SlideShare a Scribd company logo
PALL-RING
Product Bulletin 350
RASCHIG GMBH
Prof. Dr.-Ing. Michael Schultes
Mundenheimerstr. 100
D-67061 Ludwigshafen
phone.: +49 (0)621 56 18 - 648
fax: +49 (0)621 56 18 - 627
e-maill: MSchultes@raschig.de
www.raschig.com
Jaeger Products Inc.
Mr. John P. Halbirt
1611 Peachleaf
USA-Houston, Texas 77039
phone: +1 281 449 9500
fax: +1 281 449 9400
email: jhalbirt@jaeger.com
www.jaeger.com
Superior performance by designTM
RASCHIG GMBH
JAEGER PRODUCTS, INC.
PALL-RING
Subject page
‰ Operational data 1-3
‰ Materials 4-5
‰ Compensation for the "decrease in volume"
for dumped packings 6
‰ Generally applicable pressure drop diagram
for tower packings 7
‰ Tower packing factor 8-9
‰ Pressure drop with metal PALL-Rings 10-11
‰ Pressure drop with ceramic PALL-Rings 12-13
‰ Pressure drop with polypropylene PALL-Rings 14-16
‰ Liquid hold-up in columns with metal PALL-Rings 17-18
‰ Absorption of CO2 into NaOH
for metal and plastic PALL-Rings 19-20
The data in this brochure is based on numerous
tests and careful studies.
However, it can and is only intended to provide non-binding advice.
Operational data for PALL-
Rings made of metal
Sizes
mm
Weight*
kg/m3
Number
per m3
Surface
m2
/m3
Free
volume
%
10 x 10 x 0,3 520 770 000 515 94
15 x 15 x 0,3 385 240 000 360 95
15 x 15 x 0,4 510 240 000 360 95
20 x 20 x 0,4 420 110 000 290 95
25 x 25 x 0,5 385 51 000 215 95
25 x 25 x 0,6 460 51 000 215 95
35 x 35 x 0,6 330 18 000 145 95
38 x 38 x 0,6 310 14 500 135 96
50 x 50 x 0,8 320 6 300 105 96
80 x 80 x 1,2 300 1 600 80 96
* All of the given weights refer to the stainless steel versions in the indicated material
thickness.
Other wall thickness available upon request.
The weights for PALL-Rings made of other metal alloys are obtained by
multiplication with the following factors:
Aluminium 0.35
Monel and nickel 1.13
Copper 1.14
Brass 1.09
Titanium 0.6
Hastelloy 1.3
1
Operational data for
PALL-Rings made of special
stoneware/porcelain
Sizes
mm
Weight
kg/m
3
Number
per m
3
Surface
m
2
/m
3
Free
volume
%
for dumped packing
25 x 25 x 3 620 39 900 220 75
35 x 35 x 4 540 16 350 165 78
50 x 50 x 5 555 5 700 120 78
80 x 80 x 8 520 1 470 80 79
100 x 100 x 10 500 750 55 81
for stacked packing
80 x 80 x 8 785 2 185 150 69
100 x 100 x 10 630 1 050 81 74
120 x 120 x 12 600 610 58 74
2
Operational data PALL-Rings
made of plastics
Plastics Sizes
mm
Weight
kg/m3
Number
per m3
Surface
m2
/m3
Free
volume
%
polypropylene 15 x 15 110 268 640 350 88
and polyethylene 25 x 25 75 54 600 220 91
of different 35 x 35 65 19 000 160 93
grades 50 x 50 65 6 700 110 93
90 x 90 50 1 240 90 94
The weights for the high-performance thermoplastics below are obtained by
multiplication with the following factors:
Polyethersulfone (PES) 1,85
Polyphenylene sulfide (PPS) 1,80
Liquid crystal polymer (LCP) 1,83
Polyvinylidene fluoride (PVDF) 2,0
fluor. Ethylenpropylene (FEP) 2,40
Perfluoralkoxypolymer (PFA) 2,40
Ethylen-Chlortrifluorethylen (E-CTFE) 1,97
Ethylen-Tetrafluorethylen (E-TFE) 2,20
Polyarylether Ketone (PAEK) 1,44
Fluoroplastics (Teflon) 2,15 - 2,4
Polypropylene 30 % fiberglass-reinforced 1,25
Polyethylene 1,10
3
PALL-RING
Materials
PALL Rings are made of three main groups of materials:
Metals
Mainly carbon steel and alloyed chrome-nickel steels. Special alloys
such as Hastelloy, Incoloy, Monel titanium and zirconium are being
used more and more frequently, and are also processed.
Ceramics
The most frequently processed materials are special stoneware and
special hard porcelain. These ceramic materials are densely sintered,
they have great resistance to high temperatures and a uniform material
structure.
Plastics
Most of the production of thermoplastics consists of polypropylene
grades in various versions. In addition to polyethylene, high-
performance plastics are also used. As a standard procedure, Raschig
uses virgin materials. Regenerates are only processed upon special
request.
Depending on the stress caused by temperature and chemical attack,
the following quality grades of polypropylene must be distinguished:
standard polypropylene (PP)
or permanent temperatures of up to approx. 70 °C (158 °F).
heat-endurance stabilised polypropylene (LTHA)
for permanent operating temperatures of up to 110 °C (230 °F).
Under permanent thermal stress, this specially stabilised material has
approximately twice the service life of normally stabilised
polypropylene.
4
PALL-RING
30 % fibreglass-reinforced polypropylene (GFR)
This is a fibreglass reinforced grade. The fibreglass part of approx. 30
percent is completely surrounded with plastic. As a result, the chemical
resistance is about the same as that of nonereinforced polypropylene.
Operating temperature range up to approx. 135 °C (275°F).
Polyether sulfone (PES)
a highly temperature-resistant amorphous thermoplastic.
Operating temperature range up to approx. 180 °C (356 °F), cold
resistance down to approx.
-100 °C (-148 °F).
Polyphenylene sulphide (PPS)
a technical high performance thermoplastic, usually in connection with
fibreglass and special mineral fillers. Operating temperature range up
to approx. 220 °C (428 °F), briefly permissible up to 260 °C (500 °F),
cold resistance down to approx. -50 °C (-58 °F).
Liquid crystal polymer (LCP)
operating temperature range, depending on type, up to a maximum of
240 °C (464 °F).
Polyvinylidene fluoride (PVDF)
a thermoplastic fluoroplastic, operating temperature range up to
approx. 140 °C (284 °F), cold resistance down to approx. -40 °C (-40
°F).
Fluoroplastics (TEFLON, e.g. FEP, PFA)
which can be processed by the injection moulding technique, e.g. FEP
100, PFA 340, can also be offered. Depending on the grade, the heat
resistance ranges up to approx. 260 °C (500 °F), while the cold
resistance goes down to -200 °C (-328 °F).
The various application possibilities and plastic grades must be
checked on a case-to-case basis.
5
Compensation for the
"decrease in volume" for
dumped packings
The values indicated in the tables for dumped packings are valid for a
diameter ratio vessel: packing size of D : d = 20.
Since the arrangement of the packings is less compact near the vessel
wall than in the interior of the bed, the number of packings per cubic
meter increases with the diameter ratio.
The opposite diagram shows by which "allowance" the theoretically
calculated vessel volume for diameter ratios of more than 20 must be
increased in order to completely fill the space required.
If the plastic or metal packings are, for instance, thrown into the column,
this may result in a further decrease in volume due to abnormally
compact packing.
