SlideShare a Scribd company logo
28th Indian National Mathematical Olympiad-2013

Time : 4 hours                                                                                    Februray 03, 2013

Instructions :

       •    Calculators (in any form) and protractors are not allowed.
       •    Rulers and compasses are allowed.
       •    Answer all the questions. All questions carry equal marks.
       •    Answer to each question should start on a new page. Clearly indicate the questions number.


1.         Let 1 and 2 be two circles touching each other externally at R. Let l1 be a line which is tangent to 2 at
           P and passing through the centre O1 of 1 . Similarly, let l2 be a line which is tangent to 1 at Q and passing
           through the centre O2 of 2 . Suppose l1 and l2 are not parallel and intersect at K. If KP = KQ, prove that the
           triangle PQR is equilateral.


                                Q          P
                                       K




                        O1            R            O2
Sol.




           KP = KQ, So K lies on the common tangent (Radical Axis)
           Now  KPQ ~ KO1O2 & PQK is isoceles

           KQP  KO1O2
                            PQO1O2 is cyclic 
                                               
             KPQ  KO2O1
           
                                              
           So, KO1O2 is also Isosceles So, KO1 = KO2 & O1R = O2R, clearly in O1PO2 ,
                             O1O2
                    PO2 
                              2
           

           so,      PO1O2  30º & similarly QO2O1  30º
           so,      O1KR  O2 KR  60º & PQR is equilateral.




                                                                                                                Page # 1
2.     Find all positive integers m, n and primes p  5 such that
                          m(4m2 + m + 12) = 3(pn – 1).
Sol.   4m 3  m 2  12m  3  3 p n
                      2
                m          3   4m  1  3 p n ; p  5 & prime

       {so, m 2  3 must be odd so m is even let m = 2a
                        2
                 4a        3   8a  1  3 p n
       {Now a must be 3b or 3b + 1 because 3 is a factor so,
       Case-1 - Let a = 3b
                            2
                  36b           3   24b  1  3p n
                            2
                12b            1  24b  1  p n
       Now 24b + 1 must divide 12b2 + 1 & hence it must divide b - 2,
       so the only possibility is b = 2 & hence m = 12 & p = 7, n = 4
       Case-2 : if a = 3b + 1
                            2
                36b            24b  7   24b  9   3 p n
                            2
                 36b           24b  7   8b  3   p n

       so,  8b  3  must divide 36b2  24b  7
       Hence divides 49 which is not possible for b    .
       so,        m, n   12,4 

3.     Let a,b,c,d be positive integers such that a  b  c  d. Prove that the equation x4 – ax3 – bx2 – cx – d = 0 has
       no integer solution.
Sol.   x 4  ax 3  bx 2  cx  d  0 & a  b  c  d
                                             a, b, c, d  N
                                                                      p
       Let  be a factor of d because other roots can’t be of the form q as coefficient of x4 is 1.
       so, roots are either integers or unreal or irrational in pairs. Now there may be atleast one more root
       (say  )which is integer & it is also a factor of d.
       So, d   ,   d 

       Now, f  0   d  0 & f  1  1  a  b  c  d  0

       also      f (x)  0 for x 0,d , So there is no positive integral root.

       Also. for x   d, 1 ; f(x) > 0 so, no integral root in [-d, -1].
       Hence there is no integral root. {Though roots are in (-1, 0)}.

4.     Let n be a positive integer. Call a nonempty subset S of {1,2,3,.....,n} good if the arithemtic mean of the
       elements of S is also an integer. Further let to denote the number of good subsets of {1,2,3,.....,n}. Prove
       that tn and n are both odd or both even.
Sol.   Let A  x1, x2 , x3 ,...xr  be a good subset, then there must be a

       set B   n  1 x,  n  1  x2 ,  n  1  x3 ,...  n  1  xr  which is also good. So, good subsets occur in a
       pair.
       However, there are few cases when A = B, which means if xi  A   n  1  xi  A . To count the
       number of these subsets.
       Case-1 : If n is odd.
       a. If the middle element is excluded, the no. of elements in such subsets is 2k.
       (k before middle, & k elements after). So sum of hte elements will be k(n + 1), Apparently these sets
                                                               n 1
       are good. So no. of these subsets is 2                   2
                                                                       1 (i.e. odd)


                                                                                                                       Page # 2
 n  1                                                   2k  1 n  1
       b. Similarly if mid term         is included no. of terms is 2k + 1 & sum will be                   again
                                  2                                                            2
       these subsets will be good.
                                               n 1
       So number os subsets will be 2           2
                                                       1 ; (odd)
                                                n 1
       so toal number of sebsets = 2.2           2      2 i.e. (even)
       So, if n is odd. Rest of the subsets are occuring in pair and the complete set iteself is good. so, tn is
       odd.
       Case 2:
       If n in even
       Again the number of elements will be 2k & sum will be k(n+1) & these subsets are not good, so
       discarded.
       so, if n is even, all the good subsets occur in distinct pairs. Also, the complete set itself is not good. So
       tn is even.

