Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 1 of 13
Industrial Instrumentation
Mathematical Expressions & Relationships
Pressure Measurement
1. Pressure for an ideal gas is expressed as
𝒑 =
𝟏
𝟑
𝒎𝒏𝒗𝒓𝒎𝒔
𝟐
𝑛 = 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦; 𝑚 = 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑚𝑎𝑠𝑠; 𝑣𝑟𝑚𝑠 = 𝑟𝑚𝑠 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒
2. Relationship between Absolute 𝒑𝒂, Gauge 𝒑𝒈, Atmospheric 𝒑𝒔and Vacuum Pressure
𝒑𝒗
𝒑𝒈 = 𝒑𝒂 − 𝒑𝒔
𝒑𝒗 = 𝒑𝒔 − 𝒑𝒂
3. Pressure Balance equation for U – tube manometer
𝒑𝟏 + 𝒈𝒉𝝆𝒇 = 𝒑𝟐 + 𝒈𝒉𝝆𝒎
𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (∆𝑝) = 𝑝1 − 𝑝2 = 𝑔ℎ(𝜌𝑚 − 𝜌𝑓) = 𝑔ℎ𝜌𝑚
𝜌𝑚 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑜𝑓 𝑚𝑎𝑛𝑜𝑚𝑒𝑡𝑒𝑟 𝑚𝑒𝑟𝑐𝑢𝑟𝑦;
𝜌𝑓 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑖𝑛𝑔 𝑓𝑙𝑢𝑖𝑑
4. Pressure Sensitivity (S)
𝑺 =
𝑶𝒖𝒕𝒑𝒖𝒕
𝑰𝒏𝒑𝒖𝒕
=
∆𝒉
∆𝒑
=
𝒉
𝒈𝒉𝝆𝒎
=
𝟏
𝒈𝝆𝒎
5. Well Type Manometer – Expression for the mercury height
𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑤𝑒𝑙𝑙 (𝑑) = ℎ − ℎ′
𝑑𝐴 = ℎ𝑎
𝒉 = 𝒉′
(𝟏 +
𝒂
𝑨
)
𝑎 = 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑢𝑏𝑒; 𝐴 = 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑒𝑙𝑙; ℎ = 𝑚𝑒𝑟𝑐𝑢𝑟𝑦 𝑐𝑜𝑙𝑢𝑚𝑛 ℎ𝑒𝑖𝑔ℎ𝑡
6. Pressure Difference in Well Type Manometer
∆𝒑 = 𝒈𝒉′
(𝟏 +
𝒂
𝑨
) 𝝆𝒎
7. Pressure Difference in Inclined Tube Manometer
𝑆𝑖𝑛𝑐𝑒 ∆𝑝 = 𝑝1 − 𝑝2 = 𝑔ℎ′
(1 +
𝑎
𝐴
) 𝜌𝑚
𝑠𝑖𝑛𝜃 =
ℎ′
𝑅
; 𝑅 = 𝑆𝑐𝑎𝑙𝑒 𝑅𝑒𝑎𝑑𝑖𝑛𝑔;
∆𝒑 = 𝒈𝝆𝒎𝑹𝒔𝒊𝒏𝜽 (𝟏 +
𝒂
𝑨
)
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 2 of 13
8. Pressure Difference I Ring Balance Manometer
∆𝒑 = 𝒑𝟏 − 𝒑𝟐 =
𝟐𝒘𝒈𝑹𝒔𝒊𝒏𝜽
𝑨𝒅
𝐴 = 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟𝑖𝑛𝑔; 𝑤 = 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑤𝑒𝑖𝑔ℎ𝑡;
𝑅 = 𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑟𝑖𝑛𝑔; 𝜃 = 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑡𝑖𝑙𝑡 𝑓𝑟𝑜𝑚 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑎𝑥𝑖𝑠
9. Transfer Function of Manometer
𝑇𝑜𝑡𝑎𝑙 𝐹𝑜𝑟𝑐𝑒 𝑒𝑥𝑒𝑟𝑡𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑙𝑖𝑞𝑢𝑖𝑑 = 𝜌𝑎𝑔(𝐻 − ℎ) = 2𝜌𝑎𝑔𝑥
𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑑𝑢𝑒 𝑡𝑜 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = 𝜌𝑉
𝑑2
𝑥
𝑑𝑡2
𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑑𝑢𝑒 𝑡𝑜 𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 = 𝐵
𝑑𝑥
𝑑𝑡
𝑉 = 𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑚𝑎𝑛𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑙𝑢𝑖𝑑; 𝑎 = 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡𝑢𝑏𝑒;
𝐵 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦; 𝑥 = 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑟𝑛𝑡 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑; 𝑝 = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑝𝑝𝑙𝑖𝑒𝑑
By balancing the forces, we get
𝑇𝑜𝑡𝑎𝑙 𝐹𝑜𝑟𝑐𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑝
= 𝑇𝑜𝑡𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 𝑜𝑛 𝑙𝑖𝑞𝑢𝑖𝑑 + 𝐹𝑜𝑟𝑐𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑖𝑛𝑒𝑟𝑡𝑖𝑎
+ 𝐹𝑜𝑟𝑐𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛
𝑝𝑎 = 𝜌𝑉
𝑑2
𝑥
𝑑𝑡2
+ 𝐵
𝑑𝑥
𝑑𝑡
+ 2𝜌𝑔𝑎𝑥
∴ 𝒑 =
𝝆𝑽
𝒂
𝒅𝟐
𝒙
𝒅𝒕𝟐
+
𝑩
𝒂
𝒅𝒙
𝒅𝒕
+ 𝟐𝝆𝒈𝒙
Taking Laplace Transfer on both sides, we get
𝑝(𝑠) = [
𝜌𝑉
𝑎
𝑠2
+
𝐵
𝑎
𝑠 + 2𝜌𝑔] 𝑋(𝑠)
𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐺(𝑠) =
𝐿𝑎𝑝𝑙𝑎𝑐𝑒 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡
𝐿𝑎𝑝𝑙𝑎𝑐𝑒 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡
=
𝑋(𝑠)
𝑃(𝑠)
𝐺(𝑠) = 2𝜌𝑎𝑔.
𝑋(𝑠)
𝑝(𝑠)
𝑮(𝒔) =
𝟐𝒂𝒈 𝑽
⁄
𝒔𝟐 +
𝑩
𝝆𝑽
𝒔 +
𝟐𝒂𝒈
𝑽
𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝜔𝑛 = √2𝑎𝑔 𝑉
⁄ ; 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜𝑛 𝜉 =
𝐵
2𝜌√2𝑎𝑔𝑉
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 3 of 13
𝑪(𝒔) =
𝝎𝒏
𝟐
𝒔𝟐 + 𝟐𝝃𝝎𝒏𝒔 + 𝝎𝒏
𝟐
10. Atmospheric Pressure – Barometer
𝒑𝒔 = 𝝆𝒎𝒈𝒉
11. High Pressure – Bridgman Gauge
𝑹 = 𝑹𝟏(𝟏 + 𝒃∆𝒑)
𝑏 = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒
12. Low Pressure – Mc Leod Gauge
𝒑 =
𝒉𝟐
𝑨𝒕
𝑽
ℎ = ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑚𝑒𝑟𝑐𝑢𝑟𝑦 𝑐𝑜𝑙𝑢𝑚𝑛; 𝐴𝑡 = 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛; 𝑉 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑏𝑢𝑙𝑏
13. Low Pressure – Kundsen Gauge
𝒑 =
𝒌𝑭
√𝑻 𝑻𝒈
⁄ − 𝟏
𝐹 = 𝑁𝑒𝑡 𝑓𝑜𝑟𝑐𝑒; 𝑇 = 𝑡𝑒𝑚𝑝. 𝑜𝑓 𝑝𝑙𝑎𝑡𝑒𝑠; 𝑇𝑔 = 𝑇𝑒𝑚𝑝. 𝑜𝑓 𝑔𝑎𝑠; 𝑘 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
14. Low Pressure – Ionization Gauge
𝑆 =
𝑂𝑢𝑡𝑝𝑢𝑡
𝐼𝑛𝑝𝑢𝑡
=
𝐼𝑖
𝑝𝐼𝑒
𝒑 =
𝑰𝒊
𝑺𝑰𝒆
𝐼𝑖 = 𝑖𝑜𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑔𝑎𝑢𝑔𝑒 𝑜𝑢𝑡𝑝𝑢𝑡; 𝐼𝑒 = 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 4 of 13
Flow Measurement
1. Reynolds Number
𝑹𝒆 =
𝒗𝒅𝝆
𝝁
𝑣 = 𝑓𝑙𝑜𝑤 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦; 𝑑 = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑝𝑖𝑝𝑒; 𝜌 = 𝑓𝑙𝑢𝑖𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦; 𝜇 = 𝑓𝑙𝑢𝑖𝑑 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦
2. Venturimeter
𝑝1
𝑤1
+ 𝑍1 +
𝑣1
2
2𝑔
=
𝑝2
𝑤2
+ 𝑍2 +
𝑣2
2
2𝑔
𝑝1 & 𝑝2 = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑡 𝑖𝑛𝑙𝑒𝑡 𝑎𝑛𝑑 𝑡ℎ𝑟𝑜𝑎𝑡 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦
𝑣1 & 𝑣2 = 𝑎𝑣. 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑖𝑒𝑠 𝑎𝑡 𝑖𝑛𝑙𝑒𝑡 𝑎𝑛𝑑 𝑡ℎ𝑟𝑜𝑎𝑡 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦
𝑤1 & 𝑤2 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 𝑎𝑡 𝑖𝑛𝑙𝑒𝑡 𝑎𝑛𝑑 𝑡ℎ𝑟𝑜𝑎𝑡 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦
𝐴1 & 𝐴2 = 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑖𝑛𝑙𝑒𝑡 𝑎𝑛𝑑 𝑡ℎ𝑟𝑜𝑎𝑡 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦
𝑍1 & 𝑍2 = 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑙𝑒𝑡 𝑎𝑛𝑑 𝑡ℎ𝑟𝑜𝑎𝑡 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦
𝜌1 & 𝜌2 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 𝑎𝑡 𝑖𝑛𝑙𝑒𝑡 𝑎𝑛𝑑 𝑡ℎ𝑟𝑜𝑎𝑡 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦
Considering the venturimeter being held horizontal and fluid at inlet & throat of same density
𝑍1 = 𝑍2; 𝜌1 = 𝜌2; 𝑚 = 𝜌1𝐴1𝑣1 = 𝜌2𝐴2𝑣2
𝑣2
2
− 𝑣1
2
2𝑔
=
𝑝1 − 𝑝2
𝑤
By equation of continuity
𝐴1𝑣1 = 𝐴2𝑣2
𝑣1 = (
𝐴2
𝐴1
) 𝑣2
𝑣2 =
1
√1 − (
𝐴2
𝐴1
)
2
√
2𝑔
𝑤
(𝑝1 − 𝑝2)
𝑣2 = 𝑀√
2𝑔
𝑤
(𝑝1 − 𝑝2); 𝑀 =
1
√1 − (
𝐴2
𝐴1
)
2
Considering few losses, 𝑣2 is multiplied with a factor 𝐶𝑣 called the coefficient of velocity.
