SlideShare a Scribd company logo
1 of 128
Download to read offline
ESE 470 ā€“ Energy Distribution Systems
SECTION 5: POWER FLOW
K. Webb ESE 470
Introduction
2
K. Webb ESE 470
Nodal Analysis
ļ‚Ø Consider the following circuit
ļ‚Ø Three voltage sources
ļ‚¤ š‘‰š‘‰š‘ š‘ š‘ , š‘‰š‘‰š‘ š‘ š‘ , š‘‰š‘‰š‘ š‘ š‘ 
ļ‚Ø Generic branch impedances
ļ‚¤ Could be any combination of R, L, and C
ļ‚Ø Three unknown node voltages
ļ‚¤ š‘‰š‘‰1, š‘‰š‘‰2, and š‘‰š‘‰3
ļ‚Ø Would like to analyze the circuit
ļ‚¤ Determine unknown node voltages
ļ‚Ø One possible analysis technique is nodal analysis
3
K. Webb ESE 470
Nodal Analysis
ļ‚Ø Nodal analysis
ļ‚¤ Systematic application of KCL at each unknown node
ļ‚¤ Apply Ohmā€™s law to express branch currents in terms of node
voltages
ļ‚¤ Sum currents at each unknown node
ļ‚Ø Weā€™ll sum currents leaving each node
and set equal to zero
ļ‚Ø At node š‘‰š‘‰1, we have
š‘‰š‘‰1 āˆ’ š‘‰š‘‰š‘ š‘ š‘ 
š‘š‘š‘ š‘ š‘ 
+
š‘‰š‘‰1 āˆ’ š‘‰š‘‰2
š‘š‘1
= 0
ļ‚Ø Every current term includes division
by an impedance
ļ‚¤ Easier to work with admittances instead
4
K. Webb ESE 470
Nodal Analysis
ļ‚Ø Now our first nodal equation becomes
š‘‰š‘‰1 āˆ’ š‘‰š‘‰š‘ š‘ š‘  š‘Œš‘Œš‘ š‘ š‘  + š‘‰š‘‰1 āˆ’ š‘‰š‘‰2 š‘Œš‘Œ1 = 0
where
š‘Œš‘Œš‘ š‘ š‘  = 1/š‘š‘š‘ š‘ š‘  and š‘Œš‘Œ1 = 1/š‘š‘1
ļ‚Ø Rearranging to place all unknown node voltages on the left and all
source terms on the right
š‘Œš‘Œš‘ š‘ š‘  + š‘Œš‘Œ1 š‘‰š‘‰1 āˆ’ š‘Œš‘Œ1š‘‰š‘‰2 = š‘Œš‘Œš‘ š‘ š‘ š‘‰š‘‰š‘ š‘ š‘ 
ļ‚Ø Applying KCL at node š‘‰š‘‰2
š‘‰š‘‰2 āˆ’ š‘‰š‘‰1 š‘Œš‘Œ1 + š‘‰š‘‰2š‘Œš‘Œ2 + š‘‰š‘‰2 āˆ’ š‘‰š‘‰š‘ š‘ š‘  š‘Œš‘Œš‘ š‘ š‘  + š‘‰š‘‰2 āˆ’ š‘‰š‘‰3 š‘Œš‘Œ3 = 0
5
K. Webb ESE 470
Nodal Analysis
ļ‚Ø Rearranging
āˆ’š‘Œš‘Œ1š‘‰š‘‰1 + š‘Œš‘Œ1 + š‘Œš‘Œ2 + š‘Œš‘Œš‘ š‘ š‘  + š‘Œš‘Œ3 š‘‰š‘‰2 āˆ’ š‘Œš‘Œ3š‘‰š‘‰3 = š‘Œš‘Œš‘ š‘ š‘ š‘‰š‘‰š‘ š‘ š‘ 
ļ‚Ø Finally, applying KCL at node š‘‰š‘‰3, gives
š‘‰š‘‰3 āˆ’ š‘‰š‘‰2 š‘Œš‘Œ3 + š‘‰š‘‰3 āˆ’ š‘‰š‘‰š‘ š‘ š‘  š‘Œš‘Œš‘ š‘ š‘  = 0
āˆ’š‘Œš‘Œ3š‘‰š‘‰2 + š‘Œš‘Œ3 + š‘Œš‘Œš‘ š‘ š‘  š‘‰š‘‰3 = š‘Œš‘Œš‘ š‘ š‘ š‘‰š‘‰š‘ š‘ š‘ 
ļ‚Ø Note that the source terms are the Norton equivalent
current sources (short-circuit currents) associated with each
voltage source
6
K. Webb ESE 470
Nodal Analysis
ļ‚Ø Putting the nodal equations into matrix form
š‘Œš‘Œš‘ š‘ 1 + š‘Œš‘Œš‘Œ āˆ’š‘Œš‘Œ1 0
āˆ’š‘Œš‘Œ1 š‘Œš‘Œ1 + š‘Œš‘Œ2 + š‘Œš‘Œš‘ š‘ š‘  + š‘Œš‘Œ3 āˆ’š‘Œš‘Œ3
0 āˆ’š‘Œš‘Œ3 š‘Œš‘Œ3 + š‘Œš‘Œš‘ š‘ š‘ 
š‘‰š‘‰1
š‘‰š‘‰2
š‘‰š‘‰3
=
š‘Œš‘Œš‘ š‘ 1š‘‰š‘‰š‘ š‘ 1
š‘Œš‘Œš‘ š‘ š‘ š‘‰š‘‰š‘ š‘ š‘ 
š‘Œš‘Œš‘ š‘ š‘ š‘‰š‘‰š‘ š‘ š‘ 
or
š’€š’€š’€š’€ = š‘°š‘°
where
ļ® š’€š’€ is the š‘š‘ Ɨ š‘š‘ admittance matrix
ļ® š‘°š‘° is an š‘š‘ Ɨ 1 vector of known source currents
ļ® š‘½š‘½ is an š‘š‘ Ɨ 1 vector of unknown node voltages
ļ‚Ø This is a system of š‘š‘ (here, three) linear equations with š‘š‘
unknowns
ļ‚Ø We can solve for the vector of unknown voltages as
š‘½š‘½ = š’€š’€āˆ’1
š‘°š‘°
7
K. Webb ESE 470
The Admittance Matrix, š’€š’€
ļ‚Ø Take a closer look at the form of the admittance matrix, š’€š’€
š‘Œš‘Œš‘ š‘ 1 + š‘Œš‘Œš‘Œ āˆ’š‘Œš‘Œ1 0
āˆ’š‘Œš‘Œ1 š‘Œš‘Œ1 + š‘Œš‘Œ2 + š‘Œš‘Œš‘ š‘ š‘  + š‘Œš‘Œ3 āˆ’š‘Œš‘Œ3
0 āˆ’š‘Œš‘Œ3 š‘Œš‘Œ3 + š‘Œš‘Œš‘ š‘ š‘ 
=
š‘Œš‘Œ11 š‘Œš‘Œ12 š‘Œš‘Œ13
š‘Œš‘Œ21 š‘Œš‘Œ22 š‘¦š‘¦23
š‘Œš‘Œ31 š‘Œš‘Œ32 š‘Œš‘Œ33
ļ‚Ø The elements of š’€š’€ are
ļ‚¤ Diagonal elements, š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜:
ļ® š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ = sum of all admittances connected to node š‘˜š‘˜
ļ® Self admittance or driving-point admittance
ļ‚¤ Off-diagonal elements, š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ (š‘˜š‘˜ ā‰  š‘›š‘›):
ļ® š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ = āˆ’(total admittance between nodes š‘˜š‘˜ and š‘›š‘›)
ļ® Mutual admittance or transfer admittance
ļ‚Ø Note that, because the network is reciprocal, š’€š’€ is symmetric
8
K. Webb ESE 470
Nodal Analysis
ļ‚Ø Nodal analysis allows us to solve for unknown voltages
given circuit admittances and current (Norton
equivalent) inputs
ļ‚¤ An application of Ohmā€™s law
š’€š’€š’€š’€ = š‘°š‘°
ļ‚¤ A linear equation
ļ‚¤ Simple, algebraic solution
ļ‚Ø For power-flow analysis, things get a bit more
complicated
9
K. Webb ESE 470
Power-Flow Analysis
10
K. Webb ESE 470
The Power-Flow Problem
ļ‚Ø A typical power system is not entirely unlike the simple
circuit we just looked at
ļ‚¤ Sources are generators
ļ‚¤ Nodes are the system buses
ļ‚¤ Buses are interconnected by impedances of transmission
lines and transformers
ļ‚Ø Inputs and outputs now include power (P and Q)
ļ‚¤ System equations are now nonlinear
ļ‚¤ Canā€™t simply solve š’€š’€š’€š’€ = š‘°š‘°
ļ‚¤ Must employ numerical, iterative solution methods
ļ‚Ø Power system analysis to determine bus voltages and
power flows is called power-flow analysis or load-flow
analysis
11
K. Webb ESE 470
System One-Line Diagram
ļ‚Ø Consider the one-line diagram for a simple power system
ļ‚Ø System includes:
ļ‚¤ Generators
ļ‚¤ Buses
ļ‚¤ Transformers
ļ® Treated as equivalent circuit impedances in per-unit
ļ‚¤ Transmission lines
ļ® Equivalent circuit impedances
ļ‚¤ Loads
12
K. Webb ESE 470
Bus Variables
ļ‚Ø The buses are the system nodes
ļ‚Ø Four variables associated with each bus, š‘˜š‘˜
ļ‚¤ Voltage magnitude, š‘‰š‘‰š‘˜š‘˜
ļ‚¤ Voltage phase angle, š›æš›æš‘˜š‘˜
ļ‚¤ Real power delivered to the bus, š‘ƒš‘ƒš‘˜š‘˜
ļ‚¤ Reactive power delivered to the bus, š‘„š‘„š‘˜š‘˜
13
K. Webb ESE 470
Bus Power
ļ‚Ø Net power delivered to bus š‘˜š‘˜ is the difference between power
flowing from generators to bus š‘˜š‘˜ and power flowing from bus š‘˜š‘˜ to
loads
š‘ƒš‘ƒš‘˜š‘˜ = š‘ƒš‘ƒšŗšŗšŗšŗ āˆ’ š‘ƒš‘ƒšæšæšæšæ
š‘„š‘„š‘˜š‘˜ = š‘„š‘„šŗšŗšŗšŗ āˆ’ š‘„š‘„šæšæšæšæ
ļ‚Ø Even though weā€™ve introduced power flow into the analysis, we can
still write nodal equations for the system
ļ‚Ø Voltage and current related by the bus admittance matrix, š’€š’€š‘š‘š‘š‘š‘š‘
šˆšˆ = š˜š˜š‘š‘š‘š‘š‘š‘š•š•
ļ‚¤ š˜š˜š‘š‘š‘š‘š‘š‘ contains the bus mutual and self admittances associated with
transmission lines and transformers
ļ‚¤ For an š‘š‘ bus system, š•š• is an š‘š‘ Ɨ 1 vector of bus voltages
ļ‚¤ šˆšˆ is an š‘š‘ Ɨ 1 vector of source currents flowing into each bus
ļ® From generators and loads
14
K. Webb ESE 470
Types of Buses
ļ‚Ø There are four variables associated with each bus
ļ‚¤ š‘‰š‘‰š‘˜š‘˜ = š‘½š‘½š‘˜š‘˜
ļ‚¤ š›æš›æš‘˜š‘˜ = āˆ š‘½š‘½š‘˜š‘˜
ļ‚¤ š‘ƒš‘ƒš‘˜š‘˜
ļ‚¤ š‘„š‘„š‘˜š‘˜
ļ‚Ø Two variables are inputs to the power-flow problem
ļ‚¤ Known
ļ‚Ø Two are outputs
ļ‚¤ To be calculated
ļ‚Ø Buses are categorized into three types depending on which
quantities are inputs and which are outputs
ļ‚¤ Slack bus (swing bus)
ļ‚¤ Load bus (PQ bus)
ļ‚¤ Voltage-controlled bus (PV bus)
15
K. Webb ESE 470
Bus Types
ļ‚Ø Slack bus (swing bus):
ļ‚¤ Reference bus
ļ‚¤ Typically bus 1
ļ‚¤ Inputs are voltage magnitude, š‘‰š‘‰1, and phase angle, š›æš›æ1
ļ® Typically 1.0āˆ 0Ā°
ļ‚¤ Power, š‘ƒš‘ƒ1 and š‘„š‘„1, is computed
ļ‚Ø Load bus (š‘·š‘·š‘·š‘· bus):
ļ‚¤ Buses to which only loads are connected
ļ‚¤ Real power, š‘ƒš‘ƒš‘˜š‘˜, and reactive power, š‘„š‘„š‘˜š‘˜, are the knowns
ļ‚¤ š‘‰š‘‰š‘˜š‘˜ and š›æš›æš‘˜š‘˜ are calculated
ļ‚¤ Majority of power system buses are load buses
16
K. Webb ESE 470
Bus Types
ļ‚Ø Voltage-controlled bus (š‘·š‘·š‘·š‘· bus):
ļ‚¤ Buses connected to generators
ļ‚¤ Buses with shunt reactive compensation
ļ‚¤ Real power, š‘ƒš‘ƒš‘˜š‘˜, and voltage magnitude, š‘‰š‘‰š‘˜š‘˜, are known
inputs
ļ‚¤ Reactive power, š‘„š‘„š‘˜š‘˜, and voltage phase angle, š›æš›æš‘˜š‘˜, are
calculated
17
K. Webb ESE 470
Solving the Power-Flow Problem
ļ‚Ø The power-flow solution involves determining:
ļ‚¤ š‘‰š‘‰š‘˜š‘˜, š›æš›æš‘˜š‘˜, š‘ƒš‘ƒš‘˜š‘˜, and š‘„š‘„š‘˜š‘˜
ļ‚Ø There are š‘š‘ buses
ļ‚¤ Each with two unknown quantities
ļ‚Ø There are 2š‘š‘ unknown quantities in total
ļ‚¤ Need 2š‘š‘ equations
ļ‚Ø š‘š‘ of these equations are the nodal equations
š‘°š‘° = š’€š’€š’€š’€ (1)
ļ‚Ø The other š‘š‘ equations are the power-balance equations
š‘ŗš‘ŗš‘˜š‘˜ = š‘ƒš‘ƒš‘˜š‘˜ + š‘—š‘—š‘„š‘„š‘˜š‘˜ = š‘½š‘½š‘˜š‘˜š‘°š‘°š‘˜š‘˜
āˆ—
(2)
ļ‚Ø From (1), the nodal equation for the š‘˜š‘˜š‘”š‘”š‘”
bus is
š‘°š‘°š‘˜š‘˜ = āˆ‘š‘›š‘›=1
š‘š‘
š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜š‘½š‘½š‘›š‘› (3)
18
K. Webb ESE 470
Solving the Power-Flow Problem
ļ‚Ø Substituting (3) into (2) gives
š‘ƒš‘ƒš‘˜š‘˜ + š‘—š‘—š‘„š‘„š‘˜š‘˜ = š‘½š‘½š‘˜š‘˜ āˆ‘š‘›š‘›=1
š‘š‘
š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜š‘½š‘½š‘›š‘›
āˆ— (4)
ļ‚Ø The bus voltages in (3) and (4) are phasors, which we can
represent as
š‘½š‘½š‘›š‘› = š‘‰š‘‰
š‘›š‘›š‘’š‘’š‘—š‘—š›æš›æš‘›š‘› and š‘½š‘½š‘˜š‘˜ = š‘‰š‘‰š‘˜š‘˜š‘’š‘’š‘—š‘—š›æš›æš‘˜š‘˜ (5)
ļ‚Ø The admittances can also be written in polar form
š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ = š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ š‘’š‘’š‘—š‘—šœƒšœƒš‘˜š‘˜š‘˜š‘˜ (6)
ļ‚Ø Using (5) and (6) in (4) gives
š‘ƒš‘ƒš‘˜š‘˜ + š‘—š‘—š‘„š‘„š‘˜š‘˜ = š‘‰š‘‰š‘˜š‘˜š‘’š‘’š‘—š‘—š›æš›æš‘˜š‘˜ āˆ‘š‘›š‘›=1
š‘š‘
š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ š‘’š‘’š‘—š‘—šœƒšœƒš‘˜š‘˜š‘˜š‘˜š‘‰š‘‰
š‘›š‘›š‘’š‘’š‘—š‘—š›æš›æš‘›š‘›
āˆ—
š‘ƒš‘ƒš‘˜š‘˜ + š‘—š‘—š‘„š‘„š‘˜š‘˜ = š‘‰š‘‰š‘˜š‘˜ āˆ‘š‘›š‘›=1
š‘š‘
š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ š‘‰š‘‰
š‘›š‘›š‘’š‘’š‘—š‘— š›æš›æš‘˜š‘˜āˆ’š›æš›æš‘›š‘›āˆ’šœƒšœƒš‘˜š‘˜š‘˜š‘˜ (7)
19
K. Webb ESE 470
Solving the Power-Flow Problem
ļ‚Ø In Cartesian form, (7) becomes
š‘ƒš‘ƒš‘˜š‘˜ + š‘—š‘—š‘„š‘„š‘˜š‘˜ =
š‘‰š‘‰š‘˜š‘˜ āˆ‘š‘›š‘›=1
š‘š‘
š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ š‘‰š‘‰
š‘›š‘› [cos š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜
+š‘—š‘— sin š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜ ] (8)
ļ‚Ø From (8), active power is
š‘ƒš‘ƒš‘˜š‘˜ = š‘‰š‘‰š‘˜š‘˜ āˆ‘š‘›š‘›=1
š‘š‘
š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ š‘‰š‘‰
š‘›š‘› cos š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜ (9)
ļ‚Ø And, reactive power is
š‘„š‘„š‘˜š‘˜ = š‘‰š‘‰š‘˜š‘˜ āˆ‘š‘›š‘›=1
š‘š‘
š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ š‘‰š‘‰
š‘›š‘› sin š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜ (10)
20
K. Webb ESE 470
Solving the Power-Flow Problem
š‘ƒš‘ƒš‘˜š‘˜ = š‘‰š‘‰š‘˜š‘˜ āˆ‘š‘›š‘›=1
š‘š‘
š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ š‘‰š‘‰
š‘›š‘› cos š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜ (9)
š‘„š‘„š‘˜š‘˜ = š‘‰š‘‰š‘˜š‘˜ āˆ‘š‘›š‘›=1
š‘š‘
š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ š‘‰š‘‰
š‘›š‘› sin š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜ (10)
ļ‚Ø Solving the power-flow problem amounts to finding a
solution to a system of nonlinear equations, (9) and (10)
ļ‚Ø Must be solved using numerical, iterative algorithms
ļ‚¤ Typically Newton-Raphson
ļ‚Ø In practice, commercial software packages are available for
power-flow analysis
ļ‚¤ E.g. PowerWorld, CYME, ETAP
ļ‚Ø Weā€™ll now learn to solve the power-flow problem
ļ‚¤ Numerical, iterative algorithm
ļ® Newton-Raphson
21
K. Webb ESE 470
Solving the Power-Flow Problem
ļ‚Ø First, weā€™ll introduce a variety of numerical algorithms
for solving equations and systems of equations
ļ‚¤ Linear system of equations
ļ® Direct solution
ļ® Gaussian elimination
ļ® Iterative solution
ļ® Jacobi
ļ® Gauss-Seidel
ļ‚¤ Nonlinear equations
ļ® Iterative solution
ļ® Newton-Raphson
ļ‚¤ Nonlinear system of equations
ļ® Iterative solution
ļ® Newton-Raphson
22
K. Webb ESE 470
Linear Systems of Equations ā€“
Direct Solution
23
K. Webb ESE 470
Solving Linear Systems of Equations
ļ‚Ø Gaussian elimination
ļ‚¤ Direct (i.e. non-iterative) solution
ļ‚¤ Two parts to the algorithm:
ļ® Forward elimination
ļ® Back substitution
24
K. Webb ESE 470
Gaussian Elimination
ļ‚Ø Consider a system of equations
āˆ’4š‘„š‘„1 + 7š‘„š‘„3 = āˆ’5
2š‘„š‘„1 āˆ’ 3š‘„š‘„2 + 5š‘„š‘„3 = āˆ’12
š‘„š‘„2 āˆ’ 3š‘„š‘„3 = 3
ļ‚Ø This can be expressed in matrix form:
āˆ’4 0 7
2 āˆ’3 5
0 1 āˆ’3
š‘„š‘„1
š‘„š‘„2
š‘„š‘„3
=
āˆ’5
āˆ’12
3
ļ‚Ø In general
š€š€ ā‹… š±š± = š²š²
ļ‚Ø For a system of three equations with three unknowns:
š“š“11 š“š“12 š“š“13
š“š“21 š“š“22 š“š“23
š“š“31 š“š“32 š“š“33
š‘„š‘„1
š‘„š‘„2
š‘„š‘„3
=
š‘¦š‘¦1
š‘¦š‘¦2
š‘¦š‘¦3
25
K. Webb ESE 470
Gaussian Elimination
ļ‚Ø Weā€™ll use a 3Ɨ3 system as an example to develop the Gaussian elimination
algorithm
š“š“11 š“š“12 š“š“13
š“š“21 š“š“22 š“š“23
š“š“31 š“š“32 š“š“33
š‘„š‘„1
š‘„š‘„2
š‘„š‘„3
=
š‘¦š‘¦1
š‘¦š‘¦2
š‘¦š‘¦3
ļ‚Ø First, create the augmented system matrix
š“š“11 š“š“12 š“š“13 ā‹® š‘¦š‘¦1
š“š“21 š“š“22 š“š“23 ā‹® š‘¦š‘¦2
š“š“31 š“š“32 š“š“33 ā‹® š‘¦š‘¦3
ļ‚Ø Each row represents and equation
ļ‚¤ š‘š‘ rows for š‘š‘ equations
ļ‚Ø Row operations do not affect the system
ļ‚¤ Multiply a row by a constant
ļ‚¤ Add or subtract rows from one another and replace row with the result
26
K. Webb ESE 470
Gaussian Elimination ā€“ Forward Elimination
ļ‚Ø Perform row operations to reduce the augmented
matrix to upper triangular
ļ‚¤ Only zeros below the main diagonal
ļ‚¤ Eliminate š‘„š‘„š‘–š‘– from the š‘–š‘– + 1 st through the š‘š‘th equations for
š‘–š‘– = 1 ā€¦ š‘š‘
ļ‚¤ Forward elimination
ļ‚Ø After forward elimination, we have
š“š“11 š“š“12 š“š“13 ā‹® š‘¦š‘¦1
0 š“š“22
ā€²
š“š“23
ā€²
ā‹® š‘¦š‘¦2
ā€²
0 0 š“š“33
ā€²
ā‹® š‘¦š‘¦3
ā€²
ļ‚¤ Where the prime notation (e.g. š“š“22
ā€²
) indicates that the value
has been changed from its original value
27
K. Webb ESE 470
Gaussian Elimination ā€“ Back Substitution
š“š“11 š“š“12 š“š“13 ā‹® š‘¦š‘¦1
0 š“š“22
ā€²
š“š“23
ā€²
ā‹® š‘¦š‘¦2
ā€²
0 0 š“š“33
ā€²
ā‹® š‘¦š‘¦3
ā€²
ļ‚Ø The last row represents an equation with only a single unknown
š“š“33
ā€²
ā‹… š‘„š‘„3 = š‘¦š‘¦3
ā€²
ļ‚¤ Solve for š‘„š‘„3
š‘„š‘„3 =
š‘¦š‘¦3
ā€²
š“š“33
ā€²
ļ‚Ø The second-to-last row represents an equation with two unknowns
š“š“22
ā€²
ā‹… š‘„š‘„2 + š“š“23
ā€²
ā‹… š‘„š‘„3 = š‘¦š‘¦2
ā€²
ļ‚¤ Substitute in newly-found value of š‘„š‘„3
ļ‚¤ Solve for š‘„š‘„2
ļ‚Ø Substitute values for š‘„š‘„2 and š‘„š‘„3 into the first-row equation
ļ‚¤ Solve for š‘„š‘„1
ļ‚Ø This process is back substitution
28
K. Webb ESE 470
Gaussian elimination
ļ‚Ø Gaussian elimination summary
ļ‚¤ Create the augmented system matrix
ļ‚¤ Forward elimination
ļ® Reduce to an upper-triangular matrix
ļ‚¤ Back substitution
ļ® Starting with š‘„š‘„š‘š‘, solve for š‘„š‘„š‘–š‘– for š‘–š‘– = š‘š‘ ā€¦ 1
ļ‚Ø A direct solution algorithm
ļ‚¤ Exact value for each š‘„š‘„š‘–š‘– arrived at with a single execution of
the algorithm
ļ‚Ø Alternatively, we can use an iterative algorithm
ļ‚¤ The Jacobi method
29
K. Webb ESE 470
Linear Systems of Equations ā€“
Iterative Solution ā€“ Jacobi Method
30
K. Webb ESE 470
Jacobi Method
ļ‚Ø Consider a system of š‘š‘ linear equations
š€š€ ā‹… š±š± = š²š²
š“š“1,1 ā‹Æ š“š“1,š‘š‘
ā‹® ā‹± ā‹®
š“š“š‘š‘,1 ā‹Æ š“š“š‘š‘,š‘š‘
š‘„š‘„1
ā‹®
š‘„š‘„š‘š‘
=
š‘¦š‘¦1
ā‹®
š‘¦š‘¦š‘š‘
ļ‚Ø The š‘˜š‘˜th equation (š‘˜š‘˜th row) is
š“š“š‘˜š‘˜,1š‘„š‘„1 + š“š“š‘˜š‘˜,2š‘„š‘„2 + ā‹Æ + š“š“š‘˜š‘˜,š‘˜š‘˜š‘„š‘„š‘˜š‘˜ + ā‹Æ + š“š“š‘˜š‘˜,š‘š‘š‘„š‘„š‘š‘ = š‘¦š‘¦š‘˜š‘˜ (11)
ļ‚Ø Solve (11) for š‘„š‘„š‘˜š‘˜
š‘„š‘„š‘˜š‘˜ =
1
š“š“š‘˜š‘˜,š‘˜š‘˜
[š‘¦š‘¦š‘˜š‘˜ āˆ’ (š“š“š‘˜š‘˜,1š‘„š‘„1 + š“š“š‘˜š‘˜,2š‘„š‘„2 + ā‹Æ + š“š“š‘˜š‘˜,š‘˜š‘˜āˆ’1š‘„š‘„š‘˜š‘˜āˆ’1 + (12)
+š“š“š‘˜š‘˜,š‘˜š‘˜+1š‘„š‘„š‘˜š‘˜+1 + ā‹Æ + š“š“š‘˜š‘˜,š‘š‘š‘„š‘„š‘š‘)]
31
K. Webb ESE 470
Jacobi Method
ļ‚Ø Simplify (12) using summing notation
š‘„š‘„š‘˜š‘˜ =
1
š“š“š‘˜š‘˜,š‘˜š‘˜
š‘¦š‘¦š‘˜š‘˜ āˆ’ ļæ½
š‘›š‘›=1
š‘˜š‘˜āˆ’1
š“š“š‘˜š‘˜,š‘›š‘›š‘„š‘„š‘›š‘› āˆ’ ļæ½
š‘›š‘›=š‘˜š‘˜+1
š‘š‘
š“š“š‘˜š‘˜,š‘›š‘›š‘„š‘„š‘›š‘› , š‘˜š‘˜ = 1 ā€¦ š‘š‘
ļ‚Ø An equation for š‘„š‘„š‘˜š‘˜
ļ‚¤ But, of course, we donā€™t yet know all other š‘„š‘„š‘›š‘› values
ļ‚Ø Use (13) as an iterative expression
š‘„š‘„š‘˜š‘˜,š‘–š‘–+1 =
1
š“š“š‘˜š‘˜,š‘˜š‘˜
š‘¦š‘¦š‘˜š‘˜ āˆ’ ļæ½
š‘›š‘›=1
š‘˜š‘˜āˆ’1
š“š“š‘˜š‘˜,š‘›š‘›š‘„š‘„š‘›š‘›,š‘–š‘– āˆ’ ļæ½
š‘›š‘›=š‘˜š‘˜+1
š‘š‘
š“š“š‘˜š‘˜,š‘›š‘›š‘„š‘„š‘›š‘›,š‘–š‘– , š‘˜š‘˜ = 1 ā€¦ š‘š‘
ļ‚¤ The š‘–š‘– subscript indicates iteration number
ļ® š‘„š‘„š‘˜š‘˜,š‘–š‘–+1 is the updated value from the current iteration
ļ® š‘„š‘„š‘›š‘›,š‘–š‘– is a value from the previous iteration
(13)
(14)
32
K. Webb ESE 470
Jacobi Method
š‘„š‘„š‘˜š‘˜,š‘–š‘–+1 =
1
š“š“š‘˜š‘˜,š‘˜š‘˜
š‘¦š‘¦š‘˜š‘˜ āˆ’ ļæ½
š‘›š‘›=1
š‘˜š‘˜āˆ’1
š“š“š‘˜š‘˜,š‘›š‘›š‘„š‘„š‘›š‘›,š‘–š‘– āˆ’ ļæ½
š‘›š‘›=š‘˜š‘˜+1
š‘š‘
š“š“š‘˜š‘˜,š‘›š‘›š‘„š‘„š‘›š‘›,š‘–š‘– , š‘˜š‘˜ = 1 ā€¦ š‘š‘
ļ‚Ø Old values of š‘„š‘„š‘›š‘›, on the right-hand side, are used to
update š‘„š‘„š‘˜š‘˜ on the left-hand side
ļ‚Ø Start with an initial guess for all unknowns, š±š±0
ļ‚Ø Iterate until adequate convergence is achieved
ļ‚¤ Until a specified stopping criterion is satisfied
ļ‚¤ Convergence is not guaranteed
(14)
33
K. Webb ESE 470
Convergence
ļ‚Ø An approximation of š±š± is refined on each iteration
ļ‚Ø Continue to iterate until weā€™re close to the right answer
for the vector of unknowns, š±š±
ļ‚¤ Assume weā€™ve converged to the right answer when š±š±
changes very little from iteration to iteration
ļ‚Ø On each iteration, calculate a relative error quantity
šœ€šœ€š‘–š‘– = max
š‘„š‘„š‘˜š‘˜,š‘–š‘–+1 āˆ’ š‘„š‘„š‘˜š‘˜,š‘–š‘–
š‘„š‘„š‘˜š‘˜,š‘–š‘–
, š‘˜š‘˜ = 1 ā€¦ š‘š‘
ļ‚Ø Iterate until
šœ€šœ€š‘–š‘– ā‰¤ šœ€šœ€š‘ š‘ 
where šœ€šœ€š‘ š‘  is a chosen stopping criterion
34
K. Webb ESE 470
Jacobi Method ā€“ Matrix Form
ļ‚Ø The Jacobi method iterative formula, (14), can be rewritten in matrix form:
š±š±š‘–š‘–+1 = šŒšŒš±š±š‘–š‘– + šƒšƒāˆ’1š²š²
where šƒšƒ is the diagonal elements of A
šƒšƒ =
š“š“1,1 0 ā‹Æ 0
0 š“š“2,2 0 ā‹®
ā‹® 0 ā‹± 0
0 ā‹Æ 0 š“š“š‘š‘,š‘š‘
and