5.     In a acute triangle ABC, O is the circumcentre, H the orthocentre and G the centroid. Let OD be perpendicular
       to BC and HE be perpendicular to CA, with D on BC and E on CA. Let F be the mid-point of AB. Suppose
       the areas of triangles ODC, HEA and GFB are equal Find all the possible values of C.

                          A

                                     E



              F     H                      O
Sol.                                 G




       B                                   D                                       C

       So, ar  ODC   ar  HEA   ar  GFB 

                  1 OD.DC   1 AE.HE  
                  2            2          6
                  (where   ar  ABC  )

                  R cos A   12   c cos A  2R cos A cos C    3
       Equ. 1 -            R cos A  a 2  c cos A  2R cos A cos C 
                           sin A
                                  2 sin C cos A cos C                  sin rule 
                             2
                  

                          tan A  2 sin 2C

       Equ. 2 -            R cos A   a 2     1 bc sin A
                                                   2   3

                                                        1  2R sin B  .  2R sin C  sin A
                            R cos A  B sin A  
                                                        2                  3
                  

                          3 cos A  2 sin B sin C  3   cos  B  C  
                                                                        
                          3 cos B cos C  sin B sin C                           tan B tan C  3
       Now,                tan A  tan B  tan C  tan A.tan B.tan C
                                           3
                           2 sin 2C            tan C  tan A.tan B.tan C
                                         tan C
                  



                                                                                                               Page # 3
8 tan2 C
                           3  tan2 C                            tan4 C  4 tan2 C  3  0
                                          1  tan2 C
                                                            

                          tan2 C  1or 3                        tan C = 1 or   3
                so,        C  45º or 60º

6.     Let a,b,c,x,y,z be positive real numbers such that a + b + c = x + y + z and abc = xyz. Further, suppose that
       a  x < y < z  c and a < b < c. Prove that a = x, b = y and c = z.
Sol.    c  x  c  y  c  z   0
                c 3   x  y  z  c 2   xy  xz  zx  c  xyz  0

                c 3   a  b  c  .c 2   xy  yz  zx  c  abc  0

                c 2   ac  bc  c 2    xy  yz  zx   ab  0

                xy  yz  zx  ab  bc  ca                      ...(I)
       Similarly,           a  x  a  y  c  z   0
                 xy  yz  zx   ab  bc  ca                  ...(II)
       So,       xy  yz  zx  ab  bc  ca & c  z & x  a therefore y = b




                                                                                                          Page # 4

More Related Content

What's hot

Roots and Radicals
Roots and RadicalsRoots and Radicals
Roots and Radicals
Ver Louie Gautani
 
(677528443) neethu text (2)
(677528443) neethu text (2)(677528443) neethu text (2)
(677528443) neethu text (2)
neethumaths
 
Chapter 07
Chapter 07Chapter 07
Chapter 07
Hewins Math
 
Radical and exponents (2)
Radical and exponents (2)Radical and exponents (2)
Radical and exponents (2)
Nurul Atiyah
 
Problems and solutions, inmo 2011
Problems and solutions, inmo 2011Problems and solutions, inmo 2011
Problems and solutions, inmo 2011
askiitians
 
Sol16
Sol16Sol16
Solving recurrences
Solving recurrencesSolving recurrences
Solving recurrences
Waqas Akram
 
Mcs lecture19.methods ofproof(1)
Mcs lecture19.methods ofproof(1)Mcs lecture19.methods ofproof(1)
Mcs lecture19.methods ofproof(1)
kevinwu1994
 
Impact of Linear Homogeneous Recurrent Relation Analysis
Impact of Linear Homogeneous Recurrent Relation AnalysisImpact of Linear Homogeneous Recurrent Relation Analysis
Impact of Linear Homogeneous Recurrent Relation Analysis
ijtsrd
 
X ch 1 real numbers
X  ch 1  real numbersX  ch 1  real numbers
X ch 1 real numbers
AmruthaKB2
 
Unit 3 hw 7 - literal equations
Unit 3   hw 7 - literal equationsUnit 3   hw 7 - literal equations
Unit 3 hw 7 - literal equations
Lori Rapp
 
