'B. k x u k ( ) 1 ( U) ( u 2 u . ) 2 . . 2 u U u ij i i j ij i j ijij iiiii iv viivivi k div K div p E u u u e e u u E t u U u v V v w W w µ µ+ = + = + = + = + = + k k k k kk vii viik K vi 11 22 33 12 13 232 . 2 ( 2 2 2 )ij ij e e e e e e e eµ µ= + + + + + ije
  • 19. )31( &L ) 8 J @ ) $ <0B# 8) %n ( ' Y[ 1 L ) 4 ($ B1 N W @J &B.B 2 ( <W$ M?'(@( = :< L ) "( ')29( <0B# = :< L ) : 8 &4f -B. . & % 8 = :< L2 ' ' * ?r N B K<0B# % &=[ Q@(B$ .O W ( '' N B = D "N W T $ = P L ) %% JB.=$ < = ( '% ? "% ? $& H< 3 L H 6) ) % & # Œ 3 < %$ B " B. $. 9 : o ' %= > 9 : $0<L 7 !)3-32(p @ 9 : Y ' K<0B#27 B. )32( G , . 3? ( RH< 0< )< "9 : o ' %B.3 P P - 2 ( ! < &% *#%n ; < * p @ % &= :< r O E ^ : W J % %n% &4 < $ 4f..9 : e' %n ) 3 f J% &K<0B#*$ . B . $G& $. 0 3 NX W $ <o '! 0<. *4@ ( #'%* 8•< ? $•<0B#*= >9 :%&%p @*<0B# ;).-. )33( *#$6.9 :$= >9 :3 <J @%&**<0B#B. SK%L2 ')32(*$•( ')33(•P <!. 27 Large scale turbulance 2 .ij ije e= iv vi k-L L Lk-L kL Lkl 3/2 k k l = = Ll lL t C lµ = l
  • 20. )34( 46 QP.:#2 '09/0J. == :< L2 ' " <)35($)36(%$0< B ?. )35( )36( % H( L 7 L2 'B = :<b 0 ; ( r+ r=[ Q- == :<F P ;+H r L2 '! N W . V w , N B""""< &.< =:)37(% . V* X $ $ 4 F &$ <0B# % &? " B. )37( " <0B# N< , =B $<0B# ."b 0 . W$% . @(k. <0B# 8 %n Y[ $ (k K ? &=[ Q r B( ? Fp @ . p @ " B.( ' =)36(%c*# k L ) Y[ $ ($ ( L ) 6 < ( ' Y[)35(..l 2 D 3 f b /J BB ^ '"$ B ^ ' !& G&B < <0B# 8) %n 0 : G& ^ '.6 QL ) Y[ $ (( ' % ' L 7 L ) 3Z[1. G ) %= ( % &4 B ; E)38(. B 0<. 2 t k C l Cµµ = = µC k-LLk ( ) ( U) ( ) 2 .t t ij ij k k div k div grad k E E t µ µ ! + = + 2 1 2 ( ) ( U) ( ) 2 .t t ij ijdiv div grad C E E C t k k µ µ ! + = + kL kL kL kLkL µCkNLN1LC2LCk-L 1 2 0.09 1.0 1.30 1.44 1.92 k C C C µ ! ! = = = = = kNLNkLtµ Lk L kkL kL/k L k-L
  • 21. )38( S, ! * 4E =$ . W < $ ! J)38(v Q I - ;& J ! & G% &! X !F W)'3"2"1=i? ( Di=jB(K< , 0< "01 : 3 ! * & * f " < & )39( !F W % 8 z P . 3B$!PD D $ <0B# 8) %n 0 : $ B._ 7<- !F W G 0(d & : 3 4# z P ! & * 8 " B& : ? @1B.G % 4 ,$ $@ c 3 .B( !F W % &$ B% & * 8 P* <D &O W T % ' $ % &B. 6--(6E #!#FG# 1 !Fluent =<= :< L2 ' ")40($)41(%$@ B ?Fluent0<- . )40( )41( ! N W . V w , N B L2 '"""": < &J b N)W G/ *#$ (n%8)( <0B#J N. ; < . *. (n%8)( <0B#N$%.. 2 2 2 3 3 k i j t ij ij ij k ij ij u u u S k x S E µ= = 2 2 2 0i t ij t t j u S divu x µ µ µ= = = 2 2 2 -9(u +v +w )-29k kL k-LLk ( ) ( ) ( )t i k b i j k j k k ku G G t x x x µ µ ! + = + + + 2 1 3 2( ) ( ) ( ) ( )t i k b i j j u C G C G C t x x x k k µ µ ! + = + + + µCkNLN1LC2LC kG= bG=