šŒšŒ = šƒšƒāˆ’1
šƒšƒ āˆ’ š€š€
ļ‚¤ Recall that the inverse of a diagonal matrix is given by inverting each diagonal
element
šƒšƒāˆ’šŸšŸ =
1/š“š“1,1 0 ā‹Æ 0
0 1/š“š“2,2 0 ā‹®
ā‹® 0 ā‹± 0
0 ā‹Æ 0 1/š“š“š‘š‘,š‘š‘
(15)
(16)
35
K. Webb ESE 470
Jacobi Method ā€“ Example
ļ‚Ø Consider the following system of equations
āˆ’4š‘„š‘„1 + 7š‘„š‘„3 = āˆ’5
2š‘„š‘„1 āˆ’ 3š‘„š‘„2 + 5š‘„š‘„3 = āˆ’12
š‘„š‘„2 āˆ’ 3š‘„š‘„3 = 3
ļ‚Ø In matrix form:
āˆ’4 0 7
2 āˆ’3 5
0 1 āˆ’3
š‘„š‘„1
š‘„š‘„2
š‘„š‘„3
=
āˆ’5
āˆ’12
3
ļ‚Ø Solve using the Jacobi method
36
K. Webb ESE 470
Jacobi Method ā€“ Example
ļ‚Ø The iteration formula is
š±š±š‘–š‘–+1 = šŒšŒš±š±š‘–š‘– + šƒšƒāˆ’1š²š²
where
šƒšƒ =
āˆ’4 0 0
0 āˆ’3 0
0 0 āˆ’3
šƒšƒāˆ’1 =
āˆ’0.25 0 0
0 āˆ’0.333 0
0 0 āˆ’0.333
šŒšŒ = šƒšƒāˆ’1 šƒšƒ āˆ’ š€š€ =
0 0 1.75
0.667 0 1.667
0 0.333 0
ļ‚Ø To begin iteration, we need a starting point
ļ‚¤ Initial guess for unknown values, š±š±
ļ‚¤ Often, we have some idea of the answer
ļ‚¤ Here, arbitrarily choose
š±š±0 = 10 25 10 š‘‡š‘‡
37
K. Webb ESE 470
Jacobi Method ā€“ Example
ļ‚Ø At each iteration, calculate
š±š±š‘–š‘–+1 = šŒšŒš±š±š‘–š‘– + šƒšƒāˆ’1š²š²
š‘„š‘„1,š‘–š‘–+1
š‘„š‘„2,š‘–š‘–+1
š‘„š‘„3,š‘–š‘–+1
=
0 0 1.75
0.667 0 1.667
0 0.333 0
š‘„š‘„1,š‘–š‘–
š‘„š‘„2,š‘–š‘–
š‘„š‘„3,š‘–š‘–
+
1.25
4
āˆ’1
ļ‚Ø For š‘–š‘– = 1:
š±š±1 =
š‘„š‘„1,1
š‘„š‘„2,1
š‘„š‘„3,1
=
0 0 1.75
0.667 0 1.667
0 0.333 0
10
25
10
+
1.25
4
āˆ’1
š±š±1 = 18.75 27.33 7.33 š‘‡š‘‡
ļ‚Ø The relative error is
šœ€šœ€1 = max
š‘„š‘„š‘˜š‘˜,1 āˆ’ š‘„š‘„š‘˜š‘˜,0
š‘„š‘„š‘˜š‘˜,0
= 0.875
38
K. Webb ESE 470
Jacobi Method ā€“ Example
ļ‚Ø For š‘–š‘– = 2:
š±š±2 =
š‘„š‘„1,2
š‘„š‘„2,2
š‘„š‘„3,2
=
0 0 1.75
0.667 0 1.667
0 0.333 0
18.75
27.33
7.33
+
1.25
4
āˆ’1
š±š±2 = 14.08 28.72 8.11 š‘‡š‘‡
ļ‚Ø The relative error is
šœ€šœ€2 = max
š‘„š‘„š‘˜š‘˜,2 āˆ’ š‘„š‘„š‘˜š‘˜,1
š‘„š‘„š‘˜š‘˜,1
= 0.249
ļ‚Ø Continue to iterate until relative error falls below a specified
stopping condition
39
K. Webb ESE 470
Jacobi Method ā€“ Example
ļ‚Ø Automate with computer code, e.g. MATLAB
ļ‚Ø Setup the system of equations
ļ‚Ø Initialize matrices and parameters for iteration
40
K. Webb ESE 470
Jacobi Method ā€“ Example
ļ‚Ø Loop to continue iteration as long as:
ļ‚¤ Stopping criterion is not satisfied
ļ‚¤ Maximum number of iterations is not exceeded
ļ‚Ø On each iteration
ļ‚¤ Use previous š±š± values to update š±š±
ļ‚¤ Calculate relative error
ļ‚¤ Increment the number of iterations
41
K. Webb ESE 470
Jacobi Method ā€“ Example
ļ‚Ø Set šœ€šœ€š‘ š‘  = 1 Ɨ 10āˆ’6
and iterate:
š’Šš’Š š±š±š’Šš’Š šœŗšœŗš’Šš’Š
0 10 25 10 š‘‡š‘‡ -
1 18.75 27.33 7.33 š‘‡š‘‡ 0.875
2 14.08 28.72 8.11 š‘‡š‘‡ 0.249
3 15.44 26.91 8.57 š‘‡š‘‡ 0.097
4 16.25 28.59 7.97 š‘‡š‘‡ 0.071
5 15.20 28.12 8.53 š‘‡š‘‡ 0.070
6 16.18 28.35 8.37 š‘‡š‘‡ 0.065
ā‹® ā‹® ā‹®
371 20.50 36.00 11.00 š‘‡š‘‡ 0.995Ɨ10-6
ļ‚Ø Convergence achieved in 371 iterations
42
K. Webb ESE 470
Linear Systems of Equations ā€“
Iterative Solution ā€“ Gauss-Seidel
43
K. Webb ESE 470
Gauss-Seidel Method
ļ‚Ø The iterative formula for the Jacobi method is
š‘„š‘„š‘˜š‘˜,š‘–š‘–+1 =
1
š“š“š‘˜š‘˜,š‘˜š‘˜
š‘¦š‘¦š‘˜š‘˜ āˆ’ ļæ½
š‘›š‘›=1
š‘˜š‘˜āˆ’1
š“š“š‘˜š‘˜,š‘›š‘›š‘„š‘„š‘›š‘›,š‘–š‘– āˆ’ ļæ½
š‘›š‘›=š‘˜š‘˜+1
š‘š‘
š“š“š‘˜š‘˜,š‘›š‘›š‘„š‘„š‘›š‘›,š‘–š‘– , š‘˜š‘˜ = 1 ā€¦ š‘š‘
ļ‚Ø Note that only old values of š‘„š‘„š‘›š‘› (i.e. š‘„š‘„š‘›š‘›,š‘–š‘–) are used to
update the value of š‘„š‘„š‘˜š‘˜
ļ‚Ø Assume the š‘„š‘„š‘˜š‘˜,š‘–š‘–+1 values are determined in order of
increasing š‘˜š‘˜
ļ‚¤ When updating š‘„š‘„š‘˜š‘˜,š‘–š‘–+1, all š‘„š‘„š‘›š‘›,š‘–š‘–+1 values are already known
for š‘›š‘› < š‘˜š‘˜
ļ‚¤ We can use those updated values to calculate š‘„š‘„š‘˜š‘˜,š‘–š‘–+1
ļ‚¤ The Gauss-Seidel method
(14)
44
K. Webb ESE 470
Gauss-Seidel Method
ļ‚Ø Now use the š‘„š‘„š‘›š‘› values already updated on the
current iteration to update š‘„š‘„š‘˜š‘˜
ļ‚¤ That is, š‘„š‘„š‘›š‘›,š‘–š‘–+1 for š‘›š‘› < š‘˜š‘˜
ļ‚Ø Gauss-Seidel iterative formula
š‘„š‘„š‘˜š‘˜,š‘–š‘–+1 =
1
š“š“š‘˜š‘˜,š‘˜š‘˜
š‘¦š‘¦š‘˜š‘˜ āˆ’ ļæ½
š‘›š‘›=1
š‘˜š‘˜āˆ’1
š“š“š‘˜š‘˜,š‘›š‘›š‘„š‘„š‘›š‘›,š‘–š‘–+1 āˆ’ ļæ½
š‘›š‘›=š‘˜š‘˜+1
š‘š‘
š“š“š‘˜š‘˜,š‘›š‘›š‘„š‘„š‘›š‘›,š‘–š‘– , š‘˜š‘˜ = 1 ā€¦ š‘š‘
ļ‚Ø Note that only the first summation has changed
ļ‚¤ For already updated š‘„š‘„ values
ļ‚¤ š‘„š‘„š‘›š‘› for š‘›š‘› < š‘˜š‘˜
ļ‚¤ Number of already-updated values used depends on š‘˜š‘˜
(17)
45
K. Webb ESE 470
Gauss-Seidel ā€“ Matrix Form
ļ‚Ø In matrix form the iterative formula is the same as for the Jacobi
method
š±š±š‘–š‘–+1 = šŒšŒš±š±š‘–š‘– + šƒšƒāˆ’1
š²š²
where, again
šŒšŒ = šƒšƒāˆ’1 šƒšƒ āˆ’ š€š€
but now šƒšƒ is the lower triangular part of š€š€
šƒšƒ =
š“š“1,1 0 ā‹Æ 0
š“š“2,1 š“š“2,2 0 ā‹®
ā‹® ā‹® ā‹± 0
š“š“š‘š‘,1 š“š“š‘š‘,2 ā‹Æ š“š“š‘š‘,š‘š‘
ļ‚Ø Otherwise, the algorithm and computer code is identical to that of
the Jacobi method
(15)
(16)
46
K. Webb ESE 470
Gauss-Seidel ā€“ Example
ļ‚Ø Apply Gauss-Seidel to our previous example
ļ‚¤ š‘„š‘„0 = 10 25 10 š‘‡š‘‡
ļ‚¤ šœ€šœ€š‘ š‘  = 1 Ɨ 10āˆ’6
š’Šš’Š š±š±š’Šš’Š šœŗšœŗš’Šš’Š
0 10 25 10 š‘‡š‘‡ -
1 18.75 33.17 10.06 š‘‡š‘‡ 0.875
2 18.85 33.32 10.11 š‘‡š‘‡ 0.005
3 18.94 33.47 10.16 š‘‡š‘‡ 0.005
4 19.03 33.61 10.20 š‘‡š‘‡ 0.005
ā‹® ā‹® ā‹®
151 20.50 36.00 11.00 š‘‡š‘‡ 0.995Ɨ10-6
ļ‚Ø Convergence achieved in 151 iterations
ļ‚¤ Compared to 371 for the Jacobi method
47
K. Webb ESE 470
Nonlinear Equations
48
K. Webb ESE 470
Nonlinear Equations
ļ‚Ø Solution methods weā€™ve seen so far work only for
linear equations
ļ‚Ø Now, we introduce an iterative method for solving a
single nonlinear equation
ļ‚¤ Newton-Raphson method
ļ‚Ø Next, weā€™ll apply the Newton-Raphson method to a
system of nonlinear equations
ļ‚Ø Finally, weā€™ll use Newton-Raphson to solve the
power-flow problem
49
K. Webb ESE 470
Newton-Raphson Method
ļ‚Ø Want to solve
š‘¦š‘¦ = š‘“š‘“(š‘„š‘„)
where š‘“š‘“ š‘„š‘„ is a nonlinear function
ļ‚Ø That is, we want to find š‘„š‘„, given a known nonlinear
function, š‘“š‘“, and a known output, š‘¦š‘¦
ļ‚Ø Newton-Raphson method
ļ‚¤ Based on a first-order Taylor series approximation to
š‘“š‘“ š‘„š‘„
ļ‚¤ The nonlinear š‘“š‘“ š‘„š‘„ is approximated as linear to update
our approximation to the solution, š‘„š‘„, on each iteration
50
K. Webb ESE 470
Taylor Series Approximation
ļ‚Ø Taylor series approximation
ļ‚¤ Given:
ļ® A function, š‘“š‘“ š‘„š‘„
ļ® Value of the function at some value of š‘„š‘„, š‘“š‘“ š‘„š‘„0
ļ‚¤ Approximate:
ļ® Value of the function at some other value of š‘„š‘„
ļ‚Ø First-order Taylor series approximation
ļ‚¤ Approximate š‘“š‘“ š‘„š‘„ using only its first derivative
ļ‚¤ š‘“š‘“ š‘„š‘„ approximated as linear ā€“ constant slope
š‘¦š‘¦ = š‘“š‘“ š‘„š‘„ ā‰ˆ š‘“š‘“ š‘„š‘„0 +
š‘‘š‘‘š‘‘š‘‘
š‘‘š‘‘š‘‘š‘‘
ļæ½
š‘„š‘„=š‘„š‘„0
š‘„š‘„ āˆ’ š‘„š‘„0 = ļæ½
š‘¦š‘¦
51
K. Webb ESE 470
First-Order Taylor Series Approximation
ļ‚Ø Approximate value of the function at š‘„š‘„
š‘“š‘“ š‘„š‘„ ā‰ˆ ļæ½
š‘¦š‘¦ = š‘“š‘“ š‘„š‘„0 + š‘“š‘“ā€² š‘„š‘„0 š‘„š‘„ āˆ’ š‘„š‘„0
52
K. Webb ESE 470
Newton-Raphson Method
ļ‚Ø First order Taylor series approximation is
š‘¦š‘¦ ā‰ˆ š‘“š‘“ š‘„š‘„0 + š‘“š‘“ā€² š‘„š‘„0 š‘„š‘„ āˆ’ š‘„š‘„0
ļ‚Ø Letting this be an equality and rearranging gives an iterative formula
for updating an approximation to š‘„š‘„
š‘¦š‘¦ = š‘“š‘“ š‘„š‘„š‘–š‘– + š‘“š‘“ā€² š‘„š‘„š‘–š‘– š‘„š‘„š‘–š‘–+1 āˆ’ š‘„š‘„š‘–š‘–
š‘“š‘“ā€² š‘„š‘„š‘–š‘– š‘„š‘„š‘–š‘–+1 āˆ’ š‘„š‘„š‘–š‘– = š‘¦š‘¦ āˆ’ š‘“š‘“ š‘„š‘„š‘–š‘–
š‘„š‘„š‘–š‘–+1 = š‘„š‘„š‘–š‘– +
1
š‘“š‘“ā€² š‘„š‘„š‘–š‘–
š‘¦š‘¦ āˆ’ š‘“š‘“ š‘„š‘„š‘–š‘–
ļ‚Ø Initialize with a best guess at š‘„š‘„, š‘„š‘„0
ļ‚Ø Iterate (18) until
ļ‚¤ A stopping criterion is satisfied, or
ļ‚¤ The maximum number of iterations is reached
(18)
53
K. Webb ESE 470
First-Order Taylor Series Approximation
ļ‚Ø Now using the Taylor
series approximation
in a different way
ļ‚¤ Not approximating
the value of y = f(x)
at x, but, instead
ļ‚¤ Approximating the
value of x where
f(x) = y
š‘„š‘„š‘–š‘–+1 = š‘„š‘„š‘–š‘– +
1
š‘“š‘“ā€² š‘„š‘„š‘–š‘–
š‘¦š‘¦ āˆ’ š‘“š‘“ š‘„š‘„š‘–š‘–
54
K. Webb ESE 470
Newton-Raphson ā€“ Example
ļ‚Ø Consider the following nonlinear equation
š‘¦š‘¦ = š‘“š‘“ š‘„š‘„ = š‘„š‘„3 + 10 = 20
ļ‚Ø Apply Newton-Raphson to solve
ļ‚¤ Find š‘„š‘„, such that š‘¦š‘¦ = š‘“š‘“ š‘„š‘„ = 20
ļ‚Ø The derivative function is
š‘“š‘“ā€² š‘„š‘„ = 3š‘„š‘„2
ļ‚Ø Initial guess for š‘„š‘„
š‘„š‘„0 = 1
ļ‚Ø Iterate using the formula given by (18)
55
K. Webb ESE 470
Newton-Raphson ā€“ Example
ļ‚Ø š‘–š‘– = 1:
š‘„š‘„1 = š‘„š‘„0 + š‘“š‘“ā€² š‘„š‘„0
āˆ’1
š‘¦š‘¦ āˆ’ š‘“š‘“ š‘„š‘„0
š‘„š‘„1 = 1 + 3 ā‹… 12 āˆ’1 20 āˆ’ 13 + 10
š‘„š‘„1 = 4
šœ€šœ€1 =
š‘„š‘„1 āˆ’ š‘„š‘„0
š‘„š‘„0
šœ€šœ€1 =
4 āˆ’ 1
1
= 3
š‘„š‘„1 = 4, šœ€šœ€1 = 3
56
K. Webb ESE 470
Newton-Raphson ā€“ Example
ļ‚Ø š‘–š‘– = 2:
š‘„š‘„2 = š‘„š‘„1 + š‘“š‘“ā€² š‘„š‘„1
āˆ’1
š‘¦š‘¦ āˆ’ š‘“š‘“ š‘„š‘„1
š‘„š‘„2 = 4 + 3 ā‹… 42 āˆ’1 20 āˆ’ 43 + 10
š‘„š‘„2 = 2.875
šœ€šœ€2 =
š‘„š‘„2 āˆ’ š‘„š‘„1
š‘„š‘„1
šœ€šœ€2 =
2.875 āˆ’ 4
4
šœ€šœ€2 = 0.281
š‘„š‘„2 = 2.875, šœ€šœ€2 = 0.281
57
K. Webb ESE 470
Newton-Raphson ā€“ Example
ļ‚Ø š‘–š‘– = 3:
š‘„š‘„3 = š‘„š‘„2 + š‘“š‘“ā€² š‘„š‘„2
āˆ’1
š‘¦š‘¦ āˆ’ š‘“š‘“ š‘„š‘„2
š‘„š‘„3 = 2.875 + 3 ā‹… 2.8752 āˆ’1
20 āˆ’ 2.8753
+ 10
š‘„š‘„3 = 2.32
šœ€šœ€3 =
š‘„š‘„3 āˆ’ š‘„š‘„2
š‘„š‘„2
šœ€šœ€3 =
2.32 āˆ’ 2.875
2.875
šœ€šœ€3 = 0.193
š‘„š‘„3 = 2.32, šœ€šœ€3 = 0.193
58
K. Webb ESE 470
Newton-Raphson ā€“ Example
ļ‚Ø š‘–š‘– = 4:
š‘„š‘„4 = 2.166, šœ€šœ€4 = 0.066
ļ‚Ø š‘–š‘– = 5:
š‘„š‘„5 = 2.155, šœ€šœ€5 = 0.005
ļ‚Ø š‘–š‘– = 6:
š‘„š‘„6 = 2.154, šœ€šœ€6 = 28.4 Ɨ 10āˆ’6
ļ‚Ø š‘–š‘– = 7:
š‘„š‘„7 = 2.154, šœ€šœ€7 = 0.808 Ɨ 10āˆ’9
ļ‚Ø Convergence achieved very quickly
ļ‚Ø Next, weā€™ll see how to apply Newton-Raphson to a system
of nonlinear equations
59
K. Webb ESE 470
Example Problems
60
K. Webb ESE 470
Perform three iterations toward the solution of the following system
of equations using the Jacobi method. Let š±š±0 = 0, 0 š‘‡š‘‡.
2š‘„š‘„1 + š‘„š‘„2 = 12
2š‘„š‘„1 + 3š‘„š‘„2 = 5
61
K. Webb ESE 470
62
K. Webb ESE 470
63
K. Webb ESE 470
64
K. Webb ESE 470
Perform three iterations toward the solution of the following system
of equations using the Gauss-Seidel method. Let š±š±0 = 0, 0 š‘‡š‘‡.
2š‘„š‘„1 + š‘„š‘„2 = 12
2š‘„š‘„1 + 3š‘„š‘„2 = 5
65
K. Webb ESE 470
66
K. Webb ESE 470
67
K. Webb ESE 470
68
K. Webb ESE 470
Perform three iterations toward the solution of the following
equation using the Newton-Raphson method. Let š±š±0 = 0.
š‘“š‘“ š‘„š‘„ = cos š‘„š‘„ + 3š‘„š‘„ = 10
69
K. Webb ESE 470
70
K. Webb ESE 470
Nonlinear Systems of Equations
71
K. Webb ESE 470
Nonlinear Systems of Equations
ļ‚Ø Now, consider a system of nonlinear equations
ļ‚¤ Can be represented as a vector of š‘š‘ functions
ļ‚¤ Each is a function of an š‘š‘-vector of unknown variables
š²š² =
š‘¦š‘¦1
š‘¦š‘¦2
ā‹®
š‘¦š‘¦š‘š‘
= šŸšŸ š±š± =
š‘“š‘“1 š‘„š‘„1, š‘„š‘„2, ā‹Æ , š‘„š‘„š‘š‘
š‘“š‘“2 š‘„š‘„1, š‘„š‘„2, ā‹Æ , š‘„š‘„š‘š‘
ā‹®
š‘“š‘“š‘š‘ š‘„š‘„1, š‘„š‘„2, ā‹Æ , š‘„š‘„š‘š‘
ļ‚Ø We can again approximate this function using a first-order Taylor series
š²š² = šŸšŸ š±š± ā‰ˆ šŸšŸ š±š±0 + šŸšŸā€²
š±š±0 š±š± āˆ’ š±š±0
ļ‚¤ Note that all variables are š‘š‘-vectors
ļ® šŸšŸ is an š‘š‘-vector of known, nonlinear functions
ļ® š±š± is an š‘š‘-vector of unknown values ā€“ this is what we want to solve for
ļ® š²š² is an š‘š‘-vector of known values
ļ® š±š±šŸŽšŸŽ is an š‘š‘-vector of š±š± values for which šŸšŸ š±š±0 is known
(19)
72
K. Webb ESE 470
Newton-Raphson Method
ļ‚Ø Equation (19) is the basis for our Newton-Raphson iterative formula
ļ‚¤ Again, let it be an equality and solve for š±š±
š²š² āˆ’ šŸšŸ š±š±0 = šŸšŸā€² š±š±0 š±š± āˆ’ š±š±0
šŸšŸā€² š±š±0
āˆ’šŸšŸ
š²š² āˆ’ šŸšŸ š±š±0 = š±š± āˆ’ š±š±0
š±š± = š±š±0 + šŸšŸā€² š±š±0
āˆ’šŸšŸ
š²š² āˆ’ šŸšŸ š±š±0
ļ‚Ø This last expression can be used as an iterative formula
š±š±š‘–š‘–+1 = š±š±š‘–š‘– + šŸšŸā€² š±š±š‘–š‘–
āˆ’šŸšŸ
š²š² āˆ’ šŸšŸ š±š±š‘–š‘–
ļ‚Ø The derivative term on the right-hand side of (20) is an š‘š‘ Ɨ š‘š‘ matrix
ļ‚¤ The Jacobian matrix, š‰š‰
š±š±š‘–š‘–+1 = š±š±š‘–š‘– + š‰š‰š‘–š‘–
āˆ’šŸšŸ
š²š² āˆ’ šŸšŸ š±š±š‘–š‘– (20)
73
K. Webb ESE 470
The Jacobian Matrix
š±š±š‘–š‘–+1 = š±š±š‘–š‘– + š‰š‰š‘–š‘–
āˆ’šŸšŸ
š²š² āˆ’ šŸšŸ š±š±š‘–š‘–
ļ‚Ø Jacobian matrix
ļ‚¤ š‘š‘ Ɨ š‘š‘ matrix of partial derivatives for šŸšŸ š±š±
ļ‚¤ Evaluated at the current value of š±š±, š±š±š‘–š‘–
š‰š‰š‘–š‘– =
šœ•šœ•š‘“š‘“1
šœ•šœ•š‘„š‘„1
šœ•šœ•š‘“š‘“1
šœ•šœ•š‘„š‘„2
ā‹Æ
šœ•šœ•š‘“š‘“1
šœ•šœ•š‘„š‘„š‘š‘
šœ•šœ•š‘“š‘“2
šœ•šœ•š‘„š‘„1
šœ•šœ•š‘“š‘“2
šœ•šœ•š‘„š‘„2
ā‹Æ
šœ•šœ•š‘“š‘“2
šœ•šœ•š‘„š‘„š‘š‘
ā‹® ā‹® ā‹± ā‹®
šœ•šœ•š‘“š‘“š‘š‘
šœ•šœ•š‘„š‘„1
šœ•šœ•š‘“š‘“š‘š‘
šœ•šœ•š‘„š‘„2
ā‹Æ
šœ•šœ•š‘“š‘“š‘š‘
šœ•šœ•š‘„š‘„š‘š‘ š±š±=š±š±š‘–š‘–
(20)
74
K. Webb ESE 470
Newton-Raphson Method
š±š±š‘–š‘–+1 = š±š±š‘–š‘– + š‰š‰š‘–š‘–
āˆ’šŸšŸ
š²š² āˆ’ šŸšŸ š±š±š‘–š‘–
ļ‚Ø We could iterate (20) until convergence or a maximum
number of iterations is reached
ļ‚¤ Requires inversion of the Jacobian matrix
ļ® Computationally expensive and error prone
ļ‚Ø Instead, go back to the Taylor series approximation
š²š² = šŸšŸ š±š±š‘–š‘– + š‰š‰š‘–š‘– š±š±š‘–š‘–+1 āˆ’ š±š±š‘–š‘–
š²š² āˆ’ šŸšŸ š±š±š‘–š‘– = š‰š‰š‘–š‘– š±š±š‘–š‘–+1 āˆ’ š±š±š‘–š‘–
ļ‚¤ Left side of (21) represents a difference between the known and
approximated outputs
ļ‚¤ Right side represents an increment of the approximation for š±š±
Ī”š²š²š‘–š‘– = š‰š‰š‘–š‘–Ī”š±š±š‘–š‘–
(20)
(21)
(22)
75
K. Webb ESE 470
Newton-Raphson Method
Ī”š²š²š‘–š‘– = š‰š‰š‘–š‘–Ī”š±š±š‘–š‘–
ļ‚Ø On each iteration:
ļ‚¤ Compute Ī”š²š²š‘–š‘– and š‰š‰š‘–š‘–
ļ‚¤ Solve for Ī”š±š±š‘–š‘– using Gaussian elimination
ļ® Matrix inversion not required
ļ® Computationally robust
ļ‚¤ Update š±š±
š±š±š‘–š‘–+1 = š±š±š‘–š‘– + Ī”š±š±š‘–š‘–
(22)
(23)
76
K. Webb ESE 470
Newton-Raphson ā€“ Example
ļ‚Ø Apply Newton-Raphson to solve the following system of
nonlinear equations
šŸšŸ š±š± = š²š²
š‘„š‘„1
2
+ 3š‘„š‘„2
š‘„š‘„1š‘„š‘„2
=
21
12
ļ‚¤ Initial condition: š±š±0 = 1 2 š‘‡š‘‡
ļ‚¤ Stopping criterion: šœ€šœ€š‘ š‘  = 1 Ɨ 10āˆ’6
ļ‚¤ Jacobian matrix
š‰š‰š‘–š‘– =
šœ•šœ•š‘“š‘“1
šœ•šœ•š‘„š‘„1
šœ•šœ•š‘“š‘“1
šœ•šœ•š‘„š‘„2
šœ•šœ•š‘“š‘“2
šœ•šœ•š‘„š‘„1
šœ•šœ•š‘“š‘“2
šœ•šœ•š‘„š‘„2 š±š±=š±š±š‘–š‘–
=
2š‘„š‘„1,š‘–š‘– 3
š‘„š‘„2,š‘–š‘– š‘„š‘„1,š‘–š‘–
77
K. Webb ESE 470
Newton-Raphson ā€“ Example
Ī”š²š²š‘–š‘– = š‰š‰š‘–š‘–Ī”š±š±š‘–š‘–
š±š±š‘–š‘–+1 = š±š±š‘–š‘– + Ī”š±š±š‘–š‘–
ļ‚Ø Adjusting the indexing, we can equivalently write (22)
and (23) as:
Ī”š²š²š‘–š‘–āˆ’1 = š‰š‰š‘–š‘–āˆ’1Ī”š±š±š‘–š‘–āˆ’1
š±š±š‘–š‘– = š±š±š‘–š‘–āˆ’1 + Ī”š±š±š‘–š‘–āˆ’1
ļ‚Ø For iteration š‘–š‘–:
ļ‚¤ Compute Ī”š²š²š‘–š‘–āˆ’1 and š‰š‰š‘–š‘–āˆ’1
ļ‚¤ Solve (22) for Ī”š±š±š‘–š‘–āˆ’1
ļ‚¤ Update š±š± using (23)
(22)
(23)
(22)
(23)
78
K. Webb ESE 470
Newton-Raphson ā€“ Example
ļ‚Ø š‘–š‘– = 1:
Ī”š‘¦š‘¦0 = š²š² āˆ’ šŸšŸ š±š±0 =
21
12
āˆ’
7
2
=
14
10
š‰š‰0 =
2š‘„š‘„1,0 3
š‘„š‘„2,0 š‘„š‘„1,0
=
2 3
2 1
Ī”š±š±0 =
4
2
š±š±1 = š±š±0 + Ī”š±š±0 =
1
2
+
4
2
=
5
4
šœ€šœ€1 = max
š‘„š‘„š‘˜š‘˜,1 āˆ’ š‘„š‘„š‘˜š‘˜,0
š‘„š‘„š‘˜š‘˜,0
, š‘˜š‘˜ = 1 ā€¦ š‘š‘
š‘„š‘„1 =
5
4
, šœ€šœ€1 = 4
79
K. Webb ESE 470
Newton-Raphson ā€“ Example
ļ‚Ø š‘–š‘– = 2:
Ī”š‘¦š‘¦1 = š²š² āˆ’ šŸšŸ š±š±1 =
21
12
āˆ’
37
20
=
āˆ’16
āˆ’8
š‰š‰1 =
2š‘„š‘„1,1 3
š‘„š‘„2,1 š‘„š‘„1,1
=
10 3
4 5
Ī”š±š±1 =
āˆ’1.474
āˆ’0.421
š±š±2 = š±š±1 + Ī”š±š±1 =
5
4
+
āˆ’1.474
āˆ’0.421
=
3.526
3.579
šœ€šœ€2 = max
š‘„š‘„š‘˜š‘˜,2 āˆ’ š‘„š‘„š‘˜š‘˜,1
š‘„š‘„š‘˜š‘˜,1
, š‘˜š‘˜ = 1 ā€¦ š‘š‘
š‘„š‘„2 =
3.526
3.579
, šœ€šœ€2 = 0.295
80
K. Webb ESE 470
Newton-Raphson ā€“ Example
ļ‚Ø š‘–š‘– = 3:
Ī”š‘¦š‘¦2 = š²š² āˆ’ šŸšŸ š±š±2 =
21
12
āˆ’
23.172
12.621
=
āˆ’2.172
āˆ’0.621
š‰š‰2 =
2š‘„š‘„1,2 3
š‘„š‘„2,2 š‘„š‘„1,2
=
7.053 3
3.579 3.526
Ī”š±š±2 =
āˆ’0.410
0.240
š±š±3 = š±š±2 + Ī”š±š±2 =
3.526
3.579
+
āˆ’0.410
0.240
=
3.116
3.819
šœ€šœ€3 = max
š‘„š‘„š‘˜š‘˜,3 āˆ’ š‘„š‘„š‘˜š‘˜,2
š‘„š‘„š‘˜š‘˜,2
, š‘˜š‘˜ = 1 ā€¦ š‘š‘
š‘„š‘„3 =
3.116
3.819
, šœ€šœ€3 = 0.116
81
K. Webb ESE 470
Newton-Raphson ā€“ Example
ļ‚Ø š‘–š‘– = 7:
Ī”š‘¦š‘¦6 = š²š² āˆ’ šŸšŸ š±š±6 =
21
12
āˆ’
21.000
12.000
= āˆ’0.527 Ɨ 10āˆ’7
0.926 Ɨ 10āˆ’7
š‰š‰6 =
2š‘„š‘„1,6 3
š‘„š‘„2,6 š‘„š‘„1,6
=
6.000 3
4.000 3.000
Ī”š±š±6 = āˆ’0.073 Ɨ 10āˆ’6
0.128 Ɨ 10āˆ’6
š±š±7 = š±š±6 + Ī”š±š±6 =
3.000
4.000
+ āˆ’0.073 Ɨ 10āˆ’6
0.128 Ɨ 10āˆ’6 =
3.000
4.000
šœ€šœ€7 = max
š‘„š‘„š‘˜š‘˜,7 āˆ’ š‘„š‘„š‘˜š‘˜,6
š‘„š‘„š‘˜š‘˜,6
, š‘˜š‘˜ = 1 ā€¦ š‘š‘
š‘„š‘„7 =
3.000
4.000
, šœ€šœ€7 = 31.9 Ɨ 10āˆ’9
82
K. Webb ESE 470
Newton-Raphson ā€“ MATLAB Code
ļ‚Ø Define the system of equations
ļ‚Ø Initialize š±š±
ļ‚Ø Set up solution parameters
83
K. Webb ESE 470
Newton-Raphson ā€“ MATLAB Code
ļ‚Ø Iterate:
ļ‚¤ Compute Ī”š²š²š‘–š‘–āˆ’1 and š‰š‰š‘–š‘–āˆ’1
ļ‚¤ Solve for Ī”š±š±š‘–š‘–āˆ’1
ļ‚¤ Update š±š±
84
K. Webb ESE 470
Example Problems
85
K. Webb ESE 470
Perform three iterations toward the solution of the following system
of equations using the Newton-Raphson method. Let š±š±0 = 1, 1 š‘‡š‘‡.
10š‘„š‘„1
2
+ š‘„š‘„2 = 20
š‘’š‘’š‘„š‘„1 āˆ’ š‘„š‘„2 = 10
86
K. Webb ESE 470
87
K. Webb ESE 470
88
K. Webb ESE 470
89
K. Webb ESE 470
Power-Flow Solution ā€“ Overview
90
K. Webb ESE 470
Solving the Power-Flow Problem - Overview
ļ‚Ø Consider an š‘š‘-bus power-flow problem
ļ‚¤ 1 slack bus
ļ‚¤ š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ PV buses
ļ‚¤ š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ PQ buses
š‘š‘ = š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ + š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ + 1
ļ‚Ø Each bus has two unknown quantities
ļ‚¤ Two of š‘‰š‘‰š‘˜š‘˜, š›æš›æš‘˜š‘˜, š‘ƒš‘ƒš‘˜š‘˜, and š‘„š‘„š‘˜š‘˜
ļ‚Ø For the N-R power-flow problem, š‘‰š‘‰š‘˜š‘˜ and š›æš›æš‘˜š‘˜ are the
unknown quantities