Chapter1.integer s.y.b.c.s
Chapter1.integer s.y.b.c.sChapter1.integer s.y.b.c.s
Chapter1.integer s.y.b.c.s
vidyabhoge1
 
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 IJCER (www.ijceronline.com) International Journal of computational Engineeri... IJCER (www.ijceronline.com) International Journal of computational Engineeri...
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
ijceronline
 
Chap 1 real number
Chap 1 real numberChap 1 real number
Chap 1 real number
JNV
 
Quadratic equations
Quadratic equationsQuadratic equations
Quadratic equations
Marina Adriano
 

What's hot (15)

Roots and Radicals
Roots and RadicalsRoots and Radicals
Roots and Radicals
 
(677528443) neethu text (2)
(677528443) neethu text (2)(677528443) neethu text (2)
(677528443) neethu text (2)
 
Chapter 07
Chapter 07Chapter 07
Chapter 07
 
Radical and exponents (2)
Radical and exponents (2)Radical and exponents (2)
Radical and exponents (2)
 
Problems and solutions, inmo 2011
Problems and solutions, inmo 2011Problems and solutions, inmo 2011
Problems and solutions, inmo 2011
 
Sol16
Sol16Sol16
Sol16
 
Solving recurrences
Solving recurrencesSolving recurrences
Solving recurrences
 
Mcs lecture19.methods ofproof(1)
Mcs lecture19.methods ofproof(1)Mcs lecture19.methods ofproof(1)
Mcs lecture19.methods ofproof(1)
 
Impact of Linear Homogeneous Recurrent Relation Analysis
Impact of Linear Homogeneous Recurrent Relation AnalysisImpact of Linear Homogeneous Recurrent Relation Analysis
Impact of Linear Homogeneous Recurrent Relation Analysis
 
X ch 1 real numbers
X  ch 1  real numbersX  ch 1  real numbers
X ch 1 real numbers
 
Unit 3 hw 7 - literal equations
Unit 3   hw 7 - literal equationsUnit 3   hw 7 - literal equations
Unit 3 hw 7 - literal equations
 
Chapter1.integer s.y.b.c.s
Chapter1.integer s.y.b.c.sChapter1.integer s.y.b.c.s
Chapter1.integer s.y.b.c.s
 
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 IJCER (www.ijceronline.com) International Journal of computational Engineeri... IJCER (www.ijceronline.com) International Journal of computational Engineeri...
IJCER (www.ijceronline.com) International Journal of computational Engineeri...
 
Chap 1 real number
Chap 1 real numberChap 1 real number
Chap 1 real number
 
Quadratic equations
Quadratic equationsQuadratic equations
Quadratic equations
 

Similar to Inmo 2013 test_paper_solution

Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
Tarun Gehlot
 
Olimpiade matematika di kanada 2018
Olimpiade matematika di kanada 2018Olimpiade matematika di kanada 2018
Olimpiade matematika di kanada 2018
radar radius
 
Pizza Problem
Pizza ProblemPizza Problem
Pizza Problem
HC Wong
 
Inmo 2010 problems and solutions
Inmo 2010 problems and solutionsInmo 2010 problems and solutions
Inmo 2010 problems and solutions
askiitians
 
2.4 edited1
2.4 edited12.4 edited1
2.4 edited1
bangqohar
 
Quantum mechanics
Quantum mechanicsQuantum mechanics
Quantum mechanics
Christy Betos
 
5 maths cbse_2012-13_12th_20-03-13
5 maths cbse_2012-13_12th_20-03-135 maths cbse_2012-13_12th_20-03-13
5 maths cbse_2012-13_12th_20-03-13
studymate
 
P1 Variations Test
P1 Variations TestP1 Variations Test
P1 Variations Test
guest3952880
 
Sol16
Sol16Sol16
Construction of BIBD’s Using Quadratic Residues
Construction of BIBD’s Using Quadratic ResiduesConstruction of BIBD’s Using Quadratic Residues
Construction of BIBD’s Using Quadratic Residues
iosrjce
 
Prove it!
Prove it!Prove it!
Prove it!
Frank Davis
 
holbert-supermfld
holbert-supermfldholbert-supermfld
holbert-supermfld
James Holbert
 
Sol80
Sol80Sol80
Sol80
Sol80Sol80
2sol
2sol2sol
Electron configuration 2021.pptx
Electron configuration 2021.pptxElectron configuration 2021.pptx
Electron configuration 2021.pptx
DanielleGillettChamb
 
