SlideShare a Scribd company logo
1 of 54
Download to read offline
Lecturer: T.A. Esmatullah Masom
Date : 2023/12/4
Kandahar University
Engineering faculty
Civil department
Structure Analysis I
C h a p t e r E i g h t
Influence Lines
BEST FOR You
O R G A N I C S C O M P A N Y
Table Of Content
Introduction
8.1 Influence Lines for Beams and Frames by Equilibrium Method
8.2 Müller-Breslau’s Principle and Qualitative Influence Lines
8.3 Influence Lines for Girders with Floor Systems
8.4 Influence Lines for Trusses
8.5 Influence Lines for Deflections
Assignment
2
BEST FOR You
O R G A N I C S C O M P A N Y
Introduction
•Influence Lines important concept used when structures subjected to variable
(movable) loads.
•Initially introduced by E. Winkler in 1867.
•An influence line is a graph of a response function of a structure as a function
of the position of a downward unit load moving across the structure.
3
BEST FOR You
O R G A N I C S C O M P A N Y
Introduction
•Analysis of structures for variable loads consists of two steps:
1. Determining the position(𝑥) of the load at which the response function of
interest becomes maximum.
2. Computing the maximum value of the response function.
4
BEST FOR You
O R G A N I C S C O M P A N Y
8.1 Influence Lines For Beams And Frames By
Equilibrium Method
5
➢Influence Lines for Reactions:
+ ⤹ ∑𝑀𝑐 = 0
−𝐴𝑦 𝐿 + 1 𝐿 − 𝑥 = 0
𝐴𝑦 =
1 𝐿−𝑥
𝐿
= 1 −
𝑥
𝐿
+ ⤹ ∑𝑀𝐴 = 0
−1 𝑥 + 𝐶𝑦 𝐿 = 0
𝐶𝑦 =
1(𝑥)
𝐿
=
𝑥
𝐿
BEST FOR You
O R G A N I C S C O M P A N Y
8.1 Influence Lines For Beams And Frames By
Equilibrium Method
6
➢Influence Lines for Reactions:
BEST FOR You
O R G A N I C S C O M P A N Y
8.1 Influence Lines For Beams And Frames By
Equilibrium Method
7
➢Influence Line for Shear at 𝐵:
BEST FOR You
O R G A N I C S C O M P A N Y
8.1 Influence Lines For Beams And Frames By
Equilibrium Method
8
➢Influence Line for Shear at 𝐵:
𝑆𝐵 = −𝐶𝑦 0 ≤ 𝑥 < 𝑎
𝑆𝐵 = −𝐶𝑦= −
𝑥
𝐿
0 ≤ 𝑥 < 𝑎
𝑆𝐵 = 𝐴𝑦 𝑎 < 𝑥 ≤ 𝐿
𝑆𝐵 = 𝐴𝑦 = 1 −
𝑥
𝐿
𝑎 < 𝑥 ≤ 𝐿
BEST FOR You
O R G A N I C S C O M P A N Y
8.1 Influence Lines For Beams And Frames By
Equilibrium Method
9
➢Influence Line for Bending Moment at 𝐵:
𝑀𝐵 = 𝐶𝑦(𝐿 − 𝑎) 0 ≤ 𝑥 ≤ 𝑎
𝑀𝐵 =
𝑥
𝐿
𝐿 − 𝑎 0 ≤ 𝑥 ≤ 𝑎
𝑀𝐵 = 𝐴𝑦(𝑎) 𝑎 ≤ 𝑥 ≤ 𝐿
𝑀𝐵 = 𝐴𝑦 = 1 −
𝑥
𝐿
𝑎 𝑎 ≤ 𝑥 ≤ 𝐿
BEST FOR You
O R G A N I C S C O M P A N Y
Example 8.1
10
Draw the influence lines for the vertical reactions at supports 𝐴 and 𝐶, and the
shear and bending moment at point 𝐵, of the simply supported beam shown in
Fig. 8.3(a).
BEST FOR You
O R G A N I C S C O M P A N Y
Example 8.1
11
Solution:
Influence Line for 𝑨𝒚:
+ ⤹ ∑𝑀𝑐 = 0
−𝐴𝑦 5 + 1 5 − 𝑥 = 0
𝐴𝑦 =
1 5−𝑥
5
= 1 −
𝑥
5
Influence Line for 𝑪𝒚:
+ ⤹ ∑𝑀𝐴 = 0
−1 𝑥 + 𝐶𝑦 5 = 0
𝐶𝑦 =
1(𝑥)
5
=
𝑥
5
BEST FOR You
O R G A N I C S C O M P A N Y
Example 8.1
12
Solution:
Influence Line for 𝑺𝑩:
𝑆𝐵 = −𝐶𝑦= −
𝑥
𝐿
= −
𝑥
5
0 ≤ 𝑥 < 3𝑚
𝑆𝐵 = 𝐴𝑦 = 1 −
𝑥
𝐿
= 1 −
𝑥
5
3𝑚 ≤ 𝑥 ≤ 5𝑚
BEST FOR You
O R G A N I C S C O M P A N Y
Example 8.1
13
Solution:
Influence Line for 𝑴𝑩:
𝑀𝐵 = 2𝐶𝑦 =
2𝑥
5
0 ≤ 𝑥 < 3𝑚
𝑀𝐵 = 3𝐴𝑦 = 3 −
3𝑥
5
3𝑚 ≤ 𝑥 ≤ 5𝑚
BEST FOR You
O R G A N I C S C O M P A N Y
Influence line for girder, trusses
& deflection
14
Lecturer: T.A. Esmatullah Masom
Date : 2023/12/11
BEST FOR You
O R G A N I C S C O M P A N Y
8.3 Influence Lines For Girders With Floor Systems
15
BEST FOR You
O R G A N I C S C O M P A N Y
8.3 Influence Lines For Girders With Floor Systems
16
BEST FOR You
O R G A N I C S C O M P A N Y
8.3 Influence Lines For Girders With Floor Systems
17
BEST FOR You
O R G A N I C S C O M P A N Y
8.3 Influence Lines For Girders With Floor Systems
18
➢Influence Lines for Reactions:
+ ⤹ ∑𝑀𝐹 = 0 − 𝐴𝑦 𝐿 + 1 𝐿 − 𝑥 𝐴𝑦 = 1 −
𝑥
𝐿
+ ⤹ ∑𝑀𝐴 = 0 𝐹𝑦 𝐿 − 1 𝑥 𝐹𝑦 =
𝑥
𝐿
BEST FOR You
O R G A N I C S C O M P A N Y