  • 22. K •( '* @(n%8)K<0B#28 BG3; < *29 $** <0B#B$$ &*#^ D[E1(B<0J$ B@K(-Y[B *( Kf*y*30 B. ; $v 131 %L 7)42(B. )42( W*•E)38()•E4(N-)42(! & - )43( $. G r. 7-6I-06J( I$< JB== >>[<-)8 ,B;N< ,("B$< $&$ L+ ," &S(< E*#.•< ? $•<0B#)%:%. D<0B#W &? >N:<W&BE:'%** 8 )44( %vQ $%."9 :B*#B..'% *.8J•%'%3.K<0B#f<;< ? $=[ QJ. 3.D[E1^*9 :K<0B#32 <0JB.P#$B"S( &?B•< ? $<0B#0<$<-" B.%N?B)45(B. 28 Turbulent kinetic energy production 29 Mean flow 30 Turbulent flux of fluctuating density 31 Exact relation 32 Turbulent time scale kG bG kG i k i j j u G u u x = 2 k tG Sµ= ij ijS= 2S Sij ijS =E t* [ ] [ ][ ] [ ] [ ] [ ] 2 t t Velocity Length or Velocity Time = = k2 2 21 k= (u +v +w ) 2 k L [ ] [ ] 2 k = Velocity[ ] k = Time L kL
  • 23. )45( . V@0<_ -• 2%( '.& -#.:$@0<L2 ' ND ( :<3 'B. 7-1-4!# E0 " • D< K(k4*<0B#0<•E< K(* 8B )46( c. V*G3D)c* f:4 @B( )47( c= ''Q33 *.0J )48( *#r(n%8)K<0B#)D $(%4• 2%)$&*ByK( •E)49(.#. )49( Jf>B"3? (3J%B4* B"%•)N W$3J%!F W@•)N WB. ?B"$c)46("** 8 )50( > 33 Local equilibrium [ ] 2 2 .t k k cons Cµ= × = µCkL µC u u y y% & = 2w u v u& = = ( )k p = ( )k u p u v y = j i ij i k k k u u p -u u - x x j ku u= u y uv t u -9u v µ y = t u y% & =
  • 24. )51( 0<c)48(*EU < < )52( N-• 2< K(cB< ,<-%. VB3ccG. V / & )3-53( ?B"$@•E)52(E *U < < )54( = D*0<w <P• D< K("& 8B.L )" K :.#B.3:)L 1"P.#.( =<0<B.#>B%3 ':*.)<= <L'%"L%G?GO >$L%(3 F , ,. L 0 1"o'Q=<PB• B 3 fNz <..K ?$F(* + &=<NF$ . 1-#>B%3 ':6 Q2N 70*" BP#)%L ) )%* W< K(W<B".S(U -• D* W< K(<‚ P3# <>B$:6 Q3 'J. 2-* W< K(<3 ':N $ ,.( 'X%• 01./ 0<B..3y.#)(%3; B)<'.$%; B 3 ( ) 2k u u u p u v u y y y% % & & & = = = ( ) 2 4 4 4 t t u vu y u u y % % & & & × = = ' = = u v P . u v Cons % = 2 t µ k * =C L 2 u v u v C Cµ µ % % = ' = u v - 0.3 P ( µC =0.09 k-LµC k-L k-L k-L µC µC µC µC =0.09
  • 25. 3-$•E:"= '[j? @k :G*$k := 7P"*$> : Y%*%$L 01./" $[j%@,% &"*K :.#%)<')< $% $ ,.T( 'XyZ[1B %3 f0<. 4-P#* W< K(%y $*<0B#FB".S()%0<B .* $#6F Q•( '<)%*<0B#.$S(=< "4 @ "*#B"6F Q'-L[?8%$ $".K?#% Z[1y B=L V#**4 @*#W< J".0< B. 5-D*%X3 f?88 ,"0<4•( '%'3$[ KL2 'B"? >:&E:N-*6 D& H<%* 3 'J.'$[$•( '( :<%$*4•( '( :<?%3 ' X*$**0<"'4( ' =%! 8-J LM!# &# =<<W$•EBoussinesq Eddy-Viscosity?" B%o >' $NF <)N?8/.%FN B,$ $@ T%B*$@L V( ' T" < &3 =.&& -D%034 ".':;3=G , " BD%p @& -. * '4•P <!363"=*.0J3=NG ,F $ , 8%LSwirling$@• DRecirculating<&LG<.JB. 3"=G ,< &% &8N ?8B$%Z E%"! [w <E T<B.. <- B* Bk :o'Q$L W=%F &$%3=$)F3 "= L 1< J..G/%3"Lr(%n8)K<0B#<r=[ Q .. 34 Over diffusive µC k-Lk-L k-L µC µC kL µC k-L k-L tµ k-L