D = diameter of the vessel to be filled
d = diameter or nominal size of the packings
20 30 40 50 60 70 80 90 100 110 120
Diameter ratio D/d
0
2
4
6
8
10
12
Allowance
(%)
Allowance for compensation of decrease in volume
6
Generally applicable pressure
Generally applicable pressure
drop diagram for tower
drop diagram for tower
packings
packings
Optimum results with packed columns can only be obtained with well-
designed liquid distributors, support grids and hold-down grids!
Please note that this diagram no longer applies in case of foaming
liquids.
0,01 0,02 0,1 0,2 1,0 2,0 10
(L/G)⋅[ρG/(ρL-ρG)]1/2
0,001
0,002
0,003
0,004
0,01
0,02
0,03
0,04
0,1
0,2
0,3
0,4
1,0
[G
2
⋅η
0,1
⋅F]
/
[ρ
G
⋅(ρ
L
-ρ
G
)⋅g]
Spec. Pressure drop Δp/H in (Pa/m)
20
50
100
200
300
500
1200
Δp/H=
Optimum results with
packed columns can only
be obtained with well-
designed liquid distributors,
support grids and hold-
down grids!
Please note that this
diagram no longer applies
in case of foaming liquids.
7
⋅
L = liquid flow kg/m2
s
L' = liquid flow kg/h
G = gas flow kg/m2
s
G' = gas flow kg/h
ρL = spec. gravity of the liquid kg/m3
ρ
6 = spec. gravity of the gas kg/m3
F = tower packing factor (see table
η = viscosity of the liquid mPa . s
g = 9,81 = acceleration due to gravity m/s2
L = liquid flow kg/m2
s
L' = liquid flow kg/h
G = gas flow kg/m2
s
G' = gas flow kg/h
ρL = spec. gravity of the liquid kg/m3
ρ
6 = spec. gravity of the gas kg/m3
F = tower packing factor (see table)
η = viscosity of the liquid mPa . s
g = 9,81 = acceleration due to gravity m/s2
L = liquid flow kg/m2
s
L' = liquid flow kg/h
G = gas flow kg/m2
s
G' = gas flow kg/h
ρL = spec. gravity of the liquid kg/m3
ρ
6 = spec. gravity of the gas kg/m3
F = tower packing factor (see table
η = viscosity of the liquid mPa . s
g = 9,81 = acceleration due to gravity m/s2
L = liquid flow kg/m2
s
L' = liquid flow kg/h
G = gas flow kg/m2
s
G' = gas flow kg/h
ρL = spec. gravity of the liquid kg/m3
ρ
6 = spec. gravity of the gas kg/m3
F = tower packing factor (see table)
η = viscosity of the liquid mPa . s
g = 9,81 = acceleration due to gravity m/s2
L = liquid flow kg/m2
s
L' = liquid flow kg/h
G = gas flow kg/m2
s
G' = gas flow kg/h
ρL = spec. gravity of the liquid kg/m3
ρ
6 = spec. gravity of the gas kg/m3
F = tower packing factor (see table
η = viscosity of the liquid mPa . s
g = 9,81 = acceleration due to gravity m/s2
L = liquid flow kg/m2
s
L' = liquid flow kg/h
G = gas flow kg/m2
s
G' = gas flow kg/h
ρL = spec. gravity of the liquid kg/m3
ρ
6 = spec. gravity of the gas kg/m3
F = tower packing factor (see table)
η = viscosity of the liquid mPa . s
g = 9,81 = acceleration due to gravity m/s2
L = liquid flow kg/m2
s
L' = liquid flow kg/h
G = gas flow kg/m2
s
G' = gas flow kg/h
ρL = spec. gravity of the liquid kg/m3
ρ
6 = spec. gravity of the gas kg/m3
F = tower packing factor (see table
η = viscosity of the liquid mPa . s
g = 9,81 = acceleration due to gravity m/s2
L = liquid flow kg/m2
s
L' = liquid flow kg/h
G = gas flow kg/m2
s
G' = gas flow kg/h
ρL = spec. gravity of the liquid kg/m3
ρ
6 = spec. gravity of the gas kg/m3
F = tower packing factor (see table)
η = viscosity of the liquid mPa . s
g = 9,81 = acceleration due to gravity m/s2
Tower packing factor
Nominal size of the tower packings
Tower packing Material 10 12
½"
15 19-20
¾"
25
1"
30-35 38
1 ½"
50
2"
70-75
3"
90
3 ½"
RASCHIG
SUPER-RING
Metal
Plastic
131 102 72
105
59 46 39
40
31
RALU-FLOW Plastic 75 38
RASCHIG RING Ceramic
Metal
3200
1280
1900
980
1250
566
840 510
380
340
280
310
270
210
190
120
105
PALL Ring Ceramic
Metal
Plastic
230
320
350
157
171
180
103
140
92
142
66
82
52
52
RALU RING Metal
Plastic
157
135
92
80
66
55 38
TORUS SADDLE Ceramic 660 480 320 170 130 72 68
SUPER TORUS
SADDLE
Plastic 165 104 50
BERL SADDLE Ceramic 1500 790 560 360 220 150
Sherwood-abscissa value x < 0.5 0.5 to 3.75 > 3.75
Δ p = mm WS/m 40 80 125 40 80 125 40 80 125
RASCHIG'S RING Ceramics
25 x 3
38 x 4
50 x 5
541
302
239
508
289
239
512
295
236
574
295
226
502
269
210
472
262
203
443
246
170
394
213
164
361
197
154
RASCHIG'S RING Metal
25 x 1.6
38 x 1.6
50 x 1.6
518
308
236
472
279
233
466
262
217
456
246
197
400
213
177
331
213
164
292
131
125
253
141
125
220
138
121
PALL Ring Metal
25 x 0.6
38 x 0.8
50 x 0.9
170
98
82
157
95
92
154
92
75
177
128
85
171
118
79
174
112
72
148
112
69
138
102
66
138
89
66
TORUS SADDLE Ceramics
1"
1 1/2"
2"
164
125
318
161
128
321
171
131
174
128
299
161
112
305
157
108
131
102
276
128
102
246
115
98
Table 1
Table 2
8
Tower packing factor
The graph shown on page 3 that is valid for all types of tower
packings and for mass system or operating conditions as well as
Table 1 showing the tower packing factors are based on a
Sherwood correlation postulated in 1938, which has been updated
regularly with the level of engineering valid at the time.
Table 1 shows the tower packing factors F in [1/m] that constitute
an important characteristic parameter , seeing that the square root
of the tower packing factors is inversely proportional to the gas flow
rate of the packed bed.
This correlation can clearly be seen by taking the example of 50
mm PALL Rings made of metal with a tower packing factor of 66
and 2" = 50 mm TORUS SADDLES made of ceramics with a tower
packing factor of 130. The tower packing factors show that the gas
flow rate for metal PALL Rings is 40 percent higher than for the
TORUS SADDLES.
Thorough tests have shown that the tower packing factors
indicated in Table 1 cannot be seen at constant values, but rather
that they change within a certain range, depending on the load of
the liquid or gas. The types of tower packings which show the
highest pressure drop, such as RASCHIG RINGS, also tend to
change most with respect to their tower packing factor.
The tower packing factors in Table 1 can be consulted for planning
columns. This results in column diameters that are somewhat
overdimensioned, especially in case of large flow rates of liquid
and particularly when RASCHIG RINGS are used.
Table 2 shows that the fluctuation range of the tower packing
factors F for four different types of tower packings in the most
common sizes as a function of the abscissa value of the generally
applicable pressure drop diagram.
Abscissa value of 3.75 and up are usually found only with a
absorption columns and strippers; values of 0.5 and below occur
with most distillation columns.
4
,
1
66
130
G
G
Saddles
Torus
Rings
Pall
=
=
2
1
G
L
G
G
L
X ⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
ρ
ρ
ρ
=
−
9
Pressure drop with metal
PALL-RINGS
mixture air / water
0,1 0,2 0,3 0,4 0,5 0,6 1 2 3 4 5 6 10
Gas capacity factor FV