8.3 Influence Lines For Girders With Floor Systems
19
➢Influence Line for Shear in Panel 𝐵𝐶:
BEST FOR You
O R G A N I C S C O M P A N Y
8.3 Influence Lines For Girders With Floor Systems
20
➢Influence Line for Shear in Panel 𝐵𝐶:
𝑆𝐵𝐶 = −𝐹𝑦= −
𝑥
𝐿
0 ≤ 𝑥 ≤
𝐿
5
𝑆𝐵𝐶 = 𝐴𝑦 = 1 −
𝑥
𝐿
2𝐿
5
≤ 𝑥 ≤ 𝐿
𝑆𝐵𝐶 = 𝐴𝑦−𝐹𝐵= 1 −
𝑥
𝐿
− 2 −
5𝑥
𝐿
= −1 +
4𝑥
𝐿
𝐿
5
≤ 𝑥 ≤
2𝐿
5
BEST FOR You
O R G A N I C S C O M P A N Y
8.3 Influence Lines For Girders With Floor Systems
21
➢Influence Line for Bending Moment at G:
𝑀𝐺 = 𝐹𝑦 𝐿 − 𝑎 =
𝑥
𝐿
𝐿 − 𝑎 0 ≤ 𝑥 ≤
𝐿
5
𝑀𝐺 = 𝐴𝑦 𝑎 = 1 −
𝑥
𝐿
𝑎
2𝐿
5
≤ 𝑥 ≤ 𝐿
𝑀𝐺 = 𝐴𝑦 𝑎 − 𝐹𝐵 𝑎 −
𝐿
5
= 1 −
𝑥
𝐿
𝑎 − 2 −
5𝑥
𝐿
𝑎 −
𝐿
5
=
2𝐿
5
− 𝑎 − 𝑥 1 −
4𝑎
𝐿
𝐿
5
≤ 𝑥 ≤
2𝐿
5
BEST FOR You
O R G A N I C S C O M P A N Y
8.3 Influence Lines For Girders With Floor Systems
22
➢Influence Line for Bending Moment at Panel Point C:
𝑀𝐶 = 𝐹𝑦
3𝐿
5
=
𝑥
𝐿
3𝐿
5
=
3
5
𝑥 0 ≤ 𝑥 ≤
2𝐿
5
𝑀𝑐 = 𝐴𝑦
2𝐿
5
= 1 −
𝑥
𝐿
2𝐿
5
=
2
5
𝐿 − 𝑥
2𝐿
5
≤ 𝑥 ≤ 𝐿
BEST FOR You
O R G A N I C S C O M P A N Y
Example 8.9
23
Draw the influence lines for the shear in panel 𝐵𝐶 and the bending moment at
𝐵 of the girder with floor system shown in Fig. 8.14(a)
BEST FOR You
O R G A N I C S C O M P A N Y
Example 8.9
24
Influence Line for 𝑺𝑩𝑪:
1𝑘𝑁 𝑙𝑜𝑎𝑑 𝑖𝑠 𝑎𝑡 𝐴, 𝐷𝑦 = 0 𝑆𝐵𝐶 = 0
1𝑘𝑁 𝑙𝑜𝑎𝑑 𝑖𝑠 𝑎𝑡 𝐵, 𝐷𝑦 =
1
3
𝑘𝑁 𝑆𝐵𝐶 = −
1
3
kN
1𝑘𝑁 𝑙𝑜𝑎𝑑 𝑖𝑠 𝑎𝑡 𝐶, 𝐴𝑦 = −
1
3
𝑘𝑁 𝑆𝐵𝐶 =
1
3
𝑘𝑁
1𝑘𝑁 𝑙𝑜𝑎𝑑 𝑖𝑠 𝑎𝑡 𝐷, 𝐴𝑦 = 0 𝑆𝐵𝐶 = 0
BEST FOR You
O R G A N I C S C O M P A N Y
Example 8.9
25
Influence Line for 𝑴𝑩:
1𝑘𝑁 𝑙𝑜𝑎𝑑 𝑖𝑠 𝑎𝑡 𝐴, 𝐷𝑦 = 0 𝑀𝐵 = 0
1𝑘𝑁 𝑙𝑜𝑎𝑑 𝑖𝑠 𝑎𝑡 𝐵, 𝐴𝑦 =
2
3
𝑘𝑁 𝑀𝐵 =
2
3
6 = 4kN. m
1𝑘𝑁 𝑙𝑜𝑎𝑑 𝑖𝑠 𝑎𝑡𝐷, 𝐴𝑦 = 0 𝑀𝐵 = 0
BEST FOR You
O R G A N I C S C O M P A N Y
8.4 Influence Lines For Trusses
26
BEST FOR You
O R G A N I C S C O M P A N Y
8.4 Influence Lines For Trusses
27
BEST FOR You
O R G A N I C S C O M P A N Y
8.4 Influence Lines For Trusses
28
➢Influence Lines for Reactions:
+ ⤹ ∑𝑀𝐸 = 0 − 𝐴𝑦 12 + 1 12 − 𝑥 𝐴𝑦 = 1 −
𝑥
12
+ ⤹ ∑𝑀𝐴 = 0 𝐸𝑦 12 − 1 𝑥 𝐸𝑦 =
𝑥
12
BEST FOR You
O R G A N I C S C O M P A N Y
8.4 Influence Lines For Trusses
29
➢Influence Line for Force in Vertical Member 𝐶𝐼:
+↑ ∑𝐹𝑦 = 0 −𝐹𝐶𝐼 +𝐸𝑦 = 0 𝐹𝐶𝐼 = 𝐸𝑦 0 ≤ 𝑥 ≤ 6𝑚
+↑ ∑𝐹𝑦 = 0 𝐹𝐶𝐼 + 𝐴𝑦 = 0 𝐹𝐶𝐼 = −𝐴𝑦 9 ≤ 𝑥 ≤ 18𝑚
BEST FOR You
O R G A N I C S C O M P A N Y
8.4 Influence Lines For Trusses
30
➢Influence Line for Force in Vertical Member 𝐶𝐼:
+↑ ∑𝐹𝑦 = 0 𝐴𝑦 −
9−𝑥
3
+ 𝐹𝐶𝐼 = 0
𝐹𝐶𝐼= −𝐴𝑦 +
9−𝑥
3
6𝑚 ≤ 𝑥 ≤ 9𝑚
BEST FOR You
O R G A N I C S C O M P A N Y
8.4 Influence Lines For Trusses
31
➢Influence Line for Force in Bottom Chord Member 𝐶𝐷:
•Using right portion AC + ⤹ ∑𝑀𝐼 = 0 −𝐹𝐶𝐷 4 + 𝐸𝑦 6 = 0
𝐹𝐶𝐷= 1.5𝐸𝑦 0 ≤ 𝑥 ≤ 6𝑚
•Using left portion AC + ⤹ ∑𝑀𝐼 = 0 𝐹𝐶𝐷 4 − 𝐴𝑦 6 = 0
𝐹𝐶𝐷= 1.5𝐴𝑦 6𝑚 ≤ 𝑥 ≤ 18𝑚
BEST FOR You
O R G A N I C S C O M P A N Y
8.4 Influence Lines For Trusses
32
➢Influence Line for Force in Diagonal Member 𝐷𝐼:
BEST FOR You
O R G A N I C S C O M P A N Y
8.4 Influence Lines For Trusses
33
➢Influence Line for Force in Diagonal Member 𝐷𝐼:
+↑ ∑𝐹𝑦 = 0
4
5
𝐹𝐷𝐼 + 𝐸𝑦 = 0 𝐹𝐷𝐼 = −1.25𝐸𝑦 0 ≤ 𝑥 ≤ 6𝑚
+↑ ∑𝐹𝑦 = 0 −
4
5
𝐹𝐷𝐼 + 𝐴𝑦 = 0 𝐹𝐷𝐼 = 1.25𝐴𝑦 9 ≤ 𝑥 ≤ 18𝑚
BEST FOR You
O R G A N I C S C O M P A N Y
8.4 Influence Lines For Trusses
34
➢Influence Line for Force in Top Chord Member 𝐼𝐽:
+ ⤹ ∑𝑀𝐷 = 0 𝐹𝐼𝐽 4 + 𝐸𝑦 3 = 0
𝐹𝐼𝐽 = −0.75𝐸𝑦 0 ≤ 𝑥 ≤ 9𝑚
+ ⤹ ∑𝑀𝐷 = 0 −𝐹𝐼𝐽 4 − 𝐴𝑦 9 = 0
𝐹𝐼𝐽 = −2.25𝐴𝑦 9𝑚 ≤ 𝑥 ≤ 18𝑚
BEST FOR You
O R G A N I C S C O M P A N Y
8.4 Influence Lines For Trusses
35
➢Influence Line for Force in Vertical Member 𝐹𝐿:
BEST FOR You
O R G A N I C S C O M P A N Y
Example 8.12
36
Draw the influence lines for the forces in members 𝐴𝐹, 𝐶𝐹, and 𝐶𝐺 of the
Parker truss shown in Fig. 8.19(a). Live loads are transmitted to the bottom
chord of the truss.
BEST FOR You
O R G A N I C S C O M P A N Y
Example 8.12
37
Solution:
Influence Lines for Reactions: The influence lines for the reactions 𝐴𝑦 and 𝐸𝑦