  • 26. Y[-%% < :=<3=%%* f% WL lT 7..-K3J‡ :) % (2% &Bo 'Q % (L8+ , L% 8p @X $ 2% &%$$% &J $ L$8- f$ *V% (N >X> :J T. L['<% (X> :J T. Z[13"B[%%$%Z[1=( ' $%L 1. J€ N&%%=$@(=% &PB.?( 3! & -.- ,. 9-O! P0 Q '%&%o </=<$Y &&4)F%= 3G , _ -*..?= ( 3Œ N WBH $. # *# ) = :< ( ' 4% = 4) %$?<M2 SK .%= 3> / 3. 3e' = 3WQ@4I 8H * Q . J( KW 3.L D[Qk. $ = 3 SK%. B b = 3. %?QLŒ = 3SK . $ !%*#!( ' .4 ! N W T * 4 %G(! ) =. 35 Realizable k-L Model k-L k-L k-L k-L k-L k-L L ji i j t ij j i uu 2 -9u u µ - 9kE x x 3 = +
  • 27. )55( ' 0<o& -.B !. )56( E &( ' ƒf . !)56(&84. .)j .)(.($. +# ( ' .!K &: B p @ G0K /.'K & )57( B.G K#& = (8B .)j40 .^ B & -QM 2 L / &.+ &3$ XW 3%M # B36 )(@B & / W K.S(4 ND%?XW 3Œ N W 4)realizable(B <B0< !H<..3 =. B P J Œ N W.' L 7_ -M2 *'"H $N?B . B P ; < * *.= 3%W.&%$= .)*# . < ? ) *= 3 f< & G. < & G- f f. V .J(%< & 9 ?' 8 %%8- f $< & B. 9-1-! E #O! P0 Q = :< ( ' $ = 3)58(%$ND. 36 Schwarz inequality 2 2 2 3 t U u k x = 2 t µ k µ =C 9 L 2 2 2 2 3 k U u k C x µ= 2 u 1 3.7 3 k U x Cµ = ( ) 2 2 2 S T S Tu u u u) µC k-LµCkL k-L k-L kL
  • 28. )58( L2 ')58($=' <oB.Q $= 6)59(#.. )59( .B= :< ( 'H($ . ?Q= *# 6L$ 0< < B. <?%N WŒ[ < K). . 3(B&0 E: K+%.' & L ) U /<D B & 01 K+: J4.F@B 4f $.( D= ? $ . ' <0 k : " U /B <B $.=%' %< = .) $ . B ND NF^ 1 7-%< Bw <%. * 8. 9-2--A& R%S! $ %0!%4 - $ )?M2 <==. <L$ 0 34 ' ? & / . V"$ . $ G r $%B)60(. B b. ( ) ( ) ( ) ( ) 2 1 2 1 3 1 max 0.43, 2 5 j t k b j j t j j t b kj j j ij ij u kk k G G t x x x u k C S C C G C t x x x k k C S S S S µ µ ! µ µ ! * * * + = + + + + = + + + + + + , = = =- . +/ 0 kGbGk-L 1 2 1.44 0.9 1 1.2 k C C ! ! = = = = kk-L k krealizable-k-L k-L realizable-k-L tµrealizable-k-Lk-LµC kL
  • 29. )60( $ ; < G- f r$ .%B.$)61()B. )61( % ; B = L2 '$< & % e.". % e * L2 ' )B # <% ; B U <D . % $ $:X$B ' % L$ :< $ -:$ % &:K< ( I$ 2 0 1 2 t s ij ij ij ij ij ij ijk k ij ij ijk k k C C kU A A U S S µ µ µ 1 1 & & = = + = + 2 2 2 = 2 2 = 2 ijUkV0AsA ( ) 0 1 3 4.04 6 cos 1 cos 6 3 1 2 s ij jk ki ij ij ji ij j i A A W S S S W S S S S uu S x x = = = = = = + kL kL 0 k n =0 n =