ļ‚¤ These are the inputs to the nonlinear system of equations ā€“ the
š‘ƒš‘ƒš‘˜š‘˜ and š‘„š‘„š‘˜š‘˜ equations ā€“ of (9) and (10)
ļ‚¤ Finding unknown š‘‰š‘‰š‘˜š‘˜ and š›æš›æš‘˜š‘˜ values allows us to determine
unknown š‘ƒš‘ƒš‘˜š‘˜ and š‘„š‘„š‘˜š‘˜ values
91
K. Webb ESE 470
Solving the Power-Flow Problem - Overview
ļ‚Ø The nonlinear system of equations is
š²š² = šŸšŸ(š±š±)
ļ‚Ø The unknowns , š±š±, are bus voltages
ļ‚¤ Unknown phase angles from PV and PQ buses
ļ‚¤ Unknown magnitudes from PQ bus
š±š± =
š›…š›…
š•š•
=
š›æš›æ2
ā‹®
š›æš›æš‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ+š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ+1
š‘‰š‘‰š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ+2
ā‹®
š‘‰š‘‰š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ+š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ+1
š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ + š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ
š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ
(24)
92
K. Webb ESE 470
Solving the Power-Flow Problem - Overview
š²š² = šŸšŸ(š±š±)
ļ‚Ø The knowns , š²š², are bus powers
ļ‚¤ Known real power from PV and PQ buses
ļ‚¤ Known reactive power from PQ bus
š²š² =
šš
šš
=
š‘ƒš‘ƒ2
ā‹®
š‘ƒš‘ƒš‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ+š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ+1
š‘„š‘„š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ+2
ā‹®
š‘„š‘„š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ+š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ+1
š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ + š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ
š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ
(25)
93
K. Webb ESE 470
Solving the Power-Flow Problem - Overview
š²š² = šŸšŸ(š±š±)
ļ‚Ø The system of equations , šŸšŸ, consists of the
nonlinear functions for šš and šš
ļ‚¤ Nonlinear functions of š•š• and š›…š›…
šŸšŸ(š±š±) =
šš(š±š±)
šš(š±š±)
=
š‘ƒš‘ƒ2 š±š±
ā‹®
ā‹®
š‘„š‘„š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ+2 š±š±
ā‹®
ā‹®
š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ + š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ
š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ
(26)
94
K. Webb ESE 470
Solving the Power-Flow Problem - Overview
ļ‚Ø š‘ƒš‘ƒš‘˜š‘˜ š±š± and š‘„š‘„š‘˜š‘˜ š±š± are given by
š‘ƒš‘ƒš‘˜š‘˜ = š‘‰š‘‰š‘˜š‘˜ ļæ½
š‘›š‘›=1
š‘š‘
š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ š‘‰š‘‰
š‘›š‘› cos š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜
š‘„š‘„š‘˜š‘˜ = š‘‰š‘‰š‘˜š‘˜ ļæ½
š‘›š‘›=1
š‘š‘
š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ š‘‰š‘‰
š‘›š‘› sin š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜
ļ‚¤ Admittance matrix terms are
š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ = š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ āˆ šœƒšœƒš‘˜š‘˜š‘˜š‘˜
(9)
(10)
95
K. Webb ESE 470
Solving the Power-Flow Problem - Overview
ļ‚Ø The iterative N-R formula is
š±š±š‘–š‘–+1 = š±š±š‘–š‘– + Ī”š±š±š‘–š‘–
ļ‚¤ The increment term, Ī”š±š±š‘–š‘–, is computed through
Gaussian elimination of
Ī”š²š²š‘–š‘– = š‰š‰š‘–š‘–Ī”š±š±š‘–š‘–
ļ‚¤ The Jacobian, š½š½š‘–š‘–, is computed on each iteration
ļ‚¤ The power mismatch vector is
Ī”š²š²š‘–š‘– = š²š² āˆ’ šŸšŸ š±š±š‘–š‘–
ļ® š²š² is the vector of known powers, as given in (25)
ļ® šŸšŸ š±š±š‘–š‘– are the š‘ƒš‘ƒ and š‘„š‘„ equations given by (9) and (10)
96
K. Webb ESE 470
Power-Flow Solution ā€“ Procedure
97
K. Webb ESE 470
Solving the Power-Flow Problem - Procedure
ļ‚Ø The following procedure shows how to set up and
solve the power-flow problem using the N-R
algorithm
1. Order and number buses
ļ‚¤ Slack bus is #1
ļ‚¤ Group all PV buses together next
ļ‚¤ Group all PQ buses together last
2. Generate the bus admittance matrix, š˜š˜
ļ‚¤ And magnitude, Y = š˜š˜ , and angle, Īø = āˆ š˜š˜, matrices
98
K. Webb ESE 470
Solving the Power-Flow Problem - Procedure
3. Initialize known quantities
ļ‚¤ Slack bus: š‘‰š‘‰1 and š›æš›æ1
ļ‚¤ PV buses: š‘‰š‘‰š‘˜š‘˜ and š‘ƒš‘ƒš‘˜š‘˜
ļ‚¤ PQ buses: š‘ƒš‘ƒš‘˜š‘˜ and š‘„š‘„š‘˜š‘˜
ļ‚¤ Output vector:
š²š² =
šš
šš
4. Initialize unknown quantities
š±š±š’š’ =
š›…š›…šŸŽšŸŽ
š•š•šŸŽšŸŽ
=
0
ā‹®
0
1.0
ā‹®
1.0
š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ + š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ
š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ
(24)
99
K. Webb ESE 470
Solving the Power-Flow Problem - Procedure
5. Set up Newton-Raphson parameters
ļ‚¤ Tolerance for convergence, reltol
ļ‚¤ Maximum # of iterations, max_iter
ļ‚¤ Initialize relative error: šœ€šœ€0 > reltol, e.g. šœ€šœ€0 = 10
ļ‚¤ Initialize iteration counter: š‘–š‘– = 0
6. while (šœ€šœ€ > reltol) && (š‘–š‘– < max_iter)
ļ‚¤ Update bus voltage phasor vector, š•š•š‘–š‘–, using magnitude
and phase values from š±š±š‘–š‘– and from knowns
ļ‚¤ Calculate the current injected into each bus, a vector of
phasors
šˆšˆš‘–š‘– = š˜š˜ ā‹… š•š•š‘–š‘–
100
K. Webb ESE 470
Solving the Power-Flow Problem - Procedure
6. while (šœ€šœ€ > reltol) && (š‘–š‘– < max_iter) ā€“ contā€™d
ļ‚¤ Calculate complex, real, and reactive power injected into each bus
ļ® This can be done using š•š•š‘–š‘– and šˆšˆš‘–š‘– vectors and element-by-element
multiplication (the .* operator in MATLAB)
š’š’š‘˜š‘˜,š‘–š‘– = š•š•š‘˜š‘˜,š‘–š‘– ā‹… šˆšˆš‘˜š‘˜,š‘–š‘–
āˆ—
š‘ƒš‘ƒš‘˜š‘˜,š‘–š‘– = š‘…š‘…š‘…š‘… š’š’š‘˜š‘˜,š‘–š‘–
š‘„š‘„š‘˜š‘˜,š‘–š‘– = š¼š¼š¼š¼ š’š’š‘˜š‘˜,š‘–š‘–
ļ‚¤ Create š‘“š‘“ š‘„š‘„š‘–š‘– from ššš‘–š‘– and ššš‘–š‘– vectors
ļ‚¤ Calculate power mismatch, Ī”š²š²š‘–š‘–
Ī”š²š²š‘–š‘– = š²š² āˆ’ šŸšŸ š±š±š‘–š‘–
ļ‚¤ Compute the Jacobian, š‰š‰š‘–š‘–, using voltage magnitudes and phase
angles from š•š•š‘–š‘–
101
K. Webb ESE 470
Solving the Power-Flow Problem - Procedure
6. while (šœ€šœ€ > reltol) && (š‘–š‘– < max_iter) ā€“ contā€™d
ļ‚¤ Solve for Ī”š±š±š‘–š‘– using Gaussian elimination
Ī”š²š²š‘–š‘– = š‰š‰š‘–š‘–Ī”š±š±š‘–š‘–
ļ® Use the mldivide (, backslash) operator in MATLAB: Ī”š±š±š‘–š‘– = š‰š‰š‘–š‘–Ī”š²š²š‘–š‘–
ļ‚¤ Update š±š±
š±š±š‘–š‘–+1 = š±š±š‘–š‘– + Ī”š±š±š‘–š‘–
ļ‚¤ Check for convergence using power mismatch
šœ€šœ€š‘–š‘–+1 = max
š‘¦š‘¦š‘˜š‘˜ āˆ’ š‘“š‘“š‘˜š‘˜ š±š±
š‘¦š‘¦š‘˜š‘˜
ļ‚¤ Update the number of iterations
š‘–š‘– = š‘–š‘– + 1
102
K. Webb ESE 470
The Jacobian Matrix
ļ‚Ø The Jacobian matrix has four quadrants of varying
dimension depending on the number of different
types of buses:
š‰š‰ =
šœ•šœ•šš
šœ•šœ•š›…š›…
šœ•šœ•šš
šœ•šœ•š•š•
šœ•šœ•šš
šœ•šœ•š›…š›…
šœ•šœ•šš
šœ•šœ•š•š•
š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ + š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ
š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ
š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ
š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ + š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ
š‰š‰1 š‰š‰2
š‰š‰3 š‰š‰4
103
K. Webb ESE 470
The Jacobian Matrix
ļ‚Ø Jacobian elements are partial derivatives of (9) and (10) with
respect to š›æš›æ or š‘‰š‘‰
ļ‚Ø Formulas for the Jacobian elements:
ļ‚¤ š‘›š‘› ā‰  š‘˜š‘˜
š‰š‰1š‘˜š‘˜š‘˜š‘˜ =
šœ•šœ•š‘ƒš‘ƒš‘˜š‘˜
šœ•šœ•š›æš›æš‘›š‘›
= š‘‰š‘‰š‘˜š‘˜š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜š‘‰š‘‰
š‘›š‘› sin š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜
š‰š‰2š‘˜š‘˜š‘˜š‘˜ =
šœ•šœ•š‘ƒš‘ƒš‘˜š‘˜
šœ•šœ•š‘‰š‘‰
š‘›š‘›
= š‘‰š‘‰š‘˜š‘˜š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ cos š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜
š‰š‰3š‘˜š‘˜š‘˜š‘˜ =
šœ•šœ•š‘„š‘„š‘˜š‘˜
šœ•šœ•š›æš›æš‘›š‘›
= āˆ’š‘‰š‘‰š‘˜š‘˜š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜š‘‰š‘‰
š‘›š‘› cos š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜
š‰š‰4š‘˜š‘˜š‘˜š‘˜ =
šœ•šœ•š‘„š‘„š‘˜š‘˜
šœ•šœ•š‘‰š‘‰
š‘›š‘›
= š‘‰š‘‰š‘˜š‘˜š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ sin š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜
(29)
(27)
(28)
(30)
104
K. Webb ESE 470
The Jacobian Matrix
ļ‚Ø Formulas for the Jacobian elements, contā€™d:
ļ‚¤ š‘›š‘› = š‘˜š‘˜
š‰š‰1š‘˜š‘˜š‘˜š‘˜ =
šœ•šœ•š‘ƒš‘ƒš‘˜š‘˜
šœ•šœ•š›æš›æš‘˜š‘˜
= āˆ’š‘‰š‘‰š‘˜š‘˜ ļæ½
š‘›š‘›=1
š‘›š‘›ā‰ š‘˜š‘˜
š‘š‘
š‘Œš‘Œš‘˜š‘˜š‘›š‘›š‘‰š‘‰
š‘›š‘› sin š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜
š‰š‰2š‘˜š‘˜š‘˜š‘˜ =
šœ•šœ•š‘ƒš‘ƒš‘˜š‘˜
šœ•šœ•š‘‰š‘‰š‘˜š‘˜
= š‘‰š‘‰š‘˜š‘˜š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ cos šœƒšœƒš‘˜š‘˜š‘˜š‘˜ + ļæ½
š‘›š‘›=1
š‘š‘
š‘Œš‘Œš‘˜š‘˜š‘›š‘›š‘‰š‘‰
š‘›š‘› cos š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜
š‰š‰3š‘˜š‘˜š‘˜š‘˜ =
šœ•šœ•š‘„š‘„š‘˜š‘˜
šœ•šœ•š›æš›æš‘˜š‘˜
= š‘‰š‘‰š‘˜š‘˜ ļæ½
š‘›š‘›=1
š‘›š‘›ā‰ š‘˜š‘˜
š‘š‘
š‘Œš‘Œš‘˜š‘˜š‘›š‘›š‘‰š‘‰
š‘›š‘› cos š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜
š‰š‰4š‘˜š‘˜š‘˜š‘˜ =
šœ•šœ•š‘„š‘„š‘˜š‘˜
šœ•šœ•š‘‰š‘‰š‘˜š‘˜
= āˆ’š‘‰š‘‰š‘˜š‘˜š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ sin šœƒšœƒš‘˜š‘˜š‘˜š‘˜ + ļæ½
š‘›š‘›=1
š‘š‘
š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜š‘‰š‘‰
š‘›š‘› sin š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜
(33)
(31)
(32)
(34)
105
K. Webb ESE 470
Power-Flow Solution ā€“ Example
106
K. Webb ESE 470
Power-Flow Solution ā€“ Buses
ļ‚Ø Determine all bus voltages and power flows for the following three-
bus power system
ļ‚Ø Three buses, š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ = 1, š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ = 1, ordered PV first, then PQ:
ļ‚¤ Bus 1: slack bus
ļ® š‘‰š‘‰1 and š›æš›æ1 are known, find š‘ƒš‘ƒ1 and š‘„š‘„1
ļ‚¤ Bus 2: PV bus
ļ® š‘ƒš‘ƒ2 and š‘‰š‘‰2 are known, find š›æš›æ2 and š‘„š‘„2
ļ‚¤ Bus 3: PQ bus
ļ® š‘ƒš‘ƒ3 and š‘„š‘„3 are known, find š‘‰š‘‰3 and š›æš›æ3
107
K. Webb ESE 470
ļ‚Ø Per-unit, per-length impedance of all transmission lines:
š‘§š‘§ = 31.1 + š‘—š‘—š‘—š‘—š‘— Ɨ 10āˆ’6 š‘š‘š‘š‘/š‘˜š‘˜š‘˜š‘˜
ļ‚¤ Admittance of each line:
š‘Œš‘Œ12 = š‘Œš‘Œ23 =
1
š‘§š‘§ ā‹… 150 š‘˜š‘˜š‘˜š‘˜
= 2.06 āˆ’ š‘—š‘—š‘—š‘—.9 š‘š‘š‘š‘
š‘Œš‘Œ13 =
1
š‘§š‘§ ā‹… 200 š‘˜š‘˜š‘˜š‘˜
= 1.54 āˆ’ š‘—š‘—15.7 š‘š‘š‘š‘
Power-Flow Solution ā€“ Admittance Matrix
108
K. Webb ESE 470
ļ‚Ø The admittance matrix (see p. 8):
š˜š˜ =
š‘Œš‘Œ11 āˆ’š‘Œš‘Œ12 āˆ’š‘Œš‘Œ13
āˆ’š‘Œš‘Œ21 š‘Œš‘Œ22 āˆ’š‘Œš‘Œ23
āˆ’š‘Œš‘Œ31 āˆ’š‘Œš‘Œ32 š‘Œš‘Œ33
=
3.6 āˆ’ š‘—š‘—š‘—š‘—.6 āˆ’2.06 + š‘—š‘—š‘—š‘—.9 āˆ’1.5 + š‘—š‘—š‘—š‘—.7
āˆ’2.06 + š‘—š‘—š‘—š‘—.9 4.1 āˆ’ š‘—š‘—š‘—š‘—.8 āˆ’2.06 + š‘—š‘—š‘—š‘—.9
āˆ’1.5 + š‘—š‘—š‘—š‘—.7 āˆ’2.06 + š‘—š‘—š‘—š‘—.9 3.6 āˆ’ š‘—š‘—š‘—š‘—.6
ļ‚Ø Admittance magnitude and angle matrices:
Y = š˜š˜ =
36.8 21.0 15.8
21.0 42.0 21.0
15.8 21.0 36.8
, š›‰š›‰ =
āˆ’84.4Ā° 95.6Ā° 95.6Ā°
95.6Ā° āˆ’84.4Ā° 95.6Ā°
95.6Ā° 95.6Ā° āˆ’84.4Ā°
Power-Flow Solution ā€“ Admittance Matrix
109
K. Webb ESE 470
Power-Flow Solution ā€“ Initialize Knowns
ļ‚Ø Known quantities
ļ‚¤ Slack bus: š‘‰š‘‰1 = 1.0 š‘š‘š‘š‘, š›æš›æ1 = 0Ā°
ļ‚¤ PV bus: š‘‰š‘‰2 = 1.05 š‘š‘š‘š‘, š‘ƒš‘ƒ2 = 2.0 š‘š‘š‘š‘
ļ‚¤ PQ bus: š‘ƒš‘ƒ3 = āˆ’5.0 š‘š‘š‘š‘, š‘„š‘„3 = āˆ’1.0 š‘š‘š‘š‘
ļ‚¤ Output vector
š²š² =
šš
šš
=
š‘ƒš‘ƒ2
š‘ƒš‘ƒ3
š‘„š‘„3
=
2.0
āˆ’5.0
āˆ’1.0
110
K. Webb ESE 470
Power-Flow Solution ā€“ Initialize Unknowns
ļ‚Ø The vector of unknown quantities to be solved for is
š±š± =
š›…š›…
š•š•
=
š›æš›æ2
š›æš›æ3
š‘‰š‘‰3
ļ‚Ø Initialize all unknown bus voltage phasors to š•š•š‘˜š‘˜ = 1.0āˆ 0Ā° š‘š‘š‘š‘
š±š±0 =
š›…š›…0
š•š•0
=
š›æš›æ2,0
š›æš›æ3,0
š‘‰š‘‰3,0
=
0
0
1.0
ļ‚Ø The complete vector of bus voltage phasors ā€“ partly known, partly
unknown ā€“ is
š•š• =
š‘‰š‘‰1āˆ š›æš›æ1
š‘‰š‘‰2āˆ š›æš›æ2
š‘‰š‘‰3āˆ š›æš›æ3
=
1.0āˆ 0Ā°
1.05āˆ š›æš›æ2,0
š‘‰š‘‰3,0āˆ š›æš›æ3,0
=
1.0āˆ 0Ā°
1.05āˆ 0Ā°
1.0āˆ 0Ā°
111
K. Webb ESE 470
Power-Flow Solution ā€“ Jacobian Matrix
ļ‚Ø The Jacobian matrix for this system is
š‰š‰ =
šœ•šœ•š‘ƒš‘ƒ2
šœ•šœ•š›æš›æ2
šœ•šœ•š‘ƒš‘ƒ2
šœ•šœ•š›æš›æ3
šœ•šœ•š‘ƒš‘ƒ2
šœ•šœ•š‘‰š‘‰3
šœ•šœ•š‘ƒš‘ƒ3
šœ•šœ•š›æš›æ2
šœ•šœ•š‘ƒš‘ƒ3
šœ•šœ•š›æš›æ3
šœ•šœ•š‘ƒš‘ƒ3
šœ•šœ•š‘‰š‘‰3
šœ•šœ•š‘„š‘„3
šœ•šœ•š›æš›æ2
šœ•šœ•š‘„š‘„3
šœ•šœ•š›æš›æ3
šœ•šœ•š‘„š‘„3
šœ•šœ•š‘‰š‘‰3
ļ‚Ø This matrix will be computed on each iteration using
the current approximation to the vector of
unknowns, š±š±š‘–š‘–
112
K. Webb ESE 470
Power-Flow Solution ā€“ Set Up and Iterate
ļ‚Ø Set up N-R iteration parameters
ļ‚¤ reltol = 1e-6
ļ‚¤ max_iter = 1e3
ļ‚¤ šœ€šœ€0 = 10
ļ‚¤ š‘–š‘– = 0
ļ‚Ø Iteratively update the approximation to the vector of
unknowns as long as
ļ‚¤ Stopping criterion is not satisfied
šœ€šœ€š‘–š‘– > šœ€šœ€š‘ š‘ 
ļ‚¤ Maximum number of iterations is not exceeded
š‘–š‘– ā‰¤ š‘šš‘šš‘šš‘šš‘šš‘š _š‘–š‘–š‘–š‘–š‘–š‘–š‘–š‘–
113
K. Webb ESE 470
Power-Flow Solution ā€“ Iterate
ļ‚Ø š‘–š‘– = 0:
ļ‚¤ Vector of bus voltage phasors
š•š•0 =
š‘‰š‘‰1āˆ š›æš›æ1
š‘‰š‘‰2āˆ š›æš›æ2,0
š‘‰š‘‰3,0āˆ š›æš›æ3,0
=
1.0āˆ 0Ā°
1.05āˆ 0Ā°
1.0āˆ 0Ā°
ļ‚¤ Current injected into each bus
šˆšˆ0 = š˜š˜ ā‹… š•š•0
šˆšˆ0 =
3.6 āˆ’ š‘—š‘—š‘—š‘—.6 āˆ’2.1 + š‘—š‘—š‘—š‘—.9 āˆ’1.5 + š‘—š‘—š‘—š‘—.7
āˆ’2.1 + š‘—š‘—š‘—š‘—.9 4.1 āˆ’ š‘—š‘—š‘—š‘—.8 āˆ’2.1 + š‘—š‘—š‘—š‘—.9
āˆ’1.5 + š‘—š‘—š‘—š‘—.7 āˆ’2.1 + š‘—š‘—š‘—š‘—.9 3.6 āˆ’ š‘—š‘—š‘—š‘—.6
1.0āˆ 0Ā°
1.05āˆ 0Ā°
1.0āˆ 0Ā°
šˆšˆ0 =
1.05āˆ 95.6Ā°
2.10āˆ  āˆ’ 84.4Ā°
1.05āˆ 95.6Ā°
114
K. Webb ESE 470
Power-Flow Solution ā€“ Iterate
ļ‚Ø š‘–š‘– = 0:
ļ‚¤ Complex power injected into each bus
š’š’0 = š•š•0 .āˆ— šˆšˆ0
āˆ—
š’š’0 =
1.0āˆ 0Ā°
1.05āˆ 0Ā°
1.0āˆ 0Ā°
.āˆ—
1.05āˆ 95.6Ā°
2.10āˆ  āˆ’ 84.4Ā°
1.05āˆ 95.6Ā°
āˆ—
š’š’0 =
āˆ’0.103 āˆ’ š‘—š‘—š‘—.045
0.216 + š‘—š‘—š‘—.195
āˆ’0.103 āˆ’ š‘—š‘—š‘—.045
ļ‚¤ Real and reactive power
šš0 =
āˆ’0.103
0.216
āˆ’0.103
, šš0 =
āˆ’1.045
2.195
āˆ’1.045
115
K. Webb ESE 470
Power-Flow Solution ā€“ Iterate
ļ‚Ø š‘–š‘– = 0:
ļ‚¤ Power mismatch
Ī”š²š²0 = š²š² āˆ’ šŸšŸ š±š±0
Ī”š²š²0 =
2.0
āˆ’5.0
āˆ’1.0
āˆ’
0.216
āˆ’0.103
āˆ’1.045
=
1.784
āˆ’4.897
0.045
ļ‚¤ Next, compute the Jacobian matrix
š‰š‰0 =
šœ•šœ•š‘ƒš‘ƒ2
šœ•šœ•š›æš›æ2
šœ•šœ•š‘ƒš‘ƒ2
šœ•šœ•š›æš›æ3
šœ•šœ•š‘ƒš‘ƒ2
šœ•šœ•š‘‰š‘‰3
šœ•šœ•š‘ƒš‘ƒ3
šœ•šœ•š›æš›æ2
šœ•šœ•š‘ƒš‘ƒ3
šœ•šœ•š›æš›æ3
šœ•šœ•š‘ƒš‘ƒ3
šœ•šœ•š‘‰š‘‰3
šœ•šœ•š‘„š‘„3
šœ•šœ•š›æš›æ2
šœ•šœ•š‘„š‘„3
šœ•šœ•š›æš›æ3
šœ•šœ•š‘„š‘„3
šœ•šœ•š‘‰š‘‰3 š±š±=š±š±0
116
K. Webb ESE 470
Power-Flow Solution ā€“ Iterate
ļ‚Ø š‘–š‘– = 0:
ļ‚¤ Elements of the Jacobian matrix are computed using š‘‰š‘‰
and š›æš›æ values from š•š•0 and š‘Œš‘Œ and šœƒšœƒ values from š˜š˜:
š‘‰š‘‰0 =
1.0
1.05
1.0
š›æš›æ0 =
0Ā°
0Ā°
0Ā°
š‘Œš‘Œ =
36.8 21.0 15.8
21.0 42.0 21.0
15.8 21.0 36.8
šœƒšœƒ =
āˆ’84.4Ā° 95.6Ā° 95.6Ā°
95.6Ā° āˆ’84.4Ā° 95.6Ā°
95.6Ā° 95.6Ā° āˆ’84.4Ā°
117
K. Webb ESE 470
Power-Flow Solution ā€“ Iterate
ļ‚Ø š‘–š‘– = 0:
ļ‚¤ Jacobian, š‰š‰1
šœ•šœ•š‘ƒš‘ƒ2
šœ•šœ•š›æš›æ2
= āˆ’š‘‰š‘‰2 š‘Œš‘Œ21š‘‰š‘‰1 sin š›æš›æ2 āˆ’ š›æš›æ1 āˆ’ šœƒšœƒ21 + š‘Œš‘Œ23š‘‰š‘‰3 sin š›æš›æ2 āˆ’ š›æš›æ3 āˆ’ šœƒšœƒ23
šœ•šœ•š‘ƒš‘ƒ3
šœ•šœ•š›æš›æ3
= āˆ’š‘‰š‘‰3 š‘Œš‘Œ31š‘‰š‘‰1 sin š›æš›æ3 āˆ’ š›æš›æ1 āˆ’ šœƒšœƒ31 + š‘Œš‘Œ32š‘‰š‘‰2 sin š›æš›æ3 āˆ’ š›æš›æ2 āˆ’ šœƒšœƒ32
šœ•šœ•š‘ƒš‘ƒ2
šœ•šœ•š›æš›æ3
= š‘‰š‘‰2š‘Œš‘Œ23š‘‰š‘‰3 sin š›æš›æ2 āˆ’ š›æš›æ3 āˆ’ šœƒšœƒ23
šœ•šœ•š‘ƒš‘ƒ3
šœ•šœ•š›æš›æ2
= š‘‰š‘‰3š‘Œš‘Œ32š‘‰š‘‰2 sin š›æš›æ3 āˆ’ š›æš›æ2 āˆ’ šœƒšœƒ32
118
K. Webb ESE 470
Power-Flow Solution ā€“ Iterate
ļ‚Ø š‘–š‘– = 0:
ļ‚¤ Jacobian, š‰š‰2
šœ•šœ•š‘ƒš‘ƒ2
šœ•šœ•š‘‰š‘‰3
= š‘‰š‘‰2š‘Œš‘Œ23 cos š›æš›æ2 āˆ’ š›æš›æ3 āˆ’ šœƒšœƒ23
šœ•šœ•š‘ƒš‘ƒ3
šœ•šœ•š‘‰š‘‰3
= 2 ā‹… š‘‰š‘‰3š‘Œš‘Œ33 cos šœƒšœƒ33 +
š‘Œš‘Œ31š‘‰š‘‰1 cos š›æš›æ3 āˆ’ š›æš›æ1 āˆ’ šœƒšœƒ31 + š‘Œš‘Œ32š‘‰š‘‰2 cos š›æš›æ3 āˆ’ š›æš›æ2 āˆ’ šœƒšœƒ32
ļ‚¤ Jacobian, š‰š‰3
šœ•šœ•š‘„š‘„3
šœ•šœ•š›æš›æ2
= āˆ’š‘‰š‘‰3š‘Œš‘Œ32š‘‰š‘‰2 cos š›æš›æ3 āˆ’ š›æš›æ2 āˆ’ šœƒšœƒ32
šœ•šœ•š‘„š‘„3
šœ•šœ•š›æš›æ3
= š‘‰š‘‰3 š‘Œš‘Œ31š‘‰š‘‰1 cos š›æš›æ3 āˆ’ š›æš›æ1 āˆ’ šœƒšœƒ31 + š‘Œš‘Œ32š‘‰š‘‰2 cos š›æš›æ3 āˆ’ š›æš›æ2 āˆ’ šœƒšœƒ32
119
K. Webb ESE 470
Power-Flow Solution ā€“ Iterate
ļ‚Ø š‘–š‘– = 0:
ļ‚¤ Jacobian, š‰š‰4
šœ•šœ•š‘„š‘„3
šœ•šœ•š‘‰š‘‰3
= š‘‰š‘‰3š‘Œš‘Œ33 cos šœƒšœƒ33 +
š‘Œš‘Œ31š‘‰š‘‰1 cos š›æš›æ3 āˆ’ š›æš›æ1 āˆ’ šœƒšœƒ31 + š‘Œš‘Œ32š‘‰š‘‰2 cos š›æš›æ3 āˆ’ š›æš›æ2 āˆ’ šœƒšœƒ32
ļ‚¤ Evaluating the Jacobian expressions using š‘‰š‘‰ and š›æš›æ
values from š•š•0 and š‘Œš‘Œ and šœƒšœƒ values from š˜š˜, gives
š‰š‰0 =
43.89 āˆ’21.95 āˆ’2.160
āˆ’21.95 37.62 3.497
2.160 āˆ’3.702 35.53
120
K. Webb ESE 470
Power-Flow Solution ā€“ Iterate
ļ‚Ø š‘–š‘– = 0:
ļ‚¤ Use Gaussian elimination to solve for Ī”š±š±0
Ī”š²š²0 = š‰š‰0Ī”š±š±0 =
43.89 āˆ’21.95 āˆ’2.160
āˆ’21.95 37.62 3.497
2.160 āˆ’3.702 35.53
Ī”š‘„š‘„1,0
Ī”š‘„š‘„2,0
Ī”š‘„š‘„3,0
=
1.784
āˆ’4.897
0.045
Ī”š±š±0 =
āˆ’0.0345
āˆ’0.1492
āˆ’0.0122
ļ‚¤ Update the vector of unknowns, š±š±
š±š±1 = š±š±0 + Ī”š±š±0 =
0
0
1.0
+
āˆ’0.0345
āˆ’0.1492
āˆ’0.0122
=
āˆ’0.0345
āˆ’0.1492
0.9878
121
K. Webb ESE 470
Power-Flow Solution ā€“ Iterate
ļ‚Ø š‘–š‘– = 0:
ļ‚¤ Use power mismatch to check for convergence
šœ€šœ€0 = max
š‘¦š‘¦š‘˜š‘˜ āˆ’ š‘“š‘“š‘˜š‘˜ š‘„š‘„
š‘¦š‘¦š‘˜š‘˜
= 0.9794
ļ‚¤ Move on to the next iteration, š‘–š‘– = 1
ļ® Create š•š•1 using š±š±1 values
ļ® Calculate šˆšˆ1
ļ® Calculate š’š’1, šš1, šš1
ļ® Create šŸšŸ š±š±1 from šš1 and šš1
ļ® Calculate Ī”š²š²1, š‰š‰1, Ī”š±š±1
ļ® Update š±š± to š±š±2
ļ® Check for convergence
ļ® ā€¦
122
K. Webb ESE 470
Power-Flow Solution
ļ‚Ø Convergence is achieved after four iterations
š•š•4 =
1.0āˆ 0Ā°
1.1āˆ  āˆ’ 2.1Ā°
0.97āˆ  āˆ’ 8.8Ā°
, š’š’4 =
3.08 āˆ’ š‘—š‘—š‘—.82
2.0 + š‘—š‘—š‘—.67
āˆ’5.0 āˆ’ š‘—š‘—š‘—.0
šœ€šœ€4 = 0.41 Ɨ 10āˆ’6
123
K. Webb ESE 470
Example Problems
124
K. Webb ESE 470
For the power system shown, determine
a) The type of each bus
b) The first row of the admittance matrix, š˜š˜
c) The vector of unknowns, š±š±
d) The vector of knowns, š²š²
e) The Jacobian matrix, š‰š‰, in symbolic form
125
K. Webb ESE 470
126
K. Webb ESE 470
127
K. Webb ESE 470
128