obtained by applying the equilibrium equations, ∑𝑀𝐸 = 0 and ∑𝑀𝐴 = 0
BEST FOR You
O R G A N I C S C O M P A N Y
Example 8.12
38
Solution:
Influence Line for 𝑭𝑨𝑭:
BEST FOR You
O R G A N I C S C O M P A N Y
Example 8.12
39
Solution:
Influence Line for 𝑭𝑨𝑭:
+↑ ∑𝐹𝑦 = 0 𝐴𝑦 − 1 +
3
5
𝐹𝐴𝐹 = 0
Because 𝐴𝑦 = 1 𝑘𝑁, 𝐹𝐴𝐹 = 0 𝑓𝑜𝑟 𝑥 = 0
•When the 1𝑘𝑁 load is located to the right of joint B, we write
+↑ ∑𝐹𝑦 = 0 𝐴𝑦 +
3
5
𝐹𝐴𝐹 = 0
𝐹𝐴𝐹 = −1.667𝐴𝑦 𝑓𝑜𝑟 4𝑚 ≤ 𝑥 ≤ 16𝑚
BEST FOR You
O R G A N I C S C O M P A N Y
Example 8.12
40
Solution:
BEST FOR You
O R G A N I C S C O M P A N Y
Example 8.12
41
Solution:
Influence Line for 𝑭𝑪𝑭:
+ ⤹ ∑𝑀𝑂 = 0
3
5
𝐹𝐶𝐹 16 + 𝐸𝑦 24 = 0
𝐹𝐶𝐹 = −2.5𝐸𝑦 0 ≤ 𝑥 ≤ 4𝑚
•When the 1 𝑘𝑁 load is located to the right of C, we consider the equilibrium
of the left portion AB to obtain
+ ⤹ ∑𝑀𝑂 = 0 𝐴𝑦 8 −
4
5
𝐹𝐶𝐹 3 −
3
5
𝐹𝐶𝐹 12 = 0
𝐹𝐶𝐹 = 0.833𝐴𝑦 8𝑚 ≤ 𝑥 ≤ 16𝑚
BEST FOR You
O R G A N I C S C O M P A N Y
Example 8.12
42
Solution:
Influence Line for 𝑭𝑪𝑮:
•We will determine the influence line for 𝐹𝐶𝐺 by considering the equilibrium of
joint 𝐺
+↑ ∑𝐹𝑦 = 0 − 𝐹𝐶𝐺 −
1
17
𝐹𝐹𝐺 −
1
17
𝐹𝐺𝐻 = 0
𝐹𝐶𝐺 = −
1
17
(𝐹𝐹𝐺 + 𝐹𝐺𝐻) (1)
BEST FOR You
O R G A N I C S C O M P A N Y
Example 8.12
43
Solution:
Influence Line for 𝑭𝑪𝑮:
+→ ∑𝐹𝑥 = 0 −
4
17
𝐹𝐹𝐺 +
4
17
𝐹𝐺𝐻 = 0
𝐹𝐹𝐺 = 𝐹𝐺𝐻 (2)
•By substituting Eq. (2) into Eq. (1), we obtain
𝐹𝐶𝐺 = −
2
17
𝐹𝐹𝐺 = −0.485𝐹𝐹𝐺 (3)
•We will first construct the influence line for 𝐹𝐹𝐺 by using section 𝑎𝑎
•Than apply Eq. (3) to obtain the desired influence line for 𝐹𝐶𝐺.
BEST FOR You
O R G A N I C S C O M P A N Y
Example 8.12
44
Solution:
Influence Line for 𝑭𝑪𝑮:
BEST FOR You
O R G A N I C S C O M P A N Y
Example 8.12
45
Solution:
Influence Line for𝑭𝑭𝑮:
+ ⤹ ∑𝑀𝑐 = 0
4
17
𝐹𝐹𝐺 4 + 𝐸𝑦 8 = 0
𝐹𝐹𝐺 = −2.062𝐸𝑦 0 ≤ 𝑥 ≤ 4𝑚
•When the 1 𝑘𝑁 load is located to the right of 𝐶, we consider the equilibrium
of the left portion AB to obtain
+ ⤹ ∑𝑀𝑐 = 0 −
1
17
𝐹𝐹𝐺 4 −
4
17
𝐹𝐹𝐺 3 − 𝐴𝑦 8 = 0
𝐹𝐹𝐺 = −2.062𝐴𝑦 8𝑚 ≤ 𝑥 ≤ 16𝑚
BEST FOR You
O R G A N I C S C O M P A N Y
Example 8.12
46
Solution:
The desired influence line for 𝐹𝐶𝐺 can now be obtained by multiplying the
influence line for 𝐹𝐹𝐺 by −0.485 ,
BEST FOR You
O R G A N I C S C O M P A N Y
8.5 Influence Lines For Deflections
47
•A more efficient procedure for constructing the deflection influence lines can
be devised by the application of Maxwell’s law of reciprocal deflections:
•Considering again the beam of Fig. 8.21(a).
•If 𝑓𝐵𝑋 is the vertical deflection at B when the unit load is placed at an
arbitrary point X,
•Then 𝑓𝑋𝐵 represents the ordinate at X of the influence line for the vertical
deflection at B.
𝑓𝐵𝑋 = 𝑓𝑋𝐵
BEST FOR You
O R G A N I C S C O M P A N Y
8.5 Influence Lines For Deflections
48
BEST FOR You
O R G A N I C S C O M P A N Y
Example 8.14
49
Draw the influence line for the vertical deflection at end B of the cantilever
beam shown in Fig. 8.22(a).
BEST FOR You
O R G A N I C S C O M P A N Y
Example 8.14
50
Solution:
𝑀𝑋 =
1
𝐸𝐼
−3 1 −
𝑥
3
𝑥
𝑥
2
−
1
2
3 − 3 1 −
𝑥
3
𝑥
2𝑥
3
𝑀𝑋 =
1
6𝐸𝐼
(𝑥3 − 9𝑥2)
BEST FOR You
O R G A N I C S C O M P A N Y
Example 8.14
51
Solution:
BEST FOR You
O R G A N I C S C O M P A N Y
Example 8.14
52
Solution:
•Thus, the deflection at X on the real beam is;
𝑓𝑋𝐵 =
1
6𝐸𝐼
(𝑥3
− 9𝑥2
)
•By applying Maxwell’s law of reciprocal deflections;
𝑓𝐵𝑋 = 𝑓𝑋𝐵
𝑓𝐵𝑋 =
1
6𝐸𝐼
(𝑥3 − 9𝑥2)
•By substituting the numerical values of 𝐸 and 𝐼, we get
𝑓𝐵𝑋 =
(𝑥3−9𝑥2)
240000
•The influence line for vertical deflection at B, obtained by plotting the
preceding equation, is shown in Fig. 8.22(e).
BEST FOR You
O R G A N I C S C O M P A N Y
ASSIGNMENT
•Read and exercise with (8.2 Müller-Breslau’s Principle and Qualitative
Influence Lines).
53
BEST FOR You
O R G A N I C S C O M P A N Y 54