  • 30. . 3? D > L )L [> "* = . % ; B L F@ kB ) 9 <. <' 1 * J 0<CFDL% &$<-.: * $ O > " 3 . 8 , $XP3 % $ $ X 3 N ( w < . D P < $ B$.. < [> † & J B )6 : "% &k % $ $ X % -$*% &-K<0B# L B *7/8 4 $ $# . = ' = >. 10-SU2V 0 !# =X $ $ )<' K<0B# =B.< J P ) = 3%*2 % & P G- f $ Œ B. V ! <D 4 *$ "% &<B % K 8f . : " B = ..* % | "= % & ?G *# &% &. - " % <8 . & ( B. ' $ $ N B z Q 3*!& <' 1 % & &* 8 *# . R 3 B &. . : $% &< = "* % ;:N - 7 T % &.9B @J 2 % = 3o 'Q B % &)2 $ ( ) $k / % &(?3 ' $ G/ % $ <B - *N ' 0< ;: L[?8 ) T % $ . =[ Q r < - <0B# 8) %n ( r & . V' " = % &cL 1 "J. * [?8 3 + & = 3* $ 8- f % &G & % &Q $ X "p @ % &)^[j 2% &9 W %J $ % & J SJ $(L V N B = 3 * f ". K<0B# - * k E-. *&%V=T % &G 2 > %% &. D ! T % (@ # G o 'Q ? N ( *% &%= "G ,.N ( %$ .) = 3 -2 . 9 D X f f G- f. kL kL kL k-L k-L k-L
  • 31. 11-6(%) ! 3)4 -( + ,( G ( ' = K<0B# 4 [ = 337 (RSM)) = .$38 @B. = % XG , ? K & "*PD % &$ + , G * % &% K 8f .$ ".8 ; B 3 .E ; </ ( 0 % &* 4%n J <D B B ) ) .W <0B# 8).O W ( G = :< ( ' " K Y >< L V % * 0< ( G *. G ,3=% &K<0B#B0<•EEddy-Viscosity*0(% &G (J%.**; <;).=RSM%•)&4%G (4•( '( :<4< JB.+ fG(%4•('%" B '8%(:<<%4•('%ND" B6B"3%3 'O W X8%(4•('%6•( '( :<B.? ( D4•('%"+ f ! & /(=$( '%0<"! FL 736G(= P)62( *3R E$G>O W)$:L 1TO W)B.. )62( PW &##RSM =% &Eddy-ViscosityL• 2%7<39 "? F40(G( . &-".-&.3 f"=Eddy-Viscosity'%•0(6( TG ()3zL6 T(B.+ f*.( D 3yQY, $Z[E1+ ," JKc0<Eddy-Viscosity)8%(J% 37 Reynolds stess model 38 Second order model 39 Attached boundary layer flows k-L k-L 2 2ij ij i j u u v u w R u u v u v v w w u w v w w = = = 2 u
  • 32. .**k ; <.( 1B$S(K*)<=% &Eddy-Viscosity =.. •'=% &0RSM<=1968$/* ( $40 K80 <$$%) . &(%8%(T#B.3=.3 $K%* + &Second Order Closure$ Second Moment Closure$Second Order Modeling<- BB.*#*'ŒŒ =% &Eddy-Viscosity<B SJB$c0(&%= PG(‚ :<NDL2 '= :< 0)#8%(& H<%< $B(.#.E &)63(* 8" B G4 (* :<41 B$3*. '.( D$'%ND3•( '= :<$ .( D'%ND6•( '= :<%3 'XG(*$**B. )63( G(%4*$'%G(%4*'% <)(&!&%3 '= >9 :!&.( D$'%$!&.( D'%"$[S L2 ' ND4•( 'QK@B.S(=RSM=% &wEddy-Viscosity+ ,B"3? ( $J + ,3"=3=&6(Bfo 16<: W%K<0B#F $$%o >X $$<L)<'B.3=%L Vy + , L.' )>$" J*#*L%k E- $L%G- f42 $* $43 $LF P#44 L.45 B3= (%#. W--.. 40 Donaldson 41 Symetric 42 Swirl flows 43 Rotational flows 44 Free convection flows 45 Buoyant flows 2 2 ij ij i j u u v R u u v u v = = = 2 2ij ij i j u u v u w R u u v u v v w w u w v w w = = =