The shortest distance between skew lines
The shortest distance between skew linesThe shortest distance between skew lines
The shortest distance between skew lines
Tarun Gehlot
 
22nd inmo 07
22nd inmo 0722nd inmo 07
22nd inmo 07
askiitians
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
amnahnura
 
Commonwealth Emath Paper1_printed
Commonwealth Emath Paper1_printedCommonwealth Emath Paper1_printed
Commonwealth Emath Paper1_printed
Felicia Shirui
 

Similar to Inmo 2013 test_paper_solution (20)

Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
 
Olimpiade matematika di kanada 2018
Olimpiade matematika di kanada 2018Olimpiade matematika di kanada 2018
Olimpiade matematika di kanada 2018
 
Pizza Problem
Pizza ProblemPizza Problem
Pizza Problem
 
Inmo 2010 problems and solutions
Inmo 2010 problems and solutionsInmo 2010 problems and solutions
Inmo 2010 problems and solutions
 
2.4 edited1
2.4 edited12.4 edited1
2.4 edited1
 
Quantum mechanics
Quantum mechanicsQuantum mechanics
Quantum mechanics
 
5 maths cbse_2012-13_12th_20-03-13
5 maths cbse_2012-13_12th_20-03-135 maths cbse_2012-13_12th_20-03-13
5 maths cbse_2012-13_12th_20-03-13
 
P1 Variations Test
P1 Variations TestP1 Variations Test
P1 Variations Test
 
Sol16
Sol16Sol16
Sol16
 
Construction of BIBD’s Using Quadratic Residues
Construction of BIBD’s Using Quadratic ResiduesConstruction of BIBD’s Using Quadratic Residues
Construction of BIBD’s Using Quadratic Residues
 
Prove it!
Prove it!Prove it!
Prove it!
 
holbert-supermfld
holbert-supermfldholbert-supermfld
holbert-supermfld
 
Sol80
Sol80Sol80
Sol80
 
Sol80
Sol80Sol80
Sol80
 
2sol
2sol2sol
2sol
 
Electron configuration 2021.pptx
Electron configuration 2021.pptxElectron configuration 2021.pptx
Electron configuration 2021.pptx
 
The shortest distance between skew lines
The shortest distance between skew linesThe shortest distance between skew lines
The shortest distance between skew lines
 
22nd inmo 07
22nd inmo 0722nd inmo 07
22nd inmo 07
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
 
Commonwealth Emath Paper1_printed
Commonwealth Emath Paper1_printedCommonwealth Emath Paper1_printed
Commonwealth Emath Paper1_printed
 