More Related Content

Similar to Influence line structural analysis engineering

Equations Senior Design Project
Equations Senior Design ProjectEquations Senior Design Project
Equations Senior Design ProjectJesse M. Thomas
 
Pressure research in kriss tilt effect 04122018 ver1.67
Pressure research in kriss  tilt effect  04122018 ver1.67Pressure research in kriss  tilt effect  04122018 ver1.67
Pressure research in kriss tilt effect 04122018 ver1.67Gigin Ginanjar
 
power system analysis lecture 1
power system analysis lecture 1power system analysis lecture 1
power system analysis lecture 1Audih Alfaoury
 
Solid Mechanics Eccentrically Loaded Columns.pptx
Solid Mechanics Eccentrically Loaded Columns.pptxSolid Mechanics Eccentrically Loaded Columns.pptx
Solid Mechanics Eccentrically Loaded Columns.pptxsmghumare
 
Vibration isolation progect lego(r)
Vibration isolation progect lego(r)Vibration isolation progect lego(r)
Vibration isolation progect lego(r)Open Adaptronik
 
Diapositivas maqueta en coordenadas normales_y_tangenciales
Diapositivas maqueta en coordenadas normales_y_tangencialesDiapositivas maqueta en coordenadas normales_y_tangenciales
Diapositivas maqueta en coordenadas normales_y_tangencialesARIELMATHEOCHANCUSIG
 
WATTMETER CONSTRUCTION AND TORQUE EQAUTION
WATTMETER CONSTRUCTION AND TORQUE EQAUTIONWATTMETER CONSTRUCTION AND TORQUE EQAUTION
WATTMETER CONSTRUCTION AND TORQUE EQAUTIONTejaswiniSarwade2
 
Module10 the regression analysis
Module10 the regression analysisModule10 the regression analysis
Module10 the regression analysisREYEMMANUELILUMBA
 
Simulation of three-phase bridge rectifier using MATLAB/ SIMULINK for harmoni...
Simulation of three-phase bridge rectifier using MATLAB/ SIMULINK for harmoni...Simulation of three-phase bridge rectifier using MATLAB/ SIMULINK for harmoni...
Simulation of three-phase bridge rectifier using MATLAB/ SIMULINK for harmoni...IJMER
 
Uniform flow computations in open channel flow
Uniform flow computations in open channel flowUniform flow computations in open channel flow
Uniform flow computations in open channel flowASHWINIKUMAR359
 

Similar to Influence line structural analysis engineering (20)

Equations Senior Design Project
Equations Senior Design ProjectEquations Senior Design Project
Equations Senior Design Project
 
FM CHAPTER 5.pptx
FM CHAPTER 5.pptxFM CHAPTER 5.pptx
FM CHAPTER 5.pptx
 
Pressure research in kriss tilt effect 04122018 ver1.67
Pressure research in kriss  tilt effect  04122018 ver1.67Pressure research in kriss  tilt effect  04122018 ver1.67
Pressure research in kriss tilt effect 04122018 ver1.67
 
power system analysis lecture 1
power system analysis lecture 1power system analysis lecture 1
power system analysis lecture 1
 
Gr
GrGr
Gr
 
Solid Mechanics Eccentrically Loaded Columns.pptx
Solid Mechanics Eccentrically Loaded Columns.pptxSolid Mechanics Eccentrically Loaded Columns.pptx
Solid Mechanics Eccentrically Loaded Columns.pptx
 
Vibration isolation progect lego(r)
Vibration isolation progect lego(r)Vibration isolation progect lego(r)
Vibration isolation progect lego(r)
 
Diapositivas maqueta en coordenadas normales_y_tangenciales
Diapositivas maqueta en coordenadas normales_y_tangencialesDiapositivas maqueta en coordenadas normales_y_tangenciales
Diapositivas maqueta en coordenadas normales_y_tangenciales
 
WATTMETER CONSTRUCTION AND TORQUE EQAUTION
WATTMETER CONSTRUCTION AND TORQUE EQAUTIONWATTMETER CONSTRUCTION AND TORQUE EQAUTION
WATTMETER CONSTRUCTION AND TORQUE EQAUTION
 
Ac/AC conveter
Ac/AC conveterAc/AC conveter
Ac/AC conveter
 
Momentum equation.pdf
 Momentum equation.pdf Momentum equation.pdf
Momentum equation.pdf
 
Module10 the regression analysis
Module10 the regression analysisModule10 the regression analysis
Module10 the regression analysis
 
Lecture-3-1.pptx
Lecture-3-1.pptxLecture-3-1.pptx
Lecture-3-1.pptx
 
Electric measurements class 12
Electric measurements class 12Electric measurements class 12
Electric measurements class 12
 
dinamik
dinamikdinamik
dinamik
 
Centroid
CentroidCentroid
Centroid
 
Perturbation
PerturbationPerturbation
Perturbation
 
Simulation of three-phase bridge rectifier using MATLAB/ SIMULINK for harmoni...
Simulation of three-phase bridge rectifier using MATLAB/ SIMULINK for harmoni...Simulation of three-phase bridge rectifier using MATLAB/ SIMULINK for harmoni...
Simulation of three-phase bridge rectifier using MATLAB/ SIMULINK for harmoni...
 