10
20
30
40
50
60
70
100
200
300
400
500
600
700
1000
2000
3000
Spec.
Pressure
drop
Δp/H
(Pa/m)
)
kg/m
(m/s 3
⋅
Pall®
Ring 25 mm in Metal
Liquid velocity uL in (m3
/m2
h)
uL=
75
50
25
100
125
10
0
0,1 0,2 0,3 0,4 0,5 0,6 1 2 3 4 5 6 10
Gas capacity factor FV
10
20
30
40
50
60
70
100
200
300
400
500
600
700
1000
2000
3000
Spec.
Pressure
drop
Δp/H
(Pa/m)
)
kg/m
(m/s 3
⋅
Pall®
Ring 38 mm in Metal
Liquid velocity uL in (m3
/m2
h)
uL=
75
50
25
100
125
10
0
PALL-RING 25 mm PALL-RING 38 mm
10
Pressure drop with metal
PALL-RINGS
mixture air / water
0,1 0,2 0,3 0,4 0,5 0,6 1 2 3 4 5 6 10
Gas capacity factor FV
10
20
30
40
50
60
70
100
200
300
400
500
600
700
1000
2000
3000
Spec.
Pressure
drop
Δp/H
(Pa/m)
)
kg/m
(m/s 3
⋅
Pall®
Ring 50 mm in Metal
Liquid velocity uL in (m3
/m2
h)
uL=
125
100
75
50
25
150
175
10
0
0,1 0,2 0,3 0,4 0,5 0,6 1 2 3 4 5 6 10
Gas capacity factor FV
10
20
30
40
50
60
70
100
200
300
400
500
600
700
1000
2000
3000
Spec.
Pressure
drop
Δp/H
(Pa/m)
)
kg/m
(m/s 3
⋅
Pall®
Ring 80 mm in Metal
Liquid velocity uL in (m3
/m2
h)
uL=
75
50
25
10
100
125
0
PALL-RING 80 mm
PALL-RING 50 mm
11
Pressure drop with ceramic
PALL-RINGS
mixture air / water
0,1 0,2 0,3 0,4 0,5 0,6 1 2 3 4 5 6 10
Gas capacity factor FV
10
20
30
40
50
60
70
100
200
300
400
500
600
700
1000
2000
3000
Spec.
Pressure
drop
Δp/H
(Pa/m)
)
kg/m
(m/s 3
⋅
Pall®
Ring 25 mm in Ceramics
Liquid velocity uL in (m3
/m2
h)
uL=
30
20
10
40
50
0
0,1 0,2 0,3 0,4 0,5 0,6 1 2 3 4 5 6 10
Gas capacity factor FV
10
20
30
40
50
60
70
100
200
300
400
500
600
700
1000
2000
3000
Spec.
Pressure
drop
Δp/H
(Pa/m)
)
kg/m
(m/s 3
⋅
Pall®
Ring 35 mm in Ceramics
Liquid velocity uL in (m3
/m2
h)
uL=
50
25
10
75
0
PALL-RING 35 mm
PALL-RING 25 mm
12
Pressure drop with ceramic
PALL-RINGS
mixture air / water
0,1 0,2 0,3 0,4 0,5 0,6 1 2 3 4 5 6 10
Gas capacity factor FV
10
20
30
40
50
60
70
100
200
300
400
500
600
700
1000
2000
3000
Spec.
Pressure
drop
Δp/H
(Pa/m)
)
kg/m
(m/s 3
⋅
Pall®
Ring 50 mm in Ceramics
Liquid velocity uL in (m3
/m2
h)
uL=
50
25
10
75
100
0
PALL-RING 50 mm
13
Pressure drop with polypropylene
PALL-RINGS
mixture air / water
0,1 0,2 0,3 0,4 0,5 0,6 1 2 3 4 5 6 10
Gas capacity factor FV
10
20
30
40
50
60
70
100
200
300
400
500
600
700
1000
2000
3000
Spec.
Pressure
drop
Δp/H
(Pa/m)
)
kg/m
(m/s 3
⋅
Pall®
Ring 15 mm in Plastic
Liquid velocity uL in (m3
/m2
h)
uL=
75
50
25
10
100
125
0
0,1 0,2 0,3 0,4 0,5 0,6 1 2 3 4 5 6 10
Gas capacity factor FV
10
20
30
40
50
60
70
100
200
300
400
500
600
700
1000
2000
3000
Spec.
Pressure
drop
Δp/H
(Pa/m)
)
kg/m
(m/s 3
⋅
Pall®
Ring 25 mm in Plastic
Liquid velocity uL in (m3
/m2
h)
uL=
75
50
25
10
100
125
0
PALL-RING 15 mm PALL-RING 25 mm
14
Pressure drop with polypropylene
PALL-RINGS
mixture air / water
0,1 0,2 0,3 0,4 0,5 0,6 1 2 3 4 5 6 10
Gas capacity factor FV
10
20
30
40
50
60
70
100
200
300
400
500
600
700
1000
2000
3000
Spec.
Pressure
drop
Δp/H
(Pa/m)
)
kg/m
(m/s 3
⋅
Pall®
Ring 35 mm in Plastic
Liquid velocity uL in (m3
/m2
h)
uL=
75
50
25
10
100
125
0
0,1 0,2 0,3 0,4 0,5 0,6 1 2 3 4 5 6 10
Gas capacity factor FV
10
20
30
40
50
60
70
100
200
300
400
500
600
700
1000
2000
3000
Spec.
Pressure
drop
Δp/H
(Pa/m)
)
kg/m
(m/s 3
⋅
Pall®
Ring 50 mm in Plastic
Liquid velocity uL in (m3
/m2
h)
uL=
100
75
50
25
125
150
0
10
PALL-RING 35 mm PALL-RING 50 mm
15
Pressure drop with polypropylene
PALL-RINGS
mixture air / water
0,1 0,2 0,3 0,4 0,5 0,6 1 2 3 4 5 6 10
Gas capacity factor FV
10
20
30
40
50
60
70
100
200
300
400
500
600
700
1000
2000
3000
Spec.
Pressure
drop
Δp/H
(Pa/m)
)
kg/m
(m/s 3
⋅
Pall®
Ring 90 mm in Plastic
Liquid velocity uL in (m3
/m2
h)
uL=
75
50
25
10
100
125
0
PALL-RING 90 mm
16
Liquid hold-up in columns with metal
PALL-RINGS
3 4 5 10 20 30 40 50 100 200 300
Liquid velocity uL (m3
/m2
h)
10
20
30
40
50
100
200
300
Liquid
hold-up
(l/m
3
)
Pall®
Ring 15 mm in Metal
400
Pressure drop Δp in (Pa/m)
Δp=
1700
800
0
3 4 5 10 20 30 40 50 100 200 300
Liquid velocity uL (m3
/m2
h)
10
20
30
40
50
100
200
300
Liquid
hold-up
(l/m
3
)
Pall®
Ring 25 mm in Metal
400
Pressure drop Δp in (Pa/m)
Δp=
1600
800
0
400
17
PALL-RING 15 mm
Diameter of column: approx.380 mm
Height of packed bed: approx. 1,7 m
PALL-RING 25 mm
Diameter of column: approx.750 mm
Height of packed bed: approx. 3 m
Liquid hold-up in columns with metal
PALL-RINGS
3 4 5 10 20 30 40 50 100 200 300
Liquid velocity uL (m3
/m2
h)
10
20
30
40
50
100
200
300
Liquid
hold-up
(l/m
3
)
Pall®
Ring 38 mm in Metal
400
Pressure drop Δp in (Pa/m)
Δp=
1600
800
0
400
3 4 5 10 20 30 40 50 100 200 300
Liquid velocity uL (m3
/m2
h)
10
20
30
40
50
100
200
300
Liquid
hold-up
(l/m
3
)
Pall®
Ring 50 mm in Metal
400
Pressure drop Δp in (Pa/m)
Δp=
800
0
400
18
PALL-RING 38 mm
Diameter of column: approx.750 mm
Height of packed bed: approx. 3 m
PALL-RING 50 mm
Diameter of column: approx.750 mm
Height of packed bed: approx. 6 m
Absorption of CO2 into NaOH for
metal and plastic PALL-RINGS
3 4 5 10 20 30 40 50 100 200 300
Liquid velocity uL (m3
/m2
h)
0,02
0,03
0,04
0,05
0,1
0,2
0,3
0,4
0,5
1,0
Vol.
Mass
transfer
coefficient
k
G
⋅a
(1/s)
Pall®
Ring 25 mm
3 4 5 10 20 30 40 50 100 200 300
Liquid velocity uL (m3
/m2
h)
0,02
0,03
0,04
0,05
0,1
0,2
0,3
0,4
0,5
1,0
Vol.
Mass
transfer
coefficient
k
G
⋅
a
(1/s)
Pall®
Ring 38 mm
PALL-RING 25 mm
Diameter of column: 760 mm
Packing height: 3 m
Gas rate: 2200 kg/m3h
Gas concentration: 1% (mean value)
Liquid concentration: 4 % NaOH
Liquid temperature: 24 °C (75 °F)
PALL-RING 38 mm
Diameter of column: 760 mm
Packing height: 3 m
Gas rate: 2200 kg/m3h
Gas concentration: 1% (mean value)
Liquid concentration: 4 % NaOH
Liquid temperature: 24 °C (75 °F)
__________________ metal PALL Rings
------------------------------ plastic PALL Rings
19
Absorption of CO2 into NaOH for
metal and plastic PALL-RINGS
3 4 5 10 20 30 40 50 100 200 300
Liquid velocity uL (m3
/m2
h)
0,02
0,03
0,04
0,05
0,1
0,2
0,3
0,4
0,5
1,0
Vol.
Mass
transfer
coefficient
k
G
⋅
a
(1/s)
Pall®
Ring 50 mm
3 4 5 10 20 30 40 50 100 200 300
Liquid velocity uL (m3
/m2
h)
0,02
0,03
0,04
0,05
0,1
0,2
0,3
0,4
0,5
1,0
Vol.
Mass
transfer
coefficient
k
G
⋅
a
(1/s)
Pall®
Ring 80/90 mm
PALL-RING 80/90 mm
Diameter of column: 760 mm
Packing height for 80 mm of metal: 3 m
Packing height for 90 mm of metal: 2,3 m
Gas rate: 2200 kg/m3h
Gas concentration: 1% (mean value)
Liquid concentration: 4 % NaOH
Liquid temperature: 24 °C (75 °F)
PALL-RING 50 mm
Diameter of column: 760 mm
Packing height: 3 m
Gas rate: 2200 kg/m3h
Gas concentration: 1% (mean value)
Liquid concentration: 4 % NaOH
Liquid temperature: 24 °C (75 °F)
__________________ metal PALL-Rings
------------------------------ plastic PALL- Rings
20