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 5 of 13
𝑣2(𝑎𝑐𝑡𝑢𝑎𝑙) = 𝐶𝑣𝑀√
2𝑔
𝑤
(𝑝1 − 𝑝2)
Discharge (volume flow rate)
𝑄 = 𝐴2𝑣2 = 𝐶𝑣𝐴2𝑀√
2𝑔
𝑤
(𝑝1 − 𝑝2)
Considering contraction factor 𝐶𝑐
𝑄𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐶𝑐𝐶𝑣𝐴2𝑀√
2𝑔
𝑤
(𝑝1 − 𝑝2)
𝑸𝒂𝒄𝒕𝒖𝒂𝒍 = 𝑪𝒅𝑨𝟐𝑴𝑬√
𝟐𝒈
𝒘
(𝒑𝟏 − 𝒑𝟐)
𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐶𝑑 = 𝐶𝑐𝐶𝑣; 𝐸 = 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
3. Orifice
Vena-contracta is a point where the liquid jet issued from the orifice has the smallest
diameter. It is located at as distance 𝐷1 2
⁄ from the orifice plate approximately.
Actual velocity at vena=contracta is
𝑣2(𝑎𝑐𝑡𝑢𝑎𝑙) = 𝐶𝑣𝑀√
2𝑔
𝑤
(𝑝1 − 𝑝2) =
𝐶𝑣
√1 − (
𝐴2
𝐴1
)
2
√
2𝑔
𝑤
(𝑝1 − 𝑝2)
The jet of liquid coming out of the orifice plate contracts to a minimum area 𝐴0 at the vena-
contracta.
Area of the vena-contracta is 𝐴0 = 𝐶𝑐𝐴0
∴ 𝑣2(𝑎𝑐𝑡𝑢𝑎𝑙) =
𝐶𝑣
√1 − (
𝐶𝑐𝐴0
𝐴1
)
2
√
2𝑔
𝑤
(𝑝1 − 𝑝2)
𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑄𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐴2𝑣2 = 𝐶𝑐𝑣2(𝑎𝑐𝑡𝑢𝑎𝑙)
∴ 𝑄𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐶𝑣𝐶𝑐
𝐴0
√1 − (
𝐶𝑐𝐴0
𝐴1
)
2
√
2𝑔
𝑤
(𝑝1 − 𝑝2)
Taking into account the effect of temperature (E)
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 6 of 13
𝑸𝒂𝒄𝒕𝒖𝒂𝒍 = 𝑪𝒅𝑨𝟎𝑴𝑬√
𝟐𝒈
𝒘
(𝒑𝟏 − 𝒑𝟐)
Let 𝐾 = 𝐶𝑑𝑀
∴ 𝑸𝒂𝒄𝒕𝒖𝒂𝒍 = 𝑲𝑬𝑨𝟎√
𝟐𝒈
𝒘
(𝒑𝟏 − 𝒑𝟐)
4. Flow Nozzle
The discharge through a flow nozzle is
𝑸𝒂𝒄𝒕𝒖𝒂𝒍 = 𝑲𝑬𝑨𝟎√
𝟐𝒈
𝒘
(𝒑𝟏 − 𝒑𝟐)
𝐾 =
𝐶𝑑
√1 − (
𝐴2
𝐴1
)
2
=
𝐶𝑑
√1 − (
𝐷2
𝐷1
)
2
5. Pitot Tube
Using Bernoulli’s theorem, we have
𝑝
𝑤
=
𝑣2
2𝑔
+
𝑝0
𝑤
𝑝 = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑡 𝑖𝑛𝑙𝑒𝑡; 𝑝0 = 𝑠𝑡𝑎𝑡𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝑣) = √
2𝑔
𝑤
(𝑝 − 𝑝0) = √
2𝑔
𝜌
(𝑝 − 𝑝0)
𝒗𝒎𝒆𝒂𝒏 = 𝑪𝒗√
𝟐𝒈
𝒘
(𝒑 − 𝒑𝟎) = 𝑪𝒗√
𝟐𝒈
𝝆
(𝒑 − 𝒑𝟎)
𝐶𝑣 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟
6. Weir
Discharge through rectangular notch
𝑸 =
𝟐
𝟑
𝑪𝒅𝑳√𝟐𝒈𝑯𝟏.𝟓
𝐶𝑑 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒; 𝐻 = 𝑙𝑖𝑞𝑢𝑖𝑑 ℎ𝑒𝑖𝑔ℎ𝑡 𝑖𝑛 𝑛𝑜𝑡𝑐ℎ; 𝐿 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑛𝑜𝑡𝑐ℎ;
Discharge through v-notch
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 7 of 13
𝑸 =
𝟖
𝟏𝟓
𝑪𝒅√𝟐𝒈𝑯𝟐.𝟓
𝐭𝐚𝐧
𝜽
𝟐
𝜃 = 𝑎𝑛𝑔𝑙𝑒 𝑎𝑡 𝑣 − 𝑛𝑜𝑡𝑐ℎ
Discharge through trapezoidal notch (summation of rectangular and v-notch)
𝑸 =
𝟐
𝟑
𝑪𝒅𝑳√𝟐𝒈𝑯𝟐.𝟓
+
𝟖
𝟏𝟓
𝑪𝒅√𝟐𝒈𝑯𝟐.𝟓
𝐭𝐚𝐧
𝜽
𝟐
7. Flumes
Actual discharge through a flume
𝑸𝒂𝒄𝒕𝒖𝒂𝒍 =
𝐶𝐴2
√1 + (
𝐴2
𝐴1
)
2
+ √2𝑔ℎ
𝐶 = 𝑣𝑒𝑛𝑡𝑢𝑟𝑖 𝑓𝑙𝑢𝑚𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (0.95 𝑡𝑜 1); ℎ = ℎ1 − ℎ2
 The maximum value of flow in a venture flume occurs when ℎ2 = (
2
3
) ℎ
 Maximum discharge through venture flume is given as 𝑄𝑚𝑎𝑥 = 1.7𝑏2𝐻1.5
𝑏2 = 𝑖𝑛𝑙𝑒𝑡 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑣𝑒𝑛𝑡𝑢𝑟𝑖 𝑓𝑙𝑢𝑚𝑒
 Accuracy of flumes are higher that of weirs.