Inmo 2013 test_paper_solution

  • 1. 28th Indian National Mathematical Olympiad-2013 Time : 4 hours Februray 03, 2013 Instructions : • Calculators (in any form) and protractors are not allowed. • Rulers and compasses are allowed. • Answer all the questions. All questions carry equal marks. • Answer to each question should start on a new page. Clearly indicate the questions number. 1. Let 1 and 2 be two circles touching each other externally at R. Let l1 be a line which is tangent to 2 at P and passing through the centre O1 of 1 . Similarly, let l2 be a line which is tangent to 1 at Q and passing through the centre O2 of 2 . Suppose l1 and l2 are not parallel and intersect at K. If KP = KQ, prove that the triangle PQR is equilateral. Q P K O1 R O2 Sol. KP = KQ, So K lies on the common tangent (Radical Axis) Now  KPQ ~ KO1O2 & PQK is isoceles KQP  KO1O2  PQO1O2 is cyclic   KPQ  KO2O1    So, KO1O2 is also Isosceles So, KO1 = KO2 & O1R = O2R, clearly in O1PO2 , O1O2 PO2  2  so, PO1O2  30º & similarly QO2O1  30º so, O1KR  O2 KR  60º & PQR is equilateral. Page # 1
  • 2. 2. Find all positive integers m, n and primes p  5 such that m(4m2 + m + 12) = 3(pn – 1). Sol. 4m 3  m 2  12m  3  3 p n 2  m  3   4m  1  3 p n ; p  5 & prime {so, m 2  3 must be odd so m is even let m = 2a 2   4a  3   8a  1  3 p n {Now a must be 3b or 3b + 1 because 3 is a factor so, Case-1 - Let a = 3b 2  36b  3   24b  1  3p n 2  12b  1  24b  1  p n Now 24b + 1 must divide 12b2 + 1 & hence it must divide b - 2, so the only possibility is b = 2 & hence m = 12 & p = 7, n = 4 Case-2 : if a = 3b + 1 2  36b  24b  7   24b  9   3 p n 2   36b  24b  7   8b  3   p n so,  8b  3  must divide 36b2  24b  7 Hence divides 49 which is not possible for b    . so,  m, n   12,4  3. Let a,b,c,d be positive integers such that a  b  c  d. Prove that the equation x4 – ax3 – bx2 – cx – d = 0 has no integer solution. Sol. x 4  ax 3  bx 2  cx  d  0 & a  b  c  d a, b, c, d  N p Let  be a factor of d because other roots can’t be of the form q as coefficient of x4 is 1. so, roots are either integers or unreal or irrational in pairs. Now there may be atleast one more root (say  )which is integer & it is also a factor of d. So, d   ,   d  Now, f  0   d  0 & f  1  1  a  b  c  d  0 also f (x)  0 for x 0,d , So there is no positive integral root. Also. for x   d, 1 ; f(x) > 0 so, no integral root in [-d, -1]. Hence there is no integral root. {Though roots are in (-1, 0)}. 4. Let n be a positive integer. Call a nonempty subset S of {1,2,3,.....,n} good if the arithemtic mean of the elements of S is also an integer. Further let to denote the number of good subsets of {1,2,3,.....,n}. Prove that tn and n are both odd or both even. Sol. Let A  x1, x2 , x3 ,...xr  be a good subset, then there must be a set B   n  1 x,  n  1  x2 ,  n  1  x3 ,...  n  1  xr  which is also good. So, good subsets occur in a pair. However, there are few cases when A = B, which means if xi  A   n  1  xi  A . To count the number of these subsets. Case-1 : If n is odd. a. If the middle element is excluded, the no. of elements in such subsets is 2k. (k before middle, & k elements after). So sum of hte elements will be k(n + 1), Apparently these sets n 1 are good. So no. of these subsets is 2 2  1 (i.e. odd) Page # 2
  • 3.  n  1  2k  1 n  1 b. Similarly if mid term  is included no. of terms is 2k + 1 & sum will be again  2   2 these subsets will be good. n 1 So number os subsets will be 2 2  1 ; (odd) n 1 so toal number of sebsets = 2.2 2  2 i.e. (even) So, if n is odd. Rest of the subsets are occuring in pair and the complete set iteself is good. so, tn is odd. Case 2: If n in even Again the number of elements will be 2k & sum will be k(n+1) & these subsets are not good, so discarded. so, if n is even, all the good subsets occur in distinct pairs. Also, the complete set itself is not good. So tn is even. 5. In a acute triangle ABC, O is the circumcentre, H the orthocentre and G the centroid. Let OD be perpendicular to BC and HE be perpendicular to CA, with D on BC and E on CA. Let F be the mid-point of AB. Suppose the areas of triangles ODC, HEA and GFB are equal Find all the possible values of C. A E F H O Sol. G B D C So, ar  ODC   ar  HEA   ar  GFB  1 OD.DC   1 AE.HE    2 2 6 (where   ar  ABC  )   R cos A   12   c cos A  2R cos A cos C    3 Equ. 1 - R cos A  a 2  c cos A  2R cos A cos C  sin A  2 sin C cos A cos C  sin rule  2   tan A  2 sin 2C Equ. 2 - R cos A   a 2   1 bc sin A 2 3 1  2R sin B  .  2R sin C  sin A  R cos A  B sin A   2 3   3 cos A  2 sin B sin C  3   cos  B  C      3 cos B cos C  sin B sin C  tan B tan C  3 Now, tan A  tan B  tan C  tan A.tan B.tan C 3 2 sin 2C   tan C  tan A.tan B.tan C tan C  Page # 3
  • 4. 8 tan2 C 3  tan2 C  tan4 C  4 tan2 C  3  0 1  tan2 C    tan2 C  1or 3  tan C = 1 or 3 so, C  45º or 60º 6. Let a,b,c,x,y,z be positive real numbers such that a + b + c = x + y + z and abc = xyz. Further, suppose that a  x < y < z  c and a < b < c. Prove that a = x, b = y and c = z. Sol.  c  x  c  y  c  z   0  c 3   x  y  z  c 2   xy  xz  zx  c  xyz  0  c 3   a  b  c  .c 2   xy  yz  zx  c  abc  0  c 2   ac  bc  c 2    xy  yz  zx   ab  0  xy  yz  zx  ab  bc  ca ...(I) Similarly,  a  x  a  y  c  z   0   xy  yz  zx   ab  bc  ca ...(II) So, xy  yz  zx  ab  bc  ca & c  z & x  a therefore y = b Page # 4