Course pack unit 5
Course pack unit 5Course pack unit 5
Course pack unit 5
 
Uniform flow computations in open channel flow
Uniform flow computations in open channel flowUniform flow computations in open channel flow
Uniform flow computations in open channel flow
 

Recently uploaded

Lab Manual Arduino UNO Microcontrollar.docx
Lab Manual Arduino UNO Microcontrollar.docxLab Manual Arduino UNO Microcontrollar.docx
Lab Manual Arduino UNO Microcontrollar.docxRashidFaridChishti
 
Piping and instrumentation diagram p.pdf
Piping and instrumentation diagram p.pdfPiping and instrumentation diagram p.pdf
Piping and instrumentation diagram p.pdfAshrafRagab14
 
AI in Healthcare Innovative use cases and applications.pdf
AI in Healthcare Innovative use cases and applications.pdfAI in Healthcare Innovative use cases and applications.pdf
AI in Healthcare Innovative use cases and applications.pdfmahaffeycheryld
 
Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1T.D. Shashikala
 
Final DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manualFinal DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manualBalamuruganV28
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxkalpana413121
 
Module-III Varried Flow.pptx GVF Definition, Water Surface Profile Dynamic Eq...
Module-III Varried Flow.pptx GVF Definition, Water Surface Profile Dynamic Eq...Module-III Varried Flow.pptx GVF Definition, Water Surface Profile Dynamic Eq...
Module-III Varried Flow.pptx GVF Definition, Water Surface Profile Dynamic Eq...Nitin Sonavane
 
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptxSLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptxCHAIRMAN M
 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxMustafa Ahmed
 
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...Amil baba
 
analog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxanalog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxKarpagam Institute of Teechnology
 
Low Altitude Air Defense (LAAD) Gunner’s Handbook
Low Altitude Air Defense (LAAD) Gunner’s HandbookLow Altitude Air Defense (LAAD) Gunner’s Handbook
Low Altitude Air Defense (LAAD) Gunner’s HandbookPeterJack13
 
Passive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptPassive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptamrabdallah9
 
Filters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsFilters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsMathias Magdowski
 
handbook on reinforce concrete and detailing
handbook on reinforce concrete and detailinghandbook on reinforce concrete and detailing
handbook on reinforce concrete and detailingAshishSingh1301
 
CLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference ModalCLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference ModalSwarnaSLcse
 
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024EMMANUELLEFRANCEHELI
 
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdflitvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdfAlexander Litvinenko
 
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfInstruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfEr.Sonali Nasikkar
 
Raashid final report on Embedded Systems
Raashid final report on Embedded SystemsRaashid final report on Embedded Systems
Raashid final report on Embedded SystemsRaashidFaiyazSheikh
 

Recently uploaded (20)

Lab Manual Arduino UNO Microcontrollar.docx
Lab Manual Arduino UNO Microcontrollar.docxLab Manual Arduino UNO Microcontrollar.docx
Lab Manual Arduino UNO Microcontrollar.docx
 
Piping and instrumentation diagram p.pdf
Piping and instrumentation diagram p.pdfPiping and instrumentation diagram p.pdf
Piping and instrumentation diagram p.pdf
 
AI in Healthcare Innovative use cases and applications.pdf
AI in Healthcare Innovative use cases and applications.pdfAI in Healthcare Innovative use cases and applications.pdf
AI in Healthcare Innovative use cases and applications.pdf
 
Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1Research Methodolgy & Intellectual Property Rights Series 1
Research Methodolgy & Intellectual Property Rights Series 1
 
Final DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manualFinal DBMS Manual (2).pdf final lab manual
Final DBMS Manual (2).pdf final lab manual
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptx
 
Module-III Varried Flow.pptx GVF Definition, Water Surface Profile Dynamic Eq...
Module-III Varried Flow.pptx GVF Definition, Water Surface Profile Dynamic Eq...Module-III Varried Flow.pptx GVF Definition, Water Surface Profile Dynamic Eq...
Module-III Varried Flow.pptx GVF Definition, Water Surface Profile Dynamic Eq...
 
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptxSLIDESHARE PPT-DECISION MAKING METHODS.pptx
SLIDESHARE PPT-DECISION MAKING METHODS.pptx
 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptx
 
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
 
analog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxanalog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptx
 
Low Altitude Air Defense (LAAD) Gunner’s Handbook
Low Altitude Air Defense (LAAD) Gunner’s HandbookLow Altitude Air Defense (LAAD) Gunner’s Handbook
Low Altitude Air Defense (LAAD) Gunner’s Handbook
 
Passive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptPassive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.ppt
 
Filters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsFilters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility Applications
 
handbook on reinforce concrete and detailing
handbook on reinforce concrete and detailinghandbook on reinforce concrete and detailing
handbook on reinforce concrete and detailing
 
CLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference ModalCLOUD COMPUTING SERVICES - Cloud Reference Modal
CLOUD COMPUTING SERVICES - Cloud Reference Modal
 
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
NEWLETTER FRANCE HELICES/ SDS SURFACE DRIVES - MAY 2024
 
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdflitvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
litvinenko_Henry_Intrusion_Hong-Kong_2024.pdf
 
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdfInstruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
Instruct Nirmaana 24-Smart and Lean Construction Through Technology.pdf
 
Raashid final report on Embedded Systems
Raashid final report on Embedded SystemsRaashid final report on Embedded Systems
Raashid final report on Embedded Systems
 

