This document presents a new strategy for detecting lung cancer on CT images using image processing techniques. It involves acquiring CT scan images, preprocessing the images through techniques like grayscale conversion and Gabor filtering, segmenting the images using adaptive thresholding, extracting regions of interest through feature extraction methods like GLCM, and classifying images as cancerous or normal using support vector machines (SVM) and backpropagation neural networks (BPNN). The methodology achieves 96.32% accuracy for SVM and 83.07% accuracy for BPNN in detecting lung cancer from CT images.