8. Rotameter
By Bernoulli’s theorem and assuming the rotameter to be perfectly vertically aligned, the
energy equation is written as
𝑝2
𝑤
+
𝑣𝑚2
2
2𝑔
=
𝑝1
𝑤
+
𝑣𝑚1
2
2𝑔
𝑜𝑟 𝑣𝑚2
2
− 𝑣𝑚1
2
=
2𝑔
𝑤
(𝑝1 − 𝑝2)
𝑝 = 𝑠𝑡𝑎𝑡𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒; 𝑣𝑚 = 𝑚𝑒𝑎𝑛 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦; 𝑤 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡
For static equilibrium of the float at any position
𝐴𝑓 (𝑝1 +
𝑣𝑚1
2
2𝑔
𝑤) + 𝑣𝑓𝑤 = 𝐴𝑓𝑝2 + 𝑉𝑓𝑤𝑓
𝑉𝑓 & 𝑤𝑓 𝑎𝑟𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 𝑎𝑛𝑑 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑙𝑜𝑎𝑡 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦
By the continuity equation, we have
𝑄 = 𝑉
𝑚𝐴1 = 𝐶𝑐𝑣𝑚2
𝐴2
𝐴1 = 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑖𝑛𝑙𝑒𝑡 𝑜𝑓 𝑡𝑎𝑝𝑒𝑟𝑒𝑑 𝑡𝑢𝑏𝑒; 𝐴2 = 𝑎𝑟𝑒𝑎 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑓𝑙𝑜𝑎𝑡 & 𝑡𝑢𝑏𝑒;
𝐶𝑐 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 8 of 13
Thus we have,
𝑸 = 𝑪𝒄𝑨𝟐√
𝟐𝒈𝑽𝒇
𝑨𝒇
(
𝒘𝒇
𝒘
− 𝟏) = 𝑪𝒄𝑨𝟐√
𝟐𝒈𝑽𝒇
𝑨𝒇
(
𝝆𝒇
𝝆
− 𝟏)
𝜌 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑; 𝜌𝑓 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑓𝑙𝑜𝑎𝑡
𝑸 ∝ 𝒙; 𝑥 = (𝑓𝑙𝑜𝑎𝑡 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡)
9. Electromagnetic Flowmeter
𝑬 = 𝑩𝒍𝒗
𝐸 = 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑; 𝐵 = 𝑓𝑙𝑢𝑥 𝑑𝑒𝑛𝑠𝑖𝑡𝑦; 𝑙 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟;
𝑣 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟
10. Turbine Flowmeter
𝑬 = −
𝒅𝝋
𝒅𝒕
𝐸 = 𝐴𝐶 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑖𝑐𝑘 𝑢𝑝 𝑐𝑜𝑖𝑙; 𝜑 = 𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑖𝑒𝑙𝑑;
11. Vortex Flowmeter – Vortex Shedding Meter
𝒇 =
𝑵𝒔𝒕𝒗
𝑫
𝑓 = 𝑣𝑜𝑟𝑡𝑒𝑥 𝑠ℎ𝑒𝑑𝑑𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦;
𝐷 = 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑏𝑙𝑢𝑓𝑓 𝑏𝑜𝑑𝑦; 𝑁𝑠𝑡 = 𝑆𝑡𝑟𝑜𝑢ℎ𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟;
12. Ultrasonic Flowmeter
I. Crystal placed inside the tube
∆𝑡1 =
𝑑
𝐶 + 𝑣
; ∆𝑡2 =
𝑑
𝐶 − 𝑣
∆𝒕 = ∆𝒕𝟐 − ∆𝒕𝟏 =
𝟐𝒅𝒗
𝑪𝟐 − 𝒗𝟐
∆𝒕 =
𝟐𝒅𝒗
𝑪𝟐
(𝒂𝒔𝒔𝒖𝒎𝒊𝒏𝒈 𝑪 ≫ 𝒗)
𝐶 = 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑠𝑜𝑢𝑛𝑑 𝑖𝑛 𝑚𝑒𝑑𝑖𝑢𝑚; 𝑣 = 𝑙𝑖𝑛𝑒𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑;
𝑑 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑇 & 𝑅
It is linearly proportional to flow velocity (v).
When sinusoidal signal frequency of 𝑓 Hz travels along the fluid flow, it has a phase
shift of
∆𝜑1 =
2𝜋𝑓𝑑
𝐶 + 𝑣
𝑟𝑎𝑑
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 9 of 13
When sinusoidal signal frequency of 𝑓 Hz travels against the fluid flow, it has a phase
shift of
∆𝜑2 =
2𝜋𝑓𝑑
𝐶 − 𝑣
𝑟𝑎𝑑
Velocity of fluid can be measured by either measuring the transient time or the phase
shift.
II. Crystals (T & R) placed outside the tube
∆𝑡 =
2𝑑 cos 𝜃
𝐶2
𝑣
𝒗 =
∆𝒕𝑪𝟐
𝟐𝒅 𝐜𝐨𝐬 𝜽
𝜃 = 𝑖𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑇 & 𝑅
III. US method using feedback
Pulse repetition frequency in forward loop
1
∆𝑡1
= 𝑓1
Pulse repetition frequency in backward loop
1
∆𝑡2
= 𝑓2
∆𝑡1 =
𝑑
𝐶 + 𝑣 cos 𝜃
; ∆𝑓1 =
𝐶 + 𝑣 cos 𝜃
𝑑
∆𝑡2 =
𝑑
𝐶 − 𝑣 cos 𝜃
; ∆𝑓2 =
𝐶 − 𝑣 cos 𝜃
𝑑
∆𝒇 = 𝒇𝟏 − 𝒇𝟐 =
𝟐𝒗 𝐜𝐨𝐬 𝜽
𝒅
IV. US Doppler Flowmeter
∆𝒇 = 𝒇𝒕 − 𝒇𝒓 =
𝟐 𝒇𝒕𝐜𝐨𝐬 𝜽𝒗
𝑪
13. Laser Doppler Anemometer
𝒇 =
𝟐𝒗 𝐬𝐢𝐧 𝜽 𝟐
⁄
𝝀
𝜆 = 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑙𝑎𝑠𝑒𝑟 𝑏𝑒𝑎𝑚
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 10 of 13
Temperature Measurement
1. RTD
𝑹𝑻 = 𝑹𝟎[𝟏 + 𝜶∆𝑻]
𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 𝑺 =
𝒅𝑹
𝒅(∆𝑻)
=
𝒅
𝒅(∆𝑻)
𝑹𝟎[𝟏 + 𝜶∆𝑻] = 𝜶𝑹𝟎
2. Thermistor
𝑹𝑻 = 𝑹𝟎𝒆𝒙𝒑 [𝜷 (
𝟏
𝑻
−
𝟏
𝑻𝟎
)]
𝑅0 = 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑇0 𝐾
𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 𝑺 =
𝒅𝑹𝑻
𝒅𝑻
= 𝑹𝟎𝒆𝒙𝒑 [𝜷 (
𝟏
𝑻
−
𝟏
𝑻𝟎
) −
𝜷
𝑻𝟐
]
3. Thermocouple
𝑬 = 𝒂(∆𝜽) + 𝒃(∆𝜽)𝟐
𝐸 = 𝑒𝑚𝑓 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑; ∆𝜃 = 𝑡𝑒𝑚𝑝. 𝑑𝑖𝑓𝑓. ; 𝑎, 𝑏 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠
𝑬 ≅ 𝒂∆𝜽 (𝒊𝒇 𝒂 ≫ 𝒃)
4. Series Connected Thermocouple (Thermopile)
𝑬 = 𝑬𝟏 + 𝑬𝟐 … + 𝑬𝒏 = 𝒏𝑬𝟏 (𝒊𝒇 𝑬𝟏 = 𝑬𝟐 … = 𝑬𝒏
5. High Temperature Measurement (Radiation Pyrometer)
𝒒𝒃 = 𝝈𝑻𝟒
𝑾 𝒎𝟐
⁄
𝑇 = 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑡𝑒𝑚𝑝. ; 𝜎 = 𝑆𝑡𝑒𝑓𝑎𝑛 𝐵𝑂𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 57.2 ∗ 10−9
𝐸𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦 𝜀 =
𝑞
𝑞0
; 𝑙𝑖𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 1
𝑞 = ℎ𝑒𝑎𝑡 𝑟𝑎𝑑𝑖𝑎𝑡𝑒𝑑 𝑏𝑦 𝑔𝑟𝑎𝑦 𝑏𝑜𝑑𝑦; 𝑞0 = ℎ𝑒𝑎𝑡 𝑟𝑎𝑑𝑖𝑎𝑡𝑒𝑑 𝑏𝑦 𝑏𝑙𝑎𝑐𝑘 𝑏𝑜𝑑𝑦;
𝒒 = 𝜺𝝈𝑻𝟒
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 11 of 13