  • 33. <?%P<*B*#.6 TL<0B#L BN?B213 $Tˆ$ $@ 214 " B'$[? #:8%1""o( /01: " B4413 8%1<0B#K ?L$ 0N WD[%.** 8B• D< K( *•<0B#$'%$%4• 01./)*3*•<0B#N W7(:8%1<0B# L 164B. )64( 3Y[<-B3y8%(* 8&<D4*•<0B#4 [)' *• 2%<0B#$%4y./("0<=% &Eddy-Viscosity=% &( ' $%> $ <$" T[† &J.WN W)‡-2L'%(= )& / .B.30<=% &Eddy-Viscosity? F &LL BT4 ,$ $@46 $"! LL B8- f47 $LB • VG48 ^[11B. 12--0&!.(( E #X 8# 0!% 43)4(%) ! •( '( :<v 1%G(L )! PD$3= DyQ.#. 3c2( Kf. V$!)E &"!L%<% y $&"4 xVS,%K<0B#$L2 'k*#!S,%*!B( K&$%PD)$M ((B.‚ P&%prime$overbar%G•0( $; <<%<0B#0<! F' )65( 12-1-.(&% / •( '(% )66( 46 Anisotropic 47 Highly swirling flows 48 Stress diriven secondary flows 2 u2 vww 2 2 1 , 0.4 , 0.6u k v k w w k= = = k-Lk-V iB u u u= + 0k k u x =
  • 34. •( '; < )67( O 0$•( '66$67K ? )68( D[& B$.; <$; B!S,%… Q. 12-2-.(1% )2 •( '(% )69( •( '; < )70( 6%•( ' y B< )71( ,KO<8%B. O 0•( ' $K ? )a( '•Mij& - 8 L 1.B !. )b( = D+ fL )N ?8"! &•( '( :<%8%(=RSM.#. 0k k u x = 0k k u x = 2 1i i i k i k i k k u u p u u B t x x x x + = + + 2 1i i i i ik k k k i k k u u u p u u u B t x x x x x + + = + + 1i i ii k i k k Du p u u u B Dt x x x + = + + D Dt 2 1ii i i i i ik k k k k k k k i k k u u u u u p u u u u u B t x x x x x x x + + + = + + 2 1j j j ji i jk k k k k k k k i k k u u uu u u p u u u u B t x x x x x x x + + + = + + j iu a+u b
  • 35. )72( H( L 1%' ( r = :<b 0 ;+ =[ Q r- = :<K<0B# G 8 N :< L V E+ =rH+= :<F P ; ( '72( ' GB0@ N* 8&'%G GB & = :<N:< (4 . 2 ( '.)( 12-3-E #3)4(%) ! )73( *# F PK<0B#•E $*; <49 (K<0B#•E $G; <50 (K<0B#•E $$%PD51 K< ) &38$G<0B#52 =[ QK<0B#53 49 Advection ( By Mean Flow ) 50 Production ( By Mean Strain ) 51 Production ( By Body Force ) 52 Pressure-Strain Correlation 53 Dissipation ( ) ( ) ( ) ( ) ( ) j i i ji j i j k k i j j k k k k k i j j ji i i jk j ik i j j i k k j i j i u u uu u u u u u u u u u u t x x x x u u u up p u u u u u B u B x x x x x x + + + + = + + + + + + ij i jR u u= ij i jR u u= ij i jR u u= ij i jR u u= ij i jR u u=ij i jR u u= 2 2 2 1 2 3 1 2 2 1 1 3 3 1 2 3 3 2u ,u ,u ,u u =u u ,u u =u u ,u u =u u ( ) ijk i j ij ij ij ij i dD u u P G Dt x = + + + 3 i j i j i j k k D u u u u u u u Dt t x = + j i ij i k j k k k u u P u u u u x x = + i j j iu B u B+ 2ji ij ij j i uup p S x x 3 = = ji j i uu x x