More Related Content

What's hot

Sttp ppt msp_overview_09-10-2009_zvpm
Sttp ppt msp_overview_09-10-2009_zvpmSttp ppt msp_overview_09-10-2009_zvpm
Sttp ppt msp_overview_09-10-2009_zvpm
Arvind Kumar
 
Presentation on p.t
Presentation on p.tPresentation on p.t
Presentation on p.t
knowledge1995
 
Gas Membrane Presentation
Gas Membrane PresentationGas Membrane Presentation
Gas Membrane Presentation
Jennifer Kellogg
 
Sedimentation Ed Ryan M. Ruales
Sedimentation   Ed Ryan M. RualesSedimentation   Ed Ryan M. Ruales
Sedimentation Ed Ryan M. Ruales
Ed Ryan Ruales
 
Different type of screening equipment and their application in chemical industry
Different type of screening equipment and their application in chemical industryDifferent type of screening equipment and their application in chemical industry
Different type of screening equipment and their application in chemical industry
DesaiHardik1
 
EMCQ-2242- Chapter 3-Screen analysis- Revised.pdf
EMCQ-2242- Chapter 3-Screen analysis- Revised.pdfEMCQ-2242- Chapter 3-Screen analysis- Revised.pdf
EMCQ-2242- Chapter 3-Screen analysis- Revised.pdf
Racheal62
 
Filtration
FiltrationFiltration
Filtration
Ekta Tembhare
 
Types of extrusion dies
Types of extrusion diesTypes of extrusion dies
Types of extrusion dies
Haider Abbas
 
Episode 42 : Gas Solid Separation
Episode 42 :  Gas Solid SeparationEpisode 42 :  Gas Solid Separation
Episode 42 : Gas Solid Separation
SAJJAD KHUDHUR ABBAS
 
Storage of solids
Storage of solidsStorage of solids
Storage of solids
murtazag46
 
Mixers for cohesive solids
Mixers for cohesive solidsMixers for cohesive solids
Mixers for cohesive solids
Karnav Rana
 
Particle Technology Lectures GIKI
Particle Technology Lectures GIKIParticle Technology Lectures GIKI
Particle Technology Lectures GIKI
SAFFI Ud Din Ahmad
 
Particle Technology Lec 1-Upload (2).pptx
Particle Technology Lec 1-Upload (2).pptxParticle Technology Lec 1-Upload (2).pptx
Particle Technology Lec 1-Upload (2).pptx
FurqanMahmood9
 
Mass transfer equipment
Mass transfer equipmentMass transfer equipment
Forming of rubbers
Forming of rubbersForming of rubbers
Forming of rubbers
khileshkrbhandari
 
Presentation on Filmwise and Dropwise Condensation
Presentation on  Filmwise and Dropwise CondensationPresentation on  Filmwise and Dropwise Condensation
Presentation on Filmwise and Dropwise Condensation
Krishna Khandelwal
 
Sedimentation
SedimentationSedimentation
Sedimentation
Nicely Jane Eleccion
 
Transport phenomena
Transport phenomenaTransport phenomena
Transport phenomena
Zin Eddine Dadach
 
Vacuum pump
Vacuum pumpVacuum pump
Vacuum pump
Yasin Latif
 
Design of Shell & tube Heat Exchanger.pptx
Design of Shell & tube Heat Exchanger.pptxDesign of Shell & tube Heat Exchanger.pptx
Design of Shell & tube Heat Exchanger.pptx
AathiraS10
 

What's hot (20)

Sttp ppt msp_overview_09-10-2009_zvpm
Sttp ppt msp_overview_09-10-2009_zvpmSttp ppt msp_overview_09-10-2009_zvpm
Sttp ppt msp_overview_09-10-2009_zvpm
 
Presentation on p.t
Presentation on p.tPresentation on p.t
Presentation on p.t
 
Gas Membrane Presentation
Gas Membrane PresentationGas Membrane Presentation
Gas Membrane Presentation
 
Sedimentation Ed Ryan M. Ruales
Sedimentation   Ed Ryan M. RualesSedimentation   Ed Ryan M. Ruales
Sedimentation Ed Ryan M. Ruales
 
Different type of screening equipment and their application in chemical industry
Different type of screening equipment and their application in chemical industryDifferent type of screening equipment and their application in chemical industry
Different type of screening equipment and their application in chemical industry
 
EMCQ-2242- Chapter 3-Screen analysis- Revised.pdf
EMCQ-2242- Chapter 3-Screen analysis- Revised.pdfEMCQ-2242- Chapter 3-Screen analysis- Revised.pdf
EMCQ-2242- Chapter 3-Screen analysis- Revised.pdf
 
Filtration
FiltrationFiltration
Filtration
 
Types of extrusion dies
Types of extrusion diesTypes of extrusion dies
Types of extrusion dies
 
Episode 42 : Gas Solid Separation
Episode 42 :  Gas Solid SeparationEpisode 42 :  Gas Solid Separation
Episode 42 : Gas Solid Separation
 
Storage of solids
Storage of solidsStorage of solids
Storage of solids
 
Mixers for cohesive solids
Mixers for cohesive solidsMixers for cohesive solids
Mixers for cohesive solids
 
Particle Technology Lectures GIKI
Particle Technology Lectures GIKIParticle Technology Lectures GIKI
Particle Technology Lectures GIKI
 
Particle Technology Lec 1-Upload (2).pptx
Particle Technology Lec 1-Upload (2).pptxParticle Technology Lec 1-Upload (2).pptx
Particle Technology Lec 1-Upload (2).pptx
 
Mass transfer equipment
Mass transfer equipmentMass transfer equipment
Mass transfer equipment
 
Forming of rubbers
Forming of rubbersForming of rubbers
Forming of rubbers
 
Presentation on Filmwise and Dropwise Condensation
Presentation on  Filmwise and Dropwise CondensationPresentation on  Filmwise and Dropwise Condensation
Presentation on Filmwise and Dropwise Condensation
 
Sedimentation
SedimentationSedimentation
Sedimentation
 
Transport phenomena
Transport phenomenaTransport phenomena
Transport phenomena
 
Vacuum pump
Vacuum pumpVacuum pump
Vacuum pump
 
Design of Shell & tube Heat Exchanger.pptx
Design of Shell & tube Heat Exchanger.pptxDesign of Shell & tube Heat Exchanger.pptx
Design of Shell & tube Heat Exchanger.pptx
 

Similar to Info raschig pall ring-350

heat exchangers | column components | couplings
heat exchangers | column components | couplingsheat exchangers | column components | couplings
heat exchangers | column components | couplings
Goel Scientific
 
Olga Software
Olga SoftwareOlga Software
Olga Software
mostafa rostami
 
DESIGN OF OPEN GRADED FRICTION COURSE MIX USING POLYMER MODIFIED BITUMEN(LDPE)
DESIGN OF OPEN GRADED FRICTION COURSE MIX USING POLYMER MODIFIED BITUMEN(LDPE)DESIGN OF OPEN GRADED FRICTION COURSE MIX USING POLYMER MODIFIED BITUMEN(LDPE)
DESIGN OF OPEN GRADED FRICTION COURSE MIX USING POLYMER MODIFIED BITUMEN(LDPE)
ARUN KANNA
 
4516 4520.output
4516 4520.output4516 4520.output
4516 4520.output
j1075017
 
Agru enviroment
Agru enviromentAgru enviroment
Agru enviroment
Arkadii Atroshyn
 
Industrial Internals By Ultimo Engineers
Industrial Internals By Ultimo EngineersIndustrial Internals By Ultimo Engineers
Industrial Internals By Ultimo Engineers
IndiaMART InterMESH Limited
 
Bulk Freeze: Ispe Single Use Technology (SUT) Symposium 2018
Bulk Freeze: Ispe Single Use Technology (SUT) Symposium 2018 Bulk Freeze: Ispe Single Use Technology (SUT) Symposium 2018
Bulk Freeze: Ispe Single Use Technology (SUT) Symposium 2018
BioPharmEquip LLC
 
Title composite material_data_sheets_tab
Title composite material_data_sheets_tabTitle composite material_data_sheets_tab
Title composite material_data_sheets_tab
Fábio T. Fontana
 