Influence line structural analysis engineering

  • 1. Lecturer: T.A. Esmatullah Masom Date : 2023/12/4 Kandahar University Engineering faculty Civil department Structure Analysis I C h a p t e r E i g h t Influence Lines
  • 2. BEST FOR You O R G A N I C S C O M P A N Y Table Of Content Introduction 8.1 Influence Lines for Beams and Frames by Equilibrium Method 8.2 Müller-Breslau’s Principle and Qualitative Influence Lines 8.3 Influence Lines for Girders with Floor Systems 8.4 Influence Lines for Trusses 8.5 Influence Lines for Deflections Assignment 2
  • 3. BEST FOR You O R G A N I C S C O M P A N Y Introduction •Influence Lines important concept used when structures subjected to variable (movable) loads. •Initially introduced by E. Winkler in 1867. •An influence line is a graph of a response function of a structure as a function of the position of a downward unit load moving across the structure. 3
  • 4. BEST FOR You O R G A N I C S C O M P A N Y Introduction •Analysis of structures for variable loads consists of two steps: 1. Determining the position(𝑥) of the load at which the response function of interest becomes maximum. 2. Computing the maximum value of the response function. 4
  • 5. BEST FOR You O R G A N I C S C O M P A N Y 8.1 Influence Lines For Beams And Frames By Equilibrium Method 5 ➢Influence Lines for Reactions: + ⤹ ∑𝑀𝑐 = 0 −𝐴𝑦 𝐿 + 1 𝐿 − 𝑥 = 0 𝐴𝑦 = 1 𝐿−𝑥 𝐿 = 1 − 𝑥 𝐿 + ⤹ ∑𝑀𝐴 = 0 −1 𝑥 + 𝐶𝑦 𝐿 = 0 𝐶𝑦 = 1(𝑥) 𝐿 = 𝑥 𝐿
  • 6. BEST FOR You O R G A N I C S C O M P A N Y 8.1 Influence Lines For Beams And Frames By Equilibrium Method 6 ➢Influence Lines for Reactions:
  • 7. BEST FOR You O R G A N I C S C O M P A N Y 8.1 Influence Lines For Beams And Frames By Equilibrium Method 7 ➢Influence Line for Shear at 𝐵:
  • 8. BEST FOR You O R G A N I C S C O M P A N Y 8.1 Influence Lines For Beams And Frames By Equilibrium Method 8 ➢Influence Line for Shear at 𝐵: 𝑆𝐵 = −𝐶𝑦 0 ≤ 𝑥 < 𝑎 𝑆𝐵 = −𝐶𝑦= − 𝑥 𝐿 0 ≤ 𝑥 < 𝑎 𝑆𝐵 = 𝐴𝑦 𝑎 < 𝑥 ≤ 𝐿 𝑆𝐵 = 𝐴𝑦 = 1 − 𝑥 𝐿 𝑎 < 𝑥 ≤ 𝐿
  • 9. BEST FOR You O R G A N I C S C O M P A N Y 8.1 Influence Lines For Beams And Frames By Equilibrium Method 9 ➢Influence Line for Bending Moment at 𝐵: 𝑀𝐵 = 𝐶𝑦(𝐿 − 𝑎) 0 ≤ 𝑥 ≤ 𝑎 𝑀𝐵 = 𝑥 𝐿 𝐿 − 𝑎 0 ≤ 𝑥 ≤ 𝑎 𝑀𝐵 = 𝐴𝑦(𝑎) 𝑎 ≤ 𝑥 ≤ 𝐿 𝑀𝐵 = 𝐴𝑦 = 1 − 𝑥 𝐿 𝑎 𝑎 ≤ 𝑥 ≤ 𝐿
  • 10. BEST FOR You O R G A N I C S C O M P A N Y Example 8.1 10 Draw the influence lines for the vertical reactions at supports 𝐴 and 𝐶, and the shear and bending moment at point 𝐵, of the simply supported beam shown in Fig. 8.3(a).
  • 11. BEST FOR You O R G A N I C S C O M P A N Y Example 8.1 11 Solution: Influence Line for 𝑨𝒚: + ⤹ ∑𝑀𝑐 = 0 −𝐴𝑦 5 + 1 5 − 𝑥 = 0 𝐴𝑦 = 1 5−𝑥 5 = 1 − 𝑥 5 Influence Line for 𝑪𝒚: + ⤹ ∑𝑀𝐴 = 0 −1 𝑥 + 𝐶𝑦 5 = 0 𝐶𝑦 = 1(𝑥) 5 = 𝑥 5
  • 12. BEST FOR You O R G A N I C S C O M P A N Y Example 8.1 12 Solution: Influence Line for 𝑺𝑩: 𝑆𝐵 = −𝐶𝑦= − 𝑥 𝐿 = − 𝑥 5 0 ≤ 𝑥 < 3𝑚 𝑆𝐵 = 𝐴𝑦 = 1 − 𝑥 𝐿 = 1 − 𝑥 5 3𝑚 ≤ 𝑥 ≤ 5𝑚
  • 13. BEST FOR You O R G A N I C S C O M P A N Y Example 8.1 13 Solution: Influence Line for 𝑴𝑩: 𝑀𝐵 = 2𝐶𝑦 = 2𝑥 5 0 ≤ 𝑥 < 3𝑚 𝑀𝐵 = 3𝐴𝑦 = 3 − 3𝑥 5 3𝑚 ≤ 𝑥 ≤ 5𝑚
  • 14. BEST FOR You O R G A N I C S C O M P A N Y Influence line for girder, trusses & deflection 14 Lecturer: T.A. Esmatullah Masom Date : 2023/12/11
  • 15. BEST FOR You O R G A N I C S C O M P A N Y 8.3 Influence Lines For Girders With Floor Systems 15
  • 16. BEST FOR You O R G A N I C S C O M P A N Y 8.3 Influence Lines For Girders With Floor Systems 16
  • 17. BEST FOR You O R G A N I C S C O M P A N Y 8.3 Influence Lines For Girders With Floor Systems 17
  • 18. BEST FOR You O R G A N I C S C O M P A N Y 8.3 Influence Lines For Girders With Floor Systems 18 ➢Influence Lines for Reactions: + ⤹ ∑𝑀𝐹 = 0 − 𝐴𝑦 𝐿 + 1 𝐿 − 𝑥 𝐴𝑦 = 1 − 𝑥 𝐿 + ⤹ ∑𝑀𝐴 = 0 𝐹𝑦 𝐿 − 1 𝑥 𝐹𝑦 = 𝑥 𝐿