  • 36. *n 0G/,K<0B#54 JE73<0B# 8) %n % = :< O W ( '35" B :G L2 ' ? @ & € (BG k ) L )8.. 12-4-.(E #B #@A), P#•En%8)K<0B#L 1B"& K•E73* <& 8 c*M$ji$.! :*L2 '$*•( '( :<n% 8)K<0B#... )74( *#: (n%8)K<0B#•E $G; <55 (n%8)K<0B#•E $$%PD56 =[ Qn%8)K<0B#57 *n 0G/,n%8)K<0B# 54 Diffusion 55 Production ( By Mean Strain ) 56 Production ( By Body Force ) 57 Dissipation ( )( ) i j ijk i jk j ik i j k k turbulent diffusion molecular diffusion u up d u u u u u x = + + + ijW i j 1 k= u u 2 k ( ) ( ) ( ) k k k i i Dk d P G Dt x = + + ( )k i i j j u P u u x = ( )k i iG u B= 2 i j u x = ( ) 1 2 k i i j j i i k p u d u u u x =
  • 37. 13-X Y%4,Z,#!-06>#J 4%,%!.(E #3)4(%) ! 13-1-[ I0 ,-0.7&#,?&% )75( E75F P59 G(* 8&.L )K3KrH= >;-* 60 B.F L"3K-.."*#8%(;**; <P J. 13-2-(%4-0.7&#3?&% )76( E)76(K(K<0B#B"L )K3Kr(;* J. ; <$GB.)* J."; <•E $!&G8%" (?3 <N $y $#K<0B#**B(.. &$G:•<* J.; <$ * #K<0B#*"*&fJ%**; <<$<: W=" BK<0B# PB$**•<0B#><: W=B.$ &.(%L V$‡-2 J%B4 @"(%J%B•< &*2% &>[<-61 (% J%B$ •< &4$*.. &<B$$%. 1$!:w < K<0B#VN WSK.(K<0B#"N W$3= Dv 162 B$S(% (%.?N 2. :$W%=RSM$3N-•( '= :<8% (B 58 Advection ( By Mean Flow ) 59 Convection 60 Stream line 61 Mixing layer 62 Exact i j i j i j k k Du u u u u u u Dt t x = + iu uj j i ij i k j k k k u u P u u u u x x = + iu uj
  • 38. . 13-3-B%3/ )77( 3*yr= :<F e•E $. ( 'LK<0B#63 "L*864 $*n 0 ( ?(65 .. + f.W" B*3L 1G?BG(0( .. J.L )" KK$ $ F P*66 % 8(0< L B 8<T*.<0B#" B3? (P#$L 1 *< J9 :L K<0B#".3lB.#rL 1*n 00! F. & K*E.BE $* JXG" ( 4•< ? $" ( ?(*n 0$#.&<BB!&z* JX4 .? @*$***N <,$N. D%*#.? @)f9 : 4f**n 0$f9 :p @*$*(J. 13-4-A260! @G3- )78( •0 €$3K< ) &38$G<0B#@-" BXP67 :n%8)K<0B# *0(&%.0<L*8B.•E $Xn%$# &40(% &G(*0(" &•0 €$K3"= :<K<0B#4* 63 Turbulent fluctuation 64 Pressure fluctuation 65 Molecular diffusion 66 Advection 67 Redistribution ( )( ) i j ijk i jk j ik i j k k turbulent diffusion molecular diffusion u up d u u u u u x = + + + i ju u i j ku u ui ju u kui j ku u u ( )i j k u u * x 2ji ij ij j i up u p S x x 3 = =
  • 39. Tˆ$@ $@68 .ˆ$@ $@69 BL )K3"n%%p @<- %4fW&. K%*<%xB)'*LK1 J(L 7N-• 2B$#$%"P#B"3 (" B3*. '30(.)0(&%G(<J @B.XP 8/n%G<-$W&. Pb<?2. 1-*•%*<%x"& 8BB. 3?N 2$T * #,$ $@L<0B#B.N 2'<K% $T l,$ $@L<0B#" B•3N 2*$J% .; <% &o </Lo </•E $$&$%$ B%$"2% & >[<-L ".$" J$% &"6 1L8$8?O >"" <D L" VL$"* < $$)D * B$L VN :<$%*= D )D$TB3 &NlBT ',$ $@*<0B#. 2-G:=[ Q? $70 =[ Q%n8)K<0B#$G&:*#.01BO)> o '8) %n" K<0B#P#" B<W$$&4 0(% &%GK<0B#.01" $'?# )79( 3lYSDPT,$ $@*J. 68 Anisotropic 69 Isotropic 70 Viscous dissipation i ju u i ju u 0 u u y z = = 2 u 2 u2 w2 v 2 2 2 u w v 2 2 2 u w v4 4 2 2 21 k (u v w ) 2 = + +k 05 2 2 2 0 0 0 u v w 5 5 5