More Related Content

Similar to ESE 470 Power Flow Analysis

ECEN615_Fall2020_Lect4.pptx
ECEN615_Fall2020_Lect4.pptxECEN615_Fall2020_Lect4.pptx
ECEN615_Fall2020_Lect4.pptxPrasenjitDey49
Ā 
Power System Security_MMH.pptx
Power System Security_MMH.pptxPower System Security_MMH.pptx
Power System Security_MMH.pptxMahmudulHasan771487
Ā 
Lecture 10
Lecture 10Lecture 10
Lecture 10Forward2025
Ā 
Analysis of unsymmetrical faults using bus impedence matrix
Analysis of unsymmetrical faults using bus impedence matrixAnalysis of unsymmetrical faults using bus impedence matrix
Analysis of unsymmetrical faults using bus impedence matrixTrupesh Rupareliya
Ā 
Power System Analysis and Design
Power System Analysis and DesignPower System Analysis and Design
Power System Analysis and DesignZainUlAbdeen41
Ā 
W1_EE566.pptx
W1_EE566.pptxW1_EE566.pptx
W1_EE566.pptxBekirTalat
Ā 
Section 7 Fault Analysis.pdf
Section 7 Fault Analysis.pdfSection 7 Fault Analysis.pdf
Section 7 Fault Analysis.pdfALIFEVIOUSCHRISTIANX
Ā 
ECE476_2016_Lect 12.pptx
ECE476_2016_Lect 12.pptxECE476_2016_Lect 12.pptx
ECE476_2016_Lect 12.pptxAhmed359095
Ā 
Ee 1351 power system analysis
Ee 1351 power system analysisEe 1351 power system analysis
Ee 1351 power system analysisHari Kumar
Ā 
MATEX @ DAC14
MATEX @ DAC14MATEX @ DAC14
MATEX @ DAC14Hao Zhuang
Ā 
BEF43303_-_201620171_W5 Analysis of fault.pdf
BEF43303_-_201620171_W5 Analysis of fault.pdfBEF43303_-_201620171_W5 Analysis of fault.pdf
BEF43303_-_201620171_W5 Analysis of fault.pdfLiewChiaPing
Ā 
Relativistic formulation of Maxwell equations.
Relativistic formulation of Maxwell equations.Relativistic formulation of Maxwell equations.
Relativistic formulation of Maxwell equations.dhrubanka
Ā 
Volt/Var Optimization by Smart Inverters and Capacitor Banks
Volt/Var Optimization by Smart Inverters and Capacitor BanksVolt/Var Optimization by Smart Inverters and Capacitor Banks
Volt/Var Optimization by Smart Inverters and Capacitor BanksPower System Operation
Ā 
Volt/Var Optimization by Smart Inverters and Capacitor Banks
Volt/Var Optimization by Smart Inverters and Capacitor BanksVolt/Var Optimization by Smart Inverters and Capacitor Banks
Volt/Var Optimization by Smart Inverters and Capacitor BanksPower System Operation
Ā 
Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016foxtrot jp R
Ā 
Power Circuits and Transforers-Unit 6 Labvolt Student Manual
Power Circuits and Transforers-Unit 6 Labvolt Student ManualPower Circuits and Transforers-Unit 6 Labvolt Student Manual
Power Circuits and Transforers-Unit 6 Labvolt Student Manualphase3-120A
Ā 
Lecture no 4 power system analysis elc353 et313
Lecture no 4 power system analysis elc353 et313Lecture no 4 power system analysis elc353 et313
Lecture no 4 power system analysis elc353 et313Fazal Ur Rehman
Ā 

Similar to ESE 470 Power Flow Analysis (20)

ECEN615_Fall2020_Lect4.pptx
ECEN615_Fall2020_Lect4.pptxECEN615_Fall2020_Lect4.pptx
ECEN615_Fall2020_Lect4.pptx
Ā 
Power System Security_MMH.pptx
Power System Security_MMH.pptxPower System Security_MMH.pptx
Power System Security_MMH.pptx
Ā 
Lecture 10
Lecture 10Lecture 10
Lecture 10
Ā 
H06 elo f
H06 elo fH06 elo f
H06 elo f
Ā 
Analysis of unsymmetrical faults using bus impedence matrix
Analysis of unsymmetrical faults using bus impedence matrixAnalysis of unsymmetrical faults using bus impedence matrix
Analysis of unsymmetrical faults using bus impedence matrix
Ā 
Power System Analysis and Design
Power System Analysis and DesignPower System Analysis and Design
Power System Analysis and Design
Ā 
W1_EE566.pptx
W1_EE566.pptxW1_EE566.pptx
W1_EE566.pptx
Ā 
Section 7 Fault Analysis.pdf
Section 7 Fault Analysis.pdfSection 7 Fault Analysis.pdf
Section 7 Fault Analysis.pdf
Ā 
Fundamental Power System
Fundamental Power SystemFundamental Power System
Fundamental Power System
Ā 
ECE476_2016_Lect 12.pptx
ECE476_2016_Lect 12.pptxECE476_2016_Lect 12.pptx
ECE476_2016_Lect 12.pptx
Ā 
Ee 1351 power system analysis
Ee 1351 power system analysisEe 1351 power system analysis
Ee 1351 power system analysis
Ā 
MATEX @ DAC14
MATEX @ DAC14MATEX @ DAC14
MATEX @ DAC14
Ā 
BEF43303_-_201620171_W5 Analysis of fault.pdf
BEF43303_-_201620171_W5 Analysis of fault.pdfBEF43303_-_201620171_W5 Analysis of fault.pdf
BEF43303_-_201620171_W5 Analysis of fault.pdf
Ā 
Relativistic formulation of Maxwell equations.
Relativistic formulation of Maxwell equations.Relativistic formulation of Maxwell equations.
Relativistic formulation of Maxwell equations.
Ā 
Lecture 3
Lecture 3Lecture 3
Lecture 3
Ā 
Volt/Var Optimization by Smart Inverters and Capacitor Banks
Volt/Var Optimization by Smart Inverters and Capacitor BanksVolt/Var Optimization by Smart Inverters and Capacitor Banks
Volt/Var Optimization by Smart Inverters and Capacitor Banks
Ā 
Volt/Var Optimization by Smart Inverters and Capacitor Banks
Volt/Var Optimization by Smart Inverters and Capacitor BanksVolt/Var Optimization by Smart Inverters and Capacitor Banks
Volt/Var Optimization by Smart Inverters and Capacitor Banks
Ā 
Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016Frequency analyis i - sqrd1062016
Frequency analyis i - sqrd1062016
Ā 
Power Circuits and Transforers-Unit 6 Labvolt Student Manual
Power Circuits and Transforers-Unit 6 Labvolt Student ManualPower Circuits and Transforers-Unit 6 Labvolt Student Manual
Power Circuits and Transforers-Unit 6 Labvolt Student Manual
Ā 
Lecture no 4 power system analysis elc353 et313
Lecture no 4 power system analysis elc353 et313Lecture no 4 power system analysis elc353 et313
Lecture no 4 power system analysis elc353 et313
Ā 

More from LucasMogaka

1502957399lectrure_5_KUET.pptx
1502957399lectrure_5_KUET.pptx1502957399lectrure_5_KUET.pptx
1502957399lectrure_5_KUET.pptxLucasMogaka
Ā 
Ch08_PPT_Fund_Elec_Circ_5e.ppt
Ch08_PPT_Fund_Elec_Circ_5e.pptCh08_PPT_Fund_Elec_Circ_5e.ppt
Ch08_PPT_Fund_Elec_Circ_5e.pptLucasMogaka
Ā 
Power_plant_ecomices.pptx
Power_plant_ecomices.pptxPower_plant_ecomices.pptx
Power_plant_ecomices.pptxLucasMogaka
Ā 
Transmission_and_Distribution_System.pptx
Transmission_and_Distribution_System.pptxTransmission_and_Distribution_System.pptx
Transmission_and_Distribution_System.pptxLucasMogaka
Ā 
Basic_Laws.ppt
Basic_Laws.pptBasic_Laws.ppt
Basic_Laws.pptLucasMogaka
Ā 
loadforecasting-190205135237.pptx
loadforecasting-190205135237.pptxloadforecasting-190205135237.pptx
loadforecasting-190205135237.pptxLucasMogaka
Ā 
NR-Power Flow.pdf
NR-Power Flow.pdfNR-Power Flow.pdf
NR-Power Flow.pdfLucasMogaka
Ā 
Ac_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxAc_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxLucasMogaka
Ā 
slides_12_ch 14-2- complex numbers.pdf
slides_12_ch 14-2- complex numbers.pdfslides_12_ch 14-2- complex numbers.pdf
slides_12_ch 14-2- complex numbers.pdfLucasMogaka
Ā 
MATLAB DEKUT 2019.doc
MATLAB DEKUT 2019.docMATLAB DEKUT 2019.doc
MATLAB DEKUT 2019.docLucasMogaka
Ā 
LOAD FORECASTING.ppt
LOAD FORECASTING.pptLOAD FORECASTING.ppt
LOAD FORECASTING.pptLucasMogaka
Ā 
0ea1cdf161957c644e8c0b524c973c7e7b2c - Copy.pdf
0ea1cdf161957c644e8c0b524c973c7e7b2c - Copy.pdf0ea1cdf161957c644e8c0b524c973c7e7b2c - Copy.pdf
0ea1cdf161957c644e8c0b524c973c7e7b2c - Copy.pdfLucasMogaka
Ā 
Economic_Load_Dispatch.pdf
Economic_Load_Dispatch.pdfEconomic_Load_Dispatch.pdf
Economic_Load_Dispatch.pdfLucasMogaka
Ā 
18053522.pdf
18053522.pdf18053522.pdf
18053522.pdfLucasMogaka
Ā 
CiT-03.pptx
CiT-03.pptxCiT-03.pptx
CiT-03.pptxLucasMogaka
Ā 
CiT-02.pptx
CiT-02.pptxCiT-02.pptx
CiT-02.pptxLucasMogaka
Ā 
Ac_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxAc_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxLucasMogaka
Ā 
CiT-03.pptx
CiT-03.pptxCiT-03.pptx
CiT-03.pptxLucasMogaka
Ā 
1340050227.pdf
1340050227.pdf1340050227.pdf
1340050227.pdfLucasMogaka
Ā 
EE-8353 EDC COURSE MATERIAL.pdf
EE-8353 EDC COURSE MATERIAL.pdfEE-8353 EDC COURSE MATERIAL.pdf
EE-8353 EDC COURSE MATERIAL.pdfLucasMogaka
Ā 

More from LucasMogaka (20)

1502957399lectrure_5_KUET.pptx
1502957399lectrure_5_KUET.pptx1502957399lectrure_5_KUET.pptx
1502957399lectrure_5_KUET.pptx
Ā 
Ch08_PPT_Fund_Elec_Circ_5e.ppt
Ch08_PPT_Fund_Elec_Circ_5e.pptCh08_PPT_Fund_Elec_Circ_5e.ppt
Ch08_PPT_Fund_Elec_Circ_5e.ppt
Ā 
Power_plant_ecomices.pptx
Power_plant_ecomices.pptxPower_plant_ecomices.pptx
Power_plant_ecomices.pptx
Ā 
Transmission_and_Distribution_System.pptx
Transmission_and_Distribution_System.pptxTransmission_and_Distribution_System.pptx
Transmission_and_Distribution_System.pptx
Ā 
Basic_Laws.ppt
Basic_Laws.pptBasic_Laws.ppt
Basic_Laws.ppt
Ā 
loadforecasting-190205135237.pptx
loadforecasting-190205135237.pptxloadforecasting-190205135237.pptx
loadforecasting-190205135237.pptx
Ā 
NR-Power Flow.pdf
NR-Power Flow.pdfNR-Power Flow.pdf
NR-Power Flow.pdf
Ā 
Ac_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxAc_steady_state_analyis.pptx
Ac_steady_state_analyis.pptx
Ā 
slides_12_ch 14-2- complex numbers.pdf
slides_12_ch 14-2- complex numbers.pdfslides_12_ch 14-2- complex numbers.pdf
slides_12_ch 14-2- complex numbers.pdf
Ā 
MATLAB DEKUT 2019.doc
MATLAB DEKUT 2019.docMATLAB DEKUT 2019.doc
MATLAB DEKUT 2019.doc
Ā 
LOAD FORECASTING.ppt
LOAD FORECASTING.pptLOAD FORECASTING.ppt
LOAD FORECASTING.ppt
Ā 
0ea1cdf161957c644e8c0b524c973c7e7b2c - Copy.pdf
0ea1cdf161957c644e8c0b524c973c7e7b2c - Copy.pdf0ea1cdf161957c644e8c0b524c973c7e7b2c - Copy.pdf
0ea1cdf161957c644e8c0b524c973c7e7b2c - Copy.pdf
Ā 
Economic_Load_Dispatch.pdf
Economic_Load_Dispatch.pdfEconomic_Load_Dispatch.pdf
Economic_Load_Dispatch.pdf
Ā 
18053522.pdf
18053522.pdf18053522.pdf
18053522.pdf
Ā 
CiT-03.pptx
CiT-03.pptxCiT-03.pptx
CiT-03.pptx
Ā 
CiT-02.pptx
CiT-02.pptxCiT-02.pptx
CiT-02.pptx
Ā 
Ac_steady_state_analyis.pptx
Ac_steady_state_analyis.pptxAc_steady_state_analyis.pptx
Ac_steady_state_analyis.pptx
Ā 
CiT-03.pptx
CiT-03.pptxCiT-03.pptx
CiT-03.pptx
Ā 
1340050227.pdf
1340050227.pdf1340050227.pdf
1340050227.pdf
Ā 
EE-8353 EDC COURSE MATERIAL.pdf
EE-8353 EDC COURSE MATERIAL.pdfEE-8353 EDC COURSE MATERIAL.pdf
EE-8353 EDC COURSE MATERIAL.pdf
Ā 

Recently uploaded

VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
Ā 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
Ā 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEslot gacor bisa pakai pulsa
Ā 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
Ā 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
Ā 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
Ā 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Ā 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Ā 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
Ā 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
Ā 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
Ā 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
Ā 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
Ā 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
Ā 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
Ā 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Ā 
Top Rated Pune Call Girls Budhwar Peth āŸŸ 6297143586 āŸŸ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth āŸŸ 6297143586 āŸŸ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth āŸŸ 6297143586 āŸŸ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth āŸŸ 6297143586 āŸŸ Call Me For Genuine Se...Call Girls in Nagpur High Profile
Ā 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
Ā 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
Ā 

Recently uploaded (20)

VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
Ā 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
Ā 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
Ā 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
Ā 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Ā 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
Ā 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Ā 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Ā 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
Ā 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
Ā 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
Ā 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
Ā 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
Ā 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
Ā 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
Ā 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
Ā 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Ā 
Top Rated Pune Call Girls Budhwar Peth āŸŸ 6297143586 āŸŸ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth āŸŸ 6297143586 āŸŸ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth āŸŸ 6297143586 āŸŸ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth āŸŸ 6297143586 āŸŸ Call Me For Genuine Se...
Ā 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
Ā 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
Ā 

ESE 470 Power Flow Analysis

  • 1. ESE 470 ā€“ Energy Distribution Systems SECTION 5: POWER FLOW
  • 2. K. Webb ESE 470 Introduction 2
  • 3. K. Webb ESE 470 Nodal Analysis ļ‚Ø Consider the following circuit ļ‚Ø Three voltage sources ļ‚¤ š‘‰š‘‰š‘ š‘ š‘ , š‘‰š‘‰š‘ š‘ š‘ , š‘‰š‘‰š‘ š‘ š‘  ļ‚Ø Generic branch impedances ļ‚¤ Could be any combination of R, L, and C ļ‚Ø Three unknown node voltages ļ‚¤ š‘‰š‘‰1, š‘‰š‘‰2, and š‘‰š‘‰3 ļ‚Ø Would like to analyze the circuit ļ‚¤ Determine unknown node voltages ļ‚Ø One possible analysis technique is nodal analysis 3
  • 4. K. Webb ESE 470 Nodal Analysis ļ‚Ø Nodal analysis ļ‚¤ Systematic application of KCL at each unknown node ļ‚¤ Apply Ohmā€™s law to express branch currents in terms of node voltages ļ‚¤ Sum currents at each unknown node ļ‚Ø Weā€™ll sum currents leaving each node and set equal to zero ļ‚Ø At node š‘‰š‘‰1, we have š‘‰š‘‰1 āˆ’ š‘‰š‘‰š‘ š‘ š‘  š‘š‘š‘ š‘ š‘  + š‘‰š‘‰1 āˆ’ š‘‰š‘‰2 š‘š‘1 = 0 ļ‚Ø Every current term includes division by an impedance ļ‚¤ Easier to work with admittances instead 4
  • 5. K. Webb ESE 470 Nodal Analysis ļ‚Ø Now our first nodal equation becomes š‘‰š‘‰1 āˆ’ š‘‰š‘‰š‘ š‘ š‘  š‘Œš‘Œš‘ š‘ š‘  + š‘‰š‘‰1 āˆ’ š‘‰š‘‰2 š‘Œš‘Œ1 = 0 where š‘Œš‘Œš‘ š‘ š‘  = 1/š‘š‘š‘ š‘ š‘  and š‘Œš‘Œ1 = 1/š‘š‘1 ļ‚Ø Rearranging to place all unknown node voltages on the left and all source terms on the right š‘Œš‘Œš‘ š‘ š‘  + š‘Œš‘Œ1 š‘‰š‘‰1 āˆ’ š‘Œš‘Œ1š‘‰š‘‰2 = š‘Œš‘Œš‘ š‘ š‘ š‘‰š‘‰š‘ š‘ š‘  ļ‚Ø Applying KCL at node š‘‰š‘‰2 š‘‰š‘‰2 āˆ’ š‘‰š‘‰1 š‘Œš‘Œ1 + š‘‰š‘‰2š‘Œš‘Œ2 + š‘‰š‘‰2 āˆ’ š‘‰š‘‰š‘ š‘ š‘  š‘Œš‘Œš‘ š‘ š‘  + š‘‰š‘‰2 āˆ’ š‘‰š‘‰3 š‘Œš‘Œ3 = 0 5
  • 6. K. Webb ESE 470 Nodal Analysis ļ‚Ø Rearranging āˆ’š‘Œš‘Œ1š‘‰š‘‰1 + š‘Œš‘Œ1 + š‘Œš‘Œ2 + š‘Œš‘Œš‘ š‘ š‘  + š‘Œš‘Œ3 š‘‰š‘‰2 āˆ’ š‘Œš‘Œ3š‘‰š‘‰3 = š‘Œš‘Œš‘ š‘ š‘ š‘‰š‘‰š‘ š‘ š‘  ļ‚Ø Finally, applying KCL at node š‘‰š‘‰3, gives š‘‰š‘‰3 āˆ’ š‘‰š‘‰2 š‘Œš‘Œ3 + š‘‰š‘‰3 āˆ’ š‘‰š‘‰š‘ š‘ š‘  š‘Œš‘Œš‘ š‘ š‘  = 0 āˆ’š‘Œš‘Œ3š‘‰š‘‰2 + š‘Œš‘Œ3 + š‘Œš‘Œš‘ š‘ š‘  š‘‰š‘‰3 = š‘Œš‘Œš‘ š‘ š‘ š‘‰š‘‰š‘ š‘ š‘  ļ‚Ø Note that the source terms are the Norton equivalent current sources (short-circuit currents) associated with each voltage source 6
  • 7. K. Webb ESE 470 Nodal Analysis ļ‚Ø Putting the nodal equations into matrix form š‘Œš‘Œš‘ š‘ 1 + š‘Œš‘Œš‘Œ āˆ’š‘Œš‘Œ1 0 āˆ’š‘Œš‘Œ1 š‘Œš‘Œ1 + š‘Œš‘Œ2 + š‘Œš‘Œš‘ š‘ š‘  + š‘Œš‘Œ3 āˆ’š‘Œš‘Œ3 0 āˆ’š‘Œš‘Œ3 š‘Œš‘Œ3 + š‘Œš‘Œš‘ š‘ š‘  š‘‰š‘‰1 š‘‰š‘‰2 š‘‰š‘‰3 = š‘Œš‘Œš‘ š‘ 1š‘‰š‘‰š‘ š‘ 1 š‘Œš‘Œš‘ š‘ š‘ š‘‰š‘‰š‘ š‘ š‘  š‘Œš‘Œš‘ š‘ š‘ š‘‰š‘‰š‘ š‘ š‘  or š’€š’€š’€š’€ = š‘°š‘° where ļ® š’€š’€ is the š‘š‘ Ɨ š‘š‘ admittance matrix ļ® š‘°š‘° is an š‘š‘ Ɨ 1 vector of known source currents ļ® š‘½š‘½ is an š‘š‘ Ɨ 1 vector of unknown node voltages ļ‚Ø This is a system of š‘š‘ (here, three) linear equations with š‘š‘ unknowns ļ‚Ø We can solve for the vector of unknown voltages as š‘½š‘½ = š’€š’€āˆ’1 š‘°š‘° 7
  • 8. K. Webb ESE 470 The Admittance Matrix, š’€š’€ ļ‚Ø Take a closer look at the form of the admittance matrix, š’€š’€ š‘Œš‘Œš‘ š‘ 1 + š‘Œš‘Œš‘Œ āˆ’š‘Œš‘Œ1 0 āˆ’š‘Œš‘Œ1 š‘Œš‘Œ1 + š‘Œš‘Œ2 + š‘Œš‘Œš‘ š‘ š‘  + š‘Œš‘Œ3 āˆ’š‘Œš‘Œ3 0 āˆ’š‘Œš‘Œ3 š‘Œš‘Œ3 + š‘Œš‘Œš‘ š‘ š‘  = š‘Œš‘Œ11 š‘Œš‘Œ12 š‘Œš‘Œ13 š‘Œš‘Œ21 š‘Œš‘Œ22 š‘¦š‘¦23 š‘Œš‘Œ31 š‘Œš‘Œ32 š‘Œš‘Œ33 ļ‚Ø The elements of š’€š’€ are ļ‚¤ Diagonal elements, š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜: ļ® š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ = sum of all admittances connected to node š‘˜š‘˜ ļ® Self admittance or driving-point admittance ļ‚¤ Off-diagonal elements, š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ (š‘˜š‘˜ ā‰  š‘›š‘›): ļ® š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ = āˆ’(total admittance between nodes š‘˜š‘˜ and š‘›š‘›) ļ® Mutual admittance or transfer admittance ļ‚Ø Note that, because the network is reciprocal, š’€š’€ is symmetric 8
  • 9. K. Webb ESE 470 Nodal Analysis ļ‚Ø Nodal analysis allows us to solve for unknown voltages given circuit admittances and current (Norton equivalent) inputs ļ‚¤ An application of Ohmā€™s law š’€š’€š’€š’€ = š‘°š‘° ļ‚¤ A linear equation ļ‚¤ Simple, algebraic solution ļ‚Ø For power-flow analysis, things get a bit more complicated 9
  • 10. K. Webb ESE 470 Power-Flow Analysis 10
  • 11. K. Webb ESE 470 The Power-Flow Problem ļ‚Ø A typical power system is not entirely unlike the simple circuit we just looked at ļ‚¤ Sources are generators ļ‚¤ Nodes are the system buses ļ‚¤ Buses are interconnected by impedances of transmission lines and transformers ļ‚Ø Inputs and outputs now include power (P and Q) ļ‚¤ System equations are now nonlinear ļ‚¤ Canā€™t simply solve š’€š’€š’€š’€ = š‘°š‘° ļ‚¤ Must employ numerical, iterative solution methods ļ‚Ø Power system analysis to determine bus voltages and power flows is called power-flow analysis or load-flow analysis 11
  • 12. K. Webb ESE 470 System One-Line Diagram ļ‚Ø Consider the one-line diagram for a simple power system ļ‚Ø System includes: ļ‚¤ Generators ļ‚¤ Buses ļ‚¤ Transformers ļ® Treated as equivalent circuit impedances in per-unit ļ‚¤ Transmission lines ļ® Equivalent circuit impedances ļ‚¤ Loads 12
  • 13. K. Webb ESE 470 Bus Variables ļ‚Ø The buses are the system nodes ļ‚Ø Four variables associated with each bus, š‘˜š‘˜ ļ‚¤ Voltage magnitude, š‘‰š‘‰š‘˜š‘˜ ļ‚¤ Voltage phase angle, š›æš›æš‘˜š‘˜ ļ‚¤ Real power delivered to the bus, š‘ƒš‘ƒš‘˜š‘˜ ļ‚¤ Reactive power delivered to the bus, š‘„š‘„š‘˜š‘˜ 13
  • 14. K. Webb ESE 470 Bus Power ļ‚Ø Net power delivered to bus š‘˜š‘˜ is the difference between power flowing from generators to bus š‘˜š‘˜ and power flowing from bus š‘˜š‘˜ to loads š‘ƒš‘ƒš‘˜š‘˜ = š‘ƒš‘ƒšŗšŗšŗšŗ āˆ’ š‘ƒš‘ƒšæšæšæšæ š‘„š‘„š‘˜š‘˜ = š‘„š‘„šŗšŗšŗšŗ āˆ’ š‘„š‘„šæšæšæšæ ļ‚Ø Even though weā€™ve introduced power flow into the analysis, we can still write nodal equations for the system ļ‚Ø Voltage and current related by the bus admittance matrix, š’€š’€š‘š‘š‘š‘š‘š‘ šˆšˆ = š˜š˜š‘š‘š‘š‘š‘š‘š•š• ļ‚¤ š˜š˜š‘š‘š‘š‘š‘š‘ contains the bus mutual and self admittances associated with transmission lines and transformers ļ‚¤ For an š‘š‘ bus system, š•š• is an š‘š‘ Ɨ 1 vector of bus voltages ļ‚¤ šˆšˆ is an š‘š‘ Ɨ 1 vector of source currents flowing into each bus ļ® From generators and loads 14
  • 15. K. Webb ESE 470 Types of Buses ļ‚Ø There are four variables associated with each bus ļ‚¤ š‘‰š‘‰š‘˜š‘˜ = š‘½š‘½š‘˜š‘˜ ļ‚¤ š›æš›æš‘˜š‘˜ = āˆ š‘½š‘½š‘˜š‘˜ ļ‚¤ š‘ƒš‘ƒš‘˜š‘˜ ļ‚¤ š‘„š‘„š‘˜š‘˜ ļ‚Ø Two variables are inputs to the power-flow problem ļ‚¤ Known ļ‚Ø Two are outputs ļ‚¤ To be calculated ļ‚Ø Buses are categorized into three types depending on which quantities are inputs and which are outputs ļ‚¤ Slack bus (swing bus) ļ‚¤ Load bus (PQ bus) ļ‚¤ Voltage-controlled bus (PV bus) 15
  • 16. K. Webb ESE 470 Bus Types ļ‚Ø Slack bus (swing bus): ļ‚¤ Reference bus ļ‚¤ Typically bus 1 ļ‚¤ Inputs are voltage magnitude, š‘‰š‘‰1, and phase angle, š›æš›æ1 ļ® Typically 1.0āˆ 0Ā° ļ‚¤ Power, š‘ƒš‘ƒ1 and š‘„š‘„1, is computed ļ‚Ø Load bus (š‘·š‘·š‘·š‘· bus): ļ‚¤ Buses to which only loads are connected ļ‚¤ Real power, š‘ƒš‘ƒš‘˜š‘˜, and reactive power, š‘„š‘„š‘˜š‘˜, are the knowns ļ‚¤ š‘‰š‘‰š‘˜š‘˜ and š›æš›æš‘˜š‘˜ are calculated ļ‚¤ Majority of power system buses are load buses 16
  • 17. K. Webb ESE 470 Bus Types ļ‚Ø Voltage-controlled bus (š‘·š‘·š‘·š‘· bus): ļ‚¤ Buses connected to generators ļ‚¤ Buses with shunt reactive compensation ļ‚¤ Real power, š‘ƒš‘ƒš‘˜š‘˜, and voltage magnitude, š‘‰š‘‰š‘˜š‘˜, are known inputs ļ‚¤ Reactive power, š‘„š‘„š‘˜š‘˜, and voltage phase angle, š›æš›æš‘˜š‘˜, are calculated 17
  • 18. K. Webb ESE 470 Solving the Power-Flow Problem ļ‚Ø The power-flow solution involves determining: ļ‚¤ š‘‰š‘‰š‘˜š‘˜, š›æš›æš‘˜š‘˜, š‘ƒš‘ƒš‘˜š‘˜, and š‘„š‘„š‘˜š‘˜ ļ‚Ø There are š‘š‘ buses ļ‚¤ Each with two unknown quantities ļ‚Ø There are 2š‘š‘ unknown quantities in total ļ‚¤ Need 2š‘š‘ equations ļ‚Ø š‘š‘ of these equations are the nodal equations š‘°š‘° = š’€š’€š’€š’€ (1) ļ‚Ø The other š‘š‘ equations are the power-balance equations š‘ŗš‘ŗš‘˜š‘˜ = š‘ƒš‘ƒš‘˜š‘˜ + š‘—š‘—š‘„š‘„š‘˜š‘˜ = š‘½š‘½š‘˜š‘˜š‘°š‘°š‘˜š‘˜ āˆ— (2) ļ‚Ø From (1), the nodal equation for the š‘˜š‘˜š‘”š‘”š‘” bus is š‘°š‘°š‘˜š‘˜ = āˆ‘š‘›š‘›=1 š‘š‘ š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜š‘½š‘½š‘›š‘› (3) 18
  • 19. K. Webb ESE 470 Solving the Power-Flow Problem ļ‚Ø Substituting (3) into (2) gives š‘ƒš‘ƒš‘˜š‘˜ + š‘—š‘—š‘„š‘„š‘˜š‘˜ = š‘½š‘½š‘˜š‘˜ āˆ‘š‘›š‘›=1 š‘š‘ š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜š‘½š‘½š‘›š‘› āˆ— (4) ļ‚Ø The bus voltages in (3) and (4) are phasors, which we can represent as š‘½š‘½š‘›š‘› = š‘‰š‘‰ š‘›š‘›š‘’š‘’š‘—š‘—š›æš›æš‘›š‘› and š‘½š‘½š‘˜š‘˜ = š‘‰š‘‰š‘˜š‘˜š‘’š‘’š‘—š‘—š›æš›æš‘˜š‘˜ (5) ļ‚Ø The admittances can also be written in polar form š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ = š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ š‘’š‘’š‘—š‘—šœƒšœƒš‘˜š‘˜š‘˜š‘˜ (6) ļ‚Ø Using (5) and (6) in (4) gives š‘ƒš‘ƒš‘˜š‘˜ + š‘—š‘—š‘„š‘„š‘˜š‘˜ = š‘‰š‘‰š‘˜š‘˜š‘’š‘’š‘—š‘—š›æš›æš‘˜š‘˜ āˆ‘š‘›š‘›=1 š‘š‘ š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ š‘’š‘’š‘—š‘—šœƒšœƒš‘˜š‘˜š‘˜š‘˜š‘‰š‘‰ š‘›š‘›š‘’š‘’š‘—š‘—š›æš›æš‘›š‘› āˆ— š‘ƒš‘ƒš‘˜š‘˜ + š‘—š‘—š‘„š‘„š‘˜š‘˜ = š‘‰š‘‰š‘˜š‘˜ āˆ‘š‘›š‘›=1 š‘š‘ š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ š‘‰š‘‰ š‘›š‘›š‘’š‘’š‘—š‘— š›æš›æš‘˜š‘˜āˆ’š›æš›æš‘›š‘›āˆ’šœƒšœƒš‘˜š‘˜š‘˜š‘˜ (7) 19
  • 20. K. Webb ESE 470 Solving the Power-Flow Problem ļ‚Ø In Cartesian form, (7) becomes š‘ƒš‘ƒš‘˜š‘˜ + š‘—š‘—š‘„š‘„š‘˜š‘˜ = š‘‰š‘‰š‘˜š‘˜ āˆ‘š‘›š‘›=1 š‘š‘ š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ š‘‰š‘‰ š‘›š‘› [cos š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜ +š‘—š‘— sin š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜ ] (8) ļ‚Ø From (8), active power is š‘ƒš‘ƒš‘˜š‘˜ = š‘‰š‘‰š‘˜š‘˜ āˆ‘š‘›š‘›=1 š‘š‘ š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ š‘‰š‘‰ š‘›š‘› cos š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜ (9) ļ‚Ø And, reactive power is š‘„š‘„š‘˜š‘˜ = š‘‰š‘‰š‘˜š‘˜ āˆ‘š‘›š‘›=1 š‘š‘ š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ š‘‰š‘‰ š‘›š‘› sin š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜ (10) 20
  • 21. K. Webb ESE 470 Solving the Power-Flow Problem š‘ƒš‘ƒš‘˜š‘˜ = š‘‰š‘‰š‘˜š‘˜ āˆ‘š‘›š‘›=1 š‘š‘ š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ š‘‰š‘‰ š‘›š‘› cos š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜ (9) š‘„š‘„š‘˜š‘˜ = š‘‰š‘‰š‘˜š‘˜ āˆ‘š‘›š‘›=1 š‘š‘ š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ š‘‰š‘‰ š‘›š‘› sin š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜ (10) ļ‚Ø Solving the power-flow problem amounts to finding a solution to a system of nonlinear equations, (9) and (10) ļ‚Ø Must be solved using numerical, iterative algorithms ļ‚¤ Typically Newton-Raphson ļ‚Ø In practice, commercial software packages are available for power-flow analysis ļ‚¤ E.g. PowerWorld, CYME, ETAP ļ‚Ø Weā€™ll now learn to solve the power-flow problem ļ‚¤ Numerical, iterative algorithm ļ® Newton-Raphson 21
  • 22. K. Webb ESE 470 Solving the Power-Flow Problem ļ‚Ø First, weā€™ll introduce a variety of numerical algorithms for solving equations and systems of equations ļ‚¤ Linear system of equations ļ® Direct solution ļ® Gaussian elimination ļ® Iterative solution ļ® Jacobi ļ® Gauss-Seidel ļ‚¤ Nonlinear equations ļ® Iterative solution ļ® Newton-Raphson ļ‚¤ Nonlinear system of equations ļ® Iterative solution ļ® Newton-Raphson 22
  • 23. K. Webb ESE 470 Linear Systems of Equations ā€“ Direct Solution 23
  • 24. K. Webb ESE 470 Solving Linear Systems of Equations ļ‚Ø Gaussian elimination ļ‚¤ Direct (i.e. non-iterative) solution ļ‚¤ Two parts to the algorithm: ļ® Forward elimination ļ® Back substitution 24
  • 25. K. Webb ESE 470 Gaussian Elimination ļ‚Ø Consider a system of equations āˆ’4š‘„š‘„1 + 7š‘„š‘„3 = āˆ’5 2š‘„š‘„1 āˆ’ 3š‘„š‘„2 + 5š‘„š‘„3 = āˆ’12 š‘„š‘„2 āˆ’ 3š‘„š‘„3 = 3 ļ‚Ø This can be expressed in matrix form: āˆ’4 0 7 2 āˆ’3 5 0 1 āˆ’3 š‘„š‘„1 š‘„š‘„2 š‘„š‘„3 = āˆ’5 āˆ’12 3 ļ‚Ø In general š€š€ ā‹… š±š± = š²š² ļ‚Ø For a system of three equations with three unknowns: š“š“11 š“š“12 š“š“13 š“š“21 š“š“22 š“š“23 š“š“31 š“š“32 š“š“33 š‘„š‘„1 š‘„š‘„2 š‘„š‘„3 = š‘¦š‘¦1 š‘¦š‘¦2 š‘¦š‘¦3 25
  • 26. K. Webb ESE 470 Gaussian Elimination ļ‚Ø Weā€™ll use a 3Ɨ3 system as an example to develop the Gaussian elimination algorithm š“š“11 š“š“12 š“š“13 š“š“21 š“š“22 š“š“23 š“š“31 š“š“32 š“š“33 š‘„š‘„1 š‘„š‘„2 š‘„š‘„3 = š‘¦š‘¦1 š‘¦š‘¦2 š‘¦š‘¦3 ļ‚Ø First, create the augmented system matrix š“š“11 š“š“12 š“š“13 ā‹® š‘¦š‘¦1 š“š“21 š“š“22 š“š“23 ā‹® š‘¦š‘¦2 š“š“31 š“š“32 š“š“33 ā‹® š‘¦š‘¦3 ļ‚Ø Each row represents and equation ļ‚¤ š‘š‘ rows for š‘š‘ equations ļ‚Ø Row operations do not affect the system ļ‚¤ Multiply a row by a constant ļ‚¤ Add or subtract rows from one another and replace row with the result 26
  • 27. K. Webb ESE 470 Gaussian Elimination ā€“ Forward Elimination ļ‚Ø Perform row operations to reduce the augmented matrix to upper triangular ļ‚¤ Only zeros below the main diagonal ļ‚¤ Eliminate š‘„š‘„š‘–š‘– from the š‘–š‘– + 1 st through the š‘š‘th equations for š‘–š‘– = 1 ā€¦ š‘š‘ ļ‚¤ Forward elimination ļ‚Ø After forward elimination, we have š“š“11 š“š“12 š“š“13 ā‹® š‘¦š‘¦1 0 š“š“22 ā€² š“š“23 ā€² ā‹® š‘¦š‘¦2 ā€² 0 0 š“š“33 ā€² ā‹® š‘¦š‘¦3 ā€² ļ‚¤ Where the prime notation (e.g. š“š“22 ā€² ) indicates that the value has been changed from its original value 27
  • 28. K. Webb ESE 470 Gaussian Elimination ā€“ Back Substitution š“š“11 š“š“12 š“š“13 ā‹® š‘¦š‘¦1 0 š“š“22 ā€² š“š“23 ā€² ā‹® š‘¦š‘¦2 ā€² 0 0 š“š“33 ā€² ā‹® š‘¦š‘¦3 ā€² ļ‚Ø The last row represents an equation with only a single unknown š“š“33 ā€² ā‹… š‘„š‘„3 = š‘¦š‘¦3 ā€² ļ‚¤ Solve for š‘„š‘„3 š‘„š‘„3 = š‘¦š‘¦3 ā€² š“š“33 ā€² ļ‚Ø The second-to-last row represents an equation with two unknowns š“š“22 ā€² ā‹… š‘„š‘„2 + š“š“23 ā€² ā‹… š‘„š‘„3 = š‘¦š‘¦2 ā€² ļ‚¤ Substitute in newly-found value of š‘„š‘„3 ļ‚¤ Solve for š‘„š‘„2 ļ‚Ø Substitute values for š‘„š‘„2 and š‘„š‘„3 into the first-row equation ļ‚¤ Solve for š‘„š‘„1 ļ‚Ø This process is back substitution 28
  • 29. K. Webb ESE 470 Gaussian elimination ļ‚Ø Gaussian elimination summary ļ‚¤ Create the augmented system matrix ļ‚¤ Forward elimination ļ® Reduce to an upper-triangular matrix ļ‚¤ Back substitution ļ® Starting with š‘„š‘„š‘š‘, solve for š‘„š‘„š‘–š‘– for š‘–š‘– = š‘š‘ ā€¦ 1 ļ‚Ø A direct solution algorithm ļ‚¤ Exact value for each š‘„š‘„š‘–š‘– arrived at with a single execution of the algorithm ļ‚Ø Alternatively, we can use an iterative algorithm ļ‚¤ The Jacobi method 29
  • 30. K. Webb ESE 470 Linear Systems of Equations ā€“ Iterative Solution ā€“ Jacobi Method 30
  • 31. K. Webb ESE 470 Jacobi Method ļ‚Ø Consider a system of š‘š‘ linear equations š€š€ ā‹… š±š± = š²š² š“š“1,1 ā‹Æ š“š“1,š‘š‘ ā‹® ā‹± ā‹® š“š“š‘š‘,1 ā‹Æ š“š“š‘š‘,š‘š‘ š‘„š‘„1 ā‹® š‘„š‘„š‘š‘ = š‘¦š‘¦1 ā‹® š‘¦š‘¦š‘š‘ ļ‚Ø The š‘˜š‘˜th equation (š‘˜š‘˜th row) is š“š“š‘˜š‘˜,1š‘„š‘„1 + š“š“š‘˜š‘˜,2š‘„š‘„2 + ā‹Æ + š“š“š‘˜š‘˜,š‘˜š‘˜š‘„š‘„š‘˜š‘˜ + ā‹Æ + š“š“š‘˜š‘˜,š‘š‘š‘„š‘„š‘š‘ = š‘¦š‘¦š‘˜š‘˜ (11) ļ‚Ø Solve (11) for š‘„š‘„š‘˜š‘˜ š‘„š‘„š‘˜š‘˜ = 1 š“š“š‘˜š‘˜,š‘˜š‘˜ [š‘¦š‘¦š‘˜š‘˜ āˆ’ (š“š“š‘˜š‘˜,1š‘„š‘„1 + š“š“š‘˜š‘˜,2š‘„š‘„2 + ā‹Æ + š“š“š‘˜š‘˜,š‘˜š‘˜āˆ’1š‘„š‘„š‘˜š‘˜āˆ’1 + (12) +š“š“š‘˜š‘˜,š‘˜š‘˜+1š‘„š‘„š‘˜š‘˜+1 + ā‹Æ + š“š“š‘˜š‘˜,š‘š‘š‘„š‘„š‘š‘)] 31
  • 32. K. Webb ESE 470 Jacobi Method ļ‚Ø Simplify (12) using summing notation š‘„š‘„š‘˜š‘˜ = 1 š“š“š‘˜š‘˜,š‘˜š‘˜ š‘¦š‘¦š‘˜š‘˜ āˆ’ ļæ½ š‘›š‘›=1 š‘˜š‘˜āˆ’1 š“š“š‘˜š‘˜,š‘›š‘›š‘„š‘„š‘›š‘› āˆ’ ļæ½ š‘›š‘›=š‘˜š‘˜+1 š‘š‘ š“š“š‘˜š‘˜,š‘›š‘›š‘„š‘„š‘›š‘› , š‘˜š‘˜ = 1 ā€¦ š‘š‘ ļ‚Ø An equation for š‘„š‘„š‘˜š‘˜ ļ‚¤ But, of course, we donā€™t yet know all other š‘„š‘„š‘›š‘› values ļ‚Ø Use (13) as an iterative expression š‘„š‘„š‘˜š‘˜,š‘–š‘–+1 = 1 š“š“š‘˜š‘˜,š‘˜š‘˜ š‘¦š‘¦š‘˜š‘˜ āˆ’ ļæ½ š‘›š‘›=1 š‘˜š‘˜āˆ’1 š“š“š‘˜š‘˜,š‘›š‘›š‘„š‘„š‘›š‘›,š‘–š‘– āˆ’ ļæ½ š‘›š‘›=š‘˜š‘˜+1 š‘š‘ š“š“š‘˜š‘˜,š‘›š‘›š‘„š‘„š‘›š‘›,š‘–š‘– , š‘˜š‘˜ = 1 ā€¦ š‘š‘ ļ‚¤ The š‘–š‘– subscript indicates iteration number ļ® š‘„š‘„š‘˜š‘˜,š‘–š‘–+1 is the updated value from the current iteration ļ® š‘„š‘„š‘›š‘›,š‘–š‘– is a value from the previous iteration (13) (14) 32
  • 33. K. Webb ESE 470 Jacobi Method š‘„š‘„š‘˜š‘˜,š‘–š‘–+1 = 1 š“š“š‘˜š‘˜,š‘˜š‘˜ š‘¦š‘¦š‘˜š‘˜ āˆ’ ļæ½ š‘›š‘›=1 š‘˜š‘˜āˆ’1 š“š“š‘˜š‘˜,š‘›š‘›š‘„š‘„š‘›š‘›,š‘–š‘– āˆ’ ļæ½ š‘›š‘›=š‘˜š‘˜+1 š‘š‘ š“š“š‘˜š‘˜,š‘›š‘›š‘„š‘„š‘›š‘›,š‘–š‘– , š‘˜š‘˜ = 1 ā€¦ š‘š‘ ļ‚Ø Old values of š‘„š‘„š‘›š‘›, on the right-hand side, are used to update š‘„š‘„š‘˜š‘˜ on the left-hand side ļ‚Ø Start with an initial guess for all unknowns, š±š±0 ļ‚Ø Iterate until adequate convergence is achieved ļ‚¤ Until a specified stopping criterion is satisfied ļ‚¤ Convergence is not guaranteed (14) 33
  • 34. K. Webb ESE 470 Convergence ļ‚Ø An approximation of š±š± is refined on each iteration ļ‚Ø Continue to iterate until weā€™re close to the right answer for the vector of unknowns, š±š± ļ‚¤ Assume weā€™ve converged to the right answer when š±š± changes very little from iteration to iteration ļ‚Ø On each iteration, calculate a relative error quantity šœ€šœ€š‘–š‘– = max š‘„š‘„š‘˜š‘˜,š‘–š‘–+1 āˆ’ š‘„š‘„š‘˜š‘˜,š‘–š‘– š‘„š‘„š‘˜š‘˜,š‘–š‘– , š‘˜š‘˜ = 1 ā€¦ š‘š‘ ļ‚Ø Iterate until šœ€šœ€š‘–š‘– ā‰¤ šœ€šœ€š‘ š‘  where šœ€šœ€š‘ š‘  is a chosen stopping criterion 34
  • 35. K. Webb ESE 470 Jacobi Method ā€“ Matrix Form ļ‚Ø The Jacobi method iterative formula, (14), can be rewritten in matrix form: š±š±š‘–š‘–+1 = šŒšŒš±š±š‘–š‘– + šƒšƒāˆ’1š²š² where šƒšƒ is the diagonal elements of A šƒšƒ = š“š“1,1 0 ā‹Æ 0 0 š“š“2,2 0 ā‹® ā‹® 0 ā‹± 0 0 ā‹Æ 0 š“š“š‘š‘,š‘š‘ and šŒšŒ = šƒšƒāˆ’1 šƒšƒ āˆ’ š€š€ ļ‚¤ Recall that the inverse of a diagonal matrix is given by inverting each diagonal element šƒšƒāˆ’šŸšŸ = 1/š“š“1,1 0 ā‹Æ 0 0 1/š“š“2,2 0 ā‹® ā‹® 0 ā‹± 0 0 ā‹Æ 0 1/š“š“š‘š‘,š‘š‘ (15) (16) 35
  • 36. K. Webb ESE 470 Jacobi Method ā€“ Example ļ‚Ø Consider the following system of equations āˆ’4š‘„š‘„1 + 7š‘„š‘„3 = āˆ’5 2š‘„š‘„1 āˆ’ 3š‘„š‘„2 + 5š‘„š‘„3 = āˆ’12 š‘„š‘„2 āˆ’ 3š‘„š‘„3 = 3 ļ‚Ø In matrix form: āˆ’4 0 7 2 āˆ’3 5 0 1 āˆ’3 š‘„š‘„1 š‘„š‘„2 š‘„š‘„3 = āˆ’5 āˆ’12 3 ļ‚Ø Solve using the Jacobi method 36
  • 37. K. Webb ESE 470 Jacobi Method ā€“ Example ļ‚Ø The iteration formula is š±š±š‘–š‘–+1 = šŒšŒš±š±š‘–š‘– + šƒšƒāˆ’1š²š² where šƒšƒ = āˆ’4 0 0 0 āˆ’3 0 0 0 āˆ’3 šƒšƒāˆ’1 = āˆ’0.25 0 0 0 āˆ’0.333 0 0 0 āˆ’0.333 šŒšŒ = šƒšƒāˆ’1 šƒšƒ āˆ’ š€š€ = 0 0 1.75 0.667 0 1.667 0 0.333 0 ļ‚Ø To begin iteration, we need a starting point ļ‚¤ Initial guess for unknown values, š±š± ļ‚¤ Often, we have some idea of the answer ļ‚¤ Here, arbitrarily choose š±š±0 = 10 25 10 š‘‡š‘‡ 37
  • 38. K. Webb ESE 470 Jacobi Method ā€“ Example ļ‚Ø At each iteration, calculate š±š±š‘–š‘–+1 = šŒšŒš±š±š‘–š‘– + šƒšƒāˆ’1š²š² š‘„š‘„1,š‘–š‘–+1 š‘„š‘„2,š‘–š‘–+1 š‘„š‘„3,š‘–š‘–+1 = 0 0 1.75 0.667 0 1.667 0 0.333 0 š‘„š‘„1,š‘–š‘– š‘„š‘„2,š‘–š‘– š‘„š‘„3,š‘–š‘– + 1.25 4 āˆ’1 ļ‚Ø For š‘–š‘– = 1: š±š±1 = š‘„š‘„1,1 š‘„š‘„2,1 š‘„š‘„3,1 = 0 0 1.75 0.667 0 1.667 0 0.333 0 10 25 10 + 1.25 4 āˆ’1 š±š±1 = 18.75 27.33 7.33 š‘‡š‘‡ ļ‚Ø The relative error is šœ€šœ€1 = max š‘„š‘„š‘˜š‘˜,1 āˆ’ š‘„š‘„š‘˜š‘˜,0 š‘„š‘„š‘˜š‘˜,0 = 0.875 38
  • 39. K. Webb ESE 470 Jacobi Method ā€“ Example ļ‚Ø For š‘–š‘– = 2: š±š±2 = š‘„š‘„1,2 š‘„š‘„2,2 š‘„š‘„3,2 = 0 0 1.75 0.667 0 1.667 0 0.333 0 18.75 27.33 7.33 + 1.25 4 āˆ’1 š±š±2 = 14.08 28.72 8.11 š‘‡š‘‡ ļ‚Ø The relative error is šœ€šœ€2 = max š‘„š‘„š‘˜š‘˜,2 āˆ’ š‘„š‘„š‘˜š‘˜,1 š‘„š‘„š‘˜š‘˜,1 = 0.249 ļ‚Ø Continue to iterate until relative error falls below a specified stopping condition 39
  • 40. K. Webb ESE 470 Jacobi Method ā€“ Example ļ‚Ø Automate with computer code, e.g. MATLAB ļ‚Ø Setup the system of equations ļ‚Ø Initialize matrices and parameters for iteration 40
  • 41. K. Webb ESE 470 Jacobi Method ā€“ Example ļ‚Ø Loop to continue iteration as long as: ļ‚¤ Stopping criterion is not satisfied ļ‚¤ Maximum number of iterations is not exceeded ļ‚Ø On each iteration ļ‚¤ Use previous š±š± values to update š±š± ļ‚¤ Calculate relative error ļ‚¤ Increment the number of iterations 41
  • 42. K. Webb ESE 470 Jacobi Method ā€“ Example ļ‚Ø Set šœ€šœ€š‘ š‘  = 1 Ɨ 10āˆ’6 and iterate: š’Šš’Š š±š±š’Šš’Š šœŗšœŗš’Šš’Š 0 10 25 10 š‘‡š‘‡ - 1 18.75 27.33 7.33 š‘‡š‘‡ 0.875 2 14.08 28.72 8.11 š‘‡š‘‡ 0.249 3 15.44 26.91 8.57 š‘‡š‘‡ 0.097 4 16.25 28.59 7.97 š‘‡š‘‡ 0.071 5 15.20 28.12 8.53 š‘‡š‘‡ 0.070 6 16.18 28.35 8.37 š‘‡š‘‡ 0.065 ā‹® ā‹® ā‹® 371 20.50 36.00 11.00 š‘‡š‘‡ 0.995Ɨ10-6 ļ‚Ø Convergence achieved in 371 iterations 42
  • 43. K. Webb ESE 470 Linear Systems of Equations ā€“ Iterative Solution ā€“ Gauss-Seidel 43
  • 44. K. Webb ESE 470 Gauss-Seidel Method ļ‚Ø The iterative formula for the Jacobi method is š‘„š‘„š‘˜š‘˜,š‘–š‘–+1 = 1 š“š“š‘˜š‘˜,š‘˜š‘˜ š‘¦š‘¦š‘˜š‘˜ āˆ’ ļæ½ š‘›š‘›=1 š‘˜š‘˜āˆ’1 š“š“š‘˜š‘˜,š‘›š‘›š‘„š‘„š‘›š‘›,š‘–š‘– āˆ’ ļæ½ š‘›š‘›=š‘˜š‘˜+1 š‘š‘ š“š“š‘˜š‘˜,š‘›š‘›š‘„š‘„š‘›š‘›,š‘–š‘– , š‘˜š‘˜ = 1 ā€¦ š‘š‘ ļ‚Ø Note that only old values of š‘„š‘„š‘›š‘› (i.e. š‘„š‘„š‘›š‘›,š‘–š‘–) are used to update the value of š‘„š‘„š‘˜š‘˜ ļ‚Ø Assume the š‘„š‘„š‘˜š‘˜,š‘–š‘–+1 values are determined in order of increasing š‘˜š‘˜ ļ‚¤ When updating š‘„š‘„š‘˜š‘˜,š‘–š‘–+1, all š‘„š‘„š‘›š‘›,š‘–š‘–+1 values are already known for š‘›š‘› < š‘˜š‘˜ ļ‚¤ We can use those updated values to calculate š‘„š‘„š‘˜š‘˜,š‘–š‘–+1 ļ‚¤ The Gauss-Seidel method (14) 44
  • 45. K. Webb ESE 470 Gauss-Seidel Method ļ‚Ø Now use the š‘„š‘„š‘›š‘› values already updated on the current iteration to update š‘„š‘„š‘˜š‘˜ ļ‚¤ That is, š‘„š‘„š‘›š‘›,š‘–š‘–+1 for š‘›š‘› < š‘˜š‘˜ ļ‚Ø Gauss-Seidel iterative formula š‘„š‘„š‘˜š‘˜,š‘–š‘–+1 = 1 š“š“š‘˜š‘˜,š‘˜š‘˜ š‘¦š‘¦š‘˜š‘˜ āˆ’ ļæ½ š‘›š‘›=1 š‘˜š‘˜āˆ’1 š“š“š‘˜š‘˜,š‘›š‘›š‘„š‘„š‘›š‘›,š‘–š‘–+1 āˆ’ ļæ½ š‘›š‘›=š‘˜š‘˜+1 š‘š‘ š“š“š‘˜š‘˜,š‘›š‘›š‘„š‘„š‘›š‘›,š‘–š‘– , š‘˜š‘˜ = 1 ā€¦ š‘š‘ ļ‚Ø Note that only the first summation has changed ļ‚¤ For already updated š‘„š‘„ values ļ‚¤ š‘„š‘„š‘›š‘› for š‘›š‘› < š‘˜š‘˜ ļ‚¤ Number of already-updated values used depends on š‘˜š‘˜ (17) 45
  • 46. K. Webb ESE 470 Gauss-Seidel ā€“ Matrix Form ļ‚Ø In matrix form the iterative formula is the same as for the Jacobi method š±š±š‘–š‘–+1 = šŒšŒš±š±š‘–š‘– + šƒšƒāˆ’1 š²š² where, again šŒšŒ = šƒšƒāˆ’1 šƒšƒ āˆ’ š€š€ but now šƒšƒ is the lower triangular part of š€š€ šƒšƒ = š“š“1,1 0 ā‹Æ 0 š“š“2,1 š“š“2,2 0 ā‹® ā‹® ā‹® ā‹± 0 š“š“š‘š‘,1 š“š“š‘š‘,2 ā‹Æ š“š“š‘š‘,š‘š‘ ļ‚Ø Otherwise, the algorithm and computer code is identical to that of the Jacobi method (15) (16) 46
  • 47. K. Webb ESE 470 Gauss-Seidel ā€“ Example ļ‚Ø Apply Gauss-Seidel to our previous example ļ‚¤ š‘„š‘„0 = 10 25 10 š‘‡š‘‡ ļ‚¤ šœ€šœ€š‘ š‘  = 1 Ɨ 10āˆ’6 š’Šš’Š š±š±š’Šš’Š šœŗšœŗš’Šš’Š 0 10 25 10 š‘‡š‘‡ - 1 18.75 33.17 10.06 š‘‡š‘‡ 0.875 2 18.85 33.32 10.11 š‘‡š‘‡ 0.005 3 18.94 33.47 10.16 š‘‡š‘‡ 0.005 4 19.03 33.61 10.20 š‘‡š‘‡ 0.005 ā‹® ā‹® ā‹® 151 20.50 36.00 11.00 š‘‡š‘‡ 0.995Ɨ10-6 ļ‚Ø Convergence achieved in 151 iterations ļ‚¤ Compared to 371 for the Jacobi method 47
  • 48. K. Webb ESE 470 Nonlinear Equations 48
  • 49. K. Webb ESE 470 Nonlinear Equations ļ‚Ø Solution methods weā€™ve seen so far work only for linear equations ļ‚Ø Now, we introduce an iterative method for solving a single nonlinear equation ļ‚¤ Newton-Raphson method ļ‚Ø Next, weā€™ll apply the Newton-Raphson method to a system of nonlinear equations ļ‚Ø Finally, weā€™ll use Newton-Raphson to solve the power-flow problem 49
  • 50. K. Webb ESE 470 Newton-Raphson Method ļ‚Ø Want to solve š‘¦š‘¦ = š‘“š‘“(š‘„š‘„) where š‘“š‘“ š‘„š‘„ is a nonlinear function ļ‚Ø That is, we want to find š‘„š‘„, given a known nonlinear function, š‘“š‘“, and a known output, š‘¦š‘¦ ļ‚Ø Newton-Raphson method ļ‚¤ Based on a first-order Taylor series approximation to š‘“š‘“ š‘„š‘„ ļ‚¤ The nonlinear š‘“š‘“ š‘„š‘„ is approximated as linear to update our approximation to the solution, š‘„š‘„, on each iteration 50
  • 51. K. Webb ESE 470 Taylor Series Approximation ļ‚Ø Taylor series approximation ļ‚¤ Given: ļ® A function, š‘“š‘“ š‘„š‘„ ļ® Value of the function at some value of š‘„š‘„, š‘“š‘“ š‘„š‘„0 ļ‚¤ Approximate: ļ® Value of the function at some other value of š‘„š‘„ ļ‚Ø First-order Taylor series approximation ļ‚¤ Approximate š‘“š‘“ š‘„š‘„ using only its first derivative ļ‚¤ š‘“š‘“ š‘„š‘„ approximated as linear ā€“ constant slope š‘¦š‘¦ = š‘“š‘“ š‘„š‘„ ā‰ˆ š‘“š‘“ š‘„š‘„0 + š‘‘š‘‘š‘‘š‘‘ š‘‘š‘‘š‘‘š‘‘ ļæ½ š‘„š‘„=š‘„š‘„0 š‘„š‘„ āˆ’ š‘„š‘„0 = ļæ½ š‘¦š‘¦ 51
  • 52. K. Webb ESE 470 First-Order Taylor Series Approximation ļ‚Ø Approximate value of the function at š‘„š‘„ š‘“š‘“ š‘„š‘„ ā‰ˆ ļæ½ š‘¦š‘¦ = š‘“š‘“ š‘„š‘„0 + š‘“š‘“ā€² š‘„š‘„0 š‘„š‘„ āˆ’ š‘„š‘„0 52
  • 53. K. Webb ESE 470 Newton-Raphson Method ļ‚Ø First order Taylor series approximation is š‘¦š‘¦ ā‰ˆ š‘“š‘“ š‘„š‘„0 + š‘“š‘“ā€² š‘„š‘„0 š‘„š‘„ āˆ’ š‘„š‘„0 ļ‚Ø Letting this be an equality and rearranging gives an iterative formula for updating an approximation to š‘„š‘„ š‘¦š‘¦ = š‘“š‘“ š‘„š‘„š‘–š‘– + š‘“š‘“ā€² š‘„š‘„š‘–š‘– š‘„š‘„š‘–š‘–+1 āˆ’ š‘„š‘„š‘–š‘– š‘“š‘“ā€² š‘„š‘„š‘–š‘– š‘„š‘„š‘–š‘–+1 āˆ’ š‘„š‘„š‘–š‘– = š‘¦š‘¦ āˆ’ š‘“š‘“ š‘„š‘„š‘–š‘– š‘„š‘„š‘–š‘–+1 = š‘„š‘„š‘–š‘– + 1 š‘“š‘“ā€² š‘„š‘„š‘–š‘– š‘¦š‘¦ āˆ’ š‘“š‘“ š‘„š‘„š‘–š‘– ļ‚Ø Initialize with a best guess at š‘„š‘„, š‘„š‘„0 ļ‚Ø Iterate (18) until ļ‚¤ A stopping criterion is satisfied, or ļ‚¤ The maximum number of iterations is reached (18) 53
  • 54. K. Webb ESE 470 First-Order Taylor Series Approximation ļ‚Ø Now using the Taylor series approximation in a different way ļ‚¤ Not approximating the value of y = f(x) at x, but, instead ļ‚¤ Approximating the value of x where f(x) = y š‘„š‘„š‘–š‘–+1 = š‘„š‘„š‘–š‘– + 1 š‘“š‘“ā€² š‘„š‘„š‘–š‘– š‘¦š‘¦ āˆ’ š‘“š‘“ š‘„š‘„š‘–š‘– 54
  • 55. K. Webb ESE 470 Newton-Raphson ā€“ Example ļ‚Ø Consider the following nonlinear equation š‘¦š‘¦ = š‘“š‘“ š‘„š‘„ = š‘„š‘„3 + 10 = 20 ļ‚Ø Apply Newton-Raphson to solve ļ‚¤ Find š‘„š‘„, such that š‘¦š‘¦ = š‘“š‘“ š‘„š‘„ = 20 ļ‚Ø The derivative function is š‘“š‘“ā€² š‘„š‘„ = 3š‘„š‘„2 ļ‚Ø Initial guess for š‘„š‘„ š‘„š‘„0 = 1 ļ‚Ø Iterate using the formula given by (18) 55
  • 56. K. Webb ESE 470 Newton-Raphson ā€“ Example ļ‚Ø š‘–š‘– = 1: š‘„š‘„1 = š‘„š‘„0 + š‘“š‘“ā€² š‘„š‘„0 āˆ’1 š‘¦š‘¦ āˆ’ š‘“š‘“ š‘„š‘„0 š‘„š‘„1 = 1 + 3 ā‹… 12 āˆ’1 20 āˆ’ 13 + 10 š‘„š‘„1 = 4 šœ€šœ€1 = š‘„š‘„1 āˆ’ š‘„š‘„0 š‘„š‘„0 šœ€šœ€1 = 4 āˆ’ 1 1 = 3 š‘„š‘„1 = 4, šœ€šœ€1 = 3 56
  • 57. K. Webb ESE 470 Newton-Raphson ā€“ Example ļ‚Ø š‘–š‘– = 2: š‘„š‘„2 = š‘„š‘„1 + š‘“š‘“ā€² š‘„š‘„1 āˆ’1 š‘¦š‘¦ āˆ’ š‘“š‘“ š‘„š‘„1 š‘„š‘„2 = 4 + 3 ā‹… 42 āˆ’1 20 āˆ’ 43 + 10 š‘„š‘„2 = 2.875 šœ€šœ€2 = š‘„š‘„2 āˆ’ š‘„š‘„1 š‘„š‘„1 šœ€šœ€2 = 2.875 āˆ’ 4 4 šœ€šœ€2 = 0.281 š‘„š‘„2 = 2.875, šœ€šœ€2 = 0.281 57
  • 58. K. Webb ESE 470 Newton-Raphson ā€“ Example ļ‚Ø š‘–š‘– = 3: š‘„š‘„3 = š‘„š‘„2 + š‘“š‘“ā€² š‘„š‘„2 āˆ’1 š‘¦š‘¦ āˆ’ š‘“š‘“ š‘„š‘„2 š‘„š‘„3 = 2.875 + 3 ā‹… 2.8752 āˆ’1 20 āˆ’ 2.8753 + 10 š‘„š‘„3 = 2.32 šœ€šœ€3 = š‘„š‘„3 āˆ’ š‘„š‘„2 š‘„š‘„2 šœ€šœ€3 = 2.32 āˆ’ 2.875 2.875 šœ€šœ€3 = 0.193 š‘„š‘„3 = 2.32, šœ€šœ€3 = 0.193 58
  • 59. K. Webb ESE 470 Newton-Raphson ā€“ Example ļ‚Ø š‘–š‘– = 4: š‘„š‘„4 = 2.166, šœ€šœ€4 = 0.066 ļ‚Ø š‘–š‘– = 5: š‘„š‘„5 = 2.155, šœ€šœ€5 = 0.005 ļ‚Ø š‘–š‘– = 6: š‘„š‘„6 = 2.154, šœ€šœ€6 = 28.4 Ɨ 10āˆ’6 ļ‚Ø š‘–š‘– = 7: š‘„š‘„7 = 2.154, šœ€šœ€7 = 0.808 Ɨ 10āˆ’9 ļ‚Ø Convergence achieved very quickly ļ‚Ø Next, weā€™ll see how to apply Newton-Raphson to a system of nonlinear equations 59
  • 60. K. Webb ESE 470 Example Problems 60
  • 61. K. Webb ESE 470 Perform three iterations toward the solution of the following system of equations using the Jacobi method. Let š±š±0 = 0, 0 š‘‡š‘‡. 2š‘„š‘„1 + š‘„š‘„2 = 12 2š‘„š‘„1 + 3š‘„š‘„2 = 5 61
  • 62. K. Webb ESE 470 62
  • 63. K. Webb ESE 470 63
  • 64. K. Webb ESE 470 64
  • 65. K. Webb ESE 470 Perform three iterations toward the solution of the following system of equations using the Gauss-Seidel method. Let š±š±0 = 0, 0 š‘‡š‘‡. 2š‘„š‘„1 + š‘„š‘„2 = 12 2š‘„š‘„1 + 3š‘„š‘„2 = 5 65
  • 66. K. Webb ESE 470 66
  • 67. K. Webb ESE 470 67
  • 68. K. Webb ESE 470 68
  • 69. K. Webb ESE 470 Perform three iterations toward the solution of the following equation using the Newton-Raphson method. Let š±š±0 = 0. š‘“š‘“ š‘„š‘„ = cos š‘„š‘„ + 3š‘„š‘„ = 10 69
  • 70. K. Webb ESE 470 70
  • 71. K. Webb ESE 470 Nonlinear Systems of Equations 71
  • 72. K. Webb ESE 470 Nonlinear Systems of Equations ļ‚Ø Now, consider a system of nonlinear equations ļ‚¤ Can be represented as a vector of š‘š‘ functions ļ‚¤ Each is a function of an š‘š‘-vector of unknown variables š²š² = š‘¦š‘¦1 š‘¦š‘¦2 ā‹® š‘¦š‘¦š‘š‘ = šŸšŸ š±š± = š‘“š‘“1 š‘„š‘„1, š‘„š‘„2, ā‹Æ , š‘„š‘„š‘š‘ š‘“š‘“2 š‘„š‘„1, š‘„š‘„2, ā‹Æ , š‘„š‘„š‘š‘ ā‹® š‘“š‘“š‘š‘ š‘„š‘„1, š‘„š‘„2, ā‹Æ , š‘„š‘„š‘š‘ ļ‚Ø We can again approximate this function using a first-order Taylor series š²š² = šŸšŸ š±š± ā‰ˆ šŸšŸ š±š±0 + šŸšŸā€² š±š±0 š±š± āˆ’ š±š±0 ļ‚¤ Note that all variables are š‘š‘-vectors ļ® šŸšŸ is an š‘š‘-vector of known, nonlinear functions ļ® š±š± is an š‘š‘-vector of unknown values ā€“ this is what we want to solve for ļ® š²š² is an š‘š‘-vector of known values ļ® š±š±šŸŽšŸŽ is an š‘š‘-vector of š±š± values for which šŸšŸ š±š±0 is known (19) 72
  • 73. K. Webb ESE 470 Newton-Raphson Method ļ‚Ø Equation (19) is the basis for our Newton-Raphson iterative formula ļ‚¤ Again, let it be an equality and solve for š±š± š²š² āˆ’ šŸšŸ š±š±0 = šŸšŸā€² š±š±0 š±š± āˆ’ š±š±0 šŸšŸā€² š±š±0 āˆ’šŸšŸ š²š² āˆ’ šŸšŸ š±š±0 = š±š± āˆ’ š±š±0 š±š± = š±š±0 + šŸšŸā€² š±š±0 āˆ’šŸšŸ š²š² āˆ’ šŸšŸ š±š±0 ļ‚Ø This last expression can be used as an iterative formula š±š±š‘–š‘–+1 = š±š±š‘–š‘– + šŸšŸā€² š±š±š‘–š‘– āˆ’šŸšŸ š²š² āˆ’ šŸšŸ š±š±š‘–š‘– ļ‚Ø The derivative term on the right-hand side of (20) is an š‘š‘ Ɨ š‘š‘ matrix ļ‚¤ The Jacobian matrix, š‰š‰ š±š±š‘–š‘–+1 = š±š±š‘–š‘– + š‰š‰š‘–š‘– āˆ’šŸšŸ š²š² āˆ’ šŸšŸ š±š±š‘–š‘– (20) 73
  • 74. K. Webb ESE 470 The Jacobian Matrix š±š±š‘–š‘–+1 = š±š±š‘–š‘– + š‰š‰š‘–š‘– āˆ’šŸšŸ š²š² āˆ’ šŸšŸ š±š±š‘–š‘– ļ‚Ø Jacobian matrix ļ‚¤ š‘š‘ Ɨ š‘š‘ matrix of partial derivatives for šŸšŸ š±š± ļ‚¤ Evaluated at the current value of š±š±, š±š±š‘–š‘– š‰š‰š‘–š‘– = šœ•šœ•š‘“š‘“1 šœ•šœ•š‘„š‘„1 šœ•šœ•š‘“š‘“1 šœ•šœ•š‘„š‘„2 ā‹Æ šœ•šœ•š‘“š‘“1 šœ•šœ•š‘„š‘„š‘š‘ šœ•šœ•š‘“š‘“2 šœ•šœ•š‘„š‘„1 šœ•šœ•š‘“š‘“2 šœ•šœ•š‘„š‘„2 ā‹Æ šœ•šœ•š‘“š‘“2 šœ•šœ•š‘„š‘„š‘š‘ ā‹® ā‹® ā‹± ā‹® šœ•šœ•š‘“š‘“š‘š‘ šœ•šœ•š‘„š‘„1 šœ•šœ•š‘“š‘“š‘š‘ šœ•šœ•š‘„š‘„2 ā‹Æ šœ•šœ•š‘“š‘“š‘š‘ šœ•šœ•š‘„š‘„š‘š‘ š±š±=š±š±š‘–š‘– (20) 74
  • 75. K. Webb ESE 470 Newton-Raphson Method š±š±š‘–š‘–+1 = š±š±š‘–š‘– + š‰š‰š‘–š‘– āˆ’šŸšŸ š²š² āˆ’ šŸšŸ š±š±š‘–š‘– ļ‚Ø We could iterate (20) until convergence or a maximum number of iterations is reached ļ‚¤ Requires inversion of the Jacobian matrix ļ® Computationally expensive and error prone ļ‚Ø Instead, go back to the Taylor series approximation š²š² = šŸšŸ š±š±š‘–š‘– + š‰š‰š‘–š‘– š±š±š‘–š‘–+1 āˆ’ š±š±š‘–š‘– š²š² āˆ’ šŸšŸ š±š±š‘–š‘– = š‰š‰š‘–š‘– š±š±š‘–š‘–+1 āˆ’ š±š±š‘–š‘– ļ‚¤ Left side of (21) represents a difference between the known and approximated outputs ļ‚¤ Right side represents an increment of the approximation for š±š± Ī”š²š²š‘–š‘– = š‰š‰š‘–š‘–Ī”š±š±š‘–š‘– (20) (21) (22) 75
  • 76. K. Webb ESE 470 Newton-Raphson Method Ī”š²š²š‘–š‘– = š‰š‰š‘–š‘–Ī”š±š±š‘–š‘– ļ‚Ø On each iteration: ļ‚¤ Compute Ī”š²š²š‘–š‘– and š‰š‰š‘–š‘– ļ‚¤ Solve for Ī”š±š±š‘–š‘– using Gaussian elimination ļ® Matrix inversion not required ļ® Computationally robust ļ‚¤ Update š±š± š±š±š‘–š‘–+1 = š±š±š‘–š‘– + Ī”š±š±š‘–š‘– (22) (23) 76
  • 77. K. Webb ESE 470 Newton-Raphson ā€“ Example ļ‚Ø Apply Newton-Raphson to solve the following system of nonlinear equations šŸšŸ š±š± = š²š² š‘„š‘„1 2 + 3š‘„š‘„2 š‘„š‘„1š‘„š‘„2 = 21 12 ļ‚¤ Initial condition: š±š±0 = 1 2 š‘‡š‘‡ ļ‚¤ Stopping criterion: šœ€šœ€š‘ š‘  = 1 Ɨ 10āˆ’6 ļ‚¤ Jacobian matrix š‰š‰š‘–š‘– = šœ•šœ•š‘“š‘“1 šœ•šœ•š‘„š‘„1 šœ•šœ•š‘“š‘“1 šœ•šœ•š‘„š‘„2 šœ•šœ•š‘“š‘“2 šœ•šœ•š‘„š‘„1 šœ•šœ•š‘“š‘“2 šœ•šœ•š‘„š‘„2 š±š±=š±š±š‘–š‘– = 2š‘„š‘„1,š‘–š‘– 3 š‘„š‘„2,š‘–š‘– š‘„š‘„1,š‘–š‘– 77
  • 78. K. Webb ESE 470 Newton-Raphson ā€“ Example Ī”š²š²š‘–š‘– = š‰š‰š‘–š‘–Ī”š±š±š‘–š‘– š±š±š‘–š‘–+1 = š±š±š‘–š‘– + Ī”š±š±š‘–š‘– ļ‚Ø Adjusting the indexing, we can equivalently write (22) and (23) as: Ī”š²š²š‘–š‘–āˆ’1 = š‰š‰š‘–š‘–āˆ’1Ī”š±š±š‘–š‘–āˆ’1 š±š±š‘–š‘– = š±š±š‘–š‘–āˆ’1 + Ī”š±š±š‘–š‘–āˆ’1 ļ‚Ø For iteration š‘–š‘–: ļ‚¤ Compute Ī”š²š²š‘–š‘–āˆ’1 and š‰š‰š‘–š‘–āˆ’1 ļ‚¤ Solve (22) for Ī”š±š±š‘–š‘–āˆ’1 ļ‚¤ Update š±š± using (23) (22) (23) (22) (23) 78
  • 79. K. Webb ESE 470 Newton-Raphson ā€“ Example ļ‚Ø š‘–š‘– = 1: Ī”š‘¦š‘¦0 = š²š² āˆ’ šŸšŸ š±š±0 = 21 12 āˆ’ 7 2 = 14 10 š‰š‰0 = 2š‘„š‘„1,0 3 š‘„š‘„2,0 š‘„š‘„1,0 = 2 3 2 1 Ī”š±š±0 = 4 2 š±š±1 = š±š±0 + Ī”š±š±0 = 1 2 + 4 2 = 5 4 šœ€šœ€1 = max š‘„š‘„š‘˜š‘˜,1 āˆ’ š‘„š‘„š‘˜š‘˜,0 š‘„š‘„š‘˜š‘˜,0 , š‘˜š‘˜ = 1 ā€¦ š‘š‘ š‘„š‘„1 = 5 4 , šœ€šœ€1 = 4 79
  • 80. K. Webb ESE 470 Newton-Raphson ā€“ Example ļ‚Ø š‘–š‘– = 2: Ī”š‘¦š‘¦1 = š²š² āˆ’ šŸšŸ š±š±1 = 21 12 āˆ’ 37 20 = āˆ’16 āˆ’8 š‰š‰1 = 2š‘„š‘„1,1 3 š‘„š‘„2,1 š‘„š‘„1,1 = 10 3 4 5 Ī”š±š±1 = āˆ’1.474 āˆ’0.421 š±š±2 = š±š±1 + Ī”š±š±1 = 5 4 + āˆ’1.474 āˆ’0.421 = 3.526 3.579 šœ€šœ€2 = max š‘„š‘„š‘˜š‘˜,2 āˆ’ š‘„š‘„š‘˜š‘˜,1 š‘„š‘„š‘˜š‘˜,1 , š‘˜š‘˜ = 1 ā€¦ š‘š‘ š‘„š‘„2 = 3.526 3.579 , šœ€šœ€2 = 0.295 80
  • 81. K. Webb ESE 470 Newton-Raphson ā€“ Example ļ‚Ø š‘–š‘– = 3: Ī”š‘¦š‘¦2 = š²š² āˆ’ šŸšŸ š±š±2 = 21 12 āˆ’ 23.172 12.621 = āˆ’2.172 āˆ’0.621 š‰š‰2 = 2š‘„š‘„1,2 3 š‘„š‘„2,2 š‘„š‘„1,2 = 7.053 3 3.579 3.526 Ī”š±š±2 = āˆ’0.410 0.240 š±š±3 = š±š±2 + Ī”š±š±2 = 3.526 3.579 + āˆ’0.410 0.240 = 3.116 3.819 šœ€šœ€3 = max š‘„š‘„š‘˜š‘˜,3 āˆ’ š‘„š‘„š‘˜š‘˜,2 š‘„š‘„š‘˜š‘˜,2 , š‘˜š‘˜ = 1 ā€¦ š‘š‘ š‘„š‘„3 = 3.116 3.819 , šœ€šœ€3 = 0.116 81
  • 82. K. Webb ESE 470 Newton-Raphson ā€“ Example ļ‚Ø š‘–š‘– = 7: Ī”š‘¦š‘¦6 = š²š² āˆ’ šŸšŸ š±š±6 = 21 12 āˆ’ 21.000 12.000 = āˆ’0.527 Ɨ 10āˆ’7 0.926 Ɨ 10āˆ’7 š‰š‰6 = 2š‘„š‘„1,6 3 š‘„š‘„2,6 š‘„š‘„1,6 = 6.000 3 4.000 3.000 Ī”š±š±6 = āˆ’0.073 Ɨ 10āˆ’6 0.128 Ɨ 10āˆ’6 š±š±7 = š±š±6 + Ī”š±š±6 = 3.000 4.000 + āˆ’0.073 Ɨ 10āˆ’6 0.128 Ɨ 10āˆ’6 = 3.000 4.000 šœ€šœ€7 = max š‘„š‘„š‘˜š‘˜,7 āˆ’ š‘„š‘„š‘˜š‘˜,6 š‘„š‘„š‘˜š‘˜,6 , š‘˜š‘˜ = 1 ā€¦ š‘š‘ š‘„š‘„7 = 3.000 4.000 , šœ€šœ€7 = 31.9 Ɨ 10āˆ’9 82
  • 83. K. Webb ESE 470 Newton-Raphson ā€“ MATLAB Code ļ‚Ø Define the system of equations ļ‚Ø Initialize š±š± ļ‚Ø Set up solution parameters 83
  • 84. K. Webb ESE 470 Newton-Raphson ā€“ MATLAB Code ļ‚Ø Iterate: ļ‚¤ Compute Ī”š²š²š‘–š‘–āˆ’1 and š‰š‰š‘–š‘–āˆ’1 ļ‚¤ Solve for Ī”š±š±š‘–š‘–āˆ’1 ļ‚¤ Update š±š± 84
  • 85. K. Webb ESE 470 Example Problems 85
  • 86. K. Webb ESE 470 Perform three iterations toward the solution of the following system of equations using the Newton-Raphson method. Let š±š±0 = 1, 1 š‘‡š‘‡. 10š‘„š‘„1 2 + š‘„š‘„2 = 20 š‘’š‘’š‘„š‘„1 āˆ’ š‘„š‘„2 = 10 86
  • 87. K. Webb ESE 470 87
  • 88. K. Webb ESE 470 88
  • 89. K. Webb ESE 470 89
  • 90. K. Webb ESE 470 Power-Flow Solution ā€“ Overview 90
  • 91. K. Webb ESE 470 Solving the Power-Flow Problem - Overview ļ‚Ø Consider an š‘š‘-bus power-flow problem ļ‚¤ 1 slack bus ļ‚¤ š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ PV buses ļ‚¤ š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ PQ buses š‘š‘ = š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ + š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ + 1 ļ‚Ø Each bus has two unknown quantities ļ‚¤ Two of š‘‰š‘‰š‘˜š‘˜, š›æš›æš‘˜š‘˜, š‘ƒš‘ƒš‘˜š‘˜, and š‘„š‘„š‘˜š‘˜ ļ‚Ø For the N-R power-flow problem, š‘‰š‘‰š‘˜š‘˜ and š›æš›æš‘˜š‘˜ are the unknown quantities ļ‚¤ These are the inputs to the nonlinear system of equations ā€“ the š‘ƒš‘ƒš‘˜š‘˜ and š‘„š‘„š‘˜š‘˜ equations ā€“ of (9) and (10) ļ‚¤ Finding unknown š‘‰š‘‰š‘˜š‘˜ and š›æš›æš‘˜š‘˜ values allows us to determine unknown š‘ƒš‘ƒš‘˜š‘˜ and š‘„š‘„š‘˜š‘˜ values 91
  • 92. K. Webb ESE 470 Solving the Power-Flow Problem - Overview ļ‚Ø The nonlinear system of equations is š²š² = šŸšŸ(š±š±) ļ‚Ø The unknowns , š±š±, are bus voltages ļ‚¤ Unknown phase angles from PV and PQ buses ļ‚¤ Unknown magnitudes from PQ bus š±š± = š›…š›… š•š• = š›æš›æ2 ā‹® š›æš›æš‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ+š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ+1 š‘‰š‘‰š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ+2 ā‹® š‘‰š‘‰š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ+š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ+1 š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ + š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ (24) 92
  • 93. K. Webb ESE 470 Solving the Power-Flow Problem - Overview š²š² = šŸšŸ(š±š±) ļ‚Ø The knowns , š²š², are bus powers ļ‚¤ Known real power from PV and PQ buses ļ‚¤ Known reactive power from PQ bus š²š² = šš šš = š‘ƒš‘ƒ2 ā‹® š‘ƒš‘ƒš‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ+š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ+1 š‘„š‘„š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ+2 ā‹® š‘„š‘„š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ+š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ+1 š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ + š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ (25) 93
  • 94. K. Webb ESE 470 Solving the Power-Flow Problem - Overview š²š² = šŸšŸ(š±š±) ļ‚Ø The system of equations , šŸšŸ, consists of the nonlinear functions for šš and šš ļ‚¤ Nonlinear functions of š•š• and š›…š›… šŸšŸ(š±š±) = šš(š±š±) šš(š±š±) = š‘ƒš‘ƒ2 š±š± ā‹® ā‹® š‘„š‘„š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ+2 š±š± ā‹® ā‹® š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ + š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ (26) 94
  • 95. K. Webb ESE 470 Solving the Power-Flow Problem - Overview ļ‚Ø š‘ƒš‘ƒš‘˜š‘˜ š±š± and š‘„š‘„š‘˜š‘˜ š±š± are given by š‘ƒš‘ƒš‘˜š‘˜ = š‘‰š‘‰š‘˜š‘˜ ļæ½ š‘›š‘›=1 š‘š‘ š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ š‘‰š‘‰ š‘›š‘› cos š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜ š‘„š‘„š‘˜š‘˜ = š‘‰š‘‰š‘˜š‘˜ ļæ½ š‘›š‘›=1 š‘š‘ š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ š‘‰š‘‰ š‘›š‘› sin š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜ ļ‚¤ Admittance matrix terms are š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ = š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ āˆ šœƒšœƒš‘˜š‘˜š‘˜š‘˜ (9) (10) 95
  • 96. K. Webb ESE 470 Solving the Power-Flow Problem - Overview ļ‚Ø The iterative N-R formula is š±š±š‘–š‘–+1 = š±š±š‘–š‘– + Ī”š±š±š‘–š‘– ļ‚¤ The increment term, Ī”š±š±š‘–š‘–, is computed through Gaussian elimination of Ī”š²š²š‘–š‘– = š‰š‰š‘–š‘–Ī”š±š±š‘–š‘– ļ‚¤ The Jacobian, š½š½š‘–š‘–, is computed on each iteration ļ‚¤ The power mismatch vector is Ī”š²š²š‘–š‘– = š²š² āˆ’ šŸšŸ š±š±š‘–š‘– ļ® š²š² is the vector of known powers, as given in (25) ļ® šŸšŸ š±š±š‘–š‘– are the š‘ƒš‘ƒ and š‘„š‘„ equations given by (9) and (10) 96
  • 97. K. Webb ESE 470 Power-Flow Solution ā€“ Procedure 97
  • 98. K. Webb ESE 470 Solving the Power-Flow Problem - Procedure ļ‚Ø The following procedure shows how to set up and solve the power-flow problem using the N-R algorithm 1. Order and number buses ļ‚¤ Slack bus is #1 ļ‚¤ Group all PV buses together next ļ‚¤ Group all PQ buses together last 2. Generate the bus admittance matrix, š˜š˜ ļ‚¤ And magnitude, Y = š˜š˜ , and angle, Īø = āˆ š˜š˜, matrices 98
  • 99. K. Webb ESE 470 Solving the Power-Flow Problem - Procedure 3. Initialize known quantities ļ‚¤ Slack bus: š‘‰š‘‰1 and š›æš›æ1 ļ‚¤ PV buses: š‘‰š‘‰š‘˜š‘˜ and š‘ƒš‘ƒš‘˜š‘˜ ļ‚¤ PQ buses: š‘ƒš‘ƒš‘˜š‘˜ and š‘„š‘„š‘˜š‘˜ ļ‚¤ Output vector: š²š² = šš šš 4. Initialize unknown quantities š±š±š’š’ = š›…š›…šŸŽšŸŽ š•š•šŸŽšŸŽ = 0 ā‹® 0 1.0 ā‹® 1.0 š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ + š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ (24) 99
  • 100. K. Webb ESE 470 Solving the Power-Flow Problem - Procedure 5. Set up Newton-Raphson parameters ļ‚¤ Tolerance for convergence, reltol ļ‚¤ Maximum # of iterations, max_iter ļ‚¤ Initialize relative error: šœ€šœ€0 > reltol, e.g. šœ€šœ€0 = 10 ļ‚¤ Initialize iteration counter: š‘–š‘– = 0 6. while (šœ€šœ€ > reltol) && (š‘–š‘– < max_iter) ļ‚¤ Update bus voltage phasor vector, š•š•š‘–š‘–, using magnitude and phase values from š±š±š‘–š‘– and from knowns ļ‚¤ Calculate the current injected into each bus, a vector of phasors šˆšˆš‘–š‘– = š˜š˜ ā‹… š•š•š‘–š‘– 100
  • 101. K. Webb ESE 470 Solving the Power-Flow Problem - Procedure 6. while (šœ€šœ€ > reltol) && (š‘–š‘– < max_iter) ā€“ contā€™d ļ‚¤ Calculate complex, real, and reactive power injected into each bus ļ® This can be done using š•š•š‘–š‘– and šˆšˆš‘–š‘– vectors and element-by-element multiplication (the .* operator in MATLAB) š’š’š‘˜š‘˜,š‘–š‘– = š•š•š‘˜š‘˜,š‘–š‘– ā‹… šˆšˆš‘˜š‘˜,š‘–š‘– āˆ— š‘ƒš‘ƒš‘˜š‘˜,š‘–š‘– = š‘…š‘…š‘…š‘… š’š’š‘˜š‘˜,š‘–š‘– š‘„š‘„š‘˜š‘˜,š‘–š‘– = š¼š¼š¼š¼ š’š’š‘˜š‘˜,š‘–š‘– ļ‚¤ Create š‘“š‘“ š‘„š‘„š‘–š‘– from ššš‘–š‘– and ššš‘–š‘– vectors ļ‚¤ Calculate power mismatch, Ī”š²š²š‘–š‘– Ī”š²š²š‘–š‘– = š²š² āˆ’ šŸšŸ š±š±š‘–š‘– ļ‚¤ Compute the Jacobian, š‰š‰š‘–š‘–, using voltage magnitudes and phase angles from š•š•š‘–š‘– 101
  • 102. K. Webb ESE 470 Solving the Power-Flow Problem - Procedure 6. while (šœ€šœ€ > reltol) && (š‘–š‘– < max_iter) ā€“ contā€™d ļ‚¤ Solve for Ī”š±š±š‘–š‘– using Gaussian elimination Ī”š²š²š‘–š‘– = š‰š‰š‘–š‘–Ī”š±š±š‘–š‘– ļ® Use the mldivide (, backslash) operator in MATLAB: Ī”š±š±š‘–š‘– = š‰š‰š‘–š‘–Ī”š²š²š‘–š‘– ļ‚¤ Update š±š± š±š±š‘–š‘–+1 = š±š±š‘–š‘– + Ī”š±š±š‘–š‘– ļ‚¤ Check for convergence using power mismatch šœ€šœ€š‘–š‘–+1 = max š‘¦š‘¦š‘˜š‘˜ āˆ’ š‘“š‘“š‘˜š‘˜ š±š± š‘¦š‘¦š‘˜š‘˜ ļ‚¤ Update the number of iterations š‘–š‘– = š‘–š‘– + 1 102
  • 103. K. Webb ESE 470 The Jacobian Matrix ļ‚Ø The Jacobian matrix has four quadrants of varying dimension depending on the number of different types of buses: š‰š‰ = šœ•šœ•šš šœ•šœ•š›…š›… šœ•šœ•šš šœ•šœ•š•š• šœ•šœ•šš šœ•šœ•š›…š›… šœ•šœ•šš šœ•šœ•š•š• š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ + š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ + š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ š‰š‰1 š‰š‰2 š‰š‰3 š‰š‰4 103
  • 104. K. Webb ESE 470 The Jacobian Matrix ļ‚Ø Jacobian elements are partial derivatives of (9) and (10) with respect to š›æš›æ or š‘‰š‘‰ ļ‚Ø Formulas for the Jacobian elements: ļ‚¤ š‘›š‘› ā‰  š‘˜š‘˜ š‰š‰1š‘˜š‘˜š‘˜š‘˜ = šœ•šœ•š‘ƒš‘ƒš‘˜š‘˜ šœ•šœ•š›æš›æš‘›š‘› = š‘‰š‘‰š‘˜š‘˜š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜š‘‰š‘‰ š‘›š‘› sin š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜ š‰š‰2š‘˜š‘˜š‘˜š‘˜ = šœ•šœ•š‘ƒš‘ƒš‘˜š‘˜ šœ•šœ•š‘‰š‘‰ š‘›š‘› = š‘‰š‘‰š‘˜š‘˜š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ cos š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜ š‰š‰3š‘˜š‘˜š‘˜š‘˜ = šœ•šœ•š‘„š‘„š‘˜š‘˜ šœ•šœ•š›æš›æš‘›š‘› = āˆ’š‘‰š‘‰š‘˜š‘˜š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜š‘‰š‘‰ š‘›š‘› cos š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜ š‰š‰4š‘˜š‘˜š‘˜š‘˜ = šœ•šœ•š‘„š‘„š‘˜š‘˜ šœ•šœ•š‘‰š‘‰ š‘›š‘› = š‘‰š‘‰š‘˜š‘˜š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ sin š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜ (29) (27) (28) (30) 104
  • 105. K. Webb ESE 470 The Jacobian Matrix ļ‚Ø Formulas for the Jacobian elements, contā€™d: ļ‚¤ š‘›š‘› = š‘˜š‘˜ š‰š‰1š‘˜š‘˜š‘˜š‘˜ = šœ•šœ•š‘ƒš‘ƒš‘˜š‘˜ šœ•šœ•š›æš›æš‘˜š‘˜ = āˆ’š‘‰š‘‰š‘˜š‘˜ ļæ½ š‘›š‘›=1 š‘›š‘›ā‰ š‘˜š‘˜ š‘š‘ š‘Œš‘Œš‘˜š‘˜š‘›š‘›š‘‰š‘‰ š‘›š‘› sin š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜ š‰š‰2š‘˜š‘˜š‘˜š‘˜ = šœ•šœ•š‘ƒš‘ƒš‘˜š‘˜ šœ•šœ•š‘‰š‘‰š‘˜š‘˜ = š‘‰š‘‰š‘˜š‘˜š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ cos šœƒšœƒš‘˜š‘˜š‘˜š‘˜ + ļæ½ š‘›š‘›=1 š‘š‘ š‘Œš‘Œš‘˜š‘˜š‘›š‘›š‘‰š‘‰ š‘›š‘› cos š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜ š‰š‰3š‘˜š‘˜š‘˜š‘˜ = šœ•šœ•š‘„š‘„š‘˜š‘˜ šœ•šœ•š›æš›æš‘˜š‘˜ = š‘‰š‘‰š‘˜š‘˜ ļæ½ š‘›š‘›=1 š‘›š‘›ā‰ š‘˜š‘˜ š‘š‘ š‘Œš‘Œš‘˜š‘˜š‘›š‘›š‘‰š‘‰ š‘›š‘› cos š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜ š‰š‰4š‘˜š‘˜š‘˜š‘˜ = šœ•šœ•š‘„š‘„š‘˜š‘˜ šœ•šœ•š‘‰š‘‰š‘˜š‘˜ = āˆ’š‘‰š‘‰š‘˜š‘˜š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜ sin šœƒšœƒš‘˜š‘˜š‘˜š‘˜ + ļæ½ š‘›š‘›=1 š‘š‘ š‘Œš‘Œš‘˜š‘˜š‘˜š‘˜š‘‰š‘‰ š‘›š‘› sin š›æš›æš‘˜š‘˜ āˆ’ š›æš›æš‘›š‘› āˆ’ šœƒšœƒš‘˜š‘˜š‘˜š‘˜ (33) (31) (32) (34) 105
  • 106. K. Webb ESE 470 Power-Flow Solution ā€“ Example 106
  • 107. K. Webb ESE 470 Power-Flow Solution ā€“ Buses ļ‚Ø Determine all bus voltages and power flows for the following three- bus power system ļ‚Ø Three buses, š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ = 1, š‘›š‘›š‘ƒš‘ƒš‘ƒš‘ƒ = 1, ordered PV first, then PQ: ļ‚¤ Bus 1: slack bus ļ® š‘‰š‘‰1 and š›æš›æ1 are known, find š‘ƒš‘ƒ1 and š‘„š‘„1 ļ‚¤ Bus 2: PV bus ļ® š‘ƒš‘ƒ2 and š‘‰š‘‰2 are known, find š›æš›æ2 and š‘„š‘„2 ļ‚¤ Bus 3: PQ bus ļ® š‘ƒš‘ƒ3 and š‘„š‘„3 are known, find š‘‰š‘‰3 and š›æš›æ3 107
  • 108. K. Webb ESE 470 ļ‚Ø Per-unit, per-length impedance of all transmission lines: š‘§š‘§ = 31.1 + š‘—š‘—š‘—š‘—š‘— Ɨ 10āˆ’6 š‘š‘š‘š‘/š‘˜š‘˜š‘˜š‘˜ ļ‚¤ Admittance of each line: š‘Œš‘Œ12 = š‘Œš‘Œ23 = 1 š‘§š‘§ ā‹… 150 š‘˜š‘˜š‘˜š‘˜ = 2.06 āˆ’ š‘—š‘—š‘—š‘—.9 š‘š‘š‘š‘ š‘Œš‘Œ13 = 1 š‘§š‘§ ā‹… 200 š‘˜š‘˜š‘˜š‘˜ = 1.54 āˆ’ š‘—š‘—15.7 š‘š‘š‘š‘ Power-Flow Solution ā€“ Admittance Matrix 108
  • 109. K. Webb ESE 470 ļ‚Ø The admittance matrix (see p. 8): š˜š˜ = š‘Œš‘Œ11 āˆ’š‘Œš‘Œ12 āˆ’š‘Œš‘Œ13 āˆ’š‘Œš‘Œ21 š‘Œš‘Œ22 āˆ’š‘Œš‘Œ23 āˆ’š‘Œš‘Œ31 āˆ’š‘Œš‘Œ32 š‘Œš‘Œ33 = 3.6 āˆ’ š‘—š‘—š‘—š‘—.6 āˆ’2.06 + š‘—š‘—š‘—š‘—.9 āˆ’1.5 + š‘—š‘—š‘—š‘—.7 āˆ’2.06 + š‘—š‘—š‘—š‘—.9 4.1 āˆ’ š‘—š‘—š‘—š‘—.8 āˆ’2.06 + š‘—š‘—š‘—š‘—.9 āˆ’1.5 + š‘—š‘—š‘—š‘—.7 āˆ’2.06 + š‘—š‘—š‘—š‘—.9 3.6 āˆ’ š‘—š‘—š‘—š‘—.6 ļ‚Ø Admittance magnitude and angle matrices: Y = š˜š˜ = 36.8 21.0 15.8 21.0 42.0 21.0 15.8 21.0 36.8 , š›‰š›‰ = āˆ’84.4Ā° 95.6Ā° 95.6Ā° 95.6Ā° āˆ’84.4Ā° 95.6Ā° 95.6Ā° 95.6Ā° āˆ’84.4Ā° Power-Flow Solution ā€“ Admittance Matrix 109
  • 110. K. Webb ESE 470 Power-Flow Solution ā€“ Initialize Knowns ļ‚Ø Known quantities ļ‚¤ Slack bus: š‘‰š‘‰1 = 1.0 š‘š‘š‘š‘, š›æš›æ1 = 0Ā° ļ‚¤ PV bus: š‘‰š‘‰2 = 1.05 š‘š‘š‘š‘, š‘ƒš‘ƒ2 = 2.0 š‘š‘š‘š‘ ļ‚¤ PQ bus: š‘ƒš‘ƒ3 = āˆ’5.0 š‘š‘š‘š‘, š‘„š‘„3 = āˆ’1.0 š‘š‘š‘š‘ ļ‚¤ Output vector š²š² = šš šš = š‘ƒš‘ƒ2 š‘ƒš‘ƒ3 š‘„š‘„3 = 2.0 āˆ’5.0 āˆ’1.0 110
  • 111. K. Webb ESE 470 Power-Flow Solution ā€“ Initialize Unknowns ļ‚Ø The vector of unknown quantities to be solved for is š±š± = š›…š›… š•š• = š›æš›æ2 š›æš›æ3 š‘‰š‘‰3 ļ‚Ø Initialize all unknown bus voltage phasors to š•š•š‘˜š‘˜ = 1.0āˆ 0Ā° š‘š‘š‘š‘ š±š±0 = š›…š›…0 š•š•0 = š›æš›æ2,0 š›æš›æ3,0 š‘‰š‘‰3,0 = 0 0 1.0 ļ‚Ø The complete vector of bus voltage phasors ā€“ partly known, partly unknown ā€“ is š•š• = š‘‰š‘‰1āˆ š›æš›æ1 š‘‰š‘‰2āˆ š›æš›æ2 š‘‰š‘‰3āˆ š›æš›æ3 = 1.0āˆ 0Ā° 1.05āˆ š›æš›æ2,0 š‘‰š‘‰3,0āˆ š›æš›æ3,0 = 1.0āˆ 0Ā° 1.05āˆ 0Ā° 1.0āˆ 0Ā° 111
  • 112. K. Webb ESE 470 Power-Flow Solution ā€“ Jacobian Matrix ļ‚Ø The Jacobian matrix for this system is š‰š‰ = šœ•šœ•š‘ƒš‘ƒ2 šœ•šœ•š›æš›æ2 šœ•šœ•š‘ƒš‘ƒ2 šœ•šœ•š›æš›æ3 šœ•šœ•š‘ƒš‘ƒ2 šœ•šœ•š‘‰š‘‰3 šœ•šœ•š‘ƒš‘ƒ3 šœ•šœ•š›æš›æ2 šœ•šœ•š‘ƒš‘ƒ3 šœ•šœ•š›æš›æ3 šœ•šœ•š‘ƒš‘ƒ3 šœ•šœ•š‘‰š‘‰3 šœ•šœ•š‘„š‘„3 šœ•šœ•š›æš›æ2 šœ•šœ•š‘„š‘„3 šœ•šœ•š›æš›æ3 šœ•šœ•š‘„š‘„3 šœ•šœ•š‘‰š‘‰3 ļ‚Ø This matrix will be computed on each iteration using the current approximation to the vector of unknowns, š±š±š‘–š‘– 112
  • 113. K. Webb ESE 470 Power-Flow Solution ā€“ Set Up and Iterate ļ‚Ø Set up N-R iteration parameters ļ‚¤ reltol = 1e-6 ļ‚¤ max_iter = 1e3 ļ‚¤ šœ€šœ€0 = 10 ļ‚¤ š‘–š‘– = 0 ļ‚Ø Iteratively update the approximation to the vector of unknowns as long as ļ‚¤ Stopping criterion is not satisfied šœ€šœ€š‘–š‘– > šœ€šœ€š‘ š‘  ļ‚¤ Maximum number of iterations is not exceeded š‘–š‘– ā‰¤ š‘šš‘šš‘šš‘šš‘šš‘š _š‘–š‘–š‘–š‘–š‘–š‘–š‘–š‘– 113
  • 114. K. Webb ESE 470 Power-Flow Solution ā€“ Iterate ļ‚Ø š‘–š‘– = 0: ļ‚¤ Vector of bus voltage phasors š•š•0 = š‘‰š‘‰1āˆ š›æš›æ1 š‘‰š‘‰2āˆ š›æš›æ2,0 š‘‰š‘‰3,0āˆ š›æš›æ3,0 = 1.0āˆ 0Ā° 1.05āˆ 0Ā° 1.0āˆ 0Ā° ļ‚¤ Current injected into each bus šˆšˆ0 = š˜š˜ ā‹… š•š•0 šˆšˆ0 = 3.6 āˆ’ š‘—š‘—š‘—š‘—.6 āˆ’2.1 + š‘—š‘—š‘—š‘—.9 āˆ’1.5 + š‘—š‘—š‘—š‘—.7 āˆ’2.1 + š‘—š‘—š‘—š‘—.9 4.1 āˆ’ š‘—š‘—š‘—š‘—.8 āˆ’2.1 + š‘—š‘—š‘—š‘—.9 āˆ’1.5 + š‘—š‘—š‘—š‘—.7 āˆ’2.1 + š‘—š‘—š‘—š‘—.9 3.6 āˆ’ š‘—š‘—š‘—š‘—.6 1.0āˆ 0Ā° 1.05āˆ 0Ā° 1.0āˆ 0Ā° šˆšˆ0 = 1.05āˆ 95.6Ā° 2.10āˆ  āˆ’ 84.4Ā° 1.05āˆ 95.6Ā° 114
  • 115. K. Webb ESE 470 Power-Flow Solution ā€“ Iterate ļ‚Ø š‘–š‘– = 0: ļ‚¤ Complex power injected into each bus š’š’0 = š•š•0 .āˆ— šˆšˆ0 āˆ— š’š’0 = 1.0āˆ 0Ā° 1.05āˆ 0Ā° 1.0āˆ 0Ā° .āˆ— 1.05āˆ 95.6Ā° 2.10āˆ  āˆ’ 84.4Ā° 1.05āˆ 95.6Ā° āˆ— š’š’0 = āˆ’0.103 āˆ’ š‘—š‘—š‘—.045 0.216 + š‘—š‘—š‘—.195 āˆ’0.103 āˆ’ š‘—š‘—š‘—.045 ļ‚¤ Real and reactive power šš0 = āˆ’0.103 0.216 āˆ’0.103 , šš0 = āˆ’1.045 2.195 āˆ’1.045 115
  • 116. K. Webb ESE 470 Power-Flow Solution ā€“ Iterate ļ‚Ø š‘–š‘– = 0: ļ‚¤ Power mismatch Ī”š²š²0 = š²š² āˆ’ šŸšŸ š±š±0 Ī”š²š²0 = 2.0 āˆ’5.0 āˆ’1.0 āˆ’ 0.216 āˆ’0.103 āˆ’1.045 = 1.784 āˆ’4.897 0.045 ļ‚¤ Next, compute the Jacobian matrix š‰š‰0 = šœ•šœ•š‘ƒš‘ƒ2 šœ•šœ•š›æš›æ2 šœ•šœ•š‘ƒš‘ƒ2 šœ•šœ•š›æš›æ3 šœ•šœ•š‘ƒš‘ƒ2 šœ•šœ•š‘‰š‘‰3 šœ•šœ•š‘ƒš‘ƒ3 šœ•šœ•š›æš›æ2 šœ•šœ•š‘ƒš‘ƒ3 šœ•šœ•š›æš›æ3 šœ•šœ•š‘ƒš‘ƒ3 šœ•šœ•š‘‰š‘‰3 šœ•šœ•š‘„š‘„3 šœ•šœ•š›æš›æ2 šœ•šœ•š‘„š‘„3 šœ•šœ•š›æš›æ3 šœ•šœ•š‘„š‘„3 šœ•šœ•š‘‰š‘‰3 š±š±=š±š±0 116
  • 117. K. Webb ESE 470 Power-Flow Solution ā€“ Iterate ļ‚Ø š‘–š‘– = 0: ļ‚¤ Elements of the Jacobian matrix are computed using š‘‰š‘‰ and š›æš›æ values from š•š•0 and š‘Œš‘Œ and šœƒšœƒ values from š˜š˜: š‘‰š‘‰0 = 1.0 1.05 1.0 š›æš›æ0 = 0Ā° 0Ā° 0Ā° š‘Œš‘Œ = 36.8 21.0 15.8 21.0 42.0 21.0 15.8 21.0 36.8 šœƒšœƒ = āˆ’84.4Ā° 95.6Ā° 95.6Ā° 95.6Ā° āˆ’84.4Ā° 95.6Ā° 95.6Ā° 95.6Ā° āˆ’84.4Ā° 117
  • 118. K. Webb ESE 470 Power-Flow Solution ā€“ Iterate ļ‚Ø š‘–š‘– = 0: ļ‚¤ Jacobian, š‰š‰1 šœ•šœ•š‘ƒš‘ƒ2 šœ•šœ•š›æš›æ2 = āˆ’š‘‰š‘‰2 š‘Œš‘Œ21š‘‰š‘‰1 sin š›æš›æ2 āˆ’ š›æš›æ1 āˆ’ šœƒšœƒ21 + š‘Œš‘Œ23š‘‰š‘‰3 sin š›æš›æ2 āˆ’ š›æš›æ3 āˆ’ šœƒšœƒ23 šœ•šœ•š‘ƒš‘ƒ3 šœ•šœ•š›æš›æ3 = āˆ’š‘‰š‘‰3 š‘Œš‘Œ31š‘‰š‘‰1 sin š›æš›æ3 āˆ’ š›æš›æ1 āˆ’ šœƒšœƒ31 + š‘Œš‘Œ32š‘‰š‘‰2 sin š›æš›æ3 āˆ’ š›æš›æ2 āˆ’ šœƒšœƒ32 šœ•šœ•š‘ƒš‘ƒ2 šœ•šœ•š›æš›æ3 = š‘‰š‘‰2š‘Œš‘Œ23š‘‰š‘‰3 sin š›æš›æ2 āˆ’ š›æš›æ3 āˆ’ šœƒšœƒ23 šœ•šœ•š‘ƒš‘ƒ3 šœ•šœ•š›æš›æ2 = š‘‰š‘‰3š‘Œš‘Œ32š‘‰š‘‰2 sin š›æš›æ3 āˆ’ š›æš›æ2 āˆ’ šœƒšœƒ32 118
  • 119. K. Webb ESE 470 Power-Flow Solution ā€“ Iterate ļ‚Ø š‘–š‘– = 0: ļ‚¤ Jacobian, š‰š‰2 šœ•šœ•š‘ƒš‘ƒ2 šœ•šœ•š‘‰š‘‰3 = š‘‰š‘‰2š‘Œš‘Œ23 cos š›æš›æ2 āˆ’ š›æš›æ3 āˆ’ šœƒšœƒ23 šœ•šœ•š‘ƒš‘ƒ3 šœ•šœ•š‘‰š‘‰3 = 2 ā‹… š‘‰š‘‰3š‘Œš‘Œ33 cos šœƒšœƒ33 + š‘Œš‘Œ31š‘‰š‘‰1 cos š›æš›æ3 āˆ’ š›æš›æ1 āˆ’ šœƒšœƒ31 + š‘Œš‘Œ32š‘‰š‘‰2 cos š›æš›æ3 āˆ’ š›æš›æ2 āˆ’ šœƒšœƒ32 ļ‚¤ Jacobian, š‰š‰3 šœ•šœ•š‘„š‘„3 šœ•šœ•š›æš›æ2 = āˆ’š‘‰š‘‰3š‘Œš‘Œ32š‘‰š‘‰2 cos š›æš›æ3 āˆ’ š›æš›æ2 āˆ’ šœƒšœƒ32 šœ•šœ•š‘„š‘„3 šœ•šœ•š›æš›æ3 = š‘‰š‘‰3 š‘Œš‘Œ31š‘‰š‘‰1 cos š›æš›æ3 āˆ’ š›æš›æ1 āˆ’ šœƒšœƒ31 + š‘Œš‘Œ32š‘‰š‘‰2 cos š›æš›æ3 āˆ’ š›æš›æ2 āˆ’ šœƒšœƒ32 119
  • 120. K. Webb ESE 470 Power-Flow Solution ā€“ Iterate ļ‚Ø š‘–š‘– = 0: ļ‚¤ Jacobian, š‰š‰4 šœ•šœ•š‘„š‘„3 šœ•šœ•š‘‰š‘‰3 = š‘‰š‘‰3š‘Œš‘Œ33 cos šœƒšœƒ33 + š‘Œš‘Œ31š‘‰š‘‰1 cos š›æš›æ3 āˆ’ š›æš›æ1 āˆ’ šœƒšœƒ31 + š‘Œš‘Œ32š‘‰š‘‰2 cos š›æš›æ3 āˆ’ š›æš›æ2 āˆ’ šœƒšœƒ32 ļ‚¤ Evaluating the Jacobian expressions using š‘‰š‘‰ and š›æš›æ values from š•š•0 and š‘Œš‘Œ and šœƒšœƒ values from š˜š˜, gives š‰š‰0 = 43.89 āˆ’21.95 āˆ’2.160 āˆ’21.95 37.62 3.497 2.160 āˆ’3.702 35.53 120
  • 121. K. Webb ESE 470 Power-Flow Solution ā€“ Iterate ļ‚Ø š‘–š‘– = 0: ļ‚¤ Use Gaussian elimination to solve for Ī”š±š±0 Ī”š²š²0 = š‰š‰0Ī”š±š±0 = 43.89 āˆ’21.95 āˆ’2.160 āˆ’21.95 37.62 3.497 2.160 āˆ’3.702 35.53 Ī”š‘„š‘„1,0 Ī”š‘„š‘„2,0 Ī”š‘„š‘„3,0 = 1.784 āˆ’4.897 0.045 Ī”š±š±0 = āˆ’0.0345 āˆ’0.1492 āˆ’0.0122 ļ‚¤ Update the vector of unknowns, š±š± š±š±1 = š±š±0 + Ī”š±š±0 = 0 0 1.0 + āˆ’0.0345 āˆ’0.1492 āˆ’0.0122 = āˆ’0.0345 āˆ’0.1492 0.9878 121
  • 122. K. Webb ESE 470 Power-Flow Solution ā€“ Iterate ļ‚Ø š‘–š‘– = 0: ļ‚¤ Use power mismatch to check for convergence šœ€šœ€0 = max š‘¦š‘¦š‘˜š‘˜ āˆ’ š‘“š‘“š‘˜š‘˜ š‘„š‘„ š‘¦š‘¦š‘˜š‘˜ = 0.9794 ļ‚¤ Move on to the next iteration, š‘–š‘– = 1 ļ® Create š•š•1 using š±š±1 values ļ® Calculate šˆšˆ1 ļ® Calculate š’š’1, šš1, šš1 ļ® Create šŸšŸ š±š±1 from šš1 and šš1 ļ® Calculate Ī”š²š²1, š‰š‰1, Ī”š±š±1 ļ® Update š±š± to š±š±2 ļ® Check for convergence ļ® ā€¦ 122
  • 123. K. Webb ESE 470 Power-Flow Solution ļ‚Ø Convergence is achieved after four iterations š•š•4 = 1.0āˆ 0Ā° 1.1āˆ  āˆ’ 2.1Ā° 0.97āˆ  āˆ’ 8.8Ā° , š’š’4 = 3.08 āˆ’ š‘—š‘—š‘—.82 2.0 + š‘—š‘—š‘—.67 āˆ’5.0 āˆ’ š‘—š‘—š‘—.0 šœ€šœ€4 = 0.41 Ɨ 10āˆ’6 123
  • 124. K. Webb ESE 470 Example Problems 124
  • 125. K. Webb ESE 470 For the power system shown, determine a) The type of each bus b) The first row of the admittance matrix, š˜š˜ c) The vector of unknowns, š±š± d) The vector of knowns, š²š² e) The Jacobian matrix, š‰š‰, in symbolic form 125
  • 126. K. Webb ESE 470 126
  • 127. K. Webb ESE 470 127
  • 128. K. Webb ESE 470 128