  • 19. BEST FOR You O R G A N I C S C O M P A N Y 8.3 Influence Lines For Girders With Floor Systems 19 ➢Influence Line for Shear in Panel 𝐵𝐶:
  • 20. BEST FOR You O R G A N I C S C O M P A N Y 8.3 Influence Lines For Girders With Floor Systems 20 ➢Influence Line for Shear in Panel 𝐵𝐶: 𝑆𝐵𝐶 = −𝐹𝑦= − 𝑥 𝐿 0 ≤ 𝑥 ≤ 𝐿 5 𝑆𝐵𝐶 = 𝐴𝑦 = 1 − 𝑥 𝐿 2𝐿 5 ≤ 𝑥 ≤ 𝐿 𝑆𝐵𝐶 = 𝐴𝑦−𝐹𝐵= 1 − 𝑥 𝐿 − 2 − 5𝑥 𝐿 = −1 + 4𝑥 𝐿 𝐿 5 ≤ 𝑥 ≤ 2𝐿 5
  • 21. BEST FOR You O R G A N I C S C O M P A N Y 8.3 Influence Lines For Girders With Floor Systems 21 ➢Influence Line for Bending Moment at G: 𝑀𝐺 = 𝐹𝑦 𝐿 − 𝑎 = 𝑥 𝐿 𝐿 − 𝑎 0 ≤ 𝑥 ≤ 𝐿 5 𝑀𝐺 = 𝐴𝑦 𝑎 = 1 − 𝑥 𝐿 𝑎 2𝐿 5 ≤ 𝑥 ≤ 𝐿 𝑀𝐺 = 𝐴𝑦 𝑎 − 𝐹𝐵 𝑎 − 𝐿 5 = 1 − 𝑥 𝐿 𝑎 − 2 − 5𝑥 𝐿 𝑎 − 𝐿 5 = 2𝐿 5 − 𝑎 − 𝑥 1 − 4𝑎 𝐿 𝐿 5 ≤ 𝑥 ≤ 2𝐿 5
  • 22. BEST FOR You O R G A N I C S C O M P A N Y 8.3 Influence Lines For Girders With Floor Systems 22 ➢Influence Line for Bending Moment at Panel Point C: 𝑀𝐶 = 𝐹𝑦 3𝐿 5 = 𝑥 𝐿 3𝐿 5 = 3 5 𝑥 0 ≤ 𝑥 ≤ 2𝐿 5 𝑀𝑐 = 𝐴𝑦 2𝐿 5 = 1 − 𝑥 𝐿 2𝐿 5 = 2 5 𝐿 − 𝑥 2𝐿 5 ≤ 𝑥 ≤ 𝐿
  • 23. BEST FOR You O R G A N I C S C O M P A N Y Example 8.9 23 Draw the influence lines for the shear in panel 𝐵𝐶 and the bending moment at 𝐵 of the girder with floor system shown in Fig. 8.14(a)
  • 24. BEST FOR You O R G A N I C S C O M P A N Y Example 8.9 24 Influence Line for 𝑺𝑩𝑪: 1𝑘𝑁 𝑙𝑜𝑎𝑑 𝑖𝑠 𝑎𝑡 𝐴, 𝐷𝑦 = 0 𝑆𝐵𝐶 = 0 1𝑘𝑁 𝑙𝑜𝑎𝑑 𝑖𝑠 𝑎𝑡 𝐵, 𝐷𝑦 = 1 3 𝑘𝑁 𝑆𝐵𝐶 = − 1 3 kN 1𝑘𝑁 𝑙𝑜𝑎𝑑 𝑖𝑠 𝑎𝑡 𝐶, 𝐴𝑦 = − 1 3 𝑘𝑁 𝑆𝐵𝐶 = 1 3 𝑘𝑁 1𝑘𝑁 𝑙𝑜𝑎𝑑 𝑖𝑠 𝑎𝑡 𝐷, 𝐴𝑦 = 0 𝑆𝐵𝐶 = 0
  • 25. BEST FOR You O R G A N I C S C O M P A N Y Example 8.9 25 Influence Line for 𝑴𝑩: 1𝑘𝑁 𝑙𝑜𝑎𝑑 𝑖𝑠 𝑎𝑡 𝐴, 𝐷𝑦 = 0 𝑀𝐵 = 0 1𝑘𝑁 𝑙𝑜𝑎𝑑 𝑖𝑠 𝑎𝑡 𝐵, 𝐴𝑦 = 2 3 𝑘𝑁 𝑀𝐵 = 2 3 6 = 4kN. m 1𝑘𝑁 𝑙𝑜𝑎𝑑 𝑖𝑠 𝑎𝑡𝐷, 𝐴𝑦 = 0 𝑀𝐵 = 0
  • 26. BEST FOR You O R G A N I C S C O M P A N Y 8.4 Influence Lines For Trusses 26
  • 27. BEST FOR You O R G A N I C S C O M P A N Y 8.4 Influence Lines For Trusses 27
  • 28. BEST FOR You O R G A N I C S C O M P A N Y 8.4 Influence Lines For Trusses 28 ➢Influence Lines for Reactions: + ⤹ ∑𝑀𝐸 = 0 − 𝐴𝑦 12 + 1 12 − 𝑥 𝐴𝑦 = 1 − 𝑥 12 + ⤹ ∑𝑀𝐴 = 0 𝐸𝑦 12 − 1 𝑥 𝐸𝑦 = 𝑥 12
  • 29. BEST FOR You O R G A N I C S C O M P A N Y 8.4 Influence Lines For Trusses 29 ➢Influence Line for Force in Vertical Member 𝐶𝐼: +↑ ∑𝐹𝑦 = 0 −𝐹𝐶𝐼 +𝐸𝑦 = 0 𝐹𝐶𝐼 = 𝐸𝑦 0 ≤ 𝑥 ≤ 6𝑚 +↑ ∑𝐹𝑦 = 0 𝐹𝐶𝐼 + 𝐴𝑦 = 0 𝐹𝐶𝐼 = −𝐴𝑦 9 ≤ 𝑥 ≤ 18𝑚
  • 30. BEST FOR You O R G A N I C S C O M P A N Y 8.4 Influence Lines For Trusses 30 ➢Influence Line for Force in Vertical Member 𝐶𝐼: +↑ ∑𝐹𝑦 = 0 𝐴𝑦 − 9−𝑥 3 + 𝐹𝐶𝐼 = 0 𝐹𝐶𝐼= −𝐴𝑦 + 9−𝑥 3 6𝑚 ≤ 𝑥 ≤ 9𝑚
  • 31. BEST FOR You O R G A N I C S C O M P A N Y 8.4 Influence Lines For Trusses 31 ➢Influence Line for Force in Bottom Chord Member 𝐶𝐷: •Using right portion AC + ⤹ ∑𝑀𝐼 = 0 −𝐹𝐶𝐷 4 + 𝐸𝑦 6 = 0 𝐹𝐶𝐷= 1.5𝐸𝑦 0 ≤ 𝑥 ≤ 6𝑚 •Using left portion AC + ⤹ ∑𝑀𝐼 = 0 𝐹𝐶𝐷 4 − 𝐴𝑦 6 = 0 𝐹𝐶𝐷= 1.5𝐴𝑦 6𝑚 ≤ 𝑥 ≤ 18𝑚
  • 32. BEST FOR You O R G A N I C S C O M P A N Y 8.4 Influence Lines For Trusses 32 ➢Influence Line for Force in Diagonal Member 𝐷𝐼:
  • 33. BEST FOR You O R G A N I C S C O M P A N Y 8.4 Influence Lines For Trusses 33 ➢Influence Line for Force in Diagonal Member 𝐷𝐼: +↑ ∑𝐹𝑦 = 0 4 5 𝐹𝐷𝐼 + 𝐸𝑦 = 0 𝐹𝐷𝐼 = −1.25𝐸𝑦 0 ≤ 𝑥 ≤ 6𝑚 +↑ ∑𝐹𝑦 = 0 − 4 5 𝐹𝐷𝐼 + 𝐴𝑦 = 0 𝐹𝐷𝐼 = 1.25𝐴𝑦 9 ≤ 𝑥 ≤ 18𝑚
  • 34. BEST FOR You O R G A N I C S C O M P A N Y 8.4 Influence Lines For Trusses 34 ➢Influence Line for Force in Top Chord Member 𝐼𝐽: + ⤹ ∑𝑀𝐷 = 0 𝐹𝐼𝐽 4 + 𝐸𝑦 3 = 0 𝐹𝐼𝐽 = −0.75𝐸𝑦 0 ≤ 𝑥 ≤ 9𝑚 + ⤹ ∑𝑀𝐷 = 0 −𝐹𝐼𝐽 4 − 𝐴𝑦 9 = 0 𝐹𝐼𝐽 = −2.25𝐴𝑦 9𝑚 ≤ 𝑥 ≤ 18𝑚
  • 35. BEST FOR You O R G A N I C S C O M P A N Y 8.4 Influence Lines For Trusses 35 ➢Influence Line for Force in Vertical Member 𝐹𝐿:
  • 36. BEST FOR You O R G A N I C S C O M P A N Y Example 8.12 36 Draw the influence lines for the forces in members 𝐴𝐹, 𝐶𝐹, and 𝐶𝐺 of the Parker truss shown in Fig. 8.19(a). Live loads are transmitted to the bottom chord of the truss.
  • 37. BEST FOR You O R G A N I C S C O M P A N Y Example 8.12 37 Solution: Influence Lines for Reactions: The influence lines for the reactions 𝐴𝑦 and 𝐸𝑦 obtained by applying the equilibrium equations, ∑𝑀𝐸 = 0 and ∑𝑀𝐴 = 0