  • 40. 3-8&*$ 8f% f<N.$8&4 6 Wx*$**<0B#l… :(<$. D*4.? @. T *$ x( <#**J. 13-5-;R2Y# )80( 3"K=[ QU@()? $(B.L )K3K=[ Q r•E $V < ? $( ?B..W!<) 1 P•< ? $<0B#" B?G:=[ Q ( ? •< ? $B.>1[-*E*=[ QU@(:%4f) D%* J.p @$%&ˆ$ $@$<B(r&. 14-(!% 43)4(%) ! T$($P( '= :<G" (%K' l4< ) & %71 B<6 D% <'$= P3 'JK<L2 '<J. 1-1 4B% Xo </.D[E1^*n 0" ? $*n 08$*n 0K<0B#B. (•<0B#"2!*n 0? $= :<4fB.(<0B#L 1E 81o '! F. )81( S((2$F &3".**n 0? $!8fB ,f J$ **#% (% &%?8$$#. 71 Correlation ji j i uu x x i ju u i ju u 1/2 3/2 Re t t t t t u l u k l k =
  • 41. L [>X*n 0% 8$"f% J! :<3.‚) :T3?.. 3 /y*n 0% 80<% B$T! :<* ?S,".'% JK$ k )*yKy*n 0% 8.33<.B% E-% J K%$yF*n 0% 8VN WD[%<BB.+#L 8 #o </ * 83.6 TL"3^<)T!$S(‚& J**#!8fB , . ( &$(72 3 ($0*n 0<0B#0<•"= :<* J73 = = :<* J€*n 04.? @6 <* JF e74 * &..)E82(. E8246 QP$:*#'222/0".3:0<% % xB...)K*9 :•7/8%% &%n N DB.=% &% K% *n 0<0B#@$K &:( & =$+ , ($$@(^F% <: 3=. )82( 2-1 4Z %4I (%(%XPK8UMIST%L(FB". )%&%2$* ? &$@% &J* )–2W<B$%?BL 183B. )83( *# 72 Harlow, Daly 73 Gradiant transport hypothesis 74 Spatial gradiant sC k L i j i j s k lk l u uk u u u C u u x = (1) (2) ( )w ij ij ij ij3 = 3 + 3 + 3
  • 42. )84( :<6F Q) )58( 1B.G:%$* J,$@ $@$T YSD,$@ $@* Xn%8)8%p @(*8%<?f yB. D[E1^.8J,$ $@75 $@D[E1^ˆ$ $@%(76 <0JB. ? @"•E $4 @* B4 @"*N,$@ $@<877 J$3 &$ ?*"v 778 3QJ.D[E1^"9 ?'79 - .9 ?'%* >3<Z Ev 1T,$@ $@$‘0D*#Z E*.. 3-1 4;R2Y# 3)%3.: :DB.•< ? $( ?()$•< ? $<0B#(n%8) <0B#=$%L DM2$9 :4f80 JN ).2 '3L D* 75 Return to isotropy 76 Isotropisation of production 77 Over ridden 78 Wall correction 79 Wall reflection term 80 High frequency and small scale motion ( ) ( ) (1) 1 (2) 2 ( ) (2) 1 2 3/2 3 2 3 1 3 3 3 2 2 ij i j ij ij ij kk ij w ij kl k l ij ik j k jk i k w w ij i j ij n k C u u k C P P n n n n n n k C u u C k C y 3 = 3 = 3 = 3 3 3 6 3 = + 3 6 = ( ) ( ) 1 2 1 2 31.8 0.6 0.5 0.3 2.5w w C C C C C= = = = = ny(1) ijW(2) ijW (1) ijW(2) ijW (w) ijW(w) ijW