Palconn PEX Potable Water Pipe & Radiant PEX O2 Barrier Heating Pipe.
Palconn PEX Potable Water Pipe & Radiant PEX O2 Barrier Heating Pipe.Palconn PEX Potable Water Pipe & Radiant PEX O2 Barrier Heating Pipe.
Palconn PEX Potable Water Pipe & Radiant PEX O2 Barrier Heating Pipe.
Leela Wang
 
Acetron LSG- Acetal Sheet Wholesaler
Acetron LSG- Acetal Sheet WholesalerAcetron LSG- Acetal Sheet Wholesaler
Acetron LSG- Acetal Sheet Wholesaler
Purpose Advertising
 
4876 4880.output
4876 4880.output4876 4880.output
4876 4880.output
j1075017
 
GERES Heat Exchanger Cluster
GERES Heat Exchanger ClusterGERES Heat Exchanger Cluster
GERES Heat Exchanger Cluster
GERES GmbH
 
Parker seal compatibility ord57292pg
Parker seal compatibility ord57292pgParker seal compatibility ord57292pg
Parker seal compatibility ord57292pg
Raman Kant-Autar
 
Hw3513701380
Hw3513701380Hw3513701380
Hw3513701380
IJERA Editor
 
Rte 1 en
Rte 1 enRte 1 en
Rte 1 en
Oliverh Kalprit
 
LINKEDINHMSPP
LINKEDINHMSPPLINKEDINHMSPP
LINKEDINHMSPPttglink
 
Guia gestra
Guia gestraGuia gestra
Aerodynamics in Blast Furnace
Aerodynamics in Blast FurnaceAerodynamics in Blast Furnace
Aerodynamics in Blast Furnace
Yash Arora
 

Similar to Info raschig pall ring-350 (20)

heat exchangers | column components | couplings
heat exchangers | column components | couplingsheat exchangers | column components | couplings
heat exchangers | column components | couplings
 
Olga Software
Olga SoftwareOlga Software
Olga Software
 
DESIGN OF OPEN GRADED FRICTION COURSE MIX USING POLYMER MODIFIED BITUMEN(LDPE)
DESIGN OF OPEN GRADED FRICTION COURSE MIX USING POLYMER MODIFIED BITUMEN(LDPE)DESIGN OF OPEN GRADED FRICTION COURSE MIX USING POLYMER MODIFIED BITUMEN(LDPE)
DESIGN OF OPEN GRADED FRICTION COURSE MIX USING POLYMER MODIFIED BITUMEN(LDPE)
 
Heat Exchanger
Heat ExchangerHeat Exchanger
Heat Exchanger
 
3 Wphe
3 Wphe3 Wphe
3 Wphe
 
4516 4520.output
4516 4520.output4516 4520.output
4516 4520.output
 
Agru enviroment
Agru enviromentAgru enviroment
Agru enviroment
 
Industrial Internals By Ultimo Engineers
Industrial Internals By Ultimo EngineersIndustrial Internals By Ultimo Engineers
Industrial Internals By Ultimo Engineers
 
Bulk Freeze: Ispe Single Use Technology (SUT) Symposium 2018
Bulk Freeze: Ispe Single Use Technology (SUT) Symposium 2018 Bulk Freeze: Ispe Single Use Technology (SUT) Symposium 2018
Bulk Freeze: Ispe Single Use Technology (SUT) Symposium 2018
 
Title composite material_data_sheets_tab
Title composite material_data_sheets_tabTitle composite material_data_sheets_tab
Title composite material_data_sheets_tab
 
Palconn PEX Potable Water Pipe & Radiant PEX O2 Barrier Heating Pipe.
Palconn PEX Potable Water Pipe & Radiant PEX O2 Barrier Heating Pipe.Palconn PEX Potable Water Pipe & Radiant PEX O2 Barrier Heating Pipe.
Palconn PEX Potable Water Pipe & Radiant PEX O2 Barrier Heating Pipe.
 
Acetron LSG- Acetal Sheet Wholesaler
Acetron LSG- Acetal Sheet WholesalerAcetron LSG- Acetal Sheet Wholesaler
Acetron LSG- Acetal Sheet Wholesaler
 
4876 4880.output
4876 4880.output4876 4880.output
4876 4880.output
 
GERES Heat Exchanger Cluster
GERES Heat Exchanger ClusterGERES Heat Exchanger Cluster
GERES Heat Exchanger Cluster
 
Parker seal compatibility ord57292pg
Parker seal compatibility ord57292pgParker seal compatibility ord57292pg
Parker seal compatibility ord57292pg
 
Hw3513701380
Hw3513701380Hw3513701380
Hw3513701380
 
Rte 1 en
Rte 1 enRte 1 en
Rte 1 en
 
LINKEDINHMSPP
LINKEDINHMSPPLINKEDINHMSPP
LINKEDINHMSPP
 
Guia gestra
Guia gestraGuia gestra
Guia gestra
 
Aerodynamics in Blast Furnace
Aerodynamics in Blast FurnaceAerodynamics in Blast Furnace
Aerodynamics in Blast Furnace
 

More from ssusercf2628

Ulti brochure chintan for pdf.cdr
Ulti brochure chintan for pdf.cdrUlti brochure chintan for pdf.cdr
Ulti brochure chintan for pdf.cdr
ssusercf2628
 
Une en 1991-1-1=2003
Une en 1991-1-1=2003Une en 1991-1-1=2003
Une en 1991-1-1=2003
ssusercf2628
 
Eurocodigo 1 parte 4. acciones en silos y depositos
Eurocodigo 1 parte 4. acciones en silos y depositosEurocodigo 1 parte 4. acciones en silos y depositos
Eurocodigo 1 parte 4. acciones en silos y depositos
ssusercf2628
 
Eurocodigo une en 1990=2003-bases para el calculo estructuras
Eurocodigo une en 1990=2003-bases para el calculo estructurasEurocodigo une en 1990=2003-bases para el calculo estructuras
Eurocodigo une en 1990=2003-bases para el calculo estructuras
ssusercf2628
 
Aplicacion eurocodigos 2003
Aplicacion eurocodigos 2003Aplicacion eurocodigos 2003
Aplicacion eurocodigos 2003
ssusercf2628
 
Empaquetaduras chesterton
Empaquetaduras chestertonEmpaquetaduras chesterton
Empaquetaduras chesterton
ssusercf2628
 

More from ssusercf2628 (6)

Ulti brochure chintan for pdf.cdr
Ulti brochure chintan for pdf.cdrUlti brochure chintan for pdf.cdr
Ulti brochure chintan for pdf.cdr
 
Une en 1991-1-1=2003
Une en 1991-1-1=2003Une en 1991-1-1=2003
Une en 1991-1-1=2003
 
Eurocodigo 1 parte 4. acciones en silos y depositos
Eurocodigo 1 parte 4. acciones en silos y depositosEurocodigo 1 parte 4. acciones en silos y depositos
Eurocodigo 1 parte 4. acciones en silos y depositos
 
Eurocodigo une en 1990=2003-bases para el calculo estructuras
Eurocodigo une en 1990=2003-bases para el calculo estructurasEurocodigo une en 1990=2003-bases para el calculo estructuras
Eurocodigo une en 1990=2003-bases para el calculo estructuras
 
Aplicacion eurocodigos 2003
Aplicacion eurocodigos 2003Aplicacion eurocodigos 2003
Aplicacion eurocodigos 2003
 
Empaquetaduras chesterton
Empaquetaduras chestertonEmpaquetaduras chesterton
Empaquetaduras chesterton
 

Recently uploaded

Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation & Control
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
gdsczhcet
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
AJAYKUMARPUND1
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
Kerry Sado
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
FluxPrime1
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
ViniHema
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
Jayaprasanna4
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
MLILAB
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
WENKENLI1
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
Pratik Pawar
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
Pipe Restoration Solutions
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
AafreenAbuthahir2
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
VENKATESHvenky89705
 

Recently uploaded (20)

Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
Gen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdfGen AI Study Jams _ For the GDSC Leads in India.pdf
Gen AI Study Jams _ For the GDSC Leads in India.pdf
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
Pile Foundation by Venkatesh Taduvai (Sub Geotechnical Engineering II)-conver...
 
Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Hierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power SystemHierarchical Digital Twin of a Naval Power System
Hierarchical Digital Twin of a Naval Power System
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
DESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docxDESIGN A COTTON SEED SEPARATION MACHINE.docx
DESIGN A COTTON SEED SEPARATION MACHINE.docx
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
power quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptxpower quality voltage fluctuation UNIT - I.pptx
power quality voltage fluctuation UNIT - I.pptx
 
ethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.pptethical hacking-mobile hacking methods.ppt
ethical hacking-mobile hacking methods.ppt
 
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang,  ICLR 2024, MLILAB, KAIST AI.pdfJ.Yang,  ICLR 2024, MLILAB, KAIST AI.pdf
J.Yang, ICLR 2024, MLILAB, KAIST AI.pdf
 
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdfGoverning Equations for Fundamental Aerodynamics_Anderson2010.pdf
Governing Equations for Fundamental Aerodynamics_Anderson2010.pdf
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
road safety engineering r s e unit 3.pdf
road safety engineering  r s e unit 3.pdfroad safety engineering  r s e unit 3.pdf
road safety engineering r s e unit 3.pdf
 

Info raschig pall ring-350

  • 1. PALL-RING Product Bulletin 350 RASCHIG GMBH Prof. Dr.-Ing. Michael Schultes Mundenheimerstr. 100 D-67061 Ludwigshafen phone.: +49 (0)621 56 18 - 648 fax: +49 (0)621 56 18 - 627 e-maill: MSchultes@raschig.de www.raschig.com Jaeger Products Inc. Mr. John P. Halbirt 1611 Peachleaf USA-Houston, Texas 77039 phone: +1 281 449 9500 fax: +1 281 449 9400 email: jhalbirt@jaeger.com www.jaeger.com Superior performance by designTM RASCHIG GMBH JAEGER PRODUCTS, INC.
  • 2. PALL-RING Subject page ‰ Operational data 1-3 ‰ Materials 4-5 ‰ Compensation for the "decrease in volume" for dumped packings 6 ‰ Generally applicable pressure drop diagram for tower packings 7 ‰ Tower packing factor 8-9 ‰ Pressure drop with metal PALL-Rings 10-11 ‰ Pressure drop with ceramic PALL-Rings 12-13 ‰ Pressure drop with polypropylene PALL-Rings 14-16 ‰ Liquid hold-up in columns with metal PALL-Rings 17-18 ‰ Absorption of CO2 into NaOH for metal and plastic PALL-Rings 19-20 The data in this brochure is based on numerous tests and careful studies. However, it can and is only intended to provide non-binding advice.
  • 3. Operational data for PALL- Rings made of metal Sizes mm Weight* kg/m3 Number per m3 Surface m2 /m3 Free volume % 10 x 10 x 0,3 520 770 000 515 94 15 x 15 x 0,3 385 240 000 360 95 15 x 15 x 0,4 510 240 000 360 95 20 x 20 x 0,4 420 110 000 290 95 25 x 25 x 0,5 385 51 000 215 95 25 x 25 x 0,6 460 51 000 215 95 35 x 35 x 0,6 330 18 000 145 95 38 x 38 x 0,6 310 14 500 135 96 50 x 50 x 0,8 320 6 300 105 96 80 x 80 x 1,2 300 1 600 80 96 * All of the given weights refer to the stainless steel versions in the indicated material thickness. Other wall thickness available upon request. The weights for PALL-Rings made of other metal alloys are obtained by multiplication with the following factors: Aluminium 0.35 Monel and nickel 1.13 Copper 1.14 Brass 1.09 Titanium 0.6 Hastelloy 1.3 1
  • 4. Operational data for PALL-Rings made of special stoneware/porcelain Sizes mm Weight kg/m 3 Number per m 3 Surface m 2 /m 3 Free volume % for dumped packing 25 x 25 x 3 620 39 900 220 75 35 x 35 x 4 540 16 350 165 78 50 x 50 x 5 555 5 700 120 78 80 x 80 x 8 520 1 470 80 79 100 x 100 x 10 500 750 55 81 for stacked packing 80 x 80 x 8 785 2 185 150 69 100 x 100 x 10 630 1 050 81 74 120 x 120 x 12 600 610 58 74 2
  • 5. Operational data PALL-Rings made of plastics Plastics Sizes mm Weight kg/m3 Number per m3 Surface m2 /m3 Free volume % polypropylene 15 x 15 110 268 640 350 88 and polyethylene 25 x 25 75 54 600 220 91 of different 35 x 35 65 19 000 160 93 grades 50 x 50 65 6 700 110 93 90 x 90 50 1 240 90 94 The weights for the high-performance thermoplastics below are obtained by multiplication with the following factors: Polyethersulfone (PES) 1,85 Polyphenylene sulfide (PPS) 1,80 Liquid crystal polymer (LCP) 1,83 Polyvinylidene fluoride (PVDF) 2,0 fluor. Ethylenpropylene (FEP) 2,40 Perfluoralkoxypolymer (PFA) 2,40 Ethylen-Chlortrifluorethylen (E-CTFE) 1,97 Ethylen-Tetrafluorethylen (E-TFE) 2,20 Polyarylether Ketone (PAEK) 1,44 Fluoroplastics (Teflon) 2,15 - 2,4 Polypropylene 30 % fiberglass-reinforced 1,25 Polyethylene 1,10 3
  • 6. PALL-RING Materials PALL Rings are made of three main groups of materials: Metals Mainly carbon steel and alloyed chrome-nickel steels. Special alloys such as Hastelloy, Incoloy, Monel titanium and zirconium are being used more and more frequently, and are also processed. Ceramics The most frequently processed materials are special stoneware and special hard porcelain. These ceramic materials are densely sintered, they have great resistance to high temperatures and a uniform material structure. Plastics Most of the production of thermoplastics consists of polypropylene grades in various versions. In addition to polyethylene, high- performance plastics are also used. As a standard procedure, Raschig uses virgin materials. Regenerates are only processed upon special request. Depending on the stress caused by temperature and chemical attack, the following quality grades of polypropylene must be distinguished: standard polypropylene (PP) or permanent temperatures of up to approx. 70 °C (158 °F). heat-endurance stabilised polypropylene (LTHA) for permanent operating temperatures of up to 110 °C (230 °F). Under permanent thermal stress, this specially stabilised material has approximately twice the service life of normally stabilised polypropylene. 4
  • 7. PALL-RING 30 % fibreglass-reinforced polypropylene (GFR) This is a fibreglass reinforced grade. The fibreglass part of approx. 30 percent is completely surrounded with plastic. As a result, the chemical resistance is about the same as that of nonereinforced polypropylene. Operating temperature range up to approx. 135 °C (275°F). Polyether sulfone (PES) a highly temperature-resistant amorphous thermoplastic. Operating temperature range up to approx. 180 °C (356 °F), cold resistance down to approx. -100 °C (-148 °F). Polyphenylene sulphide (PPS) a technical high performance thermoplastic, usually in connection with fibreglass and special mineral fillers. Operating temperature range up to approx. 220 °C (428 °F), briefly permissible up to 260 °C (500 °F), cold resistance down to approx. -50 °C (-58 °F). Liquid crystal polymer (LCP) operating temperature range, depending on type, up to a maximum of 240 °C (464 °F). Polyvinylidene fluoride (PVDF) a thermoplastic fluoroplastic, operating temperature range up to approx. 140 °C (284 °F), cold resistance down to approx. -40 °C (-40 °F). Fluoroplastics (TEFLON, e.g. FEP, PFA) which can be processed by the injection moulding technique, e.g. FEP 100, PFA 340, can also be offered. Depending on the grade, the heat resistance ranges up to approx. 260 °C (500 °F), while the cold resistance goes down to -200 °C (-328 °F). The various application possibilities and plastic grades must be checked on a case-to-case basis. 5