  • 38. BEST FOR You O R G A N I C S C O M P A N Y Example 8.12 38 Solution: Influence Line for 𝑭𝑨𝑭:
  • 39. BEST FOR You O R G A N I C S C O M P A N Y Example 8.12 39 Solution: Influence Line for 𝑭𝑨𝑭: +↑ ∑𝐹𝑦 = 0 𝐴𝑦 − 1 + 3 5 𝐹𝐴𝐹 = 0 Because 𝐴𝑦 = 1 𝑘𝑁, 𝐹𝐴𝐹 = 0 𝑓𝑜𝑟 𝑥 = 0 •When the 1𝑘𝑁 load is located to the right of joint B, we write +↑ ∑𝐹𝑦 = 0 𝐴𝑦 + 3 5 𝐹𝐴𝐹 = 0 𝐹𝐴𝐹 = −1.667𝐴𝑦 𝑓𝑜𝑟 4𝑚 ≤ 𝑥 ≤ 16𝑚
  • 40. BEST FOR You O R G A N I C S C O M P A N Y Example 8.12 40 Solution:
  • 41. BEST FOR You O R G A N I C S C O M P A N Y Example 8.12 41 Solution: Influence Line for 𝑭𝑪𝑭: + ⤹ ∑𝑀𝑂 = 0 3 5 𝐹𝐶𝐹 16 + 𝐸𝑦 24 = 0 𝐹𝐶𝐹 = −2.5𝐸𝑦 0 ≤ 𝑥 ≤ 4𝑚 •When the 1 𝑘𝑁 load is located to the right of C, we consider the equilibrium of the left portion AB to obtain + ⤹ ∑𝑀𝑂 = 0 𝐴𝑦 8 − 4 5 𝐹𝐶𝐹 3 − 3 5 𝐹𝐶𝐹 12 = 0 𝐹𝐶𝐹 = 0.833𝐴𝑦 8𝑚 ≤ 𝑥 ≤ 16𝑚
  • 42. BEST FOR You O R G A N I C S C O M P A N Y Example 8.12 42 Solution: Influence Line for 𝑭𝑪𝑮: •We will determine the influence line for 𝐹𝐶𝐺 by considering the equilibrium of joint 𝐺 +↑ ∑𝐹𝑦 = 0 − 𝐹𝐶𝐺 − 1 17 𝐹𝐹𝐺 − 1 17 𝐹𝐺𝐻 = 0 𝐹𝐶𝐺 = − 1 17 (𝐹𝐹𝐺 + 𝐹𝐺𝐻) (1)
  • 43. BEST FOR You O R G A N I C S C O M P A N Y Example 8.12 43 Solution: Influence Line for 𝑭𝑪𝑮: +→ ∑𝐹𝑥 = 0 − 4 17 𝐹𝐹𝐺 + 4 17 𝐹𝐺𝐻 = 0 𝐹𝐹𝐺 = 𝐹𝐺𝐻 (2) •By substituting Eq. (2) into Eq. (1), we obtain 𝐹𝐶𝐺 = − 2 17 𝐹𝐹𝐺 = −0.485𝐹𝐹𝐺 (3) •We will first construct the influence line for 𝐹𝐹𝐺 by using section 𝑎𝑎 •Than apply Eq. (3) to obtain the desired influence line for 𝐹𝐶𝐺.
  • 44. BEST FOR You O R G A N I C S C O M P A N Y Example 8.12 44 Solution: Influence Line for 𝑭𝑪𝑮:
  • 45. BEST FOR You O R G A N I C S C O M P A N Y Example 8.12 45 Solution: Influence Line for𝑭𝑭𝑮: + ⤹ ∑𝑀𝑐 = 0 4 17 𝐹𝐹𝐺 4 + 𝐸𝑦 8 = 0 𝐹𝐹𝐺 = −2.062𝐸𝑦 0 ≤ 𝑥 ≤ 4𝑚 •When the 1 𝑘𝑁 load is located to the right of 𝐶, we consider the equilibrium of the left portion AB to obtain + ⤹ ∑𝑀𝑐 = 0 − 1 17 𝐹𝐹𝐺 4 − 4 17 𝐹𝐹𝐺 3 − 𝐴𝑦 8 = 0 𝐹𝐹𝐺 = −2.062𝐴𝑦 8𝑚 ≤ 𝑥 ≤ 16𝑚
  • 46. BEST FOR You O R G A N I C S C O M P A N Y Example 8.12 46 Solution: The desired influence line for 𝐹𝐶𝐺 can now be obtained by multiplying the influence line for 𝐹𝐹𝐺 by −0.485 ,
  • 47. BEST FOR You O R G A N I C S C O M P A N Y 8.5 Influence Lines For Deflections 47 •A more efficient procedure for constructing the deflection influence lines can be devised by the application of Maxwell’s law of reciprocal deflections: •Considering again the beam of Fig. 8.21(a). •If 𝑓𝐵𝑋 is the vertical deflection at B when the unit load is placed at an arbitrary point X, •Then 𝑓𝑋𝐵 represents the ordinate at X of the influence line for the vertical deflection at B. 𝑓𝐵𝑋 = 𝑓𝑋𝐵
  • 48. BEST FOR You O R G A N I C S C O M P A N Y 8.5 Influence Lines For Deflections 48
  • 49. BEST FOR You O R G A N I C S C O M P A N Y Example 8.14 49 Draw the influence line for the vertical deflection at end B of the cantilever beam shown in Fig. 8.22(a).
  • 50. BEST FOR You O R G A N I C S C O M P A N Y Example 8.14 50 Solution: 𝑀𝑋 = 1 𝐸𝐼 −3 1 − 𝑥 3 𝑥 𝑥 2 − 1 2 3 − 3 1 − 𝑥 3 𝑥 2𝑥 3 𝑀𝑋 = 1 6𝐸𝐼 (𝑥3 − 9𝑥2)
  • 51. BEST FOR You O R G A N I C S C O M P A N Y Example 8.14 51 Solution:
  • 52. BEST FOR You O R G A N I C S C O M P A N Y Example 8.14 52 Solution: •Thus, the deflection at X on the real beam is; 𝑓𝑋𝐵 = 1 6𝐸𝐼 (𝑥3 − 9𝑥2 ) •By applying Maxwell’s law of reciprocal deflections; 𝑓𝐵𝑋 = 𝑓𝑋𝐵 𝑓𝐵𝑋 = 1 6𝐸𝐼 (𝑥3 − 9𝑥2) •By substituting the numerical values of 𝐸 and 𝐼, we get 𝑓𝐵𝑋 = (𝑥3−9𝑥2) 240000 •The influence line for vertical deflection at B, obtained by plotting the preceding equation, is shown in Fig. 8.22(e).
  • 53. BEST FOR You O R G A N I C S C O M P A N Y ASSIGNMENT •Read and exercise with (8.2 Müller-Breslau’s Principle and Qualitative Influence Lines). 53
  • 54. BEST FOR You O R G A N I C S C O M P A N Y 54