  • 43. ˆ$ $@c.3*. 'r=[ Q0(% &G(*rN =[ Q81 'L;).-. )86( E #RSM1 !!#FG#Fluent 1 = :< ( '( % 8 = :< % v@FluentL 187B. )87( ( ) ( ) ( ) ( ) ( ) ( ) 2 ( )( ij ij ij ij i j k i j i j k kj i ik j i j k k k k C D j ji i i i k j k k k k k k P u u u u u u u u p u u u u t x x x x u uu u u u u u u p x x x x x µ µ 3 + = + + + + + + ) ij i k u x *# P$1 4<D *$ v* = UB 0( ? *n$1 4<D *$ v* = UB (K<0B#•E $G; <$1 4<D *$ v* = UB 0K<0B# *n<D L2 ' 3< $* = UB ij= 3=K< ) &38$G<0B#<D L2 ' 3< $* = UB ij===[ QK<0B#<D L2 ' 3< $* = UB * $# . %( ' ND N W L 187r " b 0 % ) % F (=[ QG 3 k ) $ ! U <D . . 8.282 ? & $G)1975(% $ $83 )1980(L F@= 6 T% & F.f 6 E J %=% &<8 O > 3 # .% & CFDPP . B 0< !& %! $#.L F@ W <D ( 3($ " B% # * <- . * ? ( & @ 1 $ . * # *. 81 Total dissipation rate 82 Launder 83 Rodi 2 3 ij ij= ijC= ,l ijD= ijP= ,T ijD=
  • 44. b 0 L )" B ( G % J 6 < b 0 ; ( G = :< r ? c- J = *.% PCFD6 T3E N?B. )88( = . VB. =[ Q r% * . N:< c= B 4 < % &B.K! %B G %$ ;:% ( % &(i=j)3 %$ $ VO > *89$# .. )89( r=[ Q%n" <0B# 8)?$ % <(B. G N '( M? 6–8N?8 "* @ &( ' L ) 387.W *# 3 < $. =.*# V G %$N ? @ @ < # $ ( % &:L $ K ? % $ - N ( 8 L N ( 8:E % 4 -%o </ ; < . *.G L ) V–! : % " 8 %n P"G( % % &( )G G& $ <8 * . N:<B % & (( )B. ? @ V . 2 D[1G L ) %$-D 8.X L D[1 3 . & =[ Q= ! - #( : *$ . 2 $* B ? "; <.% J* 8 &G & V &% &0< % ( . L * 4 <% &G @G : $ &% &G& ( B&. J$ 2 ; . < J L V 3 & ' =* )84 )1975(. B F.3 + & #=% & $e' )% &CFDF % P. )90( Q70 N)W . W *# LNJ. <0B# 8) %n$ . 2 ; $% G * X 0< # * $# . K &.< % ( ' GBr k = ( ' & ( G = :=[ Q= 3 84 Launder and Gibson T,ijD , i jt T ij m k m u u D x x µ ! = kN =0.82 ijLijL 2 3 ij ij= ijLijE i=j i j4 k-L (1) (2) ( )w ij ij ij ij3 = 3 + 3 + 3 k ijL
  • 45. NDB.= = ' N?B<%" J > /% &% PCFD. B 0<. * % ( ' % ; B% &= :< L2 ' . 2 % eD ( G) B N: % $ $:X$$. '. * : $ $ -:$ :X % $ $ X ) : : " % $ $ L [> 4 & TK<0B# L B *TI= > $ $ 7/8B c ; $ 0<ˆ91$# .. )91( c % $ $ % ; B * ' "G # *$ ) "w < . D N ( ).% = 8 - X z % ; B 2 ( L )k-e".0< *. G :@ ( % &4E)BJ.. 0<B$%%$%"$ P"** 8B$%4• 01./. )92( 3 &Y[<-38%(%4*yBN ?8B$%4• 01./* 8 &..=% &. B < S, E ($ " < & + , ^ <) ( G3= z G $ ; < * _ - & v 8 W B% &(B.( G =(RSM)† & = *. W N ( $ "< J D ^2 ' L ) * JL ) % .' 1 % *&0<B.= 3 ) $ '= ' - : : 4 &B.v 1 N?B % k-LL ij i jR =u uLk 0 n =0 i ju u n = 2 3 3 2 4 2 1 2 2 2 3 1.5( ) 1 2 0 ( ) ref i j k U TI k C l u k u u k u u i j µ = = = = = = 4 i j iju u =c kijc 2 2 2 1.098 0.248 0.654 0.255 u v w u v k k k k = = = = k-L
  • 46. = 6W % & @ ./ * # . &3=% &0< % <0B#- 4 @ # .' 1 * J.