  • 8. Compensation for the "decrease in volume" for dumped packings The values indicated in the tables for dumped packings are valid for a diameter ratio vessel: packing size of D : d = 20. Since the arrangement of the packings is less compact near the vessel wall than in the interior of the bed, the number of packings per cubic meter increases with the diameter ratio. The opposite diagram shows by which "allowance" the theoretically calculated vessel volume for diameter ratios of more than 20 must be increased in order to completely fill the space required. If the plastic or metal packings are, for instance, thrown into the column, this may result in a further decrease in volume due to abnormally compact packing. D = diameter of the vessel to be filled d = diameter or nominal size of the packings 20 30 40 50 60 70 80 90 100 110 120 Diameter ratio D/d 0 2 4 6 8 10 12 Allowance (%) Allowance for compensation of decrease in volume 6
  • 9. Generally applicable pressure Generally applicable pressure drop diagram for tower drop diagram for tower packings packings Optimum results with packed columns can only be obtained with well- designed liquid distributors, support grids and hold-down grids! Please note that this diagram no longer applies in case of foaming liquids. 0,01 0,02 0,1 0,2 1,0 2,0 10 (L/G)⋅[ρG/(ρL-ρG)]1/2 0,001 0,002 0,003 0,004 0,01 0,02 0,03 0,04 0,1 0,2 0,3 0,4 1,0 [G 2 ⋅η 0,1 ⋅F] / [ρ G ⋅(ρ L -ρ G )⋅g] Spec. Pressure drop Δp/H in (Pa/m) 20 50 100 200 300 500 1200 Δp/H= Optimum results with packed columns can only be obtained with well- designed liquid distributors, support grids and hold- down grids! Please note that this diagram no longer applies in case of foaming liquids. 7 ⋅ L = liquid flow kg/m2 s L' = liquid flow kg/h G = gas flow kg/m2 s G' = gas flow kg/h ρL = spec. gravity of the liquid kg/m3 ρ 6 = spec. gravity of the gas kg/m3 F = tower packing factor (see table η = viscosity of the liquid mPa . s g = 9,81 = acceleration due to gravity m/s2 L = liquid flow kg/m2 s L' = liquid flow kg/h G = gas flow kg/m2 s G' = gas flow kg/h ρL = spec. gravity of the liquid kg/m3 ρ 6 = spec. gravity of the gas kg/m3 F = tower packing factor (see table) η = viscosity of the liquid mPa . s g = 9,81 = acceleration due to gravity m/s2 L = liquid flow kg/m2 s L' = liquid flow kg/h G = gas flow kg/m2 s G' = gas flow kg/h ρL = spec. gravity of the liquid kg/m3 ρ 6 = spec. gravity of the gas kg/m3 F = tower packing factor (see table η = viscosity of the liquid mPa . s g = 9,81 = acceleration due to gravity m/s2 L = liquid flow kg/m2 s L' = liquid flow kg/h G = gas flow kg/m2 s G' = gas flow kg/h ρL = spec. gravity of the liquid kg/m3 ρ 6 = spec. gravity of the gas kg/m3 F = tower packing factor (see table) η = viscosity of the liquid mPa . s g = 9,81 = acceleration due to gravity m/s2 L = liquid flow kg/m2 s L' = liquid flow kg/h G = gas flow kg/m2 s G' = gas flow kg/h ρL = spec. gravity of the liquid kg/m3 ρ 6 = spec. gravity of the gas kg/m3 F = tower packing factor (see table η = viscosity of the liquid mPa . s g = 9,81 = acceleration due to gravity m/s2 L = liquid flow kg/m2 s L' = liquid flow kg/h G = gas flow kg/m2 s G' = gas flow kg/h ρL = spec. gravity of the liquid kg/m3 ρ 6 = spec. gravity of the gas kg/m3 F = tower packing factor (see table) η = viscosity of the liquid mPa . s g = 9,81 = acceleration due to gravity m/s2 L = liquid flow kg/m2 s L' = liquid flow kg/h G = gas flow kg/m2 s G' = gas flow kg/h ρL = spec. gravity of the liquid kg/m3 ρ 6 = spec. gravity of the gas kg/m3 F = tower packing factor (see table η = viscosity of the liquid mPa . s g = 9,81 = acceleration due to gravity m/s2 L = liquid flow kg/m2 s L' = liquid flow kg/h G = gas flow kg/m2 s G' = gas flow kg/h ρL = spec. gravity of the liquid kg/m3 ρ 6 = spec. gravity of the gas kg/m3 F = tower packing factor (see table) η = viscosity of the liquid mPa . s g = 9,81 = acceleration due to gravity m/s2
  • 10. Tower packing factor Nominal size of the tower packings Tower packing Material 10 12 ½" 15 19-20 ¾" 25 1" 30-35 38 1 ½" 50 2" 70-75 3" 90 3 ½" RASCHIG SUPER-RING Metal Plastic 131 102 72 105 59 46 39 40 31 RALU-FLOW Plastic 75 38 RASCHIG RING Ceramic Metal 3200 1280 1900 980 1250 566 840 510 380 340 280 310 270 210 190 120 105 PALL Ring Ceramic Metal Plastic 230 320 350 157 171 180 103 140 92 142 66 82 52 52 RALU RING Metal Plastic 157 135 92 80 66 55 38 TORUS SADDLE Ceramic 660 480 320 170 130 72 68 SUPER TORUS SADDLE Plastic 165 104 50 BERL SADDLE Ceramic 1500 790 560 360 220 150 Sherwood-abscissa value x < 0.5 0.5 to 3.75 > 3.75 Δ p = mm WS/m 40 80 125 40 80 125 40 80 125 RASCHIG'S RING Ceramics 25 x 3 38 x 4 50 x 5 541 302 239 508 289 239 512 295 236 574 295 226 502 269 210 472 262 203 443 246 170 394 213 164 361 197 154 RASCHIG'S RING Metal 25 x 1.6 38 x 1.6 50 x 1.6 518 308 236 472 279 233 466 262 217 456 246 197 400 213 177 331 213 164 292 131 125 253 141 125 220 138 121 PALL Ring Metal 25 x 0.6 38 x 0.8 50 x 0.9 170 98 82 157 95 92 154 92 75 177 128 85 171 118 79 174 112 72 148 112 69 138 102 66 138 89 66 TORUS SADDLE Ceramics 1" 1 1/2" 2" 164 125 318 161 128 321 171 131 174 128 299 161 112 305 157 108 131 102 276 128 102 246 115 98 Table 1 Table 2 8
  • 11. Tower packing factor The graph shown on page 3 that is valid for all types of tower packings and for mass system or operating conditions as well as Table 1 showing the tower packing factors are based on a Sherwood correlation postulated in 1938, which has been updated regularly with the level of engineering valid at the time. Table 1 shows the tower packing factors F in [1/m] that constitute an important characteristic parameter , seeing that the square root of the tower packing factors is inversely proportional to the gas flow rate of the packed bed. This correlation can clearly be seen by taking the example of 50 mm PALL Rings made of metal with a tower packing factor of 66 and 2" = 50 mm TORUS SADDLES made of ceramics with a tower packing factor of 130. The tower packing factors show that the gas flow rate for metal PALL Rings is 40 percent higher than for the TORUS SADDLES. Thorough tests have shown that the tower packing factors indicated in Table 1 cannot be seen at constant values, but rather that they change within a certain range, depending on the load of the liquid or gas. The types of tower packings which show the highest pressure drop, such as RASCHIG RINGS, also tend to change most with respect to their tower packing factor. The tower packing factors in Table 1 can be consulted for planning columns. This results in column diameters that are somewhat overdimensioned, especially in case of large flow rates of liquid and particularly when RASCHIG RINGS are used. Table 2 shows that the fluctuation range of the tower packing factors F for four different types of tower packings in the most common sizes as a function of the abscissa value of the generally applicable pressure drop diagram. Abscissa value of 3.75 and up are usually found only with a absorption columns and strippers; values of 0.5 and below occur with most distillation columns. 4 , 1 66 130 G G Saddles Torus Rings Pall = = 2 1 G L G G L X ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ρ ρ ρ = − 9