Level Measurement:
1. Inferential – Capacitive Method:
𝑪 =
𝟐𝝅𝜺𝒉
𝐥𝐨𝐠𝒆 (
𝒅𝟐
𝒅𝟏
)
𝑭
𝜀 = 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑜𝑟; ℎ = ℎ𝑒𝑖𝑔ℎ𝑡;
𝑑1 = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑚𝑒𝑡𝑎𝑙 𝑟𝑜𝑑; 𝑑2 = 𝑒𝑡𝑒𝑟𝑛𝑎𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑜𝑟;
Capacitive Voltage Divider Method:
𝑬𝟎 =
𝑪𝟏
𝑪𝟏 + 𝑪𝟐
𝑬𝑨
pH Measurement
1. pH Value:
𝒑𝑯 = − 𝐥𝐨𝐠𝟏𝟎[𝑯+]
2. Nernst’s Equation:
𝑬 = 𝑬𝟎 +
𝑹𝑻
𝒏𝑭
𝐥𝐧(𝒂𝑪)
𝐸 = 𝑒𝑚𝑓 𝑜𝑓 ℎ𝑎𝑙𝑓 𝑐𝑒𝑙𝑙; 𝐸0 = 𝑒𝑚𝑓 𝑜𝑓 ℎ𝑎𝑙𝑓 𝑐𝑒𝑙𝑙 𝑢𝑛𝑑𝑒𝑟 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛;
𝑅 = 𝑔𝑎𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (8.314 𝐽 °𝐶
⁄ ; 𝑇 = 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑇𝑒𝑚𝑝. ;
𝑛 = 𝑛𝑜. 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑; 𝐹 = 𝐹𝑎𝑟𝑎𝑑𝑎𝑦 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 96493 𝐶𝑚𝑜𝑙−1
;
𝑎 = 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (0 < 𝑎 < 1); 𝑐 = 𝑚𝑜𝑙𝑎𝑟 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑜𝑛𝑠;
3. Calibration for pH:
𝒑𝑯 =
𝑬𝟎 − 𝑬
𝟐𝟑𝟎𝟑 𝑹𝑻 𝑭
⁄
4. Reference Electrode Voltage:
∆𝒗𝟐 = −𝟐. 𝟑
𝑹𝑻
𝝉
𝐥𝐨𝐠
𝑪𝑯
𝑪𝑹
𝑅 = 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝐺𝑎𝑠 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 8314 𝐽 𝑘𝑔. 𝑚𝑜𝑙 − 𝐾
⁄ ; 𝑇 = 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑡𝑒𝑚𝑝. ;
𝐽 = 𝐹𝑎𝑟𝑎𝑑𝑎𝑦′
𝑠𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 0.647 ∗ 107
𝐶 𝑘𝑔. 𝑚𝑜𝑙
⁄
𝐶𝐻 = 𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑖𝑜𝑛 𝑐𝑜𝑛𝑐. ; 𝐶𝑅 = 𝑐𝑜𝑛𝑐. 𝑜𝑓 𝑔𝑙𝑎𝑠𝑠 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒;
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 12 of 13
Viscosity Measurement:
1. Dynamic Viscosity:
𝝁 =
𝑺𝒉𝒆𝒂𝒓 𝒔𝒕𝒓𝒆𝒔𝒔
𝑽𝒆𝒍𝒐𝒄𝒊𝒕𝒚 𝒈𝒓𝒂𝒅𝒊𝒆𝒏𝒕
=
𝝉
(𝒅𝒗 𝒅𝒚
⁄ )
=
𝑭 𝑨
⁄
𝒅𝒗 𝒅𝒚
⁄
𝜏 = 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠; 𝐹 = 𝑆ℎ𝑒𝑎𝑟𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒; 𝐴 = 𝑎𝑟𝑒𝑎 𝑜𝑛 𝑤ℎ𝑖𝑐ℎ 𝑓𝑜𝑟𝑐𝑒 𝑖𝑠 𝑎𝑝𝑝𝑙𝑖𝑒𝑑;
2. Kinematic Viscosity:
𝒗 =
𝑫𝒚𝒏𝒂𝒎𝒊𝒄 𝑽𝒊𝒔𝒄𝒐𝒔𝒊𝒕𝒚
𝑫𝒆𝒏𝒔𝒊𝒕𝒚
=
𝝁
𝝆
3. Unit of Viscosity:
𝑆𝐼 𝑈𝑛𝑖𝑡 = 𝑁 𝑠𝑒𝑐 𝑚2
⁄
1 𝑃𝑜𝑖𝑠𝑒 = 𝑔 𝑐𝑚 − 𝑠
⁄
1 𝑆𝐼 𝑈𝑛𝑖𝑡 𝑜𝑓 𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 = 104
𝑠𝑡𝑟𝑜𝑘𝑒 (𝑆𝑡)
4. Falling Sphere Viscometer – Calculating Terminal Velocity:
𝑲𝒊𝒏𝒆𝒎𝒂𝒕𝒊𝒄 𝒗𝒊𝒔𝒄𝒐𝒔𝒊𝒕𝒚 𝒗 =
𝒌𝒅𝟐
𝒈(𝝆𝒔 − 𝝆𝒍)
𝝆𝒍(𝟏𝟖 − 𝑽𝑻)
𝒎𝟐
𝒔
⁄
𝑘 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟; 𝑑 = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑠𝑝ℎ𝑒𝑟𝑒;
𝑉𝑇 = 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦; 𝜌𝑠 & 𝜌𝑙 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 𝑜𝑓 𝑠𝑝ℎ𝑒𝑟𝑒 𝑎𝑛𝑑 𝑙𝑖𝑞𝑢𝑖𝑑 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦
5. Falling Piston Viscometer:
𝑣
𝑦
=
𝑑𝑣
𝑑𝑦
; 𝜏 = 𝐹 𝐴
⁄
𝑫𝒚𝒏𝒂𝒎𝒊𝒄 𝑽𝒊𝒔𝒄𝒐𝒔𝒊𝒕𝒚 𝝁 =
𝑭 𝑨
⁄
𝒅𝒗 𝒅𝒚
⁄
=
𝑭𝒚
𝒗𝑨
𝑵 − 𝒔 𝒎𝟐
⁄
𝐹 = 𝑚𝑔; 𝐴 = 𝜋𝐷𝐿; 𝐷 = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑝𝑖𝑠𝑡𝑜𝑛; 𝐿 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑝𝑖𝑠𝑡𝑜𝑛;
𝑚 = 𝑝𝑖𝑠𝑡𝑜𝑛 𝑚𝑎𝑠𝑠; 𝑉𝑇 = 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦;
∴ 𝝁 =
𝒎𝒈𝒚
𝝅𝑫𝑳𝑽𝑻
𝑵 − 𝒔 𝒎𝟐
⁄
6. Capillary Tube Viscometer:
𝑫𝒚𝒏𝒂𝒎𝒊𝒄 𝑽𝒊𝒔𝒄𝒐𝒔𝒊𝒕𝒚 𝝁 =
𝝅𝝆𝒈𝒉𝒇𝒅𝟒
𝟏𝟐𝟖𝑸𝑳
𝑵 − 𝒔 𝒎𝟐
⁄
𝜌 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑙𝑖𝑞𝑢𝑖𝑑; ℎ𝑓 = 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ℎ𝑒𝑎𝑑 𝑙𝑜𝑠𝑠 𝑜𝑓 𝑓𝑙𝑜𝑤;
𝑑 = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 𝑡𝑢𝑏𝑒; 𝑄 = 𝑙𝑖𝑞𝑢𝑖𝑑 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒; 𝐿 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 𝑡𝑢𝑏𝑒;
For Reynolds No. less than 1000 (laminar flow), the volumetric flow rate is given as
𝑸 =
𝝅𝒓𝟒(𝒑𝟏 − 𝒑𝟐)
𝟖𝝁𝑳
𝒎𝟑
𝒔
⁄
Er. Faruk Bin, Dept. of AEIE, UIT, BU Page 13 of 13
Relative Humidity Measurement:
1. Aluminium Oxide Hygrometer:
𝒁 = √𝑹𝟐 + (
𝟏
𝝎𝑪
)
𝟐
2. Sling Psychrometer:
𝒑𝒗 = 𝒑𝒈𝒘 −
(𝒑 − 𝒑𝒈𝒘)(𝑻𝑫𝑩 − 𝑻𝑾𝑩)
𝟏𝟓𝟑𝟕. 𝟖 − 𝑻𝑾𝑩
𝑝𝑣 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑝𝑜𝑢𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒; 𝑝 = 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑖𝑥𝑡𝑢𝑟𝑒;
𝑝𝑔𝑤 = 𝑠𝑎𝑡. 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑐𝑜𝑟𝑟. 𝑡𝑜 𝑤𝑒𝑡 𝑏𝑢𝑙𝑏 𝑡𝑒𝑚𝑝. ;
𝑇𝑊𝐵 = 𝑤𝑒𝑡 𝑏𝑢𝑙𝑏 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒; 𝑇𝐷𝐵 = 𝑑𝑟𝑦 𝑏𝑢𝑙𝑏 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒;
Finding the relative humidity:
For an ideal gas,
𝒎𝒗
𝒎𝒔𝒂𝒕.
=
𝒑𝒗𝑽 𝑹𝒗𝑻
⁄
𝒑𝒈𝑽 𝑹𝒗𝑻
⁄
=
𝒑𝒗
𝒑𝒈
𝑝𝑣 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑜𝑓 𝑣𝑎𝑝𝑜𝑢𝑟;
𝑝𝑔 = 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑜𝑓 𝑣𝑎𝑝𝑜𝑢𝑟 𝑎𝑡 𝑡ℎ𝑒 𝑡𝑒𝑚𝑝. 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑖𝑥𝑡𝑢𝑟𝑒

Industrial Instrumentation-Mathematical Expressions.pdf

  • 1.
    Er. Faruk Bin,Dept. of AEIE, UIT, BU Page 1 of 13 Industrial Instrumentation Mathematical Expressions & Relationships Pressure Measurement 1. Pressure for an ideal gas is expressed as 𝒑 = 𝟏 𝟑 𝒎𝒏𝒗𝒓𝒎𝒔 𝟐 𝑛 = 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦; 𝑚 = 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑚𝑎𝑠𝑠; 𝑣𝑟𝑚𝑠 = 𝑟𝑚𝑠 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 2. Relationship between Absolute 𝒑𝒂, Gauge 𝒑𝒈, Atmospheric 𝒑𝒔and Vacuum Pressure 𝒑𝒗 𝒑𝒈 = 𝒑𝒂 − 𝒑𝒔 𝒑𝒗 = 𝒑𝒔 − 𝒑𝒂 3. Pressure Balance equation for U – tube manometer 𝒑𝟏 + 𝒈𝒉𝝆𝒇 = 𝒑𝟐 + 𝒈𝒉𝝆𝒎 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (∆𝑝) = 𝑝1 − 𝑝2 = 𝑔ℎ(𝜌𝑚 − 𝜌𝑓) = 𝑔ℎ𝜌𝑚 𝜌𝑚 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑜𝑓 𝑚𝑎𝑛𝑜𝑚𝑒𝑡𝑒𝑟 𝑚𝑒𝑟𝑐𝑢𝑟𝑦; 𝜌𝑓 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑖𝑛𝑔 𝑓𝑙𝑢𝑖𝑑 4. Pressure Sensitivity (S) 𝑺 = 𝑶𝒖𝒕𝒑𝒖𝒕 𝑰𝒏𝒑𝒖𝒕 = ∆𝒉 ∆𝒑 = 𝒉 𝒈𝒉𝝆𝒎 = 𝟏 𝒈𝝆𝒎 5. Well Type Manometer – Expression for the mercury height 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑤𝑒𝑙𝑙 (𝑑) = ℎ − ℎ′ 𝑑𝐴 = ℎ𝑎 𝒉 = 𝒉′ (𝟏 + 𝒂 𝑨 ) 𝑎 = 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑢𝑏𝑒; 𝐴 = 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑒𝑙𝑙; ℎ = 𝑚𝑒𝑟𝑐𝑢𝑟𝑦 𝑐𝑜𝑙𝑢𝑚𝑛 ℎ𝑒𝑖𝑔ℎ𝑡 6. Pressure Difference in Well Type Manometer ∆𝒑 = 𝒈𝒉′ (𝟏 + 𝒂 𝑨 ) 𝝆𝒎 7. Pressure Difference in Inclined Tube Manometer 𝑆𝑖𝑛𝑐𝑒 ∆𝑝 = 𝑝1 − 𝑝2 = 𝑔ℎ′ (1 + 𝑎 𝐴 ) 𝜌𝑚 𝑠𝑖𝑛𝜃 = ℎ′ 𝑅 ; 𝑅 = 𝑆𝑐𝑎𝑙𝑒 𝑅𝑒𝑎𝑑𝑖𝑛𝑔; ∆𝒑 = 𝒈𝝆𝒎𝑹𝒔𝒊𝒏𝜽 (𝟏 + 𝒂 𝑨 )
  • 2.
    Er. Faruk Bin,Dept. of AEIE, UIT, BU Page 2 of 13 8. Pressure Difference I Ring Balance Manometer ∆𝒑 = 𝒑𝟏 − 𝒑𝟐 = 𝟐𝒘𝒈𝑹𝒔𝒊𝒏𝜽 𝑨𝒅 𝐴 = 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑟𝑖𝑛𝑔; 𝑤 = 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑤𝑒𝑖𝑔ℎ𝑡; 𝑅 = 𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑟𝑖𝑛𝑔; 𝜃 = 𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑡𝑖𝑙𝑡 𝑓𝑟𝑜𝑚 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑎𝑥𝑖𝑠 9. Transfer Function of Manometer 𝑇𝑜𝑡𝑎𝑙 𝐹𝑜𝑟𝑐𝑒 𝑒𝑥𝑒𝑟𝑡𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑙𝑖𝑞𝑢𝑖𝑑 = 𝜌𝑎𝑔(𝐻 − ℎ) = 2𝜌𝑎𝑔𝑥 𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑑𝑢𝑒 𝑡𝑜 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = 𝜌𝑉 𝑑2 𝑥 𝑑𝑡2 𝐹𝑜𝑟𝑐𝑒 𝑎𝑐𝑡𝑖𝑛𝑔 𝑑𝑢𝑒 𝑡𝑜 𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 = 𝐵 𝑑𝑥 𝑑𝑡 𝑉 = 𝑇𝑜𝑡𝑎𝑙 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑚𝑎𝑛𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑙𝑢𝑖𝑑; 𝑎 = 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡𝑢𝑏𝑒; 𝐵 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦; 𝑥 = 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑟𝑛𝑡 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑; 𝑝 = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 By balancing the forces, we get 𝑇𝑜𝑡𝑎𝑙 𝐹𝑜𝑟𝑐𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑝 = 𝑇𝑜𝑡𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 𝑜𝑛 𝑙𝑖𝑞𝑢𝑖𝑑 + 𝐹𝑜𝑟𝑐𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 + 𝐹𝑜𝑟𝑐𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝑝𝑎 = 𝜌𝑉 𝑑2 𝑥 𝑑𝑡2 + 𝐵 𝑑𝑥 𝑑𝑡 + 2𝜌𝑔𝑎𝑥 ∴ 𝒑 = 𝝆𝑽 𝒂 𝒅𝟐 𝒙 𝒅𝒕𝟐 + 𝑩 𝒂 𝒅𝒙 𝒅𝒕 + 𝟐𝝆𝒈𝒙 Taking Laplace Transfer on both sides, we get 𝑝(𝑠) = [ 𝜌𝑉 𝑎 𝑠2 + 𝐵 𝑎 𝑠 + 2𝜌𝑔] 𝑋(𝑠) 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐺(𝑠) = 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝐿𝑎𝑝𝑙𝑎𝑐𝑒 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 = 𝑋(𝑠) 𝑃(𝑠) 𝐺(𝑠) = 2𝜌𝑎𝑔. 𝑋(𝑠) 𝑝(𝑠) 𝑮(𝒔) = 𝟐𝒂𝒈 𝑽 ⁄ 𝒔𝟐 + 𝑩 𝝆𝑽 𝒔 + 𝟐𝒂𝒈 𝑽 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝜔𝑛 = √2𝑎𝑔 𝑉 ⁄ ; 𝑑𝑎𝑚𝑝𝑖𝑛𝑔 𝑟𝑎𝑡𝑖𝑜𝑛 𝜉 = 𝐵 2𝜌√2𝑎𝑔𝑉
  • 3.
    Er. Faruk Bin,Dept. of AEIE, UIT, BU Page 3 of 13 𝑪(𝒔) = 𝝎𝒏 𝟐 𝒔𝟐 + 𝟐𝝃𝝎𝒏𝒔 + 𝝎𝒏 𝟐 10. Atmospheric Pressure – Barometer 𝒑𝒔 = 𝝆𝒎𝒈𝒉 11. High Pressure – Bridgman Gauge 𝑹 = 𝑹𝟏(𝟏 + 𝒃∆𝒑) 𝑏 = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 12. Low Pressure – Mc Leod Gauge 𝒑 = 𝒉𝟐 𝑨𝒕 𝑽 ℎ = ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑚𝑒𝑟𝑐𝑢𝑟𝑦 𝑐𝑜𝑙𝑢𝑚𝑛; 𝐴𝑡 = 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛; 𝑉 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑏𝑢𝑙𝑏 13. Low Pressure – Kundsen Gauge 𝒑 = 𝒌𝑭 √𝑻 𝑻𝒈 ⁄ − 𝟏 𝐹 = 𝑁𝑒𝑡 𝑓𝑜𝑟𝑐𝑒; 𝑇 = 𝑡𝑒𝑚𝑝. 𝑜𝑓 𝑝𝑙𝑎𝑡𝑒𝑠; 𝑇𝑔 = 𝑇𝑒𝑚𝑝. 𝑜𝑓 𝑔𝑎𝑠; 𝑘 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 14. Low Pressure – Ionization Gauge 𝑆 = 𝑂𝑢𝑡𝑝𝑢𝑡 𝐼𝑛𝑝𝑢𝑡 = 𝐼𝑖 𝑝𝐼𝑒 𝒑 = 𝑰𝒊 𝑺𝑰𝒆 𝐼𝑖 = 𝑖𝑜𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑔𝑎𝑢𝑔𝑒 𝑜𝑢𝑡𝑝𝑢𝑡; 𝐼𝑒 = 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡
  • 4.
    Er. Faruk Bin,Dept. of AEIE, UIT, BU Page 4 of 13 Flow Measurement 1. Reynolds Number 𝑹𝒆 = 𝒗𝒅𝝆 𝝁 𝑣 = 𝑓𝑙𝑜𝑤 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦; 𝑑 = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑝𝑖𝑝𝑒; 𝜌 = 𝑓𝑙𝑢𝑖𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦; 𝜇 = 𝑓𝑙𝑢𝑖𝑑 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 2. Venturimeter 𝑝1 𝑤1 + 𝑍1 + 𝑣1 2 2𝑔 = 𝑝2 𝑤2 + 𝑍2 + 𝑣2 2 2𝑔 𝑝1 & 𝑝2 = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑡 𝑖𝑛𝑙𝑒𝑡 𝑎𝑛𝑑 𝑡ℎ𝑟𝑜𝑎𝑡 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑣1 & 𝑣2 = 𝑎𝑣. 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑖𝑒𝑠 𝑎𝑡 𝑖𝑛𝑙𝑒𝑡 𝑎𝑛𝑑 𝑡ℎ𝑟𝑜𝑎𝑡 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑤1 & 𝑤2 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 𝑎𝑡 𝑖𝑛𝑙𝑒𝑡 𝑎𝑛𝑑 𝑡ℎ𝑟𝑜𝑎𝑡 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝐴1 & 𝐴2 = 𝑐𝑟𝑜𝑠𝑠 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑖𝑛𝑙𝑒𝑡 𝑎𝑛𝑑 𝑡ℎ𝑟𝑜𝑎𝑡 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝑍1 & 𝑍2 = 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑙𝑒𝑡 𝑎𝑛𝑑 𝑡ℎ𝑟𝑜𝑎𝑡 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 𝜌1 & 𝜌2 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑 𝑎𝑡 𝑖𝑛𝑙𝑒𝑡 𝑎𝑛𝑑 𝑡ℎ𝑟𝑜𝑎𝑡 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 Considering the venturimeter being held horizontal and fluid at inlet & throat of same density 𝑍1 = 𝑍2; 𝜌1 = 𝜌2; 𝑚 = 𝜌1𝐴1𝑣1 = 𝜌2𝐴2𝑣2 𝑣2 2 − 𝑣1 2 2𝑔 = 𝑝1 − 𝑝2 𝑤 By equation of continuity 𝐴1𝑣1 = 𝐴2𝑣2 𝑣1 = ( 𝐴2 𝐴1 ) 𝑣2 𝑣2 = 1 √1 − ( 𝐴2 𝐴1 ) 2 √ 2𝑔 𝑤 (𝑝1 − 𝑝2) 𝑣2 = 𝑀√ 2𝑔 𝑤 (𝑝1 − 𝑝2); 𝑀 = 1 √1 − ( 𝐴2 𝐴1 ) 2 Considering few losses, 𝑣2 is multiplied with a factor 𝐶𝑣 called the coefficient of velocity.
  • 5.
    Er. Faruk Bin,Dept. of AEIE, UIT, BU Page 5 of 13 𝑣2(𝑎𝑐𝑡𝑢𝑎𝑙) = 𝐶𝑣𝑀√ 2𝑔 𝑤 (𝑝1 − 𝑝2) Discharge (volume flow rate) 𝑄 = 𝐴2𝑣2 = 𝐶𝑣𝐴2𝑀√ 2𝑔 𝑤 (𝑝1 − 𝑝2) Considering contraction factor 𝐶𝑐 𝑄𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐶𝑐𝐶𝑣𝐴2𝑀√ 2𝑔 𝑤 (𝑝1 − 𝑝2) 𝑸𝒂𝒄𝒕𝒖𝒂𝒍 = 𝑪𝒅𝑨𝟐𝑴𝑬√ 𝟐𝒈 𝒘 (𝒑𝟏 − 𝒑𝟐) 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐶𝑑 = 𝐶𝑐𝐶𝑣; 𝐸 = 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟 𝑓𝑜𝑟 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 3. Orifice Vena-contracta is a point where the liquid jet issued from the orifice has the smallest diameter. It is located at as distance 𝐷1 2 ⁄ from the orifice plate approximately. Actual velocity at vena=contracta is 𝑣2(𝑎𝑐𝑡𝑢𝑎𝑙) = 𝐶𝑣𝑀√ 2𝑔 𝑤 (𝑝1 − 𝑝2) = 𝐶𝑣 √1 − ( 𝐴2 𝐴1 ) 2 √ 2𝑔 𝑤 (𝑝1 − 𝑝2) The jet of liquid coming out of the orifice plate contracts to a minimum area 𝐴0 at the vena- contracta. Area of the vena-contracta is 𝐴0 = 𝐶𝑐𝐴0 ∴ 𝑣2(𝑎𝑐𝑡𝑢𝑎𝑙) = 𝐶𝑣 √1 − ( 𝐶𝑐𝐴0 𝐴1 ) 2 √ 2𝑔 𝑤 (𝑝1 − 𝑝2) 𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑄𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐴2𝑣2 = 𝐶𝑐𝑣2(𝑎𝑐𝑡𝑢𝑎𝑙) ∴ 𝑄𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐶𝑣𝐶𝑐 𝐴0 √1 − ( 𝐶𝑐𝐴0 𝐴1 ) 2 √ 2𝑔 𝑤 (𝑝1 − 𝑝2) Taking into account the effect of temperature (E)
  • 6.
    Er. Faruk Bin,Dept. of AEIE, UIT, BU Page 6 of 13 𝑸𝒂𝒄𝒕𝒖𝒂𝒍 = 𝑪𝒅𝑨𝟎𝑴𝑬√ 𝟐𝒈 𝒘 (𝒑𝟏 − 𝒑𝟐) Let 𝐾 = 𝐶𝑑𝑀 ∴ 𝑸𝒂𝒄𝒕𝒖𝒂𝒍 = 𝑲𝑬𝑨𝟎√ 𝟐𝒈 𝒘 (𝒑𝟏 − 𝒑𝟐) 4. Flow Nozzle The discharge through a flow nozzle is 𝑸𝒂𝒄𝒕𝒖𝒂𝒍 = 𝑲𝑬𝑨𝟎√ 𝟐𝒈 𝒘 (𝒑𝟏 − 𝒑𝟐) 𝐾 = 𝐶𝑑 √1 − ( 𝐴2 𝐴1 ) 2 = 𝐶𝑑 √1 − ( 𝐷2 𝐷1 ) 2 5. Pitot Tube Using Bernoulli’s theorem, we have 𝑝 𝑤 = 𝑣2 2𝑔 + 𝑝0 𝑤 𝑝 = 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑎𝑡 𝑖𝑛𝑙𝑒𝑡; 𝑝0 = 𝑠𝑡𝑎𝑡𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝑣) = √ 2𝑔 𝑤 (𝑝 − 𝑝0) = √ 2𝑔 𝜌 (𝑝 − 𝑝0) 𝒗𝒎𝒆𝒂𝒏 = 𝑪𝒗√ 𝟐𝒈 𝒘 (𝒑 − 𝒑𝟎) = 𝑪𝒗√ 𝟐𝒈 𝝆 (𝒑 − 𝒑𝟎) 𝐶𝑣 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 6. Weir Discharge through rectangular notch 𝑸 = 𝟐 𝟑 𝑪𝒅𝑳√𝟐𝒈𝑯𝟏.𝟓 𝐶𝑑 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒; 𝐻 = 𝑙𝑖𝑞𝑢𝑖𝑑 ℎ𝑒𝑖𝑔ℎ𝑡 𝑖𝑛 𝑛𝑜𝑡𝑐ℎ; 𝐿 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑛𝑜𝑡𝑐ℎ; Discharge through v-notch
  • 7.
    Er. Faruk Bin,Dept. of AEIE, UIT, BU Page 7 of 13 𝑸 = 𝟖 𝟏𝟓 𝑪𝒅√𝟐𝒈𝑯𝟐.𝟓 𝐭𝐚𝐧 𝜽 𝟐 𝜃 = 𝑎𝑛𝑔𝑙𝑒 𝑎𝑡 𝑣 − 𝑛𝑜𝑡𝑐ℎ Discharge through trapezoidal notch (summation of rectangular and v-notch) 𝑸 = 𝟐 𝟑 𝑪𝒅𝑳√𝟐𝒈𝑯𝟐.𝟓 + 𝟖 𝟏𝟓 𝑪𝒅√𝟐𝒈𝑯𝟐.𝟓 𝐭𝐚𝐧 𝜽 𝟐 7. Flumes Actual discharge through a flume 𝑸𝒂𝒄𝒕𝒖𝒂𝒍 = 𝐶𝐴2 √1 + ( 𝐴2 𝐴1 ) 2 + √2𝑔ℎ 𝐶 = 𝑣𝑒𝑛𝑡𝑢𝑟𝑖 𝑓𝑙𝑢𝑚𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (0.95 𝑡𝑜 1); ℎ = ℎ1 − ℎ2  The maximum value of flow in a venture flume occurs when ℎ2 = ( 2 3 ) ℎ  Maximum discharge through venture flume is given as 𝑄𝑚𝑎𝑥 = 1.7𝑏2𝐻1.5 𝑏2 = 𝑖𝑛𝑙𝑒𝑡 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑣𝑒𝑛𝑡𝑢𝑟𝑖 𝑓𝑙𝑢𝑚𝑒  Accuracy of flumes are higher that of weirs. 8. Rotameter By Bernoulli’s theorem and assuming the rotameter to be perfectly vertically aligned, the energy equation is written as 𝑝2 𝑤 + 𝑣𝑚2 2 2𝑔 = 𝑝1 𝑤 + 𝑣𝑚1 2 2𝑔 𝑜𝑟 𝑣𝑚2 2 − 𝑣𝑚1 2 = 2𝑔 𝑤 (𝑝1 − 𝑝2) 𝑝 = 𝑠𝑡𝑎𝑡𝑖𝑐 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒; 𝑣𝑚 = 𝑚𝑒𝑎𝑛 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦; 𝑤 = 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡 For static equilibrium of the float at any position 𝐴𝑓 (𝑝1 + 𝑣𝑚1 2 2𝑔 𝑤) + 𝑣𝑓𝑤 = 𝐴𝑓𝑝2 + 𝑉𝑓𝑤𝑓 𝑉𝑓 & 𝑤𝑓 𝑎𝑟𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 𝑎𝑛𝑑 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑓𝑙𝑜𝑎𝑡 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 By the continuity equation, we have 𝑄 = 𝑉 𝑚𝐴1 = 𝐶𝑐𝑣𝑚2 𝐴2 𝐴1 = 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑖𝑛𝑙𝑒𝑡 𝑜𝑓 𝑡𝑎𝑝𝑒𝑟𝑒𝑑 𝑡𝑢𝑏𝑒; 𝐴2 = 𝑎𝑟𝑒𝑎 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑓𝑙𝑜𝑎𝑡 & 𝑡𝑢𝑏𝑒; 𝐶𝑐 = 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛
  • 8.
    Er. Faruk Bin,Dept. of AEIE, UIT, BU Page 8 of 13 Thus we have, 𝑸 = 𝑪𝒄𝑨𝟐√ 𝟐𝒈𝑽𝒇 𝑨𝒇 ( 𝒘𝒇 𝒘 − 𝟏) = 𝑪𝒄𝑨𝟐√ 𝟐𝒈𝑽𝒇 𝑨𝒇 ( 𝝆𝒇 𝝆 − 𝟏) 𝜌 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑; 𝜌𝑓 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑓𝑙𝑜𝑎𝑡 𝑸 ∝ 𝒙; 𝑥 = (𝑓𝑙𝑜𝑎𝑡 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡) 9. Electromagnetic Flowmeter 𝑬 = 𝑩𝒍𝒗 𝐸 = 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑; 𝐵 = 𝑓𝑙𝑢𝑥 𝑑𝑒𝑛𝑠𝑖𝑡𝑦; 𝑙 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟; 𝑣 = 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟 10. Turbine Flowmeter 𝑬 = − 𝒅𝝋 𝒅𝒕 𝐸 = 𝐴𝐶 𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑖𝑐𝑘 𝑢𝑝 𝑐𝑜𝑖𝑙; 𝜑 = 𝑟𝑜𝑡𝑎𝑡𝑖𝑛𝑔 𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑓𝑖𝑒𝑙𝑑; 11. Vortex Flowmeter – Vortex Shedding Meter 𝒇 = 𝑵𝒔𝒕𝒗 𝑫 𝑓 = 𝑣𝑜𝑟𝑡𝑒𝑥 𝑠ℎ𝑒𝑑𝑑𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦; 𝐷 = 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑜𝑓 𝑏𝑙𝑢𝑓𝑓 𝑏𝑜𝑑𝑦; 𝑁𝑠𝑡 = 𝑆𝑡𝑟𝑜𝑢ℎ𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟; 12. Ultrasonic Flowmeter I. Crystal placed inside the tube ∆𝑡1 = 𝑑 𝐶 + 𝑣 ; ∆𝑡2 = 𝑑 𝐶 − 𝑣 ∆𝒕 = ∆𝒕𝟐 − ∆𝒕𝟏 = 𝟐𝒅𝒗 𝑪𝟐 − 𝒗𝟐 ∆𝒕 = 𝟐𝒅𝒗 𝑪𝟐 (𝒂𝒔𝒔𝒖𝒎𝒊𝒏𝒈 𝑪 ≫ 𝒗) 𝐶 = 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑠𝑜𝑢𝑛𝑑 𝑖𝑛 𝑚𝑒𝑑𝑖𝑢𝑚; 𝑣 = 𝑙𝑖𝑛𝑒𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑; 𝑑 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑇 & 𝑅 It is linearly proportional to flow velocity (v). When sinusoidal signal frequency of 𝑓 Hz travels along the fluid flow, it has a phase shift of ∆𝜑1 = 2𝜋𝑓𝑑 𝐶 + 𝑣 𝑟𝑎𝑑
  • 9.
    Er. Faruk Bin,Dept. of AEIE, UIT, BU Page 9 of 13 When sinusoidal signal frequency of 𝑓 Hz travels against the fluid flow, it has a phase shift of ∆𝜑2 = 2𝜋𝑓𝑑 𝐶 − 𝑣 𝑟𝑎𝑑 Velocity of fluid can be measured by either measuring the transient time or the phase shift. II. Crystals (T & R) placed outside the tube ∆𝑡 = 2𝑑 cos 𝜃 𝐶2 𝑣 𝒗 = ∆𝒕𝑪𝟐 𝟐𝒅 𝐜𝐨𝐬 𝜽 𝜃 = 𝑖𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑇 & 𝑅 III. US method using feedback Pulse repetition frequency in forward loop 1 ∆𝑡1 = 𝑓1 Pulse repetition frequency in backward loop 1 ∆𝑡2 = 𝑓2 ∆𝑡1 = 𝑑 𝐶 + 𝑣 cos 𝜃 ; ∆𝑓1 = 𝐶 + 𝑣 cos 𝜃 𝑑 ∆𝑡2 = 𝑑 𝐶 − 𝑣 cos 𝜃 ; ∆𝑓2 = 𝐶 − 𝑣 cos 𝜃 𝑑 ∆𝒇 = 𝒇𝟏 − 𝒇𝟐 = 𝟐𝒗 𝐜𝐨𝐬 𝜽 𝒅 IV. US Doppler Flowmeter ∆𝒇 = 𝒇𝒕 − 𝒇𝒓 = 𝟐 𝒇𝒕𝐜𝐨𝐬 𝜽𝒗 𝑪 13. Laser Doppler Anemometer 𝒇 = 𝟐𝒗 𝐬𝐢𝐧 𝜽 𝟐 ⁄ 𝝀 𝜆 = 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑙𝑎𝑠𝑒𝑟 𝑏𝑒𝑎𝑚
  • 10.
    Er. Faruk Bin,Dept. of AEIE, UIT, BU Page 10 of 13 Temperature Measurement 1. RTD 𝑹𝑻 = 𝑹𝟎[𝟏 + 𝜶∆𝑻] 𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 𝑺 = 𝒅𝑹 𝒅(∆𝑻) = 𝒅 𝒅(∆𝑻) 𝑹𝟎[𝟏 + 𝜶∆𝑻] = 𝜶𝑹𝟎 2. Thermistor 𝑹𝑻 = 𝑹𝟎𝒆𝒙𝒑 [𝜷 ( 𝟏 𝑻 − 𝟏 𝑻𝟎 )] 𝑅0 = 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑡 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑇0 𝐾 𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 𝑺 = 𝒅𝑹𝑻 𝒅𝑻 = 𝑹𝟎𝒆𝒙𝒑 [𝜷 ( 𝟏 𝑻 − 𝟏 𝑻𝟎 ) − 𝜷 𝑻𝟐 ] 3. Thermocouple 𝑬 = 𝒂(∆𝜽) + 𝒃(∆𝜽)𝟐 𝐸 = 𝑒𝑚𝑓 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑; ∆𝜃 = 𝑡𝑒𝑚𝑝. 𝑑𝑖𝑓𝑓. ; 𝑎, 𝑏 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 𝑬 ≅ 𝒂∆𝜽 (𝒊𝒇 𝒂 ≫ 𝒃) 4. Series Connected Thermocouple (Thermopile) 𝑬 = 𝑬𝟏 + 𝑬𝟐 … + 𝑬𝒏 = 𝒏𝑬𝟏 (𝒊𝒇 𝑬𝟏 = 𝑬𝟐 … = 𝑬𝒏 5. High Temperature Measurement (Radiation Pyrometer) 𝒒𝒃 = 𝝈𝑻𝟒 𝑾 𝒎𝟐 ⁄ 𝑇 = 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑡𝑒𝑚𝑝. ; 𝜎 = 𝑆𝑡𝑒𝑓𝑎𝑛 𝐵𝑂𝑙𝑡𝑧𝑚𝑎𝑛𝑛 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 57.2 ∗ 10−9 𝐸𝑚𝑖𝑠𝑠𝑖𝑣𝑖𝑡𝑦 𝜀 = 𝑞 𝑞0 ; 𝑙𝑖𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 1 𝑞 = ℎ𝑒𝑎𝑡 𝑟𝑎𝑑𝑖𝑎𝑡𝑒𝑑 𝑏𝑦 𝑔𝑟𝑎𝑦 𝑏𝑜𝑑𝑦; 𝑞0 = ℎ𝑒𝑎𝑡 𝑟𝑎𝑑𝑖𝑎𝑡𝑒𝑑 𝑏𝑦 𝑏𝑙𝑎𝑐𝑘 𝑏𝑜𝑑𝑦; 𝒒 = 𝜺𝝈𝑻𝟒
  • 11.
    Er. Faruk Bin,Dept. of AEIE, UIT, BU Page 11 of 13 Level Measurement: 1. Inferential – Capacitive Method: 𝑪 = 𝟐𝝅𝜺𝒉 𝐥𝐨𝐠𝒆 ( 𝒅𝟐 𝒅𝟏 ) 𝑭 𝜀 = 𝑝𝑒𝑟𝑚𝑖𝑡𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑓 𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑜𝑟; ℎ = ℎ𝑒𝑖𝑔ℎ𝑡; 𝑑1 = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑚𝑒𝑡𝑎𝑙 𝑟𝑜𝑑; 𝑑2 = 𝑒𝑡𝑒𝑟𝑛𝑎𝑙 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑢𝑙𝑎𝑡𝑜𝑟; Capacitive Voltage Divider Method: 𝑬𝟎 = 𝑪𝟏 𝑪𝟏 + 𝑪𝟐 𝑬𝑨 pH Measurement 1. pH Value: 𝒑𝑯 = − 𝐥𝐨𝐠𝟏𝟎[𝑯+] 2. Nernst’s Equation: 𝑬 = 𝑬𝟎 + 𝑹𝑻 𝒏𝑭 𝐥𝐧(𝒂𝑪) 𝐸 = 𝑒𝑚𝑓 𝑜𝑓 ℎ𝑎𝑙𝑓 𝑐𝑒𝑙𝑙; 𝐸0 = 𝑒𝑚𝑓 𝑜𝑓 ℎ𝑎𝑙𝑓 𝑐𝑒𝑙𝑙 𝑢𝑛𝑑𝑒𝑟 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛; 𝑅 = 𝑔𝑎𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (8.314 𝐽 °𝐶 ⁄ ; 𝑇 = 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑇𝑒𝑚𝑝. ; 𝑛 = 𝑛𝑜. 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑; 𝐹 = 𝐹𝑎𝑟𝑎𝑑𝑎𝑦 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 96493 𝐶𝑚𝑜𝑙−1 ; 𝑎 = 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (0 < 𝑎 < 1); 𝑐 = 𝑚𝑜𝑙𝑎𝑟 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑜𝑛𝑠; 3. Calibration for pH: 𝒑𝑯 = 𝑬𝟎 − 𝑬 𝟐𝟑𝟎𝟑 𝑹𝑻 𝑭 ⁄ 4. Reference Electrode Voltage: ∆𝒗𝟐 = −𝟐. 𝟑 𝑹𝑻 𝝉 𝐥𝐨𝐠 𝑪𝑯 𝑪𝑹 𝑅 = 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝐺𝑎𝑠 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 8314 𝐽 𝑘𝑔. 𝑚𝑜𝑙 − 𝐾 ⁄ ; 𝑇 = 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑡𝑒𝑚𝑝. ; 𝐽 = 𝐹𝑎𝑟𝑎𝑑𝑎𝑦′ 𝑠𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 0.647 ∗ 107 𝐶 𝑘𝑔. 𝑚𝑜𝑙 ⁄ 𝐶𝐻 = 𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑖𝑜𝑛 𝑐𝑜𝑛𝑐. ; 𝐶𝑅 = 𝑐𝑜𝑛𝑐. 𝑜𝑓 𝑔𝑙𝑎𝑠𝑠 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒;
  • 12.
    Er. Faruk Bin,Dept. of AEIE, UIT, BU Page 12 of 13 Viscosity Measurement: 1. Dynamic Viscosity: 𝝁 = 𝑺𝒉𝒆𝒂𝒓 𝒔𝒕𝒓𝒆𝒔𝒔 𝑽𝒆𝒍𝒐𝒄𝒊𝒕𝒚 𝒈𝒓𝒂𝒅𝒊𝒆𝒏𝒕 = 𝝉 (𝒅𝒗 𝒅𝒚 ⁄ ) = 𝑭 𝑨 ⁄ 𝒅𝒗 𝒅𝒚 ⁄ 𝜏 = 𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠; 𝐹 = 𝑆ℎ𝑒𝑎𝑟𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒; 𝐴 = 𝑎𝑟𝑒𝑎 𝑜𝑛 𝑤ℎ𝑖𝑐ℎ 𝑓𝑜𝑟𝑐𝑒 𝑖𝑠 𝑎𝑝𝑝𝑙𝑖𝑒𝑑; 2. Kinematic Viscosity: 𝒗 = 𝑫𝒚𝒏𝒂𝒎𝒊𝒄 𝑽𝒊𝒔𝒄𝒐𝒔𝒊𝒕𝒚 𝑫𝒆𝒏𝒔𝒊𝒕𝒚 = 𝝁 𝝆 3. Unit of Viscosity: 𝑆𝐼 𝑈𝑛𝑖𝑡 = 𝑁 𝑠𝑒𝑐 𝑚2 ⁄ 1 𝑃𝑜𝑖𝑠𝑒 = 𝑔 𝑐𝑚 − 𝑠 ⁄ 1 𝑆𝐼 𝑈𝑛𝑖𝑡 𝑜𝑓 𝐾𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 𝑉𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 = 104 𝑠𝑡𝑟𝑜𝑘𝑒 (𝑆𝑡) 4. Falling Sphere Viscometer – Calculating Terminal Velocity: 𝑲𝒊𝒏𝒆𝒎𝒂𝒕𝒊𝒄 𝒗𝒊𝒔𝒄𝒐𝒔𝒊𝒕𝒚 𝒗 = 𝒌𝒅𝟐 𝒈(𝝆𝒔 − 𝝆𝒍) 𝝆𝒍(𝟏𝟖 − 𝑽𝑻) 𝒎𝟐 𝒔 ⁄ 𝑘 = 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟; 𝑑 = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑠𝑝ℎ𝑒𝑟𝑒; 𝑉𝑇 = 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦; 𝜌𝑠 & 𝜌𝑙 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 𝑜𝑓 𝑠𝑝ℎ𝑒𝑟𝑒 𝑎𝑛𝑑 𝑙𝑖𝑞𝑢𝑖𝑑 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 5. Falling Piston Viscometer: 𝑣 𝑦 = 𝑑𝑣 𝑑𝑦 ; 𝜏 = 𝐹 𝐴 ⁄ 𝑫𝒚𝒏𝒂𝒎𝒊𝒄 𝑽𝒊𝒔𝒄𝒐𝒔𝒊𝒕𝒚 𝝁 = 𝑭 𝑨 ⁄ 𝒅𝒗 𝒅𝒚 ⁄ = 𝑭𝒚 𝒗𝑨 𝑵 − 𝒔 𝒎𝟐 ⁄ 𝐹 = 𝑚𝑔; 𝐴 = 𝜋𝐷𝐿; 𝐷 = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑝𝑖𝑠𝑡𝑜𝑛; 𝐿 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑝𝑖𝑠𝑡𝑜𝑛; 𝑚 = 𝑝𝑖𝑠𝑡𝑜𝑛 𝑚𝑎𝑠𝑠; 𝑉𝑇 = 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦; ∴ 𝝁 = 𝒎𝒈𝒚 𝝅𝑫𝑳𝑽𝑻 𝑵 − 𝒔 𝒎𝟐 ⁄ 6. Capillary Tube Viscometer: 𝑫𝒚𝒏𝒂𝒎𝒊𝒄 𝑽𝒊𝒔𝒄𝒐𝒔𝒊𝒕𝒚 𝝁 = 𝝅𝝆𝒈𝒉𝒇𝒅𝟒 𝟏𝟐𝟖𝑸𝑳 𝑵 − 𝒔 𝒎𝟐 ⁄ 𝜌 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑙𝑖𝑞𝑢𝑖𝑑; ℎ𝑓 = 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 ℎ𝑒𝑎𝑑 𝑙𝑜𝑠𝑠 𝑜𝑓 𝑓𝑙𝑜𝑤; 𝑑 = 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑓 𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 𝑡𝑢𝑏𝑒; 𝑄 = 𝑙𝑖𝑞𝑢𝑖𝑑 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒; 𝐿 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 𝑡𝑢𝑏𝑒; For Reynolds No. less than 1000 (laminar flow), the volumetric flow rate is given as 𝑸 = 𝝅𝒓𝟒(𝒑𝟏 − 𝒑𝟐) 𝟖𝝁𝑳 𝒎𝟑 𝒔 ⁄
  • 13.
    Er. Faruk Bin,Dept. of AEIE, UIT, BU Page 13 of 13 Relative Humidity Measurement: 1. Aluminium Oxide Hygrometer: 𝒁 = √𝑹𝟐 + ( 𝟏 𝝎𝑪 ) 𝟐 2. Sling Psychrometer: 𝒑𝒗 = 𝒑𝒈𝒘 − (𝒑 − 𝒑𝒈𝒘)(𝑻𝑫𝑩 − 𝑻𝑾𝑩) 𝟏𝟓𝟑𝟕. 𝟖 − 𝑻𝑾𝑩 𝑝𝑣 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑝𝑜𝑢𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒; 𝑝 = 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑖𝑥𝑡𝑢𝑟𝑒; 𝑝𝑔𝑤 = 𝑠𝑎𝑡. 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑐𝑜𝑟𝑟. 𝑡𝑜 𝑤𝑒𝑡 𝑏𝑢𝑙𝑏 𝑡𝑒𝑚𝑝. ; 𝑇𝑊𝐵 = 𝑤𝑒𝑡 𝑏𝑢𝑙𝑏 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒; 𝑇𝐷𝐵 = 𝑑𝑟𝑦 𝑏𝑢𝑙𝑏 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒; Finding the relative humidity: For an ideal gas, 𝒎𝒗 𝒎𝒔𝒂𝒕. = 𝒑𝒗𝑽 𝑹𝒗𝑻 ⁄ 𝒑𝒈𝑽 𝑹𝒗𝑻 ⁄ = 𝒑𝒗 𝒑𝒈 𝑝𝑣 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑜𝑓 𝑣𝑎𝑝𝑜𝑢𝑟; 𝑝𝑔 = 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑜𝑓 𝑣𝑎𝑝𝑜𝑢𝑟 𝑎𝑡 𝑡ℎ𝑒 𝑡𝑒𝑚𝑝. 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑖𝑥𝑡𝑢𝑟𝑒