  • 12. Pressure drop with metal PALL-RINGS mixture air / water 0,1 0,2 0,3 0,4 0,5 0,6 1 2 3 4 5 6 10 Gas capacity factor FV 10 20 30 40 50 60 70 100 200 300 400 500 600 700 1000 2000 3000 Spec. Pressure drop Δp/H (Pa/m) ) kg/m (m/s 3 ⋅ Pall® Ring 25 mm in Metal Liquid velocity uL in (m3 /m2 h) uL= 75 50 25 100 125 10 0 0,1 0,2 0,3 0,4 0,5 0,6 1 2 3 4 5 6 10 Gas capacity factor FV 10 20 30 40 50 60 70 100 200 300 400 500 600 700 1000 2000 3000 Spec. Pressure drop Δp/H (Pa/m) ) kg/m (m/s 3 ⋅ Pall® Ring 38 mm in Metal Liquid velocity uL in (m3 /m2 h) uL= 75 50 25 100 125 10 0 PALL-RING 25 mm PALL-RING 38 mm 10
  • 13. Pressure drop with metal PALL-RINGS mixture air / water 0,1 0,2 0,3 0,4 0,5 0,6 1 2 3 4 5 6 10 Gas capacity factor FV 10 20 30 40 50 60 70 100 200 300 400 500 600 700 1000 2000 3000 Spec. Pressure drop Δp/H (Pa/m) ) kg/m (m/s 3 ⋅ Pall® Ring 50 mm in Metal Liquid velocity uL in (m3 /m2 h) uL= 125 100 75 50 25 150 175 10 0 0,1 0,2 0,3 0,4 0,5 0,6 1 2 3 4 5 6 10 Gas capacity factor FV 10 20 30 40 50 60 70 100 200 300 400 500 600 700 1000 2000 3000 Spec. Pressure drop Δp/H (Pa/m) ) kg/m (m/s 3 ⋅ Pall® Ring 80 mm in Metal Liquid velocity uL in (m3 /m2 h) uL= 75 50 25 10 100 125 0 PALL-RING 80 mm PALL-RING 50 mm 11
  • 14. Pressure drop with ceramic PALL-RINGS mixture air / water 0,1 0,2 0,3 0,4 0,5 0,6 1 2 3 4 5 6 10 Gas capacity factor FV 10 20 30 40 50 60 70 100 200 300 400 500 600 700 1000 2000 3000 Spec. Pressure drop Δp/H (Pa/m) ) kg/m (m/s 3 ⋅ Pall® Ring 25 mm in Ceramics Liquid velocity uL in (m3 /m2 h) uL= 30 20 10 40 50 0 0,1 0,2 0,3 0,4 0,5 0,6 1 2 3 4 5 6 10 Gas capacity factor FV 10 20 30 40 50 60 70 100 200 300 400 500 600 700 1000 2000 3000 Spec. Pressure drop Δp/H (Pa/m) ) kg/m (m/s 3 ⋅ Pall® Ring 35 mm in Ceramics Liquid velocity uL in (m3 /m2 h) uL= 50 25 10 75 0 PALL-RING 35 mm PALL-RING 25 mm 12
  • 15. Pressure drop with ceramic PALL-RINGS mixture air / water 0,1 0,2 0,3 0,4 0,5 0,6 1 2 3 4 5 6 10 Gas capacity factor FV 10 20 30 40 50 60 70 100 200 300 400 500 600 700 1000 2000 3000 Spec. Pressure drop Δp/H (Pa/m) ) kg/m (m/s 3 ⋅ Pall® Ring 50 mm in Ceramics Liquid velocity uL in (m3 /m2 h) uL= 50 25 10 75 100 0 PALL-RING 50 mm 13
  • 16. Pressure drop with polypropylene PALL-RINGS mixture air / water 0,1 0,2 0,3 0,4 0,5 0,6 1 2 3 4 5 6 10 Gas capacity factor FV 10 20 30 40 50 60 70 100 200 300 400 500 600 700 1000 2000 3000 Spec. Pressure drop Δp/H (Pa/m) ) kg/m (m/s 3 ⋅ Pall® Ring 15 mm in Plastic Liquid velocity uL in (m3 /m2 h) uL= 75 50 25 10 100 125 0 0,1 0,2 0,3 0,4 0,5 0,6 1 2 3 4 5 6 10 Gas capacity factor FV 10 20 30 40 50 60 70 100 200 300 400 500 600 700 1000 2000 3000 Spec. Pressure drop Δp/H (Pa/m) ) kg/m (m/s 3 ⋅ Pall® Ring 25 mm in Plastic Liquid velocity uL in (m3 /m2 h) uL= 75 50 25 10 100 125 0 PALL-RING 15 mm PALL-RING 25 mm 14
  • 17. Pressure drop with polypropylene PALL-RINGS mixture air / water 0,1 0,2 0,3 0,4 0,5 0,6 1 2 3 4 5 6 10 Gas capacity factor FV 10 20 30 40 50 60 70 100 200 300 400 500 600 700 1000 2000 3000 Spec. Pressure drop Δp/H (Pa/m) ) kg/m (m/s 3 ⋅ Pall® Ring 35 mm in Plastic Liquid velocity uL in (m3 /m2 h) uL= 75 50 25 10 100 125 0 0,1 0,2 0,3 0,4 0,5 0,6 1 2 3 4 5 6 10 Gas capacity factor FV 10 20 30 40 50 60 70 100 200 300 400 500 600 700 1000 2000 3000 Spec. Pressure drop Δp/H (Pa/m) ) kg/m (m/s 3 ⋅ Pall® Ring 50 mm in Plastic Liquid velocity uL in (m3 /m2 h) uL= 100 75 50 25 125 150 0 10 PALL-RING 35 mm PALL-RING 50 mm 15
  • 18. Pressure drop with polypropylene PALL-RINGS mixture air / water 0,1 0,2 0,3 0,4 0,5 0,6 1 2 3 4 5 6 10 Gas capacity factor FV 10 20 30 40 50 60 70 100 200 300 400 500 600 700 1000 2000 3000 Spec. Pressure drop Δp/H (Pa/m) ) kg/m (m/s 3 ⋅ Pall® Ring 90 mm in Plastic Liquid velocity uL in (m3 /m2 h) uL= 75 50 25 10 100 125 0 PALL-RING 90 mm 16
  • 19. Liquid hold-up in columns with metal PALL-RINGS 3 4 5 10 20 30 40 50 100 200 300 Liquid velocity uL (m3 /m2 h) 10 20 30 40 50 100 200 300 Liquid hold-up (l/m 3 ) Pall® Ring 15 mm in Metal 400 Pressure drop Δp in (Pa/m) Δp= 1700 800 0 3 4 5 10 20 30 40 50 100 200 300 Liquid velocity uL (m3 /m2 h) 10 20 30 40 50 100 200 300 Liquid hold-up (l/m 3 ) Pall® Ring 25 mm in Metal 400 Pressure drop Δp in (Pa/m) Δp= 1600 800 0 400 17 PALL-RING 15 mm Diameter of column: approx.380 mm Height of packed bed: approx. 1,7 m PALL-RING 25 mm Diameter of column: approx.750 mm Height of packed bed: approx. 3 m
  • 20. Liquid hold-up in columns with metal PALL-RINGS 3 4 5 10 20 30 40 50 100 200 300 Liquid velocity uL (m3 /m2 h) 10 20 30 40 50 100 200 300 Liquid hold-up (l/m 3 ) Pall® Ring 38 mm in Metal 400 Pressure drop Δp in (Pa/m) Δp= 1600 800 0 400 3 4 5 10 20 30 40 50 100 200 300 Liquid velocity uL (m3 /m2 h) 10 20 30 40 50 100 200 300 Liquid hold-up (l/m 3 ) Pall® Ring 50 mm in Metal 400 Pressure drop Δp in (Pa/m) Δp= 800 0 400 18 PALL-RING 38 mm Diameter of column: approx.750 mm Height of packed bed: approx. 3 m PALL-RING 50 mm Diameter of column: approx.750 mm Height of packed bed: approx. 6 m
  • 21. Absorption of CO2 into NaOH for metal and plastic PALL-RINGS 3 4 5 10 20 30 40 50 100 200 300 Liquid velocity uL (m3 /m2 h) 0,02 0,03 0,04 0,05 0,1 0,2 0,3 0,4 0,5 1,0 Vol. Mass transfer coefficient k G ⋅a (1/s) Pall® Ring 25 mm 3 4 5 10 20 30 40 50 100 200 300 Liquid velocity uL (m3 /m2 h) 0,02 0,03 0,04 0,05 0,1 0,2 0,3 0,4 0,5 1,0 Vol. Mass transfer coefficient k G ⋅ a (1/s) Pall® Ring 38 mm PALL-RING 25 mm Diameter of column: 760 mm Packing height: 3 m Gas rate: 2200 kg/m3h Gas concentration: 1% (mean value) Liquid concentration: 4 % NaOH Liquid temperature: 24 °C (75 °F) PALL-RING 38 mm Diameter of column: 760 mm Packing height: 3 m Gas rate: 2200 kg/m3h Gas concentration: 1% (mean value) Liquid concentration: 4 % NaOH Liquid temperature: 24 °C (75 °F) __________________ metal PALL Rings ------------------------------ plastic PALL Rings 19
  • 22. Absorption of CO2 into NaOH for metal and plastic PALL-RINGS 3 4 5 10 20 30 40 50 100 200 300 Liquid velocity uL (m3 /m2 h) 0,02 0,03 0,04 0,05 0,1 0,2 0,3 0,4 0,5 1,0 Vol. Mass transfer coefficient k G ⋅ a (1/s) Pall® Ring 50 mm 3 4 5 10 20 30 40 50 100 200 300 Liquid velocity uL (m3 /m2 h) 0,02 0,03 0,04 0,05 0,1 0,2 0,3 0,4 0,5 1,0 Vol. Mass transfer coefficient k G ⋅ a (1/s) Pall® Ring 80/90 mm PALL-RING 80/90 mm Diameter of column: 760 mm Packing height for 80 mm of metal: 3 m Packing height for 90 mm of metal: 2,3 m Gas rate: 2200 kg/m3h Gas concentration: 1% (mean value) Liquid concentration: 4 % NaOH Liquid temperature: 24 °C (75 °F) PALL-RING 50 mm Diameter of column: 760 mm Packing height: 3 m Gas rate: 2200 kg/m3h Gas concentration: 1% (mean value) Liquid concentration: 4 % NaOH Liquid temperature: 24 °C (75 °F) __________________ metal PALL-Rings ------------------------------ plastic PALL